高等数学第九章9-8
高等数学第九章知识要点
高等数学第九章知识要点二 重 积 分 三 重 积分 概念来源 1、曲顶柱体体积、曲顶柱体体积 ()()()()ini i i DiDn i i i u d y x M m f d x f v s h x s s h x s l l D ==D ==åòòòòå=®=®1010,lim ,2,lim 、平面薄片质量空间中立体的质量()()ini iiiv u dv z y x u M D ==òòòåW=®1,,lim,,z h x l基本性质 1、线性性质:()()[]()()òòòòòò+=×+×DDDdxdy y x g ldxdy y x fkdxdy y x g l y x fk ,,,,2、关于区域的可加性:()()()21,,,,21D DD dxdy y x f dxdy y x f dxdy y x f D DD +=+=òòòòòò3、()()()òòòò===D D D d dxdy y x f y x f 的面积时,s s ,1,4、()()()()()òòòò£Þ£ÎDDdxdy y x g dxdy y x f y x g y x f D y x ,,,,,时,5、()()òòòò£DDdxdy y x f dxdy y x f ,, 6、估值定理 :()s s M dxdy y x f m D££òò,7、中值定理 :()()()D f dxdy y x f D Î×=òòh x s h x ,,,,三重积分有类似的性质 计算方法1、直角坐标系下()()()()()òòòò=Dba x x X D dy y x f dxd y x f 21,,f f s 型为()()()()()òòòò=Dd cy yY D dx y x f dyd y x f 21,,y y s 型为2、极坐标下()()()()òòòò=D d f d d y x f 21211sin ,cos ,q qq r rq rr q r q r qs 1、直角坐标系下 )(1投影法投影法 ()()()()òòòòòòúûùêëé=W Dxy y x z y x z dxdy dz z y x f dv z y x f ,,21,,,, (2)截面法)截面法()()òòòòòò=Dc c Dz dxdy z y x f dz dv z y x f 21,,,,2、在柱面坐标系下()òòòWdv z y x f ,,()()()()()òòò=212121,,,sin ,cos q q q r q r q r q r q r q r rqz z dz z f pd d3、球面坐标系下()òòòWdv z y x f ,,()()()òòò=212121,.2sin cos ,cos sin ,sin sin j jq j q j q qj q q j q j jqr r drr r r r f d d几何及物1、体积 ()òò=Ddxdy y x f v ,2、曲面面积 òò++=Dy x dxdy f f A 221 1、体积 òòòW =dv v 2、质量 ()òòòW=dv z y x M ,,r理中的应用 3、质量 ()òò=Ddxdy y x m ,r4、质心坐标 ()()òòòò==DDy d y x d y x x M M x s r s r ,,()()òòòò==D D x d y x d y x y M M y s r sr ,, 5、转动惯量()òò=Dx d y x y I s r ,2,()sr d y x x I Dy òò=,2()()òò+=DOd y x y xI s r ,226 6、平面薄片对空间质点的引力、平面薄片对空间质点的引力设面密度为()xoy y x 的,r 面上的闭区域D 对位于点()()0,0,0>a a 处的单位质量的质点的引力为()z y x F F F F ,,=,则,则òòòò==Dy D x d r y G F d r x G F s rs r 33,òò-=D z dr GaF s r 3其中G 为引力常数,222a y x r ++=3、质心坐标 ()()òòòòòòW W ==dv z y x dvz y x x M M x yz,,,,r r ()()òòòòòòW W ==dvz y x dv z y x y M M y zx ,,,,r r ()()òòòòòòWW==dvz y x dv z y x z MM z xy ,,,,r r 4、转动惯量()()òòòW +=dvz y x z y I x,,22r ()()òòòW+=dvz y x x z I y,,22r ()()òòòW++=dvz y x z y x I O,,222r 5、物体对空间质点的引力设物体密度为()z y x ,,r ,占有空间闭区域W 的物体对位于点()()0,0,0>a a 处的单位质量的质点的引力为()z y x F F F F ,,=则dv r yp G F dv r xpG F y x òòòòòòW W ==33,,()dv r a z GF z òòòW-=3r 其中G 为引力常数,()222a z y x r -++=对称性在计算中的应用 1、若(、若(11)D 关于x 轴对称,且1D 为D 内0³x 部分 (2)()y x f ,是关于y 的奇函数或偶函数,则有的奇函数或偶函数,则有()òòD d y x f s,=()()()()()ïîïíì=--=-òòDy x f y x f d y x f y x f y x