第三章 多维随机变量及其分布-5

合集下载

概率论与数理统计(浙大) 习题答案 第3章

概率论与数理统计(浙大) 习题答案 第3章

第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第三章多维随机变量及其分布

第三章多维随机变量及其分布

第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。

例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。

⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。

在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。

1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。

1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。

因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。

随机变量X常称为⼀维随机变量。

2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。

定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。

⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。

(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。

概率论与数理统计浙大四版习题答案第三章

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

【学习】第三章多维随机变量

【学习】第三章多维随机变量

fX(x)f(x,y)dy,
fY(y)f(x,y)dx
结 束
19
例1: 设 (X, Y) 的分布函数为:
F (x ,y ) a ( b arx ) c c (a ta ry n ) c,( t a x ,y n ) ,
2
2
试求 (1) a 、 b、c , (2) (X, Y ) 的概率密度.
x2 … xi … p21 … pi 1 … ┇…┇…
yj p1 j p2 j … pi j … ┇ ┇ ┇ …┇ …
( X, Y ) 的分布律的性质: (1) 非负性 pi j 0,
(2) 归一性 pi j 1
ij
结 束
10
( X, Y ) 的分布律
P {X x i,Y yj} p ij,i,j 1 ,2 ,
第三章 多维随机变量及其分布
结 束
1
到现在为止,我们只讨论了一维随机变量及其分布. 但有些随机现象用一个随机变量来描述还不够,而 需要用几个随机变量来描述.
如: 在打靶时, 命中点的位置是由 一对随机变量(两个坐标)来确定的.
飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定 的等等.
因而需进一步讨论由多个随机变量构成的随机向量. 其处理思路及方法与一维情形相同, 但形式较一维 复杂; 学习时应注意与一维情形的对照.
D的可能取值 为1, 2, 3, 4; F 的可能取值 为0, 1, 2 ;
再确定取值的概率,如: P{D1,F0}P{N1} 1/ 6,
P{D2,F1} P ( { N 2 }{ N 3 }{ N 5 } 3 / 6
等等.
可得D 和 F 的 联合分布律及 边缘分布律为:
FD 1 2 0 1/6 0 1 0 3/6

《概率论》第3章§5两个随机变量的函数的分布

《概率论》第3章§5两个随机变量的函数的分布
FP( X i z1 P n } 设 Xi ~ = Xi {x),≤=},2,{Y,≤,z且 X1 , X2 ,, Xn 相互独立
= P{X ≤ z,Y ≤ z}

Fmax (z) = F (z)
F (z) = P{min(X ,Y) ≤ z} min = FX1 (z)FX,2 (z)z} FXn (z) = 1 P{min(X Y) > F (z) =1P{{min(,Y 1,zX2 ,, Xn ) ≤ z } = P X > z X> } min n = 1∏ > } P(z > [ =1 P{X1zFXi {Y )] z} i =1 =1 ,[1,,{X 独立同分布于 F(x)时有 X1 X2 P Xn ≤ z}][1 P{Y ≤ z}] 特别当 n = 1[1 FX (z)][1 F (z)] n Y
z
2σ 2

z e ,z ≥0 2 fZ (z) = σ 分布) (瑞利Rayleigh分布) 0 , z第三章 多维随机变量及其分布 <0
ρ d 2 =1 e 2σ2 2σ 2
z 2σ 2
(z ≥ 0)
§5 两个随机变量的函数的分布
11/15 11/15
设 X ~ FX (x),Y ~ F ( y) ,且 X,Y 相互独立 ,则 Y F (z) = P{max(X ,Y) ≤ z} max
∵ Fmax (z) = F (z) ∴ fmax (z) = 2 f (z)F(z)
2
= 2 f (z)∫∞ f (t)dt ∵ Fmin (z) = 1[1 F(z)]2
∴ fmax (z) = 2 f (z)[1 F(z)]
= 2 f (z)[1 ∫∞ f (t)dt]

