2019-2020学年湖北省武汉市武汉二中广雅中学上学期九年级数学练习(五)
武汉二中广雅中学2019~2020学年度上学期九年级数学起点考
武汉二中广雅中学2019~200学年度上学期九年级数学起点考一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是1,一次项系数是-2,常数项是-3的方程是( )A .2x =x 2+3B .x 2-2x =3C .2x +3=-x 2D .x 2+2x =32.若代数式3 x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥3B .x >3C .x ≥-3D .x ≤-33.将抛物线y =2x 2向左平移一个单位,再向下平移2个单位,就得到抛物线( ) A .y =2(x -1)2-2 B .y =2(x -1)2+2 C .y =2(x +1)2+2 D .y =2(x +1)2-24.下列图形中,是轴对称图形的是( )5.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( ) A .1B .-1C .1或-1D .-1或0 6.用配方法解方程x 2-6x =5,下列变形正确的是( ) A .(x -6)2=41 B .(x -3)2=4C .(x -3)2=14D .(x -3)2=97.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n 个好友转发,每个好友转发之后,又邀请n 个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n 的值为( ) A .9 B .10 C .11 D .128.若二次函数y =ax 2+4x +a -1的最小值是2,则a 的值为( )A .4B .-1C .3D .4或-19.如图,OM ⊥ON ,A 、B 分别为射线OM 、ON 上两个动点,且OA +OB =5,P 为AB 的中点.当B 由点O 向右移动时,点P 移动的路径长为( )A .2B .22C .225 D .5 10.有两个一元二次方程M :ax 2+bx +c =0,N :cx 2+bx +a =0,其中a ·c ≠0,a ≠c ,下列四个结论:① 如果M 有两个相等的实数根,那么N 也有两个相等实数根 ② 如果M 与N 有实数根,则M 有一个根与N 的一个根互为倒数 ③ 如果M 与N 有实数根,且有一根相同,那么这个根必是1 ④ 如果M 的两根符号相同,那么N 的两根符号也相同 其中正确的是( ) A .①②③B .①②④C .②③④D .①③④二、填空题(本大题共6个小题,每小题3分,共18分)11.已知-3是一元二次方程x 2=p 的一个根,则另一个根是__________12.武汉市某气象观测点记录了5天的平均气温(单位:5℃)分别是32、31、31、27、30,这组数据的中位数是__________13.计算:31922+--a a a的结果是__________ 14.如图,点E 是菱形ABCD 的边AD 延长线上的点,AE =AC ,CE =CB ,则∠B =_________°15.工人师傅童威准备在一块长为60,宽为48的长方形花圃内修建四条宽度相等,且与各边垂直的小路.四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的8倍.若四条小路所占面积为160.设小路的宽度为x ,依题意列方程,化为一般形式为______________________ 16.如图,Rt △ABC 中,∠C =90°,AC =9 cm ,BC 的长度大于4 cm 但不超过9 cm .D 为BC延长线上一点,且DC =31BC ,过D 作直线l ∥AC ,E 在直线l 上且DE =BC ,连接AE 、BE ,则△ABE 的面积的取值范围是_________________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x 2-4x +1=018.(本题8分)如图,点E 、F 分别为□ABCD 的边BC ,AD 上的点,且∠1=∠2,求证:AE =CF19.(本题8分)“大美武汉·诗意江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校3000名学生中的部分学生,提供四个景点选择:A 、黄鹤楼;B 、东湖海洋世界;C 、极地海洋世界;D 、欢乐谷.要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题: (1) 一共调查了学生___________人(2) 扇形统计图中表示“最想去的景点D ”的扇形圆心角为___________度(3) 如果A 、B 、C 、D 四个景点提供给学生优惠门票价格分别为20元、30元、40元、60元,根据以上的统计估计全校学生到对应的景点所需要门票总价格是多少元?20.(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,抛物线C1过格点A、B、C、D,其中O (0,0)、D (1,0)(1) 写出A、B两点坐标及C1的解析式.(2) 用无刻度的直尺在OB上画一点E,使∠AEB=∠CEO(保留作图的痕迹,不要求说明理由)(3) 将抛物线C1平移至抛物线C2,使A与D对应,写出C2的解析式21.(本题8分)已知关于x的方程x2-4(k-1)x+4k2=0有两个实数根x1、x2(1) 求k的取值范围(2) 若x1x2-2|x1+x2|=4,求k的值22.(本题10分)某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品(1) 求该商品平均每月的价格增长率(2) 因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每天的利润可达到4000元23.(本题10分)△ABC 为等腰Rt △,∠ACB =90°,D 为△ABC 外直线AC 右侧一点,且CD =CA ,连接BD(1) 如图1,若点D 在直线BC 的下方,画出图形,并求出∠ADB 的度数(2) 如图2,若点D 在直线BC 的上方,连接BD 交AD 边上的高CH 于F 点,试探求线段BF 、CF 与AD 三者间的数量关系(3) 若BD =10 cm ,则线段AB 的最小值为__________cm24.(本题12分)已知抛物线y =ax 2+bx +c 开口向上,与x 轴交于点A 、B ,与y 轴交于点C (1) 如图1,若A (1,0)、C (0,3)且对称轴为直线x =2,求抛物线的解析式(2) 在(1)的条件下,如图2,作点C 关于抛物线对称轴的对称点D ,连接AD 、BD ,在抛物线上是否存在点P ,使∠P AD =∠ADB ,若存在,求出点P 的坐标,若不存在,请说明理由 (3) 若直线l :y =mx +n 与抛物线有两个交点M 、N (M 在N 的左边),Q 为抛物线上一点(不与M 、N 重合),过点Q 作QH 平行于y 轴交直线l 于点H ,求HQHNHM 的值。
武汉二中广雅中学九年级数学上册第五单元《概率初步》检测题(答案解析)
一、选择题1.从2020年10月12日起,金牛实验中学校开展施行“垃圾分类”主题教育,如图是生活中的四个不同的垃圾分类(A、B、C、D)投放桶.小明投放了两袋垃圾.不同类的概率是().A.13B.23C.14D.342.甲、乙、丙三个小朋友玩滑梯,他们通过抽签的方式决定玩滑梯的先后顺序,则顺序恰好是甲→乙→丙的概率是()A.13B.14C.15D.163.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球4.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上5.下列事件中,属于必然事件的是()A.深圳明天会下大暴雨B.打开电视机,正好在播足球比赛C.在13个人中,一定有两个人在同月出生D.小明这次数学期末考试得分是80分6.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个7.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.168.如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则()A.公平B.对小明有利C.对小刚有利D.公平性不可预测9.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。
从袋中摸出4个球,下列属于必然事件的是()A.摸出的4个球其中一个是绿球B.摸出的4个球其中一个是红球C.摸出的4个球有一个绿球和一个红球D.摸出的4个球中没有红球10.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为()A.12B.13C.23D.1611.下列事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A.0个B.1个C.2个D.3个12.下列说法正确的是()A.为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽样调查方式D.“掷一枚硬币,正面朝上”是必然事件二、填空题13.有一个转盘如图所示,转动该转盘两次,则指针两次都落在黄色区域的概率是________.14.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m、n,若把m、n分别作为点A的横坐标和纵坐标,则点A(m,n)在函数y=12x的图象上的概率是_____.15.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.16.在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.17.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.18.从2-,1-,3,2这四个数中随机抽取两个数分别记为x,y,把点A的坐标记为(,)x y,若点B为(3,0)-,则在平面直角坐标系内直线AB不经过第一象限的概率为______.19.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8530065279316043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_____(精确到0.1).20.从1.2.3.4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为____三、解答题21.在一个不透明的袋子中装有仅颜色不同的12个小球,其中红球5个,黑球7个.()1先从袋子中取出()1m m>个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值2先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于34,求m的值.22.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频0.040.160.400.32b1率(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.24.如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.25.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?参考答案26.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先利用树状图法列举出所有可能,再利用概率公式求出答案.【详解】四个不同的垃圾桶分别记为A,B,C,D表示,根据题意画图如下:由树状图知,小明投放的垃圾共有16种等可能结果,其中小明投放的两袋垃圾不同类的有12种结果,所以小明投放的两袋垃圾不同类的概率为123 164.故选:D.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.2.D解析:D【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【详解】画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为16,故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.3.B解析:B【分析】直接利用随机事件与必然事件的定义求解即可求得答案.【详解】A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、三角形任意两边之差小于第三边是必然事件;C、一个三角形三个内角之和大于180°,是不可能事件,故C错误;D、在只有红球的盒子里摸到白球是不可能事件.故选B.【点睛】本题考查了随机事件与确定事件的定义,解题关键是注熟记三角形任意两边之差小于第三边.4.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.C解析:C【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【详解】A、深圳明天会下大暴雨,是随机事件,故本选项错误;B、打开电视机,正好在播足球比赛,是随机事件,故本选项错误;C、在13个人中,一定有两个人在同月出生,是必然事件,故本选项正确;D 、小明这次数学期末考试得分是80分,是随机事件,故本选项错误. 故选:C . 【点睛】本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P (必然事件)=1; ②不可能事件发生的概率为0,即P (不可能事件)=0; ③如果A 为不确定事件(随机事件),那么0<P (A )<1.6.C解析:C 【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根. 【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%,所以,80%5xx =+ 解得:x=20经检验,x=24是原方程的解, 所以口袋中白色棋子的个数可能是20个 故选:C 【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口.7.C解析:C 【分析】画出树状图,找出所有等可能的结果,计算即可. 【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴()21 = 63P两盏灯泡同时发光,故选C.【点睛】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键. 8.C解析:C【分析】根据题意画树形图即可判断.【详解】解:如图:根据树形图可知:所有等可能的情况有8种,其中配成紫色(红与蓝)的有3种,所以3588 P P(小明胜)(小刚胜)=,=所以此规则对小刚有利.故选:C.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.B解析:B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.10.A解析:A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61=122.故答案为:12.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可.【详解】(1)如果a、b都是实数,那么a+b=b+a,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件;(3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误;(4)射击1次,中靶,是随机事件.故随机事件的个数有2个.故选:C.【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.C解析:C【分析】根据样本容量为所抽查对象的数量,抽样调查,随机事件,即可解答.