f ,,,,2,,,0当当s 当D 关于y 轴对称,而()y x f ,关于x 为奇函数或偶函数时,有类似的结论函数时,有类似的结论2、若D 关于直线x y =对称,则对称,则()()òòòò=D Dd x y f d y x f s s ,,3、若D 关于原点对称,则关于原点对称,则()òòD d y x f s,()()()()()ïîïíì=--=--=òòy x f y x f d y x f y x f y x f D ,,,,2,,,01当当s 01³x D D 内为部分部分若(若(11)W 关于xOy 面对称;部分为01³W z(2)()z y x f ,,是关于z 的奇函数或偶函数,则有的奇函数或偶函数,则有()òòòWdv z y x f ,,=()()()()()ïîïíì=--=-òòòW 1,,,,,,,2,,,,0z y x f z y x f dv z y x f z y x f z y x f 当当, 当W 关于()zOx yOz 面对称,而()z y x f ,,是关于)(y x 的奇函数或偶函数时,有类似结论函数时,有类似结论..。
高等数学 第9章
4
4x
V
(4 x 2 y)d
dx 2
0
0
(4 x 2 y)dy
D
4x
4
0 4 y
xy
y2 0 2
dx
4 1 (x 4)2 dx 16
04
3
例3 求两个抛物面 z 2 x2 y2 和 z x2 y2 所围成的 立体体积。
解 大致画出所围的立体图形,如图所示。
f (x ,y)d
d
r( ) f (r cos ,r sin )rdr(9-6)
0
D
x2 y2
例6 计算二重积分 e dxdy 。其中,D是由中心在
D
原点、半径为a的圆周所围成的闭区域。
解 画出区域D的图形,如图所示。
在极坐标系下D可表示为
0剟 2π,0剟r a
于是
x2y2 e dxdy
1
dx
x sin ydy
Dy
0 xy
sin y d
1
dy
y sin ydx
1 sin y ( y y2 )dy
Dy
0
y y2
0y
1
0 (sin y y sin y)dy
cos y y cos y sin y1 0
1 sin1
二、极坐标系下二重积分的计算方法
有些二重积分,积分区域的边 界曲线用极坐标方程来表示比较 方便,且被积函数用极坐标变量r, θ来表示比较简单,这时,我们就 可以考虑用图所示的极坐标来计 算它。
所求体积可看成是两个曲顶柱体体积 之差
V (2 x2 y2 )d (x2 y2 )d
D
D
2 (1 x2 y2 )d
D
大学高数第九章知识点总结
大学高数第九章知识点总结本章的内容可以分为多元函数的导数、方向导数和全微分、隐函数与参数方程、复合函数的偏导数等四个部分。
下面我将对第九章的主要知识点进行总结和归纳。
一、多元函数的导数1、定义:假设函数z=f(x,y)在点P(x0,y0)附近有定义,当自变量x和y分别以x=x0,y=y0为自变量时,关于z的增量Δz=f(x0+Δx, y0+Δy)-f(x0,y0)与增量Δx,Δy之间的比值分别为:(1) 当Δx≠0,Δy=0时,称为f对x的偏导数,记为fx(x0, y0),即f对x的偏导数是指在y=y0时,f对x的导数。
fx(x0, y0)=lim(Δx→0){f(x0+Δx, y0)-f(x0,y0)}/Δx;(2) 当Δx=0,Δy≠0时,称为f对y的偏导数,记为fy(x0, y0),即f对y的偏导数是指在x=x0时,f对y的导数。
fy(x0, y0)=lim(Δy→0){f(x0, y0+Δy)-f(x0,y0)}/Δy.2、几何意义:函数f(x,y)在点P(x0,y0)处的偏导数fx(x0,y0),fy(x0,y0)分别等于曲面z=f(x,y)在点(x0,y0,f(x0,y0))处沿着x轴、y轴的方向导数。
3、求导法则:多元函数的导数具有以下性质:(1)线性性:若z=f(x,y)可导,则对任何常数α、β,函数αf(x,y)+βg(x,y)也可导,并且有(αf(x,y)+βg(x,y))' = αf'(x,y) + βg'(x,y);(2)乘积法则:如果z=u(x,y) v(x,y)可导,则z' = u(x,y) v'(x,y) + u'(x,y) v(x,y);(3)复合函数的求导法则:如果z=f(u,v),u=u(x,y),v=v(x,y)都可导,则z' = f_u(x,y) u' +f_v(x,y) v'。
二、方向导数和全微分1、方向导数:函数z=f(x,y)在点P(x0, y0)处沿任一方向l=(α,β)的方向导数是函数f在这一方向上的变化率,其定义为:D_uf(x0,y0)=fa(x0, y0)α+fb(x0,y0)β;2、全微分:若z=f(x,y)在点P(x0, y0)可导,Δz=f(x0+Δx, y0+Δy)-f(x0,y0)近似等于其全微分:df(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy.三、隐函数与参数方程1、隐函数存在定理:若z=f(x,y)在点(x0,y0)邻域内连续且fx(x0,y0),fy(x0,y0)存在且至少有一个不为0,则z=f(x,y)=0在此点邻域内确定一个连续且具有连续导数的隐函数。
高等数学第9章偏导数全微分
x0
x
则称此极限为函数 z f ( x, y) 在点 ( x0 , y0 ) 处对 x 的偏导数,记为
z x
,f x x0 x
z ,
x x0
x
x x0 或
y y0
f x ( x0 ,
y0 ).