第三章 多维随机变量及概率分布

第三章  多维随机变量及概率分布

第三章多维随机变量及概率分布3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。

例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。

又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。

定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。

定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。

记作(X,Y)~F(x,y)。

(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。

因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。

3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。

设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。

(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案

第三章 多维随机变量及其分布习题3.11. 100件商品中有50件一等品、30件二等品、20件三等品.从中任取5件,以X 、Y 分别表示取出的5件中一等品、二等品的件数,在以下情况下求 (X , Y ) 的联合分布列. (1)不放回抽取;(2)有放回抽取. 解:(1)(X , Y )服从多维超几何分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P −==⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===5,,0;5,4,3,2,1,0,51005203050},{L ,故 (X , Y ) 的联合分布列为0281.0500000918.00612.040001132.01562.00495.03000661.01416.00927.00185.0200182.00539.00549.00227.00032.010019.00073.00102.00066.00019.00002.00543210X Y(2)(X , Y )服从多项分布,X , Y 的全部可能取值分别为0, 1, 2, 3, 4, 5,且i j i j i j i j Y i X P j i j i −==×××−−⋅⋅===−−5,,0;5,4,3,2,1,0,2.03.05.0)!5(!!!5},{5L ,故 (X , Y ) 的联合分布列为03125.05000009375.00625.040001125.015.005.03000675.0135.009.002.02002025.0054.0054.0024.0004.0100243.00081.00108.00072.00024.000032.00543210X Y2. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P {X = Y }.解:35935335647222347221213}2,2{}1,1{}{=+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===+====Y X P Y X P Y X P .3. 口袋中有5个白球、8个黑球,从中不放回地一个接一个取出3个.如果第i 次取出的是白球,则令X i = 1,否则令X i = 0,i = 1, 2, 3.求:(1)(X 1, X 2, X 3)的联合分布列; (2)(X 1, X 2)的联合分布列. 解:(1)14328116127138)}0,0,0(),,{(321=⋅⋅==X X X P ,42970115127138)}1,0,0(),,{(321=⋅⋅==X X X P , 42970117125138)}0,1,0(),,{(321=⋅⋅==X X X P ,42970117128135)}0,0,1(),,{(321=⋅⋅==X X X P ,42940114125138)}1,1,0(),,{(321=⋅⋅==X X X P ,42940114128135)}1,0,1(),,{(321=⋅⋅==X X X P ,42940118124135)}0,1,1(),,{(321=⋅⋅==X X X P ,1435113124135)}1,1,1(),,{(321=⋅⋅==X X X P ;(2)3914127138)}0,0(),{(21=⋅==X X P ,3910125138)}1,0(),{(21=⋅==X X P ,3910128135)}0,1(),{(21=⋅==X X P ,395124135)}1,1(),{(21=⋅==X X P .39/539/10139/1039/1401012X X4. 设随机变量X i , i =1, 2的分布列如下,且满足P {X 1X 2 = 0} = 1,试求P {X 1 = X 2}.25.05.025.0101P X i −解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = −1} = P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = −1} = P {X 1 = 1, X 2 = 1} = 0,分布列为故P {X 1 = X 2} = P {X 1 = −1, X 2 = −1} + P {X 1 = 0, X 2 = 0} + P {X 1 = 1, X 2 = 1} = 0. 5. 