【详解】解:A.为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,不是50名学生的视力,故此项错误;B.若一个游戏的中奖率是2%,2%是概率而不是做50次这样的游戏一定会中奖,故此项错误;C.了解无锡市每天的流动人口数,采用抽查方式,正确;D.“掷一枚硬币,正面朝上”是必然事件是随机事件,故此项错误;故选:C.【点睛】本题考查了样本容量,抽样调查,随机事件,解决本题的关键是明确相关概念.二、填空题13.;【分析】将黄色的部分再平均分成2份使出现每一种情况的可能性均等再利用列表法表示所有可能出现的结果进而求出相应的概率【详解】如图将黄色的部分再平均分成2份分别记作黄1黄2这样就可以列举法表示所有可能解析:49;【分析】将黄色的部分再平均分成2份,使出现每一种情况的可能性均等,再利用列表法表示所有可能出现的结果,进而求出相应的概率.【详解】如图,将黄色的部分再平均分成2份,分别记作黄1,黄2,这样就可以列举法表示所有可能出现的开个情况如下:共有9种等可能出现的结果情况,其中两次都是黄色的有4种,∴P两次黄色=49,故答案为:49.【点睛】本题考查用列表法求简单事件发生的可能性,列举出所有空白出现的结果情况是解决问题的关键.14.【分析】根据反比例函数的性质找出符合点在函数y=图象上的点即可根据概率公式求解【详解】解:列表得:∴一共有36种情况在函数y=的图象上的有(26)(34)(43)(62)共4种;∴在函数y=的图象上解析:1 9【分析】根据反比例函数的性质,找出符合点在函数y=12x图象上的点,即可根据概率公式求解.【详解】解:列表得:∴一共有36种情况,在函数y=12x的图象上的有(2,6)(3,4)(4,3)(6,2)共4种;∴在函数y=12x 的图象上的概率是436=19,故答案为:19.【点睛】本题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比;反比例函数上的点的横纵坐标的积为比例系数.15.25【分析】设盒子中原有的白球的个数为个利用简单事件的概率计算公式可得一个关于x的方程再解方程即可得【详解】设盒子中原有的白球的个数为个由题意得:解得经检验是所列分式方程的解则盒子中原有的白球的个数解析:25【分析】设盒子中原有的白球的个数为x个,利用简单事件的概率计算公式可得一个关于x的方程,再解方程即可得.【详解】设盒子中原有的白球的个数为x个,由题意得:5 107xx=+,解得25x=,经检验,25x=是所列分式方程的解,则盒子中原有的白球的个数为25个,故答案为:25.【点睛】本题考查了简单事件的概率计算、分式方程的应用,熟练掌握简单事件的概率计算方法是解题关键.16.【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数【详解】解:∵摸到黑色白色球的频率分别稳定在10和35∴摸到蓝色球的频率稳定在1-10-35=55∴蓝色球的个数为:20×55=11个故答解析:11【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数.【详解】解:∵摸到黑色、白色球的频率分别稳定在10%和35%,∴摸到蓝色球的频率稳定在1-10%-35%=55%,∴蓝色球的个数为:20×55%=11个,故答案为:11.【点睛】考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.17.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球的编号之和为偶数的结果数然后根据概率公式求解【详解】解:根据题意画图如下:共有16种等情况数其中两次摸出的球的编号之和为偶数的有10种则解析:5 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【详解】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是1016=58.故答案为:58.【点睛】此题考查列树状图求概率问题,难度一般.18.【分析】根据题意画出树状图得出所有情况数然后判断出直线不经过第一象限的情况数再根据概率公式即可得出答案【详解】解:根据题意画树状图如下:由树状图可知共有12种等可能的情况数当点的坐标为(-2-1)(解析:1 2【分析】根据题意画出树状图得出所有情况数,然后判断出直线AB不经过第一象限的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:由树状图可知,共有12种等可能的情况数,当点A的坐标为(-2,-1),(-1,-2),(3,-2),(3,-1),(2,-2),(2,-1)时,直线AB不经过第一象限,共6种情况,∴直线AB不经过第一象限的概率为:61122=,故答案为:12.【点睛】此题考查的是一次函数的图象和性质,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.08【分析】观察表格得到这种玉米种子发芽的频率稳定在0801附近据此可估计出这种玉米种子发芽的概率【详解】观察表格得到这种玉米种子发芽的频率稳定在0801附近则这种玉米种子发芽的概率是08故答案为:解析:0.8【分析】观察表格得到这种玉米种子发芽的频率稳定在0.801附近,据此可估计出这种玉米种子发芽的概率.【详解】观察表格得到这种玉米种子发芽的频率稳定在0.801附近,0.8010.8≈,则这种玉米种子发芽的概率是0.8,故答案为:0.8.【点睛】本题考查概率计算.当频数足够大时,所对应的频率相当于概率.20.【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况然后利用概率公式求解即可求得答案【详解】画树状图得:由树形图可知:一共有12种等可能的结果其中使ac≤4的有6种结果∴关于x的一元二次解析:1 2【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况,然后利用概率公式求解即可求得答案.画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12故答案为:1 2 .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)5,2或3或4;(2)2【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可【详解】解:(1)当袋子中全为黑球,即摸出5个红球时,摸到黑球是必然事件;1m>,当摸出2个或3或4个红球时,摸到黑球为随机事件,事件A必然事件随机事件m的值52或3或4故答案为:或或4.(2)依题意,得:73 124m+=解得:2,m=答:m的值是2.【点睛】本题考查的是简单事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22.(1)50;(2)240;(3)1 2 .用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61 122 ==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.24.(1)(1,1),(1,2),(2,1),(2,2);(2)14.【分析】(1)用列举法列举出可能闯关的所有情况,即可得出答案;(2)根据图表得出所有可能,进而得出闯关成功的概率.【详解】(1)所有可能闯关的情况列表如下:(2)只有(1,2)组合才能闯关,故闯关成功的可能性为14.【点睛】此题主要考查了列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.25.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.。
湖北武汉二中广雅中学2019_2020学年九年级上学期数学练习(三)
武汉二中广雅中学2019~2020学年度上学期九年级数学练习(三)一、选择题(共10小题,每小题3分,共30 分)1.下列关于x 的方程一定是一元二次方程的是()A .0=B .x +1=0C .x +1xD .x 2-x -2=0 2.若函数y =(m -2)x 2+4x -5(m 是常数)是二次函数,则( )A .m ≠-2B .m ≠2C .m ≠3D .m ≠-33.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69” 旋转180°,得到的数字是( )A .96B .69C .66D .994.已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .125.下列命题中正确的是( )A .弦是圆上任意两点之间的部分B .半径是弦C .直径是最长的弦D .弧是半圆,半圆是弧6.已知点A (a ,1)与点B (-4,b )关于原点对称,则a +b 的值为( )A .5B .-5C .3D .-37.抛物线y =x 2-4x +2不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.某工厂4月份生产零件40万个,第二季度共生产零件162万个,设该厂5、6月份平均每月产量的增长率为x ,那么x 满足的方程是( )A .40(1+x )2=162B .40+40(1+x )+40(1+x )2=162C .40(1+2x )=162D .40+40(1+x )+40(1+2x )=1629.已知△ABC 内接于⊙O ,OD ⊥AC 于点D .若∠COD =32°,则∠B 的度数为() A .16° B .32° C .16°或164° D .32°或148°10.如图,AB 、BC 是⊙O 的弦,∠B =60°,点O 在∠B 内,点D 为弧AC 上的动点,点M 、N 、 P 、的中点.若⊙O 的半径为2,则PN +MN 的长度的最大值是()A .1.1+C .2+.2+二、填空题(本大题共6个小题,每小题3分,共18 分)11.将方程2x (2x +1)=1化成一般形式后,当二次系数为4时,则一次项系数是12.已知在半径为5的⊙O 中,弦AB 的长为6,那么圆心O 到AB 的距离为13.抛物线y =2x 2+1的对称轴14.如图,在Rt △ABC 中,∠ACB =90°,∠A =35°.将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上的点D 处,则∠ACD =°15.如图,△ABC 中,∠A =70°,⊙O 截△ABC 的三条边所截得弦长相等,则∠BOC = °16.在平面直角坐标系中,已知点M 、N 的坐标分别为(-1,2)、(2,1).若抛物线y =ax 2-x + 2与线段MN 有两个不同的交点,a 的取值范围三、解答题(共8题,共72 分)17.(本题8分)解一元二次方程:x 2-2x -6=018.(本题8分)如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)、B (3,2) (1)求m 值和抛物线的解析式(2)依据图像,求不等式x 2-3x +2>x +m 的解集 (直接写出答案)19.(本题8分)已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1、x 2(1)求k 的取值范围(2)若1211x x +=-1,求k 的值20.(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.△ ABC 的顶点在格点上,A (1,1)、B (5,3)(1)在方格纸中画出平面直角坐标系,写出C 点的坐标(2)直接写出△ABC 的面积(3)使用无刻度的直尺,在图中找到一点P ,使S △P AC ∶S △PBC ∶S △P AB =1∶1∶2(保留作图痕迹)21.(本题8分)如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为点E ,CE =2(1)求AB 的长(2)求⊙O 的半径22.(本题10 分)在2019年中国男篮世界杯前夕,童威体育用品店购进一批单价为40元的篮球球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验:提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套,设销售单价为x (x ≥60)元,销售量为y 套(1)求出y 与x 的函数关系式(2)当销售单价为多少元时,销售额为14000元?(3)当销售单价为多少元时,在一个月内获得利润最大,并求出最大利润是多少?23.(本题10分)如图1所示,正方形ABCD 的边AB 与正方形AEFG 的边AE (AB <AE )在一条直线上,正方形AEFG 以点A 为旋转中心顺时针旋转.设旋转角为α,在旋转过程中,两个 正 方形只有点A 重合,其他顶点均不重合,连接BE 、DG(1)当正方形AEFG 旋转至如图2所示的位置时,求证:BE =DG(2)如图3,当点C 在线段BE 上时,连接FC ,求∠FCD 的度数(3)如图4所示,若α=45°,AB =2,EF =G 到BE 的距离是24.(本题12分)已知抛物线y =12x 2-bx +c 与x 轴交于A (-1,0)、B 两点,交y 轴于C 点(1)如图1,若B(4,0),则求抛物线解析式(2)在(1)条件下,直线l绕B 点旋转与直线AC交于E 点,△BCE=△ABC,求直线l解析式(3)如图2,若P(m,0)是x正半轴上的动点,点Q 在第四象限的抛物线上且横坐标为b+1.当AP 2PQ的最小值为2时,求P 点坐标。
湖北省武汉二中广雅中学2019-2020学年九年级(上)月考数学试卷(9月份)解析版
湖北省武汉二中广雅中学2019-2020学年九年级(上)月考数学试卷(9月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)下列四个图案中,是中心对称图案的是( )A .B .C .D . 2.(3分)点P (2,3)关于原点的对称点Q 的坐标是( )A .(﹣2,3)B .(2,﹣3)C .(3,2)D .(﹣2,﹣3)3.(3分)抛物线y =﹣(x +)2﹣3的顶点坐标是( )A .(,﹣3)B .(﹣,﹣3)C .(,3)D .(﹣,3) 4.(3分)用配方法解方程x 2+2x ﹣1=0时,配方结果正确的是( )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=3 5.(3分)如图,已知△OAB 是正三角形,OC ⊥OA ,OC =OA .将△OAB 绕点O 按逆时针方向旋转,使得OB 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°6.(3分)如图所示的Rt △ABC 向右翻滚,下列说法正确的有( )(1)①⇒②是旋转(2)①⇒③是平移(3)①⇒④是平移(4)②⇒③是旋转.A .1种B .2种C .3种D .4种7.(3分)已知函数y =(k ﹣3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠38.(3分)已知A(x1,﹣1)、B(x2,﹣2)两点都在抛物线y=﹣x2+2x+3上,且x1>1,x2>1,则x1、x2的大小关系为()A.x1>x2B.x1<x2C.x1=x2D.无法确定9.(3分)宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=1089010.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)抛物线y=4x2﹣8x+3的对称轴是直线.12.(3分)x1、x2是方程x2+5x﹣3=0的两个根,则x1﹣x1x2+x2=.13.(3分)已知点A(a,b)绕着(0,﹣1)旋转180°得到B(﹣4,1),则A点坐标为.14.(3分)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是.15.(3分)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是cm2.16.(3分)如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=.