y y0
y y0
例如,极限(1)可以表示为
fx (x0 ,
y0 )
lim
x0
f (x0
x, y0 ) x
解
f ( x,1) x 2 ,
df ( x,1) f x ( x,1) dx 2x;
f x (2,1) 4
(3)求分界点、不连续点处的偏导数要用定义求;
例5
xy
设
f
( x,
y)
x2
y2
0
求 f ( x, y)的偏导数.
( x, y) (0,0) ( x, y) (0,0)
解 当( x, y) (0,0)时,
A ( x x )( y y ) xy
y x x y x y
ΔA称为面积函数A=xy的全增量, 由两局部组成:
y x xy Δx,Δy的线性局部
x y 当(Δx,Δy) →(0,0)时,是一个比
( x )2 ( y )2 高阶无穷小。
一、全微分
定义 设函数z f ( x, y )在点(x,y)的某个邻域内 有定义,点(x+Δx,y+Δy)在该邻域内, 如果函 数 z f ( x, y )在点(x,y)的全增量
3 )( x 2 2
y2
5
z2 )2
2x
1 r3
3x2 r5
.
由于函数关于自变量的对称性,所以
高等数学 课件 PPT 第九章 重积分
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4
《高等数学》各章知识点总结——第9章
《高等数学》各章知识点总结——第9章第9章是《高等数学》中的微分方程章节。
微分方程是研究函数与其导数之间的关系的一门数学学科,是应用数学的基础。
本章主要介绍了常微分方程的基本概念和解法,包括一阶和二阶常微分方程的解法、线性常微分方程、齐次线性常微分方程和非齐次线性常微分方程等。
本章的主要内容如下:1.一阶常微分方程的解法:-可分离变量法:将方程两边进行变量分离,然后分别对两边积分得到解。
-齐次方程法:通过对方程的两边同时除以y的幂次,转化为可分离变量的形式。
- 线性方程法:将方程整理为dy/dx + P(x)y = Q(x)的形式,然后通过积分因子法求解。
2.二阶常微分方程的解法:- 齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = 0的形式,然后通过特征方程求解。
- 非齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = f(x)的形式,然后通过待定系数法求解。
3.线性常微分方程:-线性方程的定义和性质:线性方程是指非齐次线性方程,具有叠加和齐次性质。
-齐次线性方程的通解:通过特征方程求解齐次线性方程,得到通解。
-非齐次线性方程的通解:通过齐次线性方程的通解和非齐次线性方程的一个特解求得非齐次线性方程的通解。
4.齐次线性微分方程:-齐次线性方程的定义和性质:齐次线性方程是指非齐次线性方程中f(x)为零的情况。
-齐次线性方程的解法:通过特征方程求解齐次线性方程,得到通解。
5.非齐次线性微分方程:-非齐次线性方程的定义和性质:非齐次线性方程是指非齐次线性方程中f(x)不为零的情况。
-非齐次线性方程的解法:通过待定系数法求解非齐次线性方程。
6.可降次的非齐次线性微分方程:-可降次的非齐次线性方程的定义和性质:可降次的非齐次线性方程是指非齐次线性方程中f(x)可以表示为x的多项式乘以y(x)的幂函数的形式。
《高等数学(下册)》 第9章
(1)结合律: (a) (a) ()a ; (2)分配律: ( )a a a ,(a b) a b . 这里 a ,b 为向量, , 为实数.
向量的加法运算以及向量的数乘运算统称为向量的线性运算.
9.1.2 向量的线性运算
设 a 0 ,与 a 同方向的单位向量记为 ea ,由数与向量乘积的定义有 a | a | ea ,
9.2.2 向量的坐标表示
3 4 2
解法一 按对角线法则,有
D 1 2 (2) 2 1 (3) (4) (2) 4 11 4 2 (2) (2) (4) 2 (3) 4 6 32 4 8 24 14.
解法二 按第一行展开,有
2 D 1
1 2 2
1
2
(4)
2 1 (4 4) 2 (4 3) (4) (8 6) 14 .
x 为数轴上点 P 的坐标.
9.1.3 二阶与三阶行列式
1.二阶行列式 由 4 个数排成 2 行 2 列(横排称行、竖排称列)的数表
a11 a12 a21 a22 , 表达式 a11a22 a12a21 称为该数表所确定的二阶行列式,并记作
a11 a12 . a21 a22
数 aij (i 1,2 ;j 1,2) 称为二阶行列式的元素,元素 aij 中的第一个下标 i 和第二个下 标 j 分别表示该元素所在的行数和列数.例如,元素 a21 在行列式中位于第二行、第一列.