设随机变量 (X , Y ) 的联合密度函数为⎩⎨⎧<<<<−−=.,0,42,20),6(),(其他y x y x k y x p试求(1)常数k ;(2)P {X < 1, Y < 3}; (3)P {X < 1.5}; (4)P {X + Y ≤ 4}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得6)6(2242⎜⎜⎝⎛−−⋅=−−∫∫∫xy y k dx dy y x k dx故81=k ; (2)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<<1032210322681)6(81}3,1{y xy y dx dy y x dx Y X P 832278127811210=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=∫x x dx x ; (3)∫∫∫⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<5.104225.10422681)6(81}5.1{y xy y dx dy y x dx X P 3227)6(81)26(815.1025.10=−=−=∫x x dx x ; (4)∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−−=<+204222422681)6(81}4{xxy xy y dx dy y x dx Y X P326268124681203222=⎟⎟⎠⎞⎜⎜⎝⎛+−=⎟⎟⎠⎞⎜⎜⎝⎛+−=∫x x x dx x x . 6. 设随机变量(X , Y )的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()43(其他y x k y x p y x 试求(1)常数k ;(2)(X , Y ) 的联合分布函数F (x , y ); (3)P {0 < X ≤ 1, 0 < Y ≤ 2}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得e 0)43(⎢⎣⎡⋅=∞+∞+∞++−∫∫∫k dx dy k dx y x 故k = 12;(2)当x ≤ 0或y ≤ 0时,F (x , y ) = P (∅) = 0,当x > 0且y > 0时,∫∫∫∫−−+−+−−=−⋅==xy u x y v u x y v u du du dv du y x F 0430)43(0)43()e 1(e 3]e 3[e 12),()e 1)(e 1()e 1(e 43043y x xy u −−−−−−=−−=故(X , Y )的联合分布函数为⎩⎨⎧>>−−=−−.,0,0,0),e 1)(e 1(),(43其他y x y x F y x (3)P {0 < X ≤ 1, 0 < Y ≤ 2} = P {X ≤ 1, Y ≤ 2} = F (1, 2) = (1 − e −3) (1 − e −8).7. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,4),(其他y x xy y x p 试求(1)P {0 < X < 0.5, 0.25 < Y < 1}; (2)P {X = Y }; (3)P {X < Y };(4)(X , Y ) 的联合分布函数.解:(1)∫∫∫⋅==<<<<5.00125.025.00125.024}125.0,5.00{xy dx xydy dx Y X P641516158155.0025.00===∫x xdx ; (2)P {X = Y } = 0;(3)∫∫∫∫−=⋅==<1311211)22(24}{dx x x xy dx xydy dx Y X P xx21211042=⎟⎠⎞⎜⎝⎛−=x x ;(4)当x < 0或y < 0时,F (x , y ) = P (∅) = 0,当0 ≤ x < 1且0 ≤ y < 1时,220220202224},{),(y x y u du uy uv du uvdv du y Y x X P y x F x x x y x y ===⋅==≤≤=∫∫∫∫;当0 ≤ x < 1且y ≥ 1时,2020010210224},{),(x u udu uv du uvdv du y Y x X P y x F x xx x ===⋅==≤≤=∫∫∫∫;当x ≥ 1且0 ≤ y < 1时,210221210210224},{),(y y u du uy uv du uvdv du y Y x X P y x F y y ===⋅==≤≤=∫∫∫∫;当x ≥ 1且y ≥ 1时,F (x , y ) = P (Ω) = 1, 故(X , Y ) 的联合分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤≥≥<≤<≤<≤<<=.1,1,1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或 8. 设二维随机变量(X , Y ) 在边长为2,中心为(0, 0) 的正方形区域内服从均匀分布,试求P {X 22 解:设D 表示该正方形区域,面积S D = 4,G 表示单位圆区域,面积S G = π,故4π}1{22==≤+D G S S Y X P .9. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,),(2其他x y x k y x p (1)试求常数k ;(2)求P {X > 0.5}和P {Y < 0.5}. 解:(1)由正则性:1),(=∫∫+∞∞−+∞∞−dxdy y x p ,得1632)(10321021122==⎟⎟⎠⎞⎜⎜⎝⎛−=−=⋅=∫∫∫∫k x x k dx x x k y k dx kdy dx xx xx, 故k = 6;(2)∫∫∫∫−=⋅==>15.0215.015.0)66(66}5.0{22dx x x ydx dy dx X P x xxx5.0)23(15.032=−=x x ;∫∫∫∫−=⋅==<5.005.005.00)66(66}5.0{dy y y xdy dx dy Y P y yyy432)34(5.00223−=−=y y . 10.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<−=.,0,10),1(6),(其他y x y y x p (1)求P {X > 0.5, Y > 0.5};(2)求P {X < 0.5}和P {Y < 0.5}; (3)求P {X + Y < 1}.