三、解答题(共8题,共72分)17.(8分)解方程:(1)x2﹣4x﹣7=0(用公式法)(2)x2﹣2x﹣24=018.(8分)如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.19.(8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值,并求此时该方程的根.20.(8分)参加足球联赛的每两队之间都进行两场比赛.共要比赛90场.共有多少个队参加比赛?21.(8分)如图,在平面直角坐标系中,已知A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣1)(1)画出△ABC绕O点逆时针旋转90°后的图形△A1B1C1,并写出C1的坐标;(2)将(1)中所得△A1B1C1先向左平移4个单位,再向上平移2个单位得到△A2B2C2,画出△A2B2C2,则C2(,)(3)若△A2B2C2可以看作△ABC绕某点旋转得来,则旋转中心的坐标为.22.(10分)如图,有长为24米的篱笆,一面利用长为10m的墙,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2(1)设BC=y,求y与x的关系式,并写出自变量x的取值范围;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法,如果不能,请说明理由.23.(10分)如图,点E是正方形ABCD中CD边上任意一点,AB=4,以点A为中心,把△ADE 顺时针旋转90°得到△AD′F(1)画出旋转后的图形,求证:点C、B、F三点共线;(2)AG平分∠EAF交BC于点G.①如图2,连接EF.若BG:CE=5:6,求△AEF的面积;②如图3,若BM、DN分别为正方形的两个外角角平分线,交AG、AE的延长线于点M、N.当MM∥DC时,直接写出DN的长.24.(12分)如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.(1)求抛物线的解析式;(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;(4)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.解:A、该图形不是中心对称图形,故本选项错误;B、该图形是中心对称图形,故本选项正确;C、该图形不是中心对称图形,故本选项错误;D、该图形旋转180度,阴影部分不能重合,故不是中心对称图形,故本选项错误;故选:B.2.解:根据中心对称的性质,可知:点P(2,3)关于原点O的对称点的坐标为(﹣2,﹣3).故选:D.3.解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选:B.4.解:∵x2+2x﹣1=0,∴x2+2x+1=2,∴(x+1)2=2.故选:B.5.解:∵△OAB是正三角形,∴∠BOA=60°,∵OC⊥OA,∴∠AOC=90°,∴∠BOC=∠BOA+∠AOC=60°+90°=150°,即旋转角是150°,故选:A.6.解:观察图形可知,(1)(3)(4)说法正确;(2)①⇒③需要改变旋转中心,经过两次旋转得到,不属于平移,错误;正确的有三种,故选C.7.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B.8.解:∵抛物线y=﹣x2+2x+3的对称轴x=1,x1>1,x2>1,∴A、B在对称轴的右侧,抛物线开口向下,∵﹣1>﹣2,∴x1<x2,故选:B.9.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.10.解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(4,5a)关于直线x=1的对称点为(﹣2,5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.解:∵y=4x2﹣8x+3,∴抛物线对称轴为x=﹣=1,故答案为:x=1.12.解:∵x1、x2是方程x2+5x﹣3=0的两个根,∴x1+x2=﹣5,x1x2=﹣3,∴x1﹣x1x2+x2=x1+x2﹣x1x2=﹣5﹣(﹣3)=﹣2.故答案是:﹣2.13.解:∵点A(a,b)绕着(0,﹣1)旋转180°得到B(﹣4,1),∴点(0,﹣1)为AB的中点,∴0=,1=,解得a=4,b=﹣3,∴A点坐标为(4,﹣3).故答案为(4,﹣3).14.解:抛物线y=(x﹣1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3).故答案为(0,3).15.解:∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.16.解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为2,∴CM=2,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,作BN⊥AC于N.则BN=AB=1,AN=,CN=2﹣,∴BC===﹣.故答案为﹣.三、解答题(共8题,共72分)17.解:(1)∵a=1,b=﹣4,c=﹣7,∴△=16﹣4×1×(﹣7)=44>0,则x==2±,∴x1=2+,x2=2﹣;(2)∵x2﹣2x﹣24=0,∴(x+4)(x﹣6)=0,则x+4=0或x﹣6=0,解得:x1=﹣4,x2=6.18.解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.19.解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴,即,解得:k=2.当k=2时,原方程为x2﹣x+==0,解得:x1=x2=.20.解:设共有x个队参加比赛,根据题意得:2×x(x﹣1)=90,整理得:x2﹣x﹣90=0,解得:x=10或x=﹣9(舍去).故共有10个队参加比赛.21.解:(1)△A1B1C1如图所示,C1(1,1);(2)△A2B2C2如图所示;故答案为:﹣3,3.(3)如图所示,旋转中心为P(﹣3,﹣1).故答案为:(﹣3,﹣1).22.解:(1)由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米这时面积y=24﹣3x(0<x<8).(2)由条件﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3∵0<24﹣3x≤10得≤x<8∴x=3不合题意,舍去即花圃的宽为5米.(3)S=﹣3x2+24x=﹣3(x2﹣8x)=﹣3(x﹣4)2+48(≤x<8)∴当x=时,S有最大值48﹣3(﹣4)2=46故能围成面积比45米2更大的花圃.围法:24﹣3×=10,花圃的长为10米,宽为4米,这时有最大面积46平方米.23.(1)证明:旋转后的图形如图1中所示,∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∵∴点D′与点B重合,∵∠AD′F=90°,∴∠AD′F+′AD′C=180°,∴C,B,F共线.(2)①解:如图2中,连接EG.∵∠BAF=∠DAE,∴∠EAF=∠DAB=90°,∵AG平分∠EAF,∴∠EAG=×90°=45°,∴∠FAG=∠FAB+∠BAG=∠BAG+∠DAE=45°,∴∠FAG=∠EAG,∵AG=AG,AF=AE,∴△GAE≌△GAF(SAS),∴FG=EG,∴EG=BF+BG=DE+BG,∵BG:CE=5:6,∴可以假设BG=5k,CE=6k,则DE=4﹣6k,CG=4﹣5k,EG=4﹣k,在Rt△EGC中,∵EG2=EC2+CG2,∴(4﹣k)2=(6k)2+(4﹣5k)2,∴k=,∴DE=,∴AE=AF==,=•AE•AF=.∴S△AEF②解:如图3中,连接EG,延长MN交AD的延长线于点P,作MQ⊥AB交AB的延长线于点Q.由题意可知:△PDN,△BMQ都是等腰直角三角形,设DP=PN=x,BG=a,DE=b.∵四边形AQMP是矩形,∴MQ=BQ=AP=4+x,∵DE∥PN,∴=,即=①,∵BG∥MQ,∴=,即=②在Rt△BCG中,∵EG2=EC2+CG2,∴(a+b)2=(4﹣a)2+(4﹣b)2③,由①②③可得x=2﹣2或﹣2﹣2(舍弃)∴DN=x=2﹣2.24.解:(1)∵直线y=x+2交x轴、y轴分别于点A、B,∴A(﹣2,0),B(0,2),∵抛物线的对称轴x=﹣,A,C关于对称轴对称,∴C(1,0),设抛物线的解析式为y=a(x+2)(x﹣1),把(0,2)代入得到a=﹣1,∴抛物线的解析式为y=﹣x2﹣x+2.(2)如图1中,作EA⊥AB交BM的延长线于E,作EF⊥x轴于F.∵∠ABE=∠OBC,∠BAE=∠BOC=90°,∴△BAE∽△BOC,∴=,∴=,∴AE=,∵∠EAF+∠BAO=90°,∠BAO=45°,∴∠EAF=45°,∴EF=AF=1,∴E(﹣3,1),∴直线BE的解析式为y=x+2,由,解得或,∴M(﹣,).(3)如图2中,当直线AD向下平移时,设E(x1,y1),F(x2,y2),作EH⊥x轴于H,FG ⊥x轴于G.∵∠EOF=90°=∠PHE=∠OGF,由△EHO∽△OGF得到:=,∴=,∴x1x2+y1y2=0,由,消去y得到:x2+b﹣2=0,∴x1x2=b﹣2,x1+x2=0,y1y2=(﹣x1+b)(﹣x2+b)=x1x2+b2,∴2(b﹣2)+b2=0,解得b=﹣1﹣或﹣1+(舍弃),当直线AD向上平移时,同法可得b=﹣1+,综上所述,平移后的解析式为y=﹣x﹣1+或y=﹣x﹣1﹣.。
湖北省武汉二中、广雅中学九年级上学期第二次月考数学考试卷(解析版)(初三)期末考试.doc
湖北省武汉二中、广雅中学九年级上学期第二次月考数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列汽车标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】分析:轴对称图形有对称轴,中心对称图形旋转180°后与原图形重合.解析:A选项是轴对称图形但不是中心对称图形;B选项既不是轴对称图形也不是中心对称图形;C选项是轴对称图形也是中心对称图形;D选项是轴对称图形但不是中心对称图形;故选C.【题文】自行车车轮要做成圆形,实际上是根据圆的特征()A. 圆是轴对称图形B. 直径是圆中最长的弦C. 圆上各点到圆心的距离相等D. 圆是中心对称图形【答案】C【解析】试题分析:车轮要做成圆形,实际上就是根据圆的旋转不变形.所以A B.D.都不对.故选C.考点:圆的特性.【题文】函数y=-x2+1的图象大致为()A. B. C. D.【答案】B【解析】分析:本题考查二次函数的图形问题.解析:函数的二次项系数为-1,所以开口向下,抛物线与y轴的交点为(0,1).故选B.【题文】如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A. 2.5B. 3C. 3.5D. 4【答案】D【解析】分析:本题利用圆的垂径定理解决.解析:连接OA,∵OP⊥AB,∴ ,在直角三角形AOP中,故选D.【题文】将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A. y=(x+1)2+2 B. y=(x-1)2+2 C. y=(x-1)2-2 D. y=(x+1)2-2【答案】B【解析】分析:二次函数图像平移问题,上加下减,左加右减.解析:把y=x2向上平移2个单位后得再向右平移1个单位得 .故选B.【题文】如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A. 60°B. 90°C. 120°D. 150°【答案】D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选:D.考点:旋转的性质.【题文】从正方形铁片上截取2 cm宽的一个矩形,剩余矩形的面积为80 cm2,则圆正方形的面积为()A. 100 cm2 B. 121 cm2 C. 144 cm2 D. 169 cm2【答案】A【解析】试题分析:设正方形边长为cm,依题意得,解方程得,(舍去),所以正方形的边长是10cm,面积是100cm2.故选A.考点:一元二次方程的应用.【题文】如图,在三个等圆上各有一条劣弧,弧AB、弧CD、弧EF,如果弧AB+弧CD=弧EF,那么AB+CD 与EF的大小关系是()A. AB+CD=EFB. AB+CD<EFC. AB+CD>EFD. 大小关系不确定【答案】C【解析】试题分析:在弧EF上取一点M使弧EM=弧CD,推出弧FM=弧AB,根据圆心角、弧、弦的关系得到AB=FM,CD=EM,根据三角形的三边关系定理求出FM+EM>FE即可.解:如图,在弧EF上取一点M使弧EM=弧CD,则弧FM=弧AB,∴AB=FM,CD=EM,在△MEF中,FM+EM>EF,∴AB+CD>EF.故选:C.点评:本题主要考查了圆心角、弦、弧之间的关系以及对三角形的三边关系定理的理解和掌握,能正确作辅助线是解此题的关键.【题文】已知抛物线y=mx2+4x+m+3开口向下,且与坐标轴的公共点有且只有2个,则m的值为( ) A. m=-4 B. m=-3或-4 C. m-3、-4、0或1 D. -4<m<0【答案】B【解析】分析:抛物线开口向下,二次项系数小于0,抛物线与坐标轴有2个公共点,分两种情况讨论.解析:∵抛物线开口向下,∴,又∵抛物线与坐标轴的公共点有且只有2个,①∴∴m=-4; ②.故选B.点睛:本题要考虑全面,二次项系数不为零,根的判别式大于零且图像经过原点;或是二次项系数不为零,根的判别式等于零.从这两个方面考虑问题.【题文】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为-1、3,则下列结论:① abc >0;② 2a+b=0;③ 4a+2b+c<0;④ 对于任意x均有ax2-a+bx-b>0,其中正确的个数有()A. 1B. 2C. 3D. 4【答案】C【解析】分析:本题考查二次函数的系数的有关式子的符号问题.解析:从图中知:故①正确;∵图像与x轴的交点的横坐标分别为-1、3,∴对称轴是直线,所以故②正确;当时,从图像来看,∴ 4a+2b+c<0,故③正确;从图像看,当时,函数值小,所以对于任意x均有,故④错误.故选C.点睛:这类题目的考点比较固定,系数的关系是解决这类题的关键,a决定抛物线的开口方向,a、b决定对称轴的位置,同左异右,c决定抛物线与y轴的交点的位置,自变量取1、2、3、-1、-2、-3时,函数值的正负问题.【题文】点A(3,n)关于原点对称的点的坐标为(-3,2),那么n=___________【答案】-2【解析】分析:关于原点对称的两个点的横坐标和纵坐标互为相反数.解析:∵点A(3,n)关于原点对称的点的坐标为(-3,2),∴n=-2.故答案为-2【题文】已知方程x2+kx-2=0的一个根是1,则k的值是___________,另一个根是___________【答案】 1;-2【解析】分析:本题考虑方程的根的定义,代入即可.解析:把代入方程得,所以原方程为∴另一个跟为-2.故答案为(1). 1; (2). -2【题文】如图,AB⊥BC,AB=BC=2 cm,弧OA与弧OC关于点O成中心对称,则AB、BC、弧CO、弧OA所围成的面积是_______cm2.【答案】2【解析】试题分析:因为AB⊥BC,所以;AB=BC=2cm,所以三角形ABC是等腰直角三角形;弧OA 与弧OC关于点O中心对称,所以AB、BC、弧CO、弧OA所围成的图形就是等腰直角三角形,所以它的面积==2考点:等腰直角三角形,中心对称图形点评:本题考查等腰直角三角形,中心对称图形,解答本题需要掌握等腰直角三角形的判定和面积公式,掌握中心对称图形的概念和性质【题文】如图,残破的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,AB=24 cm,CD=8 cm,则圆的半径为___________cm【答案】13【解析】试题分析:设这个圆的圆心是O,连接OA,设OA=x,则AD=12cm,CD=(x-8)cm,根据勾股定理得出x的值,从而得出答案.试题解析:设这个圆的圆心是O ,连接OA,设OA=x,AD=12cm,OD=(x-8)cm,则根据勾股定理列方程:x2=122+(x-8)2,解得:x=13.答:圆的半径为13cm.