9.1.3 二阶与三阶行列式
例1 计算二阶行列式 2 1 . 1 3
解 2 1 2 (3) 11 7 . 1 3
9.1.3 二阶与三阶行列式
2.三阶行列式 由 9 个数排成 3 行 3 列的数表
a11 a12 a13 a21 a22 a23 a31 a32 a33 ,
高等数学第9章多元函数微分学及其应用(全)
f ( x, y ) A 或 f x, y A( x x0,y y0 ).
31
二、二元函数的极限
定义 9.3
设二元函数z f ( P) f ( x, y ) 的定义域为D ,P0 ( x0 , y0 )
是D 的一个聚点,A 为常数.若对任给的正数 ,总存在 0 ,当
0 当 P( x, y) D 且 0 P0 P ( x x0 )2 ( y y0 ) 2 总有
f ( P) A , 则称A为 P P0 时的(二重)极限.
4
01
极限与连续
注意 只有当 P 以任何方式趋近于 P0 相应的 f ( P )
都趋近于同一常数A时才称A为 f ( P ) P P0 时的极限
P为E 的内点,如图9.2所示.
②边界点:如果在点P的任何邻域内,既有属于E 的点,也有不
属于E的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边
界,如图9.3所示.
P
E
图 9.2
P
E
图 9.3
16
一、多元函数的概念
③开集:如果点集E 的每一点都是E 的内点,则称E 为开集.
④连通集:设E 是平面点集,如果对于E 中的任何两点,都可用
高等数学(下册)(慕课版)
第九章 多元函数微分学及其应用
导学
主讲教师 | 张天德 教授
第九章
多元函数微分学及其应用
在自然科学、工程技术和社会生活中很多实际问题的解决需要引进多元
函数. 本章将在一元函数微分学的基础上讨论多元函数微分学及其应用.
本章主要内容包括:
多元函数的基本概念
偏导数与全微分
多元复合函数和隐函数求偏导
高数第九章知识点总结
高数第九章知识点总结第九章是高等数学中的重要章节,主要涉及到数列和级数的概念和性质。
数列和级数是数学中研究数值规律和求和的重要工具,具有广泛的应用价值。
下面将对第九章的知识点进行总结。
一、数列的概念和性质1. 数列的定义:数列是按照一定顺序排列的一组数,可以用一个公式或递推关系来表示。
2. 数列的分类:数列可以分为等差数列和等比数列,其中等差数列的相邻两项之差为常数,等比数列的相邻两项之比为常数。
3. 数列的通项公式:对于等差数列,可以通过求出公差和首项来得到通项公式;对于等比数列,可以通过求出公比和首项来得到通项公式。
4. 数列的性质:数列可以进行加法、乘法、递推等运算,可以通过这些性质来研究数列的规律和性质。
二、级数的概念和性质1. 级数的定义:级数是将数列的各项相加所得到的和,可以用求和符号来表示。
2. 部分和数列:级数的部分和数列是指将级数的前n项相加所得到的和,可以用Sn表示。
3. 级数的收敛与发散:如果级数的部分和数列Sn的极限存在,则称该级数收敛,否则称该级数发散。
4. 收敛级数的性质:收敛级数的部分和数列是有界的,且任意两个部分和之间的差值可以任意小。
5. 收敛级数的判定:通过级数的比较判别法、比值判别法、根值判别法等方法可以判断级数的收敛性。
三、数列和级数的应用1. 数列的应用:数列可以应用于等差数列和等比数列的求和问题,常见的应用有求等差数列和等比数列的前n项和,求解等差数列和等比数列的最大值和最小值等。
2. 级数的应用:级数可以应用于求解无穷级数的和问题,常见的应用有求解几何级数的和,求解幂级数的收敛区间等。
以上就是高数第九章的主要知识点总结。
掌握数列和级数的概念和性质,对于理解高等数学的整体框架和解题思路具有重要作用。
在实际应用中,数列和级数也有广泛的应用价值,能够帮助我们更好地理解和解决各种实际问题。
因此,我们要认真学习和掌握这些知识点,提高数学素养和解题能力。
《高等数学》-各章知识点总结——第9章
《高等数学》-各章知识点总结——第9章第9章 多元函数微分学及其应用总结一、多元函数的极限与连续 1、n 维空间2R 为二元数组),(y x 的全体,称为二维空间。
3R 为三元数组),,(z y x 的全体,称为三维空间。
nR 为n元数组),,,(21nx x x 的全体,称为n 维空间。
n维空间中两点1212(,,,),(,,,)n n P x x x Q y y y 间的距离:2221122||()()()n n PQ y x y x y x =-+-++-邻域:设0P 是nR 的一个点,δ是某一正数,与点0P距离小于δ的点P 的全体称为点0P 的δ邻域,记为),(0δP U ,即00(,){R|||}nU P P PP δδ=∈<空心邻域: 0P 的δ邻域去掉中心点0P 就成为0P 的δ空心邻域,记为0(,)U P δ=0{0||}PPP δ<<。
内点与边界点:设E 为n 维空间中的点集,nP ∈R 是一个点。
如果存在点P 的某个邻域),(δP U ,使得EP U ⊂),(δ,则称点P 为集合E 的内点。
如果点P 的任何邻域内都既有属于E 的点又有不属于E 的点,则称P 为集合E 的边界点,E 的边界点的全体称为E的边界.聚点:设E 为n 维空间中的点集,nP ∈R 是一个点。