解:(1)81)1()1(3])1(3[)1(6}5.0,5.0{15.0315.0215.01215.01=−−=−=−−⋅=−=>>∫∫∫∫x dx x y dx dy y dx Y X P xx; (2)∫∫∫−−⋅=−=<5.00125.001])1(3[)1(6}5.0{x x y dx dy y dx X P 87)1()1(35.0035.002=−−=−=∫x dx x ; ∫∫∫−−⋅=−=<5.005.025.005.0])1(3[)1(6}5.0{xxy dx dy y dx Y P21)1(43)1(3435.0035.002=⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+−=∫x x dx x ; (3)∫∫∫−−−−⋅=−=<+5.00125.001])1(3[)1(6}1{x xxxy dx dy y dx Y X P43])1([])1(33[5.00335.0022=−−−=−+−=∫x x dx x x .11.设随机变量Y 服从参数为λ = 1的指数分布,定义随机变量X k 如下:2,1.,1,,0=⎩⎨⎧>≤=k k Y k Y X k .求X 1和X 2的联合分布列.解:因Y 的密度函数为⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y且X 1和X 2的全部可能取值为0, 1,则1101021e 1e e }1{}2,1{}0,0{−−−−=−==≤=≤≤===∫yy dy Y P Y Y P X X P ,P {X 1 = 0, X 2 = 1} = P {Y ≤ 1, Y > 2} = P (∅) = 0,21212121e e e e }21{}2,1{}0,1{−−−−−=−==≤<=≤>===∫yy dy Y P Y Y P X X P ,22221e e e }2{}2,1{}1,1{−+∞−+∞−=−==>=>>===∫yy dy Y P Y Y P X X P ,故X 1和X 2的联合分布列为221112e e e 1e 1010−−−−−−X X12.设二维随机变量(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧<<<<+=.,0,20,10,3),(2其他y x xy x y x p 求P {X + Y ≥ 1}.解:∫∫∫−−⎟⎟⎠⎞⎜⎜⎝⎛+⋅=⎟⎠⎞⎜⎝⎛+=≥+1021221021263}1{x x xy y x dx dy xy x dx Y X P 72652459441653421104321032=⎟⎠⎞⎜⎝⎛++=⎟⎠⎞⎜⎝⎛++=∫x x x dx x x x . 13.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<=−.,0,0,e ),(其他y x y x p y 试求P {X + Y ≤ 1}. 解:∫∫∫∫−−−−−−+−=−⋅==≤+5.0015.0015.001)e e ()e (e }1{dx dx dy dx Y X P x x x xy x xy5.015.001e 2e 1)e e (−−−−−+=−−=x x .14.设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,20,10,2/1),(其他y x y x p求X 与Y 中至少有一个小于0.5的概率.解:85831431211}5.0,5.0{1}5.0},{min{15.015.025.0=−=−=−=≥≥−=<∫∫∫dx dy dx Y X P Y X P .15.从(0,1)中随机地取两个数,求其积不小于3/16,且其和不大于1的概率. 解:设X 、Y 分别表示“从(0,1)中随机地取到的两个数”,则(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,10,1),(其他y x y x p故所求概率为∫∫∫⎟⎠⎞⎜⎝⎛−−==≤+≥−4341434111631631}1,163{dx x x dy dx Y X XY P x x3ln 16341ln 1632143412−=⎟⎠⎞⎜⎝⎛−−=x x x .习题3.21. 设二维离散随机变量(X , Y ) 的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求X 与Y 各自的边际分布列. 解:因X 的全部可能值为−1, 0, 1,且12512131}1{=+=−=X P , 61}0{==X P , 125}1{==X P , 故X 的边际分布列为12561125101PX − 因Y 的全部可能值为0, 1, 2,且12712561}0{=+==X P , 31}1{==X P , 121}2{==X P , 故Y 的边际分布列为12131127210PY2. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧>>−−−=−−−−−.,0,0,0,e e e 1),(},max{122121其他y x y x F y x y x y x λλλλλ 试求X 与Y 各自的边际分布函数.解:当x ≤ 0时,F (x , y ) = 0,有F X (x ) = F (x , + ∞) = 0,当x > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121y y y x F y x y x y x λλλλλ 有 x y x y x y x y X x F x F 1122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=∞+=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(1x x x F x X λ 当y ≤ 0时,F (x , y ) = 0,有F Y ( y ) = F (+ ∞, y ) = 0,当y > 0时,⎩⎨⎧≤>−−−=−−−−−.0,0,0,e e e 1),(},max{122121x x y x F y x y x y x λλλλλ 有 y y x y x y x x Y y F y F 2122121e 1]e e e 1[lim ),()(},max{λλλλλλ−−−−−−+∞→−=−−−=+∞=,故⎩⎨⎧≤>−=−.0,0,0,e 1)(2y y y F y Y λ 3. 