考点:垂径定理【题文】已知△ABC的顶点坐标为A(1,2)、B(2,2)、C(2,1),若抛物线y=ax2与该三角形无公共点,则a的取值范围是__________________________【答案】a<0、a>2或0<a<【解析】分析:本题分a>0,a<0讨论即可.解析:当a<0时,抛物线y=ax2与该三角形无公共点;当a>0时,图形经过点A(1,2)时,a=2,∴a>2时,无交点,图像经过点C(2,1)时,,∴0<a<时,无交点;故答案为a<0或a>2或0<a<【题文】如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,在线段AC上有一动点P(P不与C重合),以PC为直径作⊙O交PB于Q点,连AQ,则AQ的最小值为___________【答案】【解析】分析:连接CQ,可得∠CQB=∠CQP=90°,继而求出C、Q、B三点在圆E上,当三点共线时AQ的最小值.解析:连接CQ,∵PC为直径,所以∠CQB=∠CQP=90°,所以C、Q、B三点在圆E上,∵∠C=90°,AC=4,AB=5,∴CB=3,∴CE=1.5,所以当A、Q、E三点共线时AQ的最小值,.故答案为.点睛:解决本题的关键是要找点三点共圆和三点共线的问题,利用90°的圆周角所对的弦是直径,和圆外一点到圆上动点距离最短的原理解决问题.难点是辅助线的做法.【题文】解方程:(1) x(2x-5)=4x-10 (2) x2-4x-7=0【答案】(1) ;(2)【解析】试题分析:本题按照一元二次方程的解法解得即可.试题解析:(1)(2)【题文】要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【答案】6【解析】试题分析:本题考查单循环的计算公式,带入公式即可.试题解析:设应邀请x支球队参加比赛,根据题意得解得 (舍去),答:邀请6支球队参加比赛.【题文】已知抛物线y=x2-4x+3(1) 直接写出它的开口方向、对称轴、顶点坐标(2) 当y<0时,直接写出x的取值范围【答案】(1)开口向上,对称轴x=2,顶点(2,-1);(2) 1<x<3【解析】试题分析:本题考查抛物线的基本性质,按要求写出即可.试题解析:(1)∵a=1,∴开口向上,对称轴为顶点坐标为(2,-1);(2)把代入解析式得,,∵抛物线开口向下,∴当y<0时,1<x<3.【题文】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-1)、B(-3,3)、C(-4,1)(1) 画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标(2) 画出△ABC绕点A按逆时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标【答案】(1) B1(3,3);(2) C2(-3,-4)【解析】试题分析:根据题目要求画出图形即可.试题解析:B1(3, 3);(2) C2(-3,-4).【题文】如图,已知⊙O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD(1) 求证:E是OB的中点(2) 若AB=8,求CD的长【答案】(1)见解析;(2)4.【解析】试题分析:(1)要证明:E是OB的中点,只要求证OE=OB=OC,即证明∠OCE=30°即可.(2)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴,∴AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,,∴,∴点E为OB的中点;(2)解:在Rt△OCE中,AB=8,∴,又∵BE=OE,∴OE=2,∴,∴.考点:垂径定理;勾股定理.【题文】2016年里约,中国女排力克塞尔维亚夺得冠军,女排姑娘们平常刻苦训练,关键时刻为国争光.如图,训练排球场的长度OD为15米,位于排球场中线处网球的高度AB为2.5米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞出.当排球运行至离点O的水平距离OE为5米时,到达最高点G.将排球看成一个点,它运动的轨迹是抛物线,建立如图所示的平面直角坐标系(1) 当球上升的最大高度为3米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式(不要求写自变量x的取值范围)(2) 在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为2.7米,问这次她是否可以拦网成功?请通过计算说明(3) 若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【答案】(1)(1) (2)不能拦网成功;(3)h>【解析】试题分析:(1)根据题意得抛物线的顶点为(5,3),∴可以设抛物线的解析式为,把C(0,2)代入即可. (2)∵OD=15,∴OA=7.5, ∵对方距球网0.5米的点F,∴OF=8,把x=8代入解析式求出y的值,和2.7比较即可. (3)根据题意可以把解析式设为y=(x-5)2+h,把C(0,2)代入得a(-5)2+h=2,,要求过网,所以当时,,要求不出界,所以当时,,解不等式即可求出h的取值范围.试题解析:(1)(2) 当x=8时,不能拦网成功(3) 设y=(x-5)2+h将C(0,2)代入y=(x-5)2+h中,得a(-5)2+h=2,∴由解得h>点睛:本题的难点是第3问,要把过网并且不出界的要求转化为数学问题,本题有未知数h,过网满足当,y值大于网高,不出界的转化较难,当时,,说明球不出界.【题文】△ABC中,P为△ABC内∠A的平分线上,过P作PD⊥AB,PE⊥AC,垂足分别为D、E,连接PB、PC ,使得∠BPC=120°(1) 如图1,∠A=60°,若PB=PC,证明:BD+CE=BC(2) 如图2,∠A=60°,若PB≠PC,问上述结论是否还成立?若成立,请证明;若不成立,请说明理由(3) 如图3,∠BAC=135°,D、E为线段BC上的两点,∠DAE=90°,且AD=AE.若BD=5,CE=2,请你直接写出线段DE=_________【答案】(1)证明见解析;(2)仍然成立,理由见解析;(3)【解析】试题分析:(1)根据已知条件得出各角的度数,利用三角形全等和角平分线的性质,得出结论. (2)图形的条件发生变化,但是方法和第1问相同. (3)根据已知条件,得出三角形相似,再根据勾股定理求出DE的长即可.试题解析:(1) ∵∠BPC=120°,PB=PC∴∠PBC=∠PCB=30°∵A=60°,PD⊥AB,PE⊥AC∴∠ABE=∠ACD=30°,∠BPD=∠CPE=60°过点P作PF⊥BC于F∴∠BPF=∠CPF=60°∴△BDP≌△BFP(ASA)∴BP=BF同理:△CPE≌△CPF(ASA)∴CE=CF∴BD+CE=BF+CF=BC(2) 仍然成立,理由如下:在DA上截取DF=CE,连接PF在△DPF和△EPC中∴△DPF≌△EPC(SAS)∴∠DFP=∠ECP,PF=PC∵∠A=60°∴∠DPE=120°又∠DPE=∠FPC=120°∴∠BPF=360°-∠BPC-∠FPC=120°在△FBP和△CBP中∴△FBP≌△CBP(SAS)∴BC=BF=BD+DF=BD+CE(3)提示:过点A作AF⊥AC且使AF=AC(注意是逆时针旋转了),构造共顶点的等腰三角形的旋转,则△ADC ≌△AEF(SAS),FE⊥BC,△ABF≌△ABC(SAS),同时设DE=m【题文】已知如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C.若A(-1,0),且OC =3OA(1) 求抛物线的解析式(2) 若M点为抛物线上第四象限内一动点,顺次连接AC、CM、MB,求四边形MBAC面积的最大值(3) 将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方.若∠NBD=∠DCA,试求E点的坐标【答案】(1)y=x2-2x-3;(2)(3)E(-3,12)【解析】试题分析:(1)根据已知得出点C(0,-3),把A(-1,0),代入即可求出解析式. (2)四边形MBAC 由三角形ABC和三角形BCM组成,三角形ABC的面积是定值,三角形BCM的最值也就是四边形的最值. (3)构造△AOC≌△MOB,由三垂直得,F(1,4),就可以求出直线BE的解析式,联立方程组求出点E的坐标. 试题解析:(1) ∵A(-1,0)∴OA=1,OC=3OA=3∴C(0,-3)将A(-1,0)、C(0,-3)代入y=x2+mx+n中,得,解得∴y=x2-2x-3(2) 令y=0,则x2-2x-3=0,解得x1=-1,x2=3∴B(3,0)∴直线BC的解析式为y=x-3当△BCM的面积最大时,四边形MBAC的面积最大设M(m,m2-2m-3)过点M作MN∥y轴交BC于N∴N(m,m-3)∴MN=m-3-(m2-2m-3)=-m2+3m=当m=时,MN有最大值∴S△BCM的最大值为∴S四边形MBAC=S△ABC+S△BCM=(3) 取M(0,1),连接BM∴△AOC≌△MOB(SAS)∴∠DCA=∠OBM∵OB=OC=ON∴BON为等腰直角三角形∵∠OBM+∠NBM=45°∴∠NBD+∠NBM=∠DBM=45过点M作MF⊥BM交BE于F由三垂直得,F(1,4)∴直线BF的解析式为y=-2x+6联立,解得∴E(-3,12)点睛:本题第一问比较简单,第二问面积最值问题也是常见的问题,本题的关键是三角形BCM的面积的最值问题,三角形BCN的面积等于它的铅直高和水平宽的积的一半。
湖北省武汉二中广雅中学2019-2020学年中考数学模拟试卷
湖北省武汉二中广雅中学2019-2020学年中考数学模拟试卷一、选择题1.若2是一元二次方程x 2+mx ﹣4m =0的一个根,则另一个根是( ) A .﹣4B .4C .﹣6D .62.已知△ABC ∽△DEF ,其中AB =6,BC =8,AC =12,DE =3,那么△DEF 的周长为( ) A.394B.263C.13D.263.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( ) A.542.110⨯B.54.2110⨯C.64.2110⨯D.74.2110⨯4.下列说法中正确的是( ) A .两条对角线互相垂直的四边形是菱形 B .两条对角线互相平分的四边形是平行四边形 C .两条对角线相等的四边形是矩形D .两条对角线互相垂直且相等的四边形是正方形5.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( )A.cmB.4cmC.cmD.cm6.如图所示,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ∥BC ,EF 与AB 、CD 分别相交于点E 、F ,则△DOF 的面积与△BOA 的面积之比为( )A .1:2B .1:4C .1:8D .1:167.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.已知抛物线()()y x a x a 1=+--(a 为常数,a 0≠).有下列结论:①抛物线的对称轴为1x 2=;②方程()()x a x a 11+--=有两个不相等的实数根;③抛物线上有两点P(x 0,m),Q(1,n),若m n <,则00x 1<<;其中,正确结论的个数为( ) A .0B .1C .2D .39.如图,菱形ABCD 的边长为1,点M 、N 分别是AB 、BC 边上的中点,点P 是对角线AC 上的一个动点,则MP PN +的最小值是( )A .12B .1CD .210.如图,菱形OABC 的一条边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OA =2,∠C =120°,则点B′的坐标为( )A.)B.)C.(3D.(311.移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD 是等腰三角形ABC 底边上的高,分别过点A 、点B 作两腰的垂线段,垂足分别为B 1,A 1,再过A 1,B 1分别作两腰的垂线段所得的垂足为B 2,A 2,用同样的作法依次得到垂足B 3,A 3,….若AB 为3米,sin α=45,则水平钢条A 2B 2的长度为( )A .95米 B .2米 C .4825米 D .125米 12.已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( ) A .(4,﹣2)或(﹣4,﹣2) B .(4,2)或(﹣4,2) C .(4,﹣2)或(﹣5,﹣2) D .(4,﹣2)或(﹣1,﹣2)二、填空题 13.使代数式3xx +有意义的x 的取值范围是_______ . 14.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为______15.已知m ,n 是方程(x ﹣a )(x ﹣b )﹣1=0(其中a <b )的两根,且m <n ,则a ,b ,m ,n 的大小关系是_____.16.若(x+2)(x ﹣1)=x 2+mx ﹣2,则m =_____.1718.若x+3=5﹣y ,a ,b 互为倒数,则代数式12(x+y)+5ab =_____. 三、解答题19.为奖励表现优秀的学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元. (1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规若干.文具店给出两种优惠方案: 方案一;购买一个文具袋送1个圆规.方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.若学校购买圆规100个,则选择哪种方案更合算?请说明理由.20.(问题)探究一次函数y =kx+k+1(k≠0)图象特点. (探究)可做如下尝试:y =kx+k+1=k (x+1)+1,当x =﹣1时,可以消去k ,求出y =1.(发现)结合一次函数图象,发现无论k 取何值,一次函数y =kx+k+1的图象一定经过一个固定的点,该点的坐标是 ;(应用)一次函数y =(k+2)x+k 的图象经过定点P . ①点P 的坐标是 ;②已知一次函数y =(k+2)x+k 的图象与y 轴相交于点A ,若△OAP 的面积为3,求k 的值.21.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()()()2,2,4,0,4,4A B C -.(1)请在图中,画出ABC ∆绕着点O 逆时针旋转90后得到的111A B C ∆,则111ACB ∠的正切值为 . (2)以点O 为位似中心,将ABC ∆缩小为原来的12,得到222A B C ∆,请在图中y 轴左侧,画出222A B C ∆,若点()P m n ,是ABC ∆上的任意一点,则变换后的对应点'P 的坐标是 .22.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高。
2020年湖北省武汉二中广雅中学中考数学模拟试卷(五)
众
公 公 (1)求证: CD 与 O 相切;
公
公
公
公
第 3页(共 18页)
卷
卷
卷
卷
卷
试
试
试
试
试
号
号
号
号
号
号
众
众
众
众
众
众
公
公
公
公
公
公
卷
卷 卷 卷 卷 (2)若 CD 切 O 于 E 点,连接 OE 、 AC 交于 F ,若 FC 2AF ,求 BC 的值. AD
卷
试
试
试
试
试
试
品
品
品
品
品
品
精
精
精
精
精
:
:
:
:CF
:
:
号 号 式子表示)
号
号
号
号
众
众
众
众
众
众
公
公
公
公
公
公
卷
卷
卷
卷
卷
卷
试
试
试
试
试
试
品
品
品
品
品
品
精
精
精
精
精
精
学
学 学 三.解答题(共 5 题,共 60 分)
学
学
学
数
数 数 11.(12 分)计算:
数
数
数
中
中
初 初 (1) 12 |1 3 | 1
中 初
中 初
中 初
中 初
: 号
号: (2) 2a2 a4 (2a3)2 3a6
2019-2020学年湖北省武汉二中广雅中学九年级上期中数学试卷
2019-2020学年湖北省武汉二中广雅中学九年级上期中数学试卷
解析版
一、选择题(本大题共小10题,每小题3分,共30分)
1.(3分)下列汽车标志中,是中心对称图形的是()
A.B.C.D.