如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。
开集与闭集: 若点集E 的点都是内点,则称E 是开集。
设点集nE ⊆R , 如果E 的补集nE-R是开集,则称E 为闭集。
区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域.有界集与无界集: 对于点集E ,若存在0>M ,使得(,)E U O M ⊆,即E 中所有点到原点的距离都不超过M,则称点集E 为有界集,否则称为无界集.如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是nR 中的有界闭区域,则称1212,()max{||}P P Dd D PP ∈=为D 的直径。
高等数学基础第九章
返回
9.2偏导数—二元函数的偏导数
返回
9.2偏导数—二元函数的偏导数
返回
9.2偏导数—高阶偏导数
返回
9.3全微分—全微分的定义
返回9.3全微分—全微分的 Nhomakorabea义返回
9.3全微分—全微分在近似计算中的应用
返回
9.4复合函数与隐函数的微分法— 复合函数的微分法
返回
9.4复合函数与隐函数的微分法— 复合函数的微分法
返回
9.4复合函数与隐函数的微分法— 隐函数的微分法
返回
9.4复合函数与隐函数的微分法— 偏导数的几何应用
返回
9.4复合函数与隐函数的微分法— 偏导数的几何应用
返回
9.4复合函数与隐函数的微分法— 偏导数的几何应用
返回
9.4复合函数与隐函数的微分法— 偏导数的几何应用
返回
9.4复合函数与隐函数的微分法— 偏导数的几何应用
返回
9.5多元函数的极值
返回
9.5多元函数的极值-多元函数的最值
返回
9.5多元函数的极值-条件极值
返回
本章结束
请选择: 重学一遍 退出
高等数学基础
第九章 多元函数微分学
主讲:
多元函数微分学
多元函数的极限与连续性 偏导数 全微分 复合函数与隐函数的微分法 多元函数的极值
退出
9.1多元函数的极限与连续性—多元函数
返回
9.1多元函数的极限与连续性—多元函数
返回
9.1多元函数的极限与连续性— 二元函数的极限
返回
9.1多元函数的极限与连续性— 二元函数的连续性
高等数学第9章参考答案
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim yx yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yx e x y + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂ 解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx z z y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x y x y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
高数同济第七版-第九章重点内容
第九章基本知识点1. 偏导数的定义及其计算方法(详细概念见书P65起,在此不再赘述)2. 全微分若函数 z = f (x , y ) 在点(x, y ) 可微 ,则该函数在该点偏导数yzx z ∂∂∂∂,必存在,且有y yzx x z z ∆∂∂+∆∂∂=d ,习惯上把自变量的增量用微分表示,于是y d yz x x z z ∂∂+∂∂=d d 3. 多元复合函数的求导法则(1)链式法则“分段用乘,分叉用加,单路全导,叉路偏导”若函数,可导在点)(,)(t t v t u ψϕ==),(v u f z =),(在点v u 处偏导连续,则复合函数))(),((t t f z ψϕ=在点 t 可导, 且有链式法则tvv z t u u z t z d d d d d d ⋅∂∂+⋅∂∂= (2) 全微分形式不变性,),(对v u f z =不论 u , v 是自变量还是因变量,v v u f u v u f z v u d ),(d ),(d +=4. 隐函数求导公式(1) 一个方程的情形yx F Fx y -=d d (隐函数求导公式) (2) 方程组的情形利用雅可比行列式求导(P88起)5. 多元函数微分学的几何应用(1)空间曲线的切线与法平面1) 参数式情况.空间光滑曲线⎪⎩⎪⎨⎧===Γ)()()(:t z t y t x ωψϕ切向量))(,)(,)((000t t t T ωψϕ'''=,切线方程)(')(' )(' 000000t z z t y y t x x ωψφ-=-=-法平面方程))((00x x t -'ϕ)()(00y y t -'+ψ0))((00=-'+z z t ω2) 一般式情况空间光滑曲线⎩⎨⎧==Γ0),,(0),,(:z y x G z y x F 切向量⎝⎛=T ,),(),(M z y G F ∂∂,),(),(Mx z G F ∂∂My x G F ),(),(∂∂⎪⎪⎭⎫,切线方程与法平面方程利用点法式即可求之 (2)曲面的切平面与法线1) 隐式情况 .