试求以下二维均匀分布的边际分布:⎪⎩⎪⎨⎧≤+=.,0,1,π1),(22其他y x y x p解:当x < −1或x > 1时,p X (x ) = 0,当−1 ≤ x ≤ 1时,2111π2π1),()(22x dy dy y x p x p x x X −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他x x x p X当y < −1或y > 1时,p Y ( y ) = 0,当−1 ≤ y ≤ 1时,2111π2π1),()(22y dx dx y x p y p y y Y −===∫∫−−−∞+∞−, 故⎪⎩⎪⎨⎧≤≤−−=.,0,11,1π2)(2其他y y y p Y4. 设平面区域D 由曲线y = 1/ x 及直线y = 0,x = 1,x = e 2所围成,二维随机变量(X , Y ) 在区域D 上服从均匀分布,试求X 的边际密度函数.解:因平面区域D 的面积为2ln 122e 1e 1===∫x dx xS D , 则(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 当x < 1或x > e 2时,p X (x ) = 0,当1 ≤ x ≤ e 2时,xdy dy y x p x p x X 2121),()(10===∫∫∞+∞−, 故⎪⎩⎪⎨⎧≤≤=.,0,e 1,21)(2其他x x x p X5. 求以下给出的(X , Y ) 的联合密度函数的边际密度函数p x (x ) 和p y ( y ):(1)⎩⎨⎧<<=−.,0;0,e ),(1其他y x y x p y (2)⎪⎩⎪⎨⎧−<<+=.,0;10),(45),(222其他x y y x y x p(3)⎪⎩⎪⎨⎧<<<=.,0;10,1),(3其他x y x y x p解:(1)当x ≤ 0时,p X (x ) = 0,当x > 0时,x xyxy X dy dy y x p x p −+∞−+∞−+∞∞−=−===∫∫e e e ),()(1,故⎩⎨⎧≤>=−.0,0;0,e )(x x x p x X 当y ≤ 0时,p Y ( y ) = 0, 当y > 0时,y yy Y y dx dx y x p y p −−+∞∞−===∫∫e e ),()(01,故⎩⎨⎧≤>=−.0,0;0,e )(y y y y p y Y (2)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 1时,)1(85)21(45)(45),()(41022102222x y y x dy y x dy y x p x p x x X −=+=+==−−+∞∞−∫∫, 故⎪⎩⎪⎨⎧<<−−=.,0;11),1(85)(4其他x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y y xy x dx y x dx y x p y p y y yyY −+=+=+==−−−−−−+∞∞−∫∫1)21(65)31(45)(45),()(113112, 故⎪⎩⎪⎨⎧<<−+=.,0;10,1)21(65)(其他y y y y p Y (3)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,111),()(03=⋅===∫∫+∞∞−xx dy x dy y x p x p xX , 故⎩⎨⎧<<=.,0;10,1)(其他x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,y y x dx xdx y x p y p y y Y ln ln 1ln ln 1),()(1−=−====∫∫+∞∞−, 故⎩⎨⎧<<−=.,0;10,ln )(其他y y y p Y6. 设二维随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,10,6),(2其他x y x y x p试求边际密度函数p x (x ) 和p y ( y ). 解:当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,)(66),()(22x x dy dy y x p x p xxX −===∫∫+∞∞−,故⎩⎨⎧<<−=.,0,10),(6)(2其他x x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)(66),()(y y dx dx y x p y p yyY −===∫∫+∞∞−,故⎪⎩⎪⎨⎧<<−=.,0,10),(6)(其他y y y y p Y7. 试验证:以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.⎩⎨⎧≤≤≤≤+=.,0,10,10,),(其他y x y x y x p ⎩⎨⎧≤≤≤≤++=.,0,10,10),5.0)(5.0(),(其他y x y x y x g 证:当x < 0或x > 1时,p X (x ) = 0,当0 ≤ x ≤ 1时,5.0)21()(),()(1021+=+=+==∫∫+∞∞−x y xy dy y x dy y x p x p X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x p X当y < 0或y > 1时,p Y ( y ) = 0, 当0 ≤ y ≤ 1时,5.0)21()(),()(10210+=+=+==∫∫+∞∞−y xy x dx y x dx y x p y p Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y p Y并且当x < 0或x > 1时,g X (x ) = 0,当0 ≤ x ≤ 1时,5.0)5.0(21)5.0()5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−x y x dy y x dy y x g x g X ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他x x x g X 当y < 0或y > 1时,g Y ( y ) = 0,当0 ≤ y ≤ 1时,5.0)5.0()5.0(21)5.0)(5.0(),()(1021+=+⋅+=++==∫∫+∞∞−y y x dx y x dx y x g y g Y ,则⎩⎨⎧≤≤+=.,0,10,5.0)(其他y y y g Y故它们有相同的边际密度函数.8. 