【解答】解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选:A.
2.(3分)方程x2=2x的根是()
A.0B.2C.0或2D.无解
【解答】解:x2﹣2x=0,
x(x﹣2)=0,
x=0或x﹣2=0,
所以x1=0,x2=2.
故选:C.
3.(3分)下列方程中,没有实根的是()
A.2x2﹣3x﹣1=0B.2x2﹣3x=0C.3x2﹣4x+1=0D.2x2﹣3x+4=0【解答】解:A、△=(﹣3)2﹣4×2×(﹣1)=17>0,方程有两个不相等的实数根,所以A选项错误;
B、△=(﹣3)2﹣4×2×0=9>0,方程有两个不相等的实数根,所以B选项错误;
C、△=(﹣4)2﹣4×3×1=4>0,方程有两个不相等的实数根,所以C选项错误;
D、△=(﹣3)2﹣4×2×4=﹣23<0,方程没有实数根,所以D选项正确.
故选:D.
4.(3分)如图,把Rt△ABC绕点A逆时针旋转50°得到Rt△AB′C′,直角顶点C恰好落在边AB上,连接BB′,则∠BB′C′的度数为()
第1 页共15 页。
2019-2020九上训练一武汉二中广雅
武汉二中广雅2019~2020学年度上学期九年级数学训练卷(一)一、选择题(本大题共小10题,每小题3分,共30分)1.将一元二次方程5x 2+1=6x 化为一般形式后,常数项为1,二次项系数和一次项系数分别为( ) A .5,-6 B .5,6 C .5,1 D .5x 2,-6x 2.若x =-2是关于x 的一元二次方程x 2-mx +6=0的一个解,则m 的值是( ) A .5B .-5C .6D .-6 3.用配方法解方程x 2+14x +9=0,配方后可得( )A .(x +14)2=70B .(x -7)2=40C .(x +7)2=40D .(x +7)2=704.与y =2x 2+3x +1形状相同的抛物线解析式为( )A .y =1+12x 2 B .y =(2x +1)2 C .y =(x -1)2 D .y =-2x 2 5.近日“知感冒,防传染——全民科普公益行”活动在武汉拉开帷幕,已知有1个人患了流感,经过两轮传染后宫有169人患了流感,每轮传染中平均一个人传染m 人,则m 的值为( ) A .10 B .11 C .12 D .136.已知抛物线y =(x -3)2-1与y 轴交于点C ,则点C 的坐标为( )A .(3,6)B .(0,8)C .(0,-1)D .(4,0)或(2,0)7.一个两位数等于它的十位数与个位数的和的平方的三分之一,且个位数字比十位数字大5,则这个两位数是( ) A .27B .72C .27或16D .-27或-16 8.二次函数y =-x 2+2x -4,当-1<x <2时,y 的取值范围是( )A .-7<y <-4B .-7<y ≤-3C .-7≤y <-3D .-4<y ≤-39.一位运动员在距离篮下4m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮圈,如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m ,该运动员身高1.9m ,在这次跳投中,球在头顶上方0.25m 处出手,球出手时,他跳离地面的高度是( )A .0.1mB .0.2mC .0.3mD .0.4m10.如图,已知二次函数y =ax 2+A 、B,则由抛物线的特征写出如下结论:①abc >0;②4ac -b 2>0;③a -b +c >+1=0,其中正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分) 11.一元二次方程x 2-16=0的解是 .12.抛物线y =ax 2+bx +c (a ≠0)过(-1,2)和(7,2)两点,其中对称轴是直线 . 13.如图,点A 是一次函数y =2x -6图象上的一点(点A 在第四象限),且矩形ABOC 的面积等于4,则点A 的坐标为 .14.已知函数y=12(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的取值范围是.15.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=60t-1.5t2,飞机着陆后滑行m才能停下来.16.如图,在以O为原点的直线坐标系中,已知点A(3,0),点B为直线x=-1上一动点,连接AB,以AB为一边向下作等边△ABC,连接OC,则OC的最小值.三、解答题(本大题共8小题,共72分)17.(8分)解方程:x2+10x+16=0.18.(8分)已知抛物线y=ax2+3经过点A(-2,-13).(1)求a的值;(2)若点P(m,-22)在此抛物线上,求点P的坐标.19.(8分)已知函数y=-12(x-4)2-1.(1)指出函数图象的开口方向是,对称轴是,顶点坐标为;(2)当x时,y随x的增大而减小;(3)怎样移动抛物线y=-12x2就可以得到抛物线y=-12(x-4)2-1.20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,△ABC 的顶点在格点上,点E 是边AC 与网格线的交点,以O 为原点的平面直角坐标系中点C 的坐标为(2,0),请用无刻度的直尺在网格中完成下列画图过程,保留作图的痕迹,不说明理由. (1)写出A 、B 两点的坐标:A ;B ;(2)取格点F ,连接BF 、CF ,使得CF =AB 且∠ABF =∠CBF ; (3)过点E 画线段EG ,使EG ∥BA ,且EG =BA .21.(8分)已知关于x 的方程kx 2-2(k +2)x +k -2=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 12+x 22-x 1x 2=4,求k 的值.22.(10分)九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y (件)是售价x (元/件)的一次函数,其售价、月销售量、月销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②运动服的进价是 元/件;当售价是 元/件时,月销售利润最大,最大利润是 元; (2)由于某种原因,该商品进价降低了m 元/件(m >0),商家规定该运动服售价不得低于180元/件,该商店在今后的售价中,月销售量与售价仍然满足(1)中的函数关系,若月销售最大利润是14000元,求m 的值.OECBA23.(10分)如图,在△ABC 中,AB =AC ,点D 在直线BC 上,在直线BC 的上方作∠ACE =∠ACB 且CE =CD .(1)若∠ABC =45°,点D 在BC 的延长线上运动,连接AD 、AE ;①如图1.1,若点B 、A 、E 三点共线,求ADBD的值; ②如图1.2,若AE =BC ,求证:∠AEC =2∠ADB ;(2)如图2,若∠ABC =60°,AB =4cm ,点D 从BC 的中点向BC 的延长线方向运动6cm ,则AE 的中点H 的运动路径长 cm .24.(12分)如图,已知抛物线C1的顶点为E (12,94),与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C (0,-2). (1)求抛物线C 1的解析式;(2)点D 是抛物线C 1上一点,且∠ACO +∠BCD =45°,求点D 的坐标;(3)在(2)的条件下,直线l 1经过第四象限的D 点,且直线l 1与抛物线C 1只有一个交点,l 2:y =2x +n 交抛物线C 1于点E 、F ,记△DEF 的面积为S ,求1<S <8时n 的取值范围.DCB AEDCBAE。
湖北省武汉二中广雅中学2023-2024学年九年级上学期月考数学试题
湖北省武汉二中广雅中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程2461x x -=化成一般式后,其常数项为1-,则二次项、一次项分别是( )A .4,6-B .24x ,6x -C .4,6D .24x ,6x 2.“守株待兔”这个事件是( )A .随机事件B .确定性事件C .必然事件D .不可能事件 3.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( ) A . B .C .D .4.用配方法解一元 e 二次方程2680x x --=配方后得到的方程是( ) A .()2628x += B .()2628x -= C .()2317x += D .()2317x -= 5.已知O e 的半径为4,4PO =,则过P 点的直线l 与O e 的位置关系是( ) A .相离 B .相交 C .相切 D .相交或相切 6.某电影上映第一天票房收入约3亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到10亿元.若增长率为x ,则下列方程正确的是( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++= 7.平面直角坐标系中,抛物线22y x x =+经变换得到抛物线22y x x =-,则这个变换是( )A .向左平移2个单位B .向右平移2个单位C .向左平移4个单位D .向右平移4个单位8.如图,在平面直角坐标系中,矩形ABCO 的两边与坐标轴重合,21OA OC ==,.将矩形ABCO 绕点O 顺时针旋转,每次旋转90︒,则第2024次旋转结束时,点B 的坐标是( )A .()21,B .()12-,C .()21-,D .()12-,9.如图,在正方形ABCD 中,点,E F 分别在,BC CD 上,连接,,AE AF EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于( )A .2αB .902α︒-C .45α︒-D .90α︒-10.已知二次函数()20y ax bx a =+≠,经过点()2P m ,.当1y ≤-时,x 的取值范围为13n x n -≤≤--.则下列四个值中有可能为m 的是( )A .2-B .3-C .4-D .5-二、填空题11.在平面直角坐标系中,点()2,3P -关于原点对称的点的坐标是.12.某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为.三、解答题17.已知;关于x 的方程210x kx +-=,(1)求证;无论k 为何值时,方程始终有两个不相等的实数根;(2)若2k =,且方程的两个根分别是α与β,求αβαβ+-的值.18.如图,将ABC V 绕A 点逆时针旋转得到AEF △,点E 恰好落在BC 上,若70ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.。
湖北省武汉市2019-2020学年中考第五次模拟数学试题含解析
湖北省武汉市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=k x的图象恰好经过点A′、B,则k的值是()A.9 B.133C.16915D.332.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A.2 B.3 C.4 D.53.若关于x 的一元一次不等式组312(1)x xx a-+⎧⎨-⎩pf无解,则a 的取值范围是()A.a≥3B.a >3 C.a≤3D.a<34.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8 B.8C.﹣2 D.25.下列四个几何体中,主视图是三角形的是()A.B.C.D.6.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=7.如图是反比例函数kyx=(k为常数,k≠0)的图象,则一次函数y kx k=-的图象大致是()A.B.C.D.8.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.69.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)10.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm511.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.612.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.14.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.15.点(1,–2)关于坐标原点O 的对称点坐标是_____.16.分解因式:(2a+b)2﹣(a+2b)2= .17.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.18.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?20.(6分)已知平行四边形. 尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:. 21.(6分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?22.(8分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?23.(8分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP=60°,然后沿河岸走了110米到达C 处,测得∠BCP=30°,求这条河的宽.(结果保留根号)24.(10分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解. 25.(10分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________;(2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.26.(12分)如图所示,已知一次函数y kx b =+(k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y m x=(m≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA=OB=OD=1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.27.(12分)如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== .⑴.求AB 的长;⑵.求CD 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】设B (2k,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k . 【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k ,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC 222232OD CD ++13 由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=, ∴AE =213213k CD OA OC ⨯⋅,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC==sin ∠OCD , ∴EF =1331313OD AE k OC ⋅==, ∵cos ∠OAE =AF CD AE OC==cos ∠OCD , ∴1321313CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF∥A′G,∴12 EF AF AEA G AG AA==='',∴6213A G EF k'==,4213AG AF k==,∴14521326 OG OA AG k k k =-=-=,∴A′(526k,613k),∴562613k k k⋅=,∵k≠0,∴169=15 k,故选C.【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.2.B【解析】【分析】由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.【详解】∵数轴上的点A,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.3.A【解析】【分析】先求出各不等式的解集,再与已知解集相比较求出a 的取值范围.