空间光滑曲面0),,(:=∑z y x F 曲面 ∑ 在点),,(000z y x M 的法向量)),,(,),,(,),,((000000000z y x F z y x F z y x F n z y x =切线方程与法平面方程利用点法式即可求之 2)显式情况空间光滑曲面),(:y x f z =∑法向量)1,,(y x f f n --=,法线的方向余弦22221cos ,1cos yx y yx x f f f f f f ++-=++-=βα,2211cos yx f f ++=γ切平面方程:)(),()(),(0000000y y y x f x x y x f z z y x -+-=- 法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x6. 多元函数的极值(1) 利用充分条件求极值(P113)第一步 利用必要条件在定义域内找驻点.第二步 利用充分条件 判别驻点是否为极值点(2) 条件极值1) 简单问题用代入法,转化为无条件极值 2) 一般问题用拉格朗日乘数法(P116起)。
高等数学第九章 重积分
第9章 重积分典型例题一、二重积分的概念、性质 1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(3X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x d=++⎰⎰⎰⎰⎰⎰⎰(4(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)D D f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数(6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。
高等数学第九章9-8ppt精选课件
4z100确定的函数z f(x,y)的极值
解 将 方 程 两 边 分 别 对 x , y 求 偏 导 2x2zzx24zx0 2y2zzy24zy0
由 函 数 取 极 值 的 必 要 条 件 知 ,驻 点 为 P (1 , 1 ),
将 上 方 程 组 再 分 别 对 x , y 求 偏 导 数 ,
与一元函数相类似,我们可以利用函数的 极值来求函数的最大值和最小值.
求最值的一般方法:
将函数在D内的所有驻点处的函数值及在D
的边界上的最大值和最小值相互比较,其中最 大者即为最大值,最小者即为最小值.
在(0,0) 处无极值.
(3)
湘潭大学数学与计算科学学院 王文强 上一页 下一页
5
2、多元函数取得极值的条件
定理 1(必要条件)
设函数z f ( x, y)在点( x0, y0 )具有偏导数,且 在点( x0, y0 )处有极值,则它在该点的偏导数必 然为零: fx ( x0 , y0 ) 0, f y ( x0, y0 ) 0.
fy(yx0,y0)C,
则f (x, y)在点(x0, y0)处是否取得极值的条件如下: (1)AC B2 0时具有极值,
当A 0时有极大值, 当A 0时有极小值;
(2)AC B2 0时没有极值;
(3)AC B2 0时可能有极值,也可能没有极值,
还需另作讨论.
湘潭大学数学与计算科学学院 王文强 上一页 下一页
6
故 当 y y 0 , x x 0 时 , 有 f ( x ,y 0 ) f ( x 0 ,y 0 ) ,
说 明 一 元 函 数 f ( x , y 0 ) 在 x x 0 处 有 极 大 值 , 必 有 f x ( x 0 ,y 0 ) 0 ;
高等数学第9章知识点
z
Fx
k
D
x(x, y)
(x2
y2
a2
3
)2
d,
Fy
k
D
(x2
y(x, y)
y2 a2
)
3 2
d
,
M0(0,0,a)
O
y
x
(x, y,0)
D
Fz
k
D
a(
(x2 y2
x,
y) a2
)
3 2
d
,
k为引力常数
第九章 重积分习题课—天津大学 数学学院
22
二、三重积分的主要内容
1、三重积分的定义
b) 若f (x, y, z)关于x是偶函数,即 f (x, y, z) f (x, y, z),
则 f (x, y, z)dV 2 f (x, y, z)dV.
1
第九章 重积分习题课—天津大学 数学学院
32
a) 若f (x, y, z)关于y是奇函数,即 f (x, y, z) f (x, y, z),
z
(1) 直角坐标系下
先投影,再穿区域
a) 投影法(“先一后二”、“穿针法”)
z z2( x, y)
z2 S2
z1 S1
z z1( x, y)
上下型: : z1(x, y) z z2(x, y);
O a
穿入曲面 a x b,
穿出曲面 b
y1 ( x) y y2 ( x).
x
(投影区域)
1
r1 ( , )
第九章 重积分习题课—天津大学 数学学院
30
4、三重积分的对称性
z
a) 若f (x, y, z)关于z是奇函数, 即 f (x, y,z) f (x, y, z),
同济高等数学第九章精讲
方程 证:
利用对称性 , 有
满足拉普拉斯
机动 目录 上页 下页 返回 结束
则
(证明略)
本定理对 n 元函数的高阶混合导数也成立. 例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
说明: 因为初等函数的偏导数仍为初等函数 , 而初等 函数在其定义区域内是连续的 , 故求初等函数的高阶导 数可以选择方便的求导顺序.