设随机变量X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,试求P {X = Y }.解:因X 和Y 独立同分布,且P {X = −1} = P {Y = −1} = P {X = 1} = P {Y = 1} = 1/2,则(X , Y ) 的联合概率分布21212141411214141111ji p p X Y ⋅⋅−− 故P {X = Y } = P {X = −1, Y = −1} + P {X = 1, Y = 1} = 1/2.9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 和Y 分别表示甲和乙的命中次数,试求P {X ≤ Y }. 解:因X 的全部可能取值为0, 1, 2,且P {X = 0} = 0.8 2 = 0.64,32.08.02.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,P {X = 2} = 0.2 2= 0.04, 又因Y 的全部可能取值为0, 1, 2,且P {Y = 0} = 0.5 2 = 0.25,5.05.05.012}1{=××⎟⎟⎠⎞⎜⎜⎝⎛==Y P ,P {Y = 2} = 0.5 2= 0.25,则(X , Y ) 的联合概率分布25.05.025.004.001.002.001.0232.008.016.008.0164.016.032.016.00210ji p p X Y ⋅⋅故P {X ≤ Y } = 1 − P {X > Y } = 1 − P {X = 1, Y = 0} − P {X = 2, Y = 0} − P {X = 2, Y = 1} = 0.89. 10.设随机变量X 和Y 相互独立,其联合分布列为3/19/19/121321b x c a x y y y X Y试求联合分布列中的a , b , c .解:因c a p ++=⋅911,9431912+=++=⋅b b p ,911+=⋅a p ,b p +=⋅912,c p +=⋅313, 根据独立性,知81495919422222++=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅b b b b p p b p , 可得0814942=+−b b ,即0922=⎟⎠⎞⎜⎝⎛−b , 故92=b ; 再根据独立性,知⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⋅==⋅⋅91969194911221a a b p p p ,可得6191=+a ,故181=a ; 由正则性,知1953191912131=+++=+++++=∑∑==c b a b c a p i j ij ,可得94=++c b a ,故6118394==−−=b ac . 11.设X 和Y 是两个相互独立的随机变量,X ~ U (0, 1),Y ~ Exp (1).试求(1)X 与Y 的联合密度函数;(2)P {Y ≤ X };(3)P {X + Y ≤ 1}.解:(1)因X 与Y 相互独立,且边际密度函数分别为⎩⎨⎧<<=.,0,10,1)(其他x x p X ⎩⎨⎧<≥=−.0,0,0,e )(y y y p y Y故X 与Y 的联合密度函数为⎩⎨⎧≥<<==−.,0,0,10,e )()(),(其他y x y p x p y x p y Y X (2)1111101e 1e 1)e ()e 1()e (e }{−−−−−−=−+=+=−=−⋅==≤∫∫∫∫x x x y xy x dx dx dy dx X Y P ;(3)11110110101010e )e ()e 1()e (e }1{−−−−−−−=−=−=−⋅==≤+∫∫∫∫x x x y xy x dx dx dy dx Y X P .12.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ 0或x ≥ 1时,p X (x ) = 0,当0 < x < 1时,2033),()(x xdy dy y x p x p xX ===∫∫+∞∞−,故⎩⎨⎧<<=.,0,10,3)(2其他x x x p X 当y ≤ 0或y ≥ 1时,p Y ( y ) = 0, 当0 < y < 1时,)1(23233),()(2121y x xdx dx y x p y p yyY −====∫∫+∞∞−, 故⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他y y y p Y (2)因⎪⎩⎪⎨⎧<<<<−=.,0,10,10),1(29)()(22其他y x y x y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.13.设随机变量(X , Y ) 的联合密度函数为⎩⎨⎧<<<=.,0,10,||,1),(其他y y x y x p 试求(1)边际密度函数p x (x ) 和p y ( y );(2)X 与Y 是否独立.解:(1)当x ≤ −1或x ≥ 1时,p X (x ) = 0,当−1 < x < 0时,x dy dy y x p x p xX +===∫∫−+∞∞−11),()(1,当0 ≤ x < 1时,x dy dy y x p x p xX −===∫∫+∞∞−11),()(1,故⎪⎩⎪⎨⎧<≤−<<−+=.,0,10,1,01,1)(其他x x x x x p X当y ≤ 0或y ≥ 1时,p Y ( y ) = 0,当0 < y < 1时,y dx dx y x p y p yyY 21),()(===∫∫−+∞∞−,故⎩⎨⎧<<=.,0,10,2)(其他y y y p Y(2)因⎪⎩⎪⎨⎧<<<≤−<<<<−+=.,0,10,10),1(2,10,01),1(2)()(其他y x x y y x x y y p x p Y X 即p x (x ) p y ( y ) ≠ p (x , y ),故X 与Y 不独立.14.