【详解】由x﹣a>0 得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A .【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.C【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.详解:(-5)-(-3)=-1.故选:C .点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).5.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D 是锥体.故选D .【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.6.C【解析】试题解析:∵四边形ABCD 是平行四边形,,AD BF BE DC AD BC ∴=P P ,,,,.EA EG EG AG HF FC CF BE EF GH DG EH BC AD∴==== 故选C.7.B【解析】根据图示知,反比例函数k y x=的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.8.C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.9.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.10.D【解析】【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴BC 5==. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形,∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.11.D【解析】【分析】欲求S 1+S 1,只要求出过A 、B 两点向x 轴、y 轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x 的系数k ,由此即可求出S 1+S 1. 【详解】∵点A 、B 是双曲线y=4x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 1=4+4-1×1=2.故选D .12.C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <1,b >1,且|a|>|b|,∴a+b <1,ab <1,a ﹣b <1,a÷b <1.故选:C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.14.B【解析】【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=12三角形ABC的面积=12cm1,选项中只有B的长方形面积为12cm1,故选B.15.(-1,2)【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.16.3(a+b)(a﹣b).【解析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)17.32或94【解析】【详解】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴AD AB AP BC=,∴AP=AD BCABg=334⨯=94.故答案为32或94.18.4n+2【解析】∵第1个有:6=4×1+2;第2个有:10=4×2+2;第3个有:14=4×3+2;……∴第1个有:4n+2;故答案为4n+2三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】【分析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%.(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴121620{121630yy-≥-≤,解得:15 16≤y≤1656.根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为1.答:该校的寝室建成后最多可供1名师生住宿.【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.20.(1)见解析;(2)见解析.【解析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.21.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得30x+20(100﹣x)=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据题意得:30x+20(100﹣x)≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.22.(1)答案见解析(2)36°(3)4550名【解析】试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人, ;(2)360×40400=36°; (3)反对中学生带手机的大约有6500×280400=4550(名). 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.23.303米.【解析】 试题分析:根据矩形的性质,得到对边相等,设这条河宽为x 米,则根据特殊角的三角函数值,可以表示出ED 和BF ,根据EC=ED+CD ,AF=AB+BF ,列出等式方程,求解即可.试题解析:作AE ⊥PQ 于E,CF ⊥MN 于F.∵PQ ∥MN ,∴四边形AECF 为矩形,∴EC=AF,AE=CF.设这条河宽为x 米,∴AE=CF=x.在Rt △AED 中,60ADP ∠=o Q ,3.tan6033AE ED x ∴===o ∵PQ ∥MN ,30.CBF BCP ∴∠=∠=o ∴在Rt △BCF 中,.tan30CFBF===o∵EC=ED+CD,AF=AB+BF,11050.x+=+解得x=∴这条河的宽为.24.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,225.(1)2x=;(2)213222y x x=-+-;(3)54k>【解析】【分析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线M的对称轴;(2)根据抛物线的对称轴及2AB=即可得出点A、B的坐标,根据点A的坐标,利用待定系数法即可求出抛物线M的函数表达式;(3)利用配方法求出抛物线顶点D的坐标,依照题意画出图形,观察图形可得出2b<-,再利用一次函数图象上点的坐标特征可得出122k b+=,结合b的取值范围即可得出k的取值范围.【详解】(1)∵抛物线M的表达式为241y ax ax a=-+-,∴抛物线M的对称轴为直线422axa-=-=.故答案为:2x=.(2)∵抛物线241y ax ax a=-+-的对称轴为直线2x=,2AB=,∴点A的坐标为()1,0,点B的坐标为()3,0.将()1,0A代入241y ax ax a=-+-,得:410a a a-+-=,解得:12a =-, ∴抛物线M 的函数表达式为213222y x x =-+-. (3)∵()221311222222y x x x =-+-=--+, ∴点D 的坐标为12,2⎛⎫ ⎪⎝⎭. ∵直线y=n 与直线l 的交点的横坐标记为()330x x >,且当21n -≤≤-时,总有13320x x x x ->->, ∴x 2<x 3<x 1,∵x 3>0,∴直线l 与y 轴的交点在()0,2-下方,∴2b <-.∵直线l :()0y kx b k =+≠经过抛物线的顶点D ,∴122k b +=, ∴15424b k =->.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.26.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+ 反比例函数的解析式为2y x=【解析】解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0)。
湖北省武汉二中广雅中学2019-2020学年中考数学模拟考试试题
湖北省武汉二中广雅中学2019-2020学年中考数学模拟考试试题一、选择题1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=1035 2.下列判断正确的是( )A .甲乙两组学生身高的平均数均为1.58,方差分别为S 甲2=2.3,S 乙2=1.8,则甲组学生的身高较整齐B .为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C .在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D .有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件3.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A.8B.6C.12D.104.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多; C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点. 5.在Rt △ABC 中,∠ACB =90°,AB =2,AC =1,则cosA 的值是( )A .12BCD 6.下列运算正确的是( )A .236a a a +=B .3133273⎛⎫-÷-⨯= ⎪⎝⎭C .22122m m -=D .()22222961a a a ÷=-+7.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .728.已知一次函数y =﹣x+m 和y =2x+n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( )A.48B.36C.24D.189.如图,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为( )A B a C D .14a ⎫⎪⎭ 10.如图,线段AB =1,点P 是线段AB 上一个动点(不包括A 、B )在AB 同侧作Rt △PAC ,Rt △PBD ,∠A =∠D =30°,∠APC =∠BPD =90°,M 、N 分别是AC 、BD 的中点,连接MN ,设AP =x ,MN 2=y ,则y 关于x 的函数图象为( )A. B.C. D.11.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45°,侧得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 为( )A .B .C .D .12.已知,二次函数()22y x k =++向左平移1个单位,再向下平移3个单位,得到二次函数()2+h 1y x =-,则h 和k 的值分别为( )A.3,-4B.1,-4C.1, 2D.3, 2 二、填空题 13.不等式组8482(8)34x x >⎧⎨+<⎩的解集为__. 14.如图所示,长方形ABCD 中,AB =1,AD =2,将长方形向上、下、左、右各扩大1得到长方形A 1B 1C 1D 1,…,依此类推,则长方形A n B n ∁n D n 的周长可以表示为_____.15.已知点P 在△ABC 内,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称点P 为△ABC 的自相似点.如图,在Rt △ABC 中,∠ACB =90°,AC =12,BC =5,如果点P 为Rt △ABC 的自相似点,那么∠ACP 的余切值等于_____.16.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD=13,AB=5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.17.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC =2,tanA =43,则CD =_____.18.用一组a、b、c的值说明命题“若a>b,则ac>bc”错误的,这组值可以是a=,b=,c=.三、解答题19.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?20.先化简,再求值39xxx x-⎛⎫÷-⎪⎝⎭,其中x=1-时.21.把3颗算珠放在计数器的3根插棒上构成一个数字,例如,如图摆放的算珠表示数300.现将3颗算珠任意摆放在这3根插棒上.(1)若构成的数是两位数,则十位数字为1的概率为;(2)求构成的数是三位数的概率.22.如图,在矩形ABCD中,对角线AC,BD相交于点O,OA=6,点E,F是DC的三等分点,△OEF是等边三角形,求EF的长度.23.如图,在矩形ABCD中,点E是BC边上的一点,且AE⊥BD,垂足为点F,∠DAE=2∠BAE.(1)求证:BF:DF=1:3;(2)若四边形EFDC的面积为11,求△CEF的面积.24.先化简,再求代数式21211a a a a a -÷-+-的值,其中a =2cos30°. 25.如图,OA 、OB 是⊙O 的半径,OA ⊥OB ,C 为OB 延长线上一点,CD 切⊙O 于点D ,E 为AD 与OC 的交点,连接OD .已知CE =5,求线段CD 的长.【参考答案】***一、选择题13.6<x <914.8n+6.15.16.2617.5618.1;﹣1,0.(答案不唯一)三、解答题19.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想. 20.12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=239x x x x--÷ =3(3)(3)x x x x x -+- =13x + 当x=-1时,原式=12 【点睛】 此题考查分式的化简求值,解题关键在于原式括号中两项通分并利用同分母分式的减法法则计算21.(1)37;(2)1927. 【解析】【分析】(1)写出3颗算珠分别放在十位和个位构成的数所有可能的结果数,然后利用概率公式写出十位数字为1的概率;(2)画树状图展示所有27种等可能的结果数,找出构成的数是三位数的结果数,然后根据概率公式求解.【详解】(1)构成的数是两位数有(十,十,十)、(十,十,个)、(十,个,十)、(十,个,个),(个,十,十),(个,十,个),(个,个,十)所以十位数字为1的概率为37. 故答案为:37; (2)画树状图为:共有27种等可能的结果数,其中构成的数是三位数的结果数为19,所以构成的数是三位数的概率=19 27.故答案为:19 27.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【解析】【分析】过O作OG⊥DC,利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答即可.【详解】解:如图,过O作OG⊥DC,∵△OEF是等边三角形,∴EG=GF,∠FEO=60°,OE=EF=OF,∵点E,F是DC的三等分点,∴DE=EF=FC,∴DE=OE,∴∠ODE=30°,∴,∵矩形ABCD,∴DB=AC=2OA=2OD=12,∴∴∴【点睛】此题考查矩形的性质,关键是利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答.23.(1)详见解析;(2)2.【解析】【分析】(1)根据已知条件得到∠DAE =60°,∠BAE =30°,又AE ⊥BD,得到tan 303BF AF ︒==,DF tan 60AF︒== (2)根据已知条件得到△BEF ∽△BDC ,求得∠ABF =60°,得到∠FBE=30°,求得BF BE 2=,BE BF 3=,由于BD =4BF,得到6BE BD =,根据三角形的面积公式即可得到结论. 【详解】(1)证明:∵四边形ABCD 为矩形,∠DAE =2∠BAE ,∴∠DAE =60°,∠BAE =30°,又∵AE ⊥BD ,∴tan 30BF AF ︒==DF tan 60AF ︒== ∴BF :DF =1:3;(2)解:∵∠FBE =∠CBD ,∠BFE =∠DCB ,∴△BEF ∽△BDC ,∵∠BAE =30°,∴∠ABF =60°,∴∠FBE =30°,∴BF BE =,∴BE BF =, ∵BD =4BF ,∴BE BD =, ∴BFE BCD S S ∆=112BFE B E EF FDC S S S ∆+=四边形, ∵S 四边形EFDC =11,∴S △BEF=1, ∵BF BEBC BD ==,BF BE =, ∴13=BE BC , ∴12BE EC =, ∴S △CEF =1×2=2.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,特殊角的三角函数值,三角形的面积,正确的识别图形是解题的关键.24【解析】【分析】根据分式的运算法则即可求出答案.【详解】 解:原式=2111(1)1a a a a --+÷-- , =211(1)a a a a --⨯- , =1a.∵a =2=,3= . 【点睛】 本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.25.5【解析】【分析】根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO ,从而得到∠DEC=∠ADC ,根据三角形中,等角对等边即可证明△CDE 是等腰三角形,即CD=CE .【详解】解:∵CD 切⊙O 于点D ,∴∠ODC =90°;又∵OA ⊥OC ,即∠AOC =90°,∴∠A+∠AEO =90°,∠ADO+∠ADC =90°;∵OA =OD ,∴∠A =∠ADO ,∴∠ADC =∠AEO ;又∵∠AEO =∠DEC ,∴∠DEC =∠ADC ,∴CD =CE ,∵CE =5,∴CD =5.【点睛】此题考查切线的性质,解题关键在于掌握其性质.。