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
若定理中
偏导数连续减弱为
偏导数存在, 则定理结论不一定成立.
机动 目录 上页 下页 返回 结束
映射 在 D 上的 n 元函数 , 记作
点集 D 称为函数的定义域 ; 数集 称为函数的值域 .
特别地 , 当 n = 2 时, 有二元函数
当 n = 3 时, 有三元函数
称为定义
机动 目录 上页 下页 返回 结束
定义域为 圆域 图形为中心在原点的上半球面.
说明: 二元函数 z = f (x, y), (x, y) D
函数在某点各偏导数都存在, 但在该点不一定连续. 例如, 显然
在上节已证 f (x , y) 在点(0 , 0)并不连续!
上节例 目录 上页 下页 返回 结束
设 z = f (x , y)在域 D 内存在连续的偏导数 若这两个偏导数仍存在偏导数,则称它们是z = f ( x , y ) 的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导 数:
下面两个定理给出了可微与偏导数的关系:(1) 函数可微Fra bibliotek偏导数存在
(2) 偏导数连续
函数可微
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
下一页
12
3、多元函数的最值
与一元函数相类似,我们可以利用函数的 极值来求函数的最大值和最小值.
求最值的一般方法:
将函数在D内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最 大者即为最大值,最小者即为最小值.
湘潭大学数学与计算科学学院 王文强
上一页
下一页
13
例 5
求 二 元 函 数 z f ( x , y ) x y(4 x y )
z(
1 2
,
1 2
)
1 2
,
z(
1 2
,
1 2
)
1 2
,
所以最大值为
1 2
, 最 小 值 为
1 2
.
无条件极值:对自变量除了限制在定义域内
外,并无其他条件.
湘潭大学数学与计算科学学院 王文强 上一页 下一页 18
三、条件极值拉格朗日乘数法
实例: 小王有200元钱,他决定用来购买两 种急需物品:计算机磁盘和录音磁带,设他 购买 x 张磁盘,y盒录音磁带达到最佳效果, 效果函数为 U ( x , y ) ln x ln y .设每张磁 盘8元,每盒磁带10元,问他如何分配这200 元以达到最佳效果.
0,
zy
( x y 1) 2 y ( x y ) ( x y 1)
2 2 2
0,
得驻点(
1 2
,
1 2
)和 (
1 2
,
1 2
),
湘潭大学数学与计算科学学院 王文强
上一页
下一页
17
因 为 lim
x y x y 1
2 2
x y
0
即边界上的值为零.
x y
2 2
的图形
播放
湘潭大学数学与计算科学学院 王文强
上一页
下一页
3
1、二元函数极值的定义
设 函 数 z f ( x , y )在 点 ( x0 , y0 ) 的 某 邻 域 内 有 定 义 , 对 于 该 邻 域 内 异 于 ( x0 , y0 ) 的 点 ( x , y ) : 若 满 足 不 等 式 f ( x , y ) f ( x0 , y0 ) , 则 称 函 数 在 ( x0 , y0 ) 有 极 大 值 ; 若 满 足 不 等 式
2
u x y z为最大.
解
令 F ( x, y, z) x y z
3 2
( x y z 12 ) ,
解
将方程两边分别对x, y 求偏导
2 x 2 z z x 2 4 z x 0 2 y 2 z z y 2 4 z y 0
由函数取极值的必要条件知,
驻 点 为 P (1 , 1 ) ,
将上方程组再分别对x, y 求偏导数,
上一页 下一页 10
f y ( x0 , y0 ) 0 , f xy ( x 0 , y 0 ) B ,
则 f ( x , y )在 点 ( x0 , y0 ) 处 是 否 取 得 极 值 的 条 件 如 下 : ( 1 ) AC B
2
0时具有极值,
当 A 0时有极大值, 当 A 0时有极小值; ( 2 ) AC B ( 3 ) AC B
得 区 域 D 内 唯 一 驻 点 ( 2 ,1 ) ,
且 f ( 2 ,1 ) 4 ,
再 求 f ( x, y)在 D 边 界 上 的 最 值 , 在 边 界 x 0和 y 0上 f ( x, y) 0 ,
湘潭大学数学与计算科学学院 王文强
上一页
下一页
15
在边界 x y 6上,即 y 6 x
(1)
例2 函数
z
x y
2
2
(2)
在 ( 0 , 0 ) 处有极大值.
例3
函数 z xy
在 ( 0 , 0 ) 处无极值.
(3)
湘潭大学数学与计算科学学院 王文强
上一页
下一页
5
2、多元函数取得极值的条件
定 理 1( 必 要 条 件 ) 设 函 数 z f ( x , y ) 在 点 ( x0 , y0 ) 具 有 偏 导 数 , 且 在 点 ( x0 , y0 ) 处 有 极 值 , 则 它 在 该 点 的 偏 导 数 必 然为零:
每天的收益为 f ( x , y )
( x 1 )( 70 5 x 4 y ) ( y 1 . 2 )( 80 6 x 7 y )
求最大收益即为求二元函数的最大值.