设二维随机变量(X , Y ) 的联合密度函数如下,试问X 与Y 是否相互独立?(1)⎩⎨⎧>>=+−.,0;0,0,e ),()(其他y x x y x p y x (2)+∞<<∞−++=y x y x y x p ,,)1)(1(π1),(222;(3)⎩⎨⎧<<<=.,0;10,2),(其他y x y x p (4)⎩⎨⎧<+<<<<<=.,0;10,10,10,24),(其他y x y x xy y x p(5)⎩⎨⎧<<<<−=.,0;10,10),1(12),(其他y x x xy y x p(6)⎪⎩⎪⎨⎧<<=.,0;1,421),(22其他y x y x y x p解:(1)因x e − (x + y ) = x e −x ⋅ e −y 可分离变量,x > 0, y > 0是广义矩形区域,故X 与Y 相互独立;(2)因)1π(1)1π(1)1)(1(π122222y x y x +⋅+=++可分离变量,−∞ < x , y < +∞是广义矩形区域, 故X 与Y 相互独立;(3)因0 < x < y < 1不是矩形区域,故X 与Y 不独立;(4)因0 < x < 1, 0 < y < 1, 0 < x + y < 1不是矩形区域,故X 与Y 不独立;(5)因12xy (1 − x ) = 12x (1 − x ) ⋅ y 可分离变量,0 < x < 1, 0 < y < 1是矩形区域,故X 与Y 相互独立; (6)因x 2 < y < 1不是矩形区域,故X 与Y 不独立.15.在长为a 的线段的中点的两边随机地各取一点,求两点间的距离小于a / 3的概率.解:设X 和Y 分别表示这两个点与线段中点的距离,有X 和Y 相互独立且都服从[0, a / 2]的均匀分布,则(X , Y ) 的联合密度函数为 ⎪⎩⎪⎨⎧<<<<=.,0,20,20,4),(2其他a y a x a y x pa a故所求概率为922321}3{22=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛×==<+a a S S aY X P DG . 16.设二维随机变量(X , Y ) 服从区域D = {(x , y ): a ≤ x ≤ b , c ≤ y ≤ d }上的均匀分布,试证X 与Y 相互独立. 证:因(X , Y ) 的联合密度函数为⎪⎩⎪⎨⎧≤≤≤≤−−=.,0;,,))((1),(其他d y c b x a c d a b y x p当x < a 或x > b 时,p X (x ) = 0,当a ≤ x ≤ b 时,a b dy c d a b dy y x p x p d c X −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他b x a a b x p X当y < c 或y > d 时,p Y ( y ) = 0,当c ≤ y ≤ d 时,cd dx c d a b dx y x p y p baY −=−−==∫∫+∞∞−1))((1),()(, 则⎪⎩⎪⎨⎧≤≤−=.,0;,1)(其他d y c c d y p Y因p x (x ) p y ( y ) = p (x , y ), 故X 与Y 相互独立.17.设X 1, X 2, …, X n 是独立同分布的正值随机变量.证明n k n k X X X X E n k ≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .证:因X 1, X 2, …, X n 是独立同分布的正值随机变量,则由对称性知),,2,1(1n i X X X niL L =++同分布,且满足101<++<niX X X L ,可得⎟⎟⎠⎞⎜⎜⎝⎛++n i X X X E L 1存在,且⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++n nn n X X X E X X X E X X X E L L L L 11211, 因11111211=⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛++++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++n n n n n n X X X X E X X X E X X X E X X X E L L L L L L , 则n X X X E X X X E X X X E n n n n 111211=⎟⎟⎠⎞⎜⎜⎝⎛++==⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++L L L L , 故n k n k XX X X E n k≤=⎟⎟⎠⎞⎜⎜⎝⎛++++,11L L .习题3.31. 设二维随机变量(X , Y ) 的联合分布列为09.007.004.0222.011.007.0120.015.005.00321X Y 试分布求U = max{X , Y } 和V = min{X , Y } 的分布列.解:因P {U = 1} = P {X = 0, Y = 1} + P {X = 1, Y = 1} = 0.05 + 0.07 = 0.12;P {U = 2} = P {X = 0, Y = 2} + P {X = 1, Y = 2} + P {X = 2, Y = 2} + P {X = 2, Y = 1}= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;P {U = 3} = P {X = 0, Y = 3} + P {X = 1, Y = 3} + P {X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U 的分布列为51.037.012.0321P U因P {V = 0} = P {X = 0, Y = 1} + P {X = 0, Y = 2} + P {X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P {V = 1} = P {X = 1, Y = 1} + P {X = 1, Y = 2} + P {X = 1, Y = 3} + P {X = 2, Y = 1}= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;P {V = 2} = P {X = 2, Y = 2} + P {X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V 的分布列为16.044.040.0210P V2. 