武汉广雅初级中学2019-2020学年中考数学模拟试卷
武汉广雅初级中学2019-2020学年中考数学模拟试卷一、选择题1.已知反比例函数2y x=,下列结论中不正确的是( ) A .图象经过点(﹣1,﹣2) B .图象在第一、三象限C .当x >1时,0<y <2D .当x <0时,y 随着x 的增大而增大2.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C =60°,如果⊙O 的半径为2,则结论错误的是( )A.AD =DBB.AE EB =C.OD =1D.AB3.将抛物线y =2x 2﹣1沿直线y =2x 方向向右上方平移( )A.y =2(x+2)2+3B.22(1y x =--C.221y x =+D.y =2(x ﹣2)2+34.如图,在Rt △ABC 中,BC =3cm ,AC =4cm ,动点P 从点C 出发,沿C→B→A→C 运动,点P 在运动过程中速度始终为1cm/s ,以点C 为圆心,线段CP 长为半径作圆,设点P 的运动时间为t (s ),当⊙C 与△ABC 有3个交点时,此时t 的值不可能是( )A.2.4B.3.6C.6.6D.9.65.下列一元二次方程有两个不相等的实数根的是( )A.2(1)20x ++= B.2251010x x -+=C.230x x -=D.230x -+=6.如图,在反比例函数y =-2x的图象上有一动点A ,连结AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数y =kx的图象上运动,若tan ∠CAB =3,则k 的值为( )A .23B .6C .8D .187.下列命题错误的是( ) A .对角线相等的平行四边形是矩形 B .对角线互相垂直的四边形是菱形 C .任意多边形的外角和为360︒D .三角形的中位线平行于第三边,并且等于第三边的一半 8.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( )A .B .C .D .9.如图,要使□ABCD 成为矩形,需添加的条件是()A .AB=BCB .∠ABC=90°C .AC ⊥BD D .∠1=∠210.如图,将一副三角板如图放置,BAC ADE 90∠∠==,E 45∠=,B 60∠=,若AE //BC ,则AFD (∠= )A .75B .85C .90D .6511.将直角三角形纸板OAB 按如图所示方式放置在平面直角坐标系中,OB 在x 轴上,OB=4,三角形纸板绕原点O 逆时针旋转,每秒旋转60°,则第2019秒时,点A 的对应点A ′ 的坐标为( )A.(-3B.(3C.(-3D.(0,12.如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.B.C.D. 4二、填空题13.如图数轴上A,B两点间的距离为10,点A表示的数为6,且B在A左侧.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.当点P运动_____秒时,点P与点Q间的距离为8个单位长度.14.图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…,OA25这些线段中有___条线段的长度为正整数.15.比较大小: (填<,>或=).16.当x为_____时,312x-的值为﹣1.17.为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是______小时.18.若代数式4x-的值是2,则x=_____.三、解答题19.某中学欲开设A实心球、B立定跳远、C跑步、D足球四种体育活动,为了了解学生们对这些项目的选择意向,随机抽取了部分学生,并将调查结果绘制成图1、图2,请结合图中的信,解答下列问题:(1)本次共调查了名学生;(2)将条形统计图圉补充完整;(3)求扇形C的圆心角的度数;(4)随机抽取了3名喜欢“跑步”的学生,其中有1名男生,2名女生,现从这3名学生中选取2名,请用画辩状图或列表的方法,求出刚好抽到一名男生一名女生的概率.20.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若A级由2个男生参加自主考试,B级由1个女生参加自主考试,刚好有一男一女考取名校,请用树状图或列表法求他们的概率.21.某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?22.已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0)经过点A(6,﹣3),对称轴是直线x=4,顶点为B,OA与其对称轴交于点M,M、N关于点B对称.(1)求这条抛物线的表达式和点B的坐标;(2)联结ON、AN,求△OAN的面积;(3)点Q在x轴上,且在直线x=4右侧,当∠ANQ=45°时,求点Q的坐标.23.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.、两种规格的书架,经市场调查发现有线下和线上两种方式,具24.某校为改善办学条件,计划购进A B有情况如下表:、两种书架20个,共花费w元,设其中A种书架购买m个,求W关于m的函(Ⅱ)如果在线上购买A B数关系式;(Ⅲ)在(Ⅱ)的条件下,若购买B种书架的数量不少于A种书架的2倍,请求出花费最少的购买方案,并计算按照该购买方案线上比线下节约多少钱.25.如图,已知点A、B分别在反比例函数1yx=-(x>0),kyx=(k<0,x>0)的图象上.点B的横坐标为4,且点B在直线y=x﹣5上.(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.【参考答案】***一、选择题13.1或9.14.515.<16.﹣1 317.7 18.6 三、解答题19.(1)150(2)60(3)144°(4)2 3【解析】【分析】(1)用B项目的人数除以它所占的百分比可得到调查的总人数;(2)先计算出C项目人数,然后补全条件统计图;(3)用360°乘以C项目所占的百分比得到扇形C的圆心角的度数;(4)画树状图展示所有6种等可能的结果数,找出抽到一名男生一名女生的结果数,然后根据概率公式求解.【详解】解:(1)调查的总人数为45÷30%=150(人);故答案为150;(2)C项目的人数为150﹣15﹣45﹣30=60(人),条形统计图圉补充为:(3)扇形C的圆心角的度数=360°×(1﹣20%﹣30%﹣10%)=144°;(4)画树状图为:共有6种等可能的结果数,其中抽到一名男生一名女生的结果数为4,所以抽到一名男生一名女生的概率=42 63 =.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(1)50,24;(2)补图见解析;(3)72;(4)23.【解析】【分析】(1)根据B级学生的数量除以B级学生的百分数,即可求得统计总数,再根据A级学生的数量除以总数,即可计算出α.(2)根据总数等于A级、B级、C级和D级的和即可计算出C级的人数,补充条形图即可.(3)根据(2)可计算出C级百分比,再根据圆周角的性质可得C级所对应的的圆心角.(4)根据树状图计算即可.【详解】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=1250×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为1050×360°=72°;故答案为:72;(4)画树状图如图所示,由上图可知共有6种结果,且每一种结果可能性都相同,其中抽到一男一女的有4种结果,刚好有一男一女的概率P(一男一女)=46=23.【点睛】根据统计知识计算即可,关键在于总数的计算,这类题目是考试的重点,也是热点,必须熟练掌握. 21.整理数据:5;4;分析数据:81;81;得出结论:(1)B;(2)160人;(3)13本.【解析】【分析】整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.(2)直接用400乘以B等级在样本中所占比列即得.(3)根据题意选择样本平均数来估计.【详解】解:整理数据:5;4.分析数据:81;81.得出结论:⑴B⑵等级为“B”的学生有820×400=160(人)⑶以平均数来估计:80320×52=13,∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。
武汉广雅初级中学2019-2020学年中考数学模拟考试试题
武汉广雅初级中学2019-2020学年中考数学模拟考试试题一、选择题1.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.2.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB的坡度为1:2.4,AB长为3.9米,钓竿AC与水平线的夹角是60°,其长为4.5米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B之间的距离约为( )米.(参考数据:3≈1.732)A.1.732 B.1.754 C.1.766 D.1.8233.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为()A. B. C.6 D.5.如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.3 cmB.2cmC.6cmD.12cm6.如图,ABC △中,AD 是中线,6BC B DAC =∠=∠,,则线段AC 的长为( )A.4B.42C.23D.32 7.若一个圆锥的母线长为6cm ,它的侧面展开图是半圆,则这个圆锥的底面半径为( ) A .1cmB .2cmC .3cmD .6cm 8.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,点A 的坐标为(0,3),∠OAB=60°,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A .(33322-, ) B .(33322--,) C .(32,-332) D .(3,-33)9.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为( )A .1.269×1010B .1.269×1011C .12.69×1010D .0.1269×101210.下列各数中,最小的实数是( )A.﹣5B.3C.0D.2 11.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠A 的度数为( )A .56°B .36°C .30°D .26° 12.下列计算或运算中,正确的是( ) A .a 6÷a 2=a 3B .(﹣2a 2)3=﹣8a 3C .(a ﹣b)2=a 2﹣b 2D .(a ﹣3)(3+a)=a 2﹣9二、填空题13.关于x ,y 的二元一次方程组321x y x y +=⎧⎨-=-⎩,则4x 2﹣4xy+y 2的值为_____. 14.如图,将一副三角板叠在一起,使它们的直角顶点重合于O 点,且∠AOB =155°,则∠COD =_____.15.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.16.某校九年级(1)班40名同学期末考试成绩统计表如下. 成绩x (单位:分)60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 4 14 16 670;④成绩的极差可能为40.其中所有正确结论的序号是______.17.3(2)-=______.18.如图,已知正方形ABCD 的边长为4,现有一动点P 从点B 出发,沿着B→C→D→A 的路径以每秒1个单位长度的速度运动,则S △PAB 与运动时间t (秒)之间的函数关系图象是( )A. B.C. D.三、解答题19.如图,四边形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 交AB 于点E ,交CB 延长线于点F(1)当点E 为边AB 的中点时(如图1),求BC 的长;(2)当点E在边AB上时(如图2),连接CE,求证:CD=2DE;(3)连接AF(如图2),当△AEF的面积为3时,求△DCE的面积.20.等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,两边分别交BC、CD于M、N.(1)如图①,作AE⊥AN交CB的延长线于E,求证:△ABE≌△AND;(2)如图②,若M、N分别在边CB、DC所在的直线上时.①求证:BM+MN=DN;②如图③,作直线BD交直线AM、AN于P、Q两点,若MN=10,CM=8,求AP的长.21.旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.22.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.23.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于点G.(1)求证:CE=CF;(2)若AE=4cm,求AC的长度.(结果精确到0.1cm3≈1.732)24.重庆小面是一款发源于山城重庆的地方特色传统小吃,是重庆最受欢迎的美食之一.重庆小面佐料丰富且用料考究,不同店面还根据自身菜谱加入豌豆、牛肉、肥肠、杂酱等,口感独特,麻辣鲜香,近年来闻名全国,某天,小明家花了48元购买牛肉面作为早饭,小华家花了28元购买豌豆面作为早饭,且小明家购买牛肉面的碗数与小华家购买豌豆面的碗数相同.已知面馆一碗豌豆面的价格比一碗牛肉面的价格少5元.(1)求购买一碗豌豆面和一碗牛肉面各需要多少元?(2)面馆一碗豌豆面的成本为4元,一碗牛肉面的成本为7元,某天面馆卖出豌豆面和牛肉面共400碗,且卖出的豌豆面和牛肉面的总利润不低于1800元,则面馆当天至少卖出牛肉面多少碗?25.(探究)(1)观察下列算式,并完成填空:1=121+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+…+(2n-1)=______.(n是正整数)(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.①第3层中分别含有______块正方形和______块正三角形地板砖;②第n层中含有______块正三角形地板砖(用含n的代数式表示).(应用)该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C C D A D C A B A C D13.414.2515.3﹣3或216.①②④17.﹣818.A三、解答题19.(1)9,(2)见解析,(3)25或73【解析】【分析】(1)证明△AED,△BEF,△DFC都是等腰直角三角形即可解决问题.(2)如图2中,连接BD.取EC的中点O,连接OD,OB.证明E,B,C,D四点共圆,可得∠DCE=∠ABD即可解决问题.(3)有两种情况:①如图3中,E在边AB上时,连接AF.设AE=x,FB=y,EB=m,由S△AEF=12•AE•FB=3,推出xy=6,由AD∥FB,推出AE ADEB BF=,推出3xm y=,可得xy=3m,推出6=3m,推出m=2,可得EB=2,AE=4,再利用勾股定理求出DE,DC即可解决问题.