湘潭大学数学与计算科学学院 王文强 上一页 下一页 2
二、多元函数的极值和最值
观察二元函数 z e xy
湘潭大学数学与计算科学学院 王文强 上一页 下一页 6
故 当 y y 0 , x x 0 时 ,有 f ( x , y 0 ) f ( x 0 , y 0 ) ,
说 明 一 元 函 数 f ( x , y 0 )在 x x 0 处 有 极 大 值 ,
必有
f x ( x0 , y0 ) 0 ;
f x ( x0 , y0 ) 0 ,
f y ( x0 , y0 ) 0 .
证
不 妨 设 z f ( x , y )在 点 ( x0 , y0 ) 处 有 极 大 值 ,
则 对 于 ( x0 , y0 )的 某 邻 域 内 任 意
( x , y ) ( x0 , y0 ) 都 有 f ( x , y ) f ( x0 , y0 ),
f y ( x0 , y0 , z0 ) 0 ,
湘潭大学数学与计算科学学院 王文强
上一页
下一页
7
仿照一元函数,凡能使一阶偏导数同时为零 的点,均称为函数的驻点. 注意: 驻点 极值点
例 如 , 点 ( 0 , 0 ) 是 函 数 z xy 的 驻 点 ,但 不 是 极 值 点 .
问题:如何判定一个驻点是否为极值点?
2
在 直 线 x y 6 , x 轴 和 y 轴 所 围 成 的 闭 区 域D 上的最大值与最小值.
解
如图,
先求函数在D 内的驻点,
y
x y 6
D
D
o
x
湘潭大学数学与计算科学学院 王文强
上一页
下一页
14
解方程组
( x , y ) 2 xy ( 4 x y ) x 2 y 0 fx 2 2 f y ( x , y ) x ( 4 x y ) x y 0
当 z1 2 时 , A
1 4
0,
所 以 z f (1 , 1 ) 2 为 极 小 值 ;
当 z2 6时, A
1 4
0,
所 以 z f (1 , 1 ) 6 为 极 大 值 .
湘潭大学数学与计算科学学院 王文强 上一页 下一页 11
求 函 数 z f ( x , y )极 值 的 一 般 步 骤 :
f ( 4 , 2 ) 64 为 最 小 值 .
湘潭大学数学与计算科学学院 王文强 上一页 下一页 16
例 6
求z
x y x y 1
2 2
2 2
的最大值和最小值.
解 由
zx
( x y 1) 2 x ( x y ) ( x y 1)
2 2 2 2 2
类似地可证
f y ( x0 , y0 ) 0 .
推 广 如 果 三 元 函 数 u f ( x , y , z )在 点 P ( x0 , y0 , z0 ) 具 有 偏 导 数 , 则 它 在 P ( x0 , y0 , z0 )有 极 值 的 必 要 条 件为
f x ( x0 , y0 , z0 ) 0 , f z ( x0 , y0 , z0 ) 0 .
湘潭大学数学与计算科学学院 王文强
A z xx | P
故 B
2
1 2 z
,
B z xy | P 0 ,
C z yy | P
1 2 z
,
AC
1 (2 z)
2
0
( z 2 ) ,函 数 在 P 有 极 值 .
z2 6 ,
将 P (1 , 1 ) 代 入 原 方 程 , 有 z 1 2 ,
y
于 是 f ( x , y ) x ( 6 x )( 2 ) ,
2
x y 6
由 f x 4 x ( x 6 ) 2 x
2
0,
o
D
x
得 x1 0, x 2 4 y 6 x |x 4 2 ,
f ( 4 , 2 ) 64 ,
比 较 后 可 知 f ( 2 ,1 ) 4 为 最 大 值 ,
第八节 多元函数的极值及其求法 一、问题的提出 二、多元函数的极值和最值 三、条件强
上一页
下一页
1
一、问题的提出 实例:某商店卖两种牌子的果汁,本地牌子每 瓶进价1元,外地牌子每瓶进价1.2元,店主估 计,如果本地牌子的每瓶卖 x 元,外地牌子的 每瓶卖 y 元,则每天可卖出 70 5 x 4 y 瓶本 地牌子的果汁,80 6 x 7 y 瓶外地牌子的果汁 问:店主每天以什么价格卖两种牌子的果汁可 取得最大收益?
第一步 解 方 程 组 f x ( x , y ) 0,
f y(x, y) 0
求出实数解,得驻点.
第二步 对 于 每 一 个 驻 点( x0 , y0 ),
求 出 二 阶 偏 导 数 的 值 A、 B、 C.