②E在AB的延长线上时,同理可得结论.【详解】解:(1)如图1中,∵AD∥BC,AB⊥BC,∴∠ABC=∠A=90°,∵AE=EB=3,AD=3,∴AD=AE,∴∠AED=∠ADE=∠BEF=∠F=45°,∴323EF DE FB===,,∵DF⊥DC,∴∠FDC=90°,∴∠C=∠F=45°,∴62DF DC==,∴212CF DC==,∴BC=CF﹣BF=12﹣3=9.(2)如图2中,连接BD.取EC的中点O,连接OD,OB.∵∠EBC =∠EDC =90°,EO =OC ,∴OD =OE =OC =OB ,∴E ,B ,C ,D 四点共圆,∴∠DCE =∠ABD ,∵tan ∠ABD =tan ∠DCE =31,62AD DE AB CD=== ∴CD =2DE ;(3)①当E 在边AB 上时,如图3,连接AF .设AE =x ,FB =y ,EB =m ,∵123AEF S AE FB =⋅⋅=V , ∴xy =6,∵AD ∥FB ,∴,AE AD EB FB = ∴3x m y= ∴xy =3m ,∴6=3m ,∴m =2,∴EB =2,AE =4,在Rt △AED 中,DE =5,在Rt △DEC 中,∵tan ∠DCE =1,2DE DC = ∴DC =10,∴151025212DEC S DE DC =⋅⋅=⨯⨯=V . ②当点E 在AB 的延长线上时,如图4,同法可得AE =8,223873DE =+=,∴2273CD DE ==,∴2317DEC S DE DC ⋅⋅==V . 综上所述,△DEC 的面积为25或73.【点睛】本题属于四边形综合题,考查了相似三角形的判定和性质,四点共圆,平行线的性质,勾股定理,三角形的面积,锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用四点共圆解决问题,属于中考压轴题.20.(1)见解析;(2)①见解析;②AP=310.【解析】【分析】(1)利用互余判断出∠EAB=∠NAD ,即可得出结论;(2)先构造出△ADG ≌△ABM ,进而判断出,△AMG 为等腰直角三角形,即可得出NM=NG ,即可得出结论;(3)由(2)得出MN+BM=DN ,进而得出CN=18-2BC ,再利用勾股定理得求出CN=6,在判断出△ABP ∽△ACN ,得出AP AB AN AC 2==,再利用勾股定理求出AN ,代入即可得出结论. 【详解】解:(1)如图①,∵AE 垂直于AN ,∴∠EAB+∠BAN=90°,∵四边形ABCD 是正方形,∴∠BAD=90°,∴∠NAD+∠BAN =90°,∴∠EAB=∠NAD ,又∵∠ABE=∠D=90°,AB=AD ,∴△ABE ≌△AND ;………………(2)如图②,在ND上截取DG=BM,连接AG、MG,∵AD=AB,∠ADG=∠ABM=90°,∴△ADG≌△ABM,∴AG=AM,∠MAB=∠GAD,∵∠BAD=∠BAG+∠GAD=90°,∴∠MAG=∠BAG+∠MAB=90°,∴△AMG为等腰直角三角形,∴AN⊥MG,∴AN为MG的垂直平分线,∴NM=NG,∴DN﹣BM=MN,即MN+BM=DN;(3)如图③,连接AC,同(2),证得MN+BM=DN,∴MN+CM﹣BC=DC+CN,∴CM﹣CN+MN=DC+BC=2BC,即8﹣CN+10=2BC,即CN=18﹣2BC,在Rt△MNC中,根据勾股定理得MN2=CM2+CN2,即102=82+CN2,∴CN=6,∴BC=6,∴2,∵∠BAP+∠BAQ=45°,∠NAC+∠BAQ=45°,∴∠BAP=∠NAC,又∵∠ABP=∠ACN=135°,∴△ABP∽△ACN,∴AP ABAN AC2==在Rt△AND中,根据勾股定理得AN2=AD2+DN2=36+144,解得AN=65,∴652=,∴AP=310.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,解(1)的关键是判断出∠EAB=∠NAD,解(2)的关键是判断出△AMG为等腰直角三角形,解(3)的关键是判断出△ABP∽△ACN.21.(1)①30°②见解析(2)BD2+CE2=DE2(3)21【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==,∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=,∴DE=DF=21,故答案为21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.22.(1)A(1,0)、B(1,2)、C(﹣2,2)、D(﹣2,﹣2)、E(3,﹣2)(2)(3,4)【解析】【分析】(1)观察图形,即可找出A,B,C,D,E五点的坐标;(2)观察图形,可知:点的运动规律是右、上、左、下、右、…,且每次长度+1,结合点E的坐标及DE的长度即可得出点F的坐标.【详解】(1)观察图形,可知:A(1,0)、B(1,2)、C(﹣2,2)、D(﹣2,﹣2)、E(3,﹣2);(2)∵E(3,﹣2),DE=5,∴EF=6,∴F(3,4).【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.23.(1)证明见解析;(2)5.5cm【解析】【分析】(1)利用正方形的性质可得AB=AD ,∠B=∠D=90°,由等边三角形的性质可得 AE=AF ,∠AEF=∠AFE=∠FAE= 60°.根据“HL”可证Rt △ABE ≌Rt △ ADF ,利用全等三角形的对角相等可得∠AEB=∠AFD ,利用等角对等边即证CE=CF.(2)根据到线段两端点的距离相等的点在线段的垂直平分线上,可得AC 垂直平分EF ,且△CEF 是等腰直角三角形.利用直角三角形的性质可得EG=2,AG= ,利用等腰三角形三线合及直角三角形的性质可得EG=CG=2,由AC=AG+CG 求出AC 的长,然后将结果精确即可.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°.∵△AEF 是等边三角形,∴AE=AF ,∠AEF=∠AFE=∠FAE= 60°.∴Rt △ABE ≌Rt △ ADF (HL )∴∠AEB=∠AFD∴∠CEF=∠CFE∴CE=CF .(2)解:∵AE=AF ,CE=CF ,∴AC 垂直平分EF ,且△CEF 是等腰直角三角形.∴在△AEC 中,∠EAC=30°,且∠AGE=90°.在Rt △AGE 中,∵∠EAC=30°,且AE=4,∴EG=2,AG=在Rt △CEF 中,∵CE=CF ,且∠AGE=90°,∴EG=CG=2.∴AC=AG+CG=2+∴AC≈5.5cm.【点睛】此题考查正方形的性质和等腰直角三角形的性质,利用全等三角形的性质是解题关键24.(1)购买一碗豌豆面的需要7元,则购买一碗牛肉面需要12元;(2)面馆当天至少卖出牛肉面300碗.【解析】【分析】(1)设购买一碗豌豆面的需要x 元,则购买一碗牛肉面需要(x+5)元,根据题意得到分式方程48285x x=+,计算并检验即可得到答案; (2)设面馆当天卖出牛肉面a 碗,由题意得到不等式(12﹣7)a+(7﹣4)(400﹣a )≥1800,解不等式即可得到答案.【详解】解:(1)设购买一碗豌豆面的需要x 元,则购买一碗牛肉面需要(x+5)元,48285x x=+, 解得,x =7,经检验,x =7是原分式方程的解,∴x+5=12,答:购买一碗豌豆面的需要7元,则购买一碗牛肉面需要12元;(2)设面馆当天卖出牛肉面a碗,(12﹣7)a+(7﹣4)(400﹣a)≥1800,解得,a≥300,答:面馆当天至少卖出牛肉面300碗.【点睛】本题考查分式方程的实际应用和不等式的实际应用,解题的关键是读懂题意,由题意得到等式关系. 25.【探究】n2;(2)① 6,30;②6(2n-1)或12n-6;【应用】铺设这样的图案,最多能铺8层,理由见解析【解析】【分析】一.探究(1)观察算式规律,1+3+5+…+(2n-1)=n2;(2)①第一层6块正方形和6块正三角形地板砖,第二层6块正方形和6+12=18块正三角形地板砖,第三层6块正方形和18+12=30块正三角形地板砖;②第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,第n层6=6×1=6(2n-1)块正三角形地板砖,二.应用150块正方形地板砖可以铺设这样的图案150÷6=25(层),铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,6n2=420,n2=70,,8<n<9,所以420块正三角形地板砖最多可以铺设这样的图案8层.因此铺设这样的图案,最多能铺8层.【详解】解:一.探究(1)观察算式规律,1+3+5+…+(2n-1)=n2,故答案为n2;(2)①∵第一层包括6块正方形和6块正三角形地板砖,第二层包括6块正方形和6+12=18块正三角形地板砖,∴第三层包括6块正方形和18+12=30块正三角形地板砖,故答案为6,30;②∵第一层6=6×1=6×(2×1-1)块正三角形地板砖,第二层18=6×3=6×(2×2-1)块正三角形地板砖,第三层30=6×5=6×(2×3-1)块正三角形地板砖,∴第n层6=6×1=6(2n-1)块正三角形地板砖,故答案为6(2n-1)或12n-6.二.应用铺设这样的图案,最多能铺8层.理由如下:∵150÷6=25(层),∴150块正方形地板砖可以铺设这样的图案25层;∵铺设n层需要正三角形地板砖的数量为:6[1+3+5+…+(2n-1)]=6n2,∴6n2=420,n2=70,.又∵8<9,即8<n<9,∴420块正三角形地板砖最多可以铺设这样的图案8层.∴铺设这样的图案,最多能铺8层.【点睛】本题考查了图形的变化规律列代数式,正确找出图形变化规律是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉二中广雅中学2019~2020学年度上学期九年级数学练习(五)
一、选择题(共10小题,每小题3分,共30分)
1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-8,常数项是-10的方程是( )
A .3x 2=8x +10
B .3x 2=-8x +10
C .3x 2-8x =-10
D .8x =3x 2+10 2.下列标志是中心对称图形的是( )
3.若将抛物线y =-x 2
先向左平移3个单位长度,再向下平移1个单位长度就得到抛物线( ) A .y =-(x -3)2+1 B .y =-(x +3)2+1 C .y =-(x +3)2-1 D .y =-(x -3)2-1 4.如图,已知△ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm .O 为AB 的中点,以C 为圆心,5 cm 为半径作⊙C ,则O 与⊙C 的位置关系( ) A .O 在⊙C 内
B .O 在⊙
C 上
C .O 在⊙C 外
D .无法确定
5.若点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数x
a y 1
2
+=(a 为常数)的图象上,则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3
B .y 2>y 1>y 3
C .y 3>y 2>y 1
D .y 3>y 1>y 2
6.如图,一个隧道的横截面是以O 为圆心的圆的一部分,路面AB =8 m ,净高CD =6 m ,则此圆的半径OA 长为( ) A .3
B .4
C .
3
13
D .5
7.某商场有一个可以自由转动的转盘(如图)规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,下表是活动进行中的一组统计数据:
转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68
111 136
345
546 704
转动转盘一次,获得铅笔的概率约是( )
A .0.6
B .0.7
C .0.8
D .0.9
8.如图,分别以正△ABC 三个顶点为圆心,以边长为半径画弧,得到的封闭图形叫做莱洛三角形.若AB =1,则莱洛三角形的面积为( )
A .3+π
B .
232+
π
C .23-π
D .2
32-π
9.已知关于x 的一元二次方程x 2=2(1-m )x -m 2的两个实数根为x 1、x 2,设y =x 1+x 2,则y 的
最小值为(
)
A .
2
1
B .0
C .1
D .2
10.函数y =-x 2+6|x |-5上有一点P (b -a ,2a -5b ),若这样的P 点有且只有4个,则b 的取值范围为( )
A B A.
3
1
3
5
-
<
<
-b B.
3
5
3
1
<
<b C.
3
5
3
1
<
<b或
3
11
-
=
b D.
3
1
3
11
<
<
-b
二、填空题(本大题共6个小题,每小题3分,共18分)
11.点A(a,2)在反比例函数
x
y
3
-
=的图象上,则a=__________
12.y=x2-1的顶点坐标是__________
13.用一个圆心角为120°半径3 cm的扇形卷成一个无底圆锥,则它的高为__________
14.已知电流在一定时间段内正常通过电子元件的概率是,则在一定时间段内,A、B 之间电流能正常通过的概率为__________
15.如图,△ABC中,2
=
AB
AC
,BD为AC边上的中线且3
2
=
BD,∠CBD=30°,则BC长为__________
16.如图,等边△ABC中,AB=2,AD∠BC于D,P、Q分别是AB、BC上的动点,且PQ=AD,点M在PQ的右上方且PM=QM,∠M=120°.当P从点A运动到点B时,M的路径长为____三、解答题(共8题,共72分)
17.(本题8分)解方程:x2-3x-1=0
18.(本题8分)如图,A、B是⊙O上两点,∠AOB=120°,C是弧AB的中点.求证:四边形OACB是菱形
19.(本题8分)童威对自己所在班级中的50名学生每周读书时间进行了调查,由结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1) 填空:m=__________
(2) 这50名学生读书时间的中位数是__________
(3) 从读书时间在8小时和10小时的5名学生中随机选取2人,
请你用列表或画树状图的方法,求其中至少有1人读书时间在
10小时的概率
20.(本题8分)如图,在网格内,A (-1,3)、B (3,1)、C (0,4)、D (3,3) (1) 试确定△ABC 的形状___________ (2) 画出△ABC 的外接圆⊙M
(3) 点P 是第一象限内的一个格点,∠CPD =45° ① 写出一个点P 的坐标________ ② 满足条件的点P 有_______个
21.(本题8分)如图,AE 是⊙O 的直径,AE ⊥弦BC 于D ,F 是AE 延长线上一点,且 ∠F +∠BAC =90°
(1) 连接CF ,求证:CF 是⊙O 的切线 (2) 若OD =4,DF =5,求AC 的长
22.(本题10分)心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化.讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y 随时间t (分钟)的变化规律
有如下关系式:⎪⎩
⎪
⎨⎧≤<+-≤<≤<++-=40204309201025010
050302t t t t t t y (y 值越大表示接受能力越强)
(1) 讲课开始后第6分钟时与讲课开始后第26分钟时比较,何时学生的注意力更集中? (2) 讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(3) 一道数学难题,需要讲解23分钟,为了效果较好,要求学生的注意力最低达到175,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
23.(本题10分)等腰△ABC中,AB=AC,直线l经过点A,D、E为l上不与A重合的两点,且BE=BD,∠EBD=∠BAC,连接CD
(1) 如图1,若∠BAC=90°,求证:∠BDC=90°
(2) 如图2,若∠BAC≠90°,求证:BE∥CD
(3) 如图3,若∠BAC=60°,AB=4,直接写出△ABD的最大面积为_____________
24.(本题12分)抛物线C1经过A(-3,0)、B(1,0)、C(0,-3)三点
(1) 求抛物线的解析式
(2) 抛物线的对称轴交x轴于D,过D的直线交抛物线于P、Q(P在Q左边),且S∠APD=2S∠BQD,求l的解析式
(3) 点E是抛物线C1的顶点,将C1沿着l EC的方向平移至C2.当C2与y=2x-5只有一个公共点时:
∠ 求C2的解析式
∠P(x P,y P)是C2上一点,若-6≤x P≤2且y P为整数,满足条件的P点共有__________个。