设X 和Y 是相互独立的随机变量,且X ~ Exp (λ ),Y ~ Exp (µ ).如果定义随机变量Z 如下⎩⎨⎧>≤=.,0,,1Y X Y X Z 当当 求Z 的分布列.解:因(X , Y ) 的联合密度函数为⎩⎨⎧>>==+−.,0,0,0,e )()(),()(其他y x y p x p y x p y x Y X µλλµ 则∫∫∫+∞+∞+−+∞+∞+−−⋅==≤==0)(0)(e )(e }{}1{xy x xy x dx dy dx Y X P Z P µλµλλλµµλλµλλλµλµλ+=+−==+∞+−+∞+−∫0)(0)(e e xx dx ,µλµ+==−==}1{1}0{Z P Z P ,故Z 的分布列为µλλµλµ++PZ 13. 设随机变量X 和Y 的分布列分别为4/12/14/1101P X − 2/12/110P Y已知P {XY = 0} = 1,试求Z = max{X , Y }的分布列.解:因P {X 1 X 2 = 0} = 1,有P {X 1 X 2 ≠ 0} = 0,即P {X 1 = −1, X 2 = 1} = P {X 1 = 1, X 2 = 1} = 0,可得 (X , Y ) 的联合分布列为因{Z P {Z P 故Z 4.(1)X (2)X 解:(1)(X , 因P {Z = 0} = P {X = 0, Y = 0} = 0.25;P {Z = 1} = 1 − P {Z = 0} = 0.75; 故Z 的分布列为75.025.010P Z(2)因P {Z = k } = P {X = k , Y ≤ k } + P {X < k , Y = k } = P {X = k } P {Y ≤ k } + P {X < k } P {Y = k }p p p p p p p p k k i i kj j k 1111111)1()1()1()1(−−=−=−−−⋅−+−⋅−=∑∑p p p p p p p p p p k k k k 111)1()1(1)1(1)1(1)1(1)1(−−−−⋅−−−−+−−−−⋅−= = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ]故Z = max{X , Y }的概率函数为p z (k ) = (1 − p ) k − 1 p ⋅ [2 − (1 − p ) k − 1 − (1 − p ) k ],k = 1, 2, ….5. 设X 和Y 为两个随机变量,且73}0,0{=≥≥Y X P ,74}0{}0{=≥=≥Y P X P , 试求P {max{X , Y } ≥ 0}.解:设A 表示事件“X ≥ 0”,B 表示事件“Y ≥ 0”,有73)(=AB P ,74)()(==B P A P , 故75737474)()()()(}0},{max{=−+=−+==≥AB P B P A P B A P Y X P U .6. 设X 与Y 的联合密度函数为⎩⎨⎧>>=+−.,0,0,0,e ),()(其他y x y x p y x 试求以下随机变量的密度函数(1)Z = (X + Y )/2;(2)Z = Y − X .解:方法一:分布函数法(1)作曲线簇z yx =+2,得z 的分段点为0,当z ≤ 0时,F Z (z ) = 0,当z > 0时,∫∫∫−+−−+−−⋅==z x z y x zx z y x Z dx dy dx z F 2020)(2020)(]e [e )(z z x z z x z z x dx 2202202e )12(1)e e ()e e (−−−−−+−=−−=+−=∫,因分布函数F Z (z ) 连续,有Z = (X + Y )/2为连续随机变量, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=′=−.0,0,0,e 4)()(2z z z z F z p z Z Z (2)作曲线簇y − x = z ,得z 的分段点为0,当z ≤ 0时,∫∫∫∫+∞−−+−+∞−++−+∞−++−−=−⋅==zx z x zz x y x zzx y x Z dx dy dx z F e []e [e )()2(0)(0)(z z z zx z x e 21e e 21e e 21)2(=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=+∞−−+−,当z > 0时,∫∫∫∫+∞−+−+∞++−+∞++−+−=−⋅==0)2(0)(0)(]e e []e [e )(dx dx dy dx z F x z x z x y x zx y x Zz z x z x −−+∞−+−−=⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−=e 2111e 21e e 210)2(,因分布函数F Z (z )连续,有Z = Y − X 为连续随机变量,故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=′=−.0,e 21,0,e 21)()(z z z F z p zzZ Z 方法二:增补变量法 (1)函数2yx z +=对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎪⎩⎪⎨⎧=+=,,2y v y x z 有反函数⎩⎨⎧=−=,,2v y v z x 且21012=−=′′′′=vz vzy y x x J , 则∫∫+∞∞−+∞∞−−=⋅−=dv v v z p dv v v z p z p Z ),2(22),2()(,作曲线簇z yx =+2,得z 的分段点为0, 当z ≤ 0时,p Z (z ) = 0,当z > 0时,z z z Z z dv z p 2202e 4e 2)(−−==∫, 故Z = (X + Y )/2的密度函数为⎩⎨⎧≤>=−.0,0,0,e 4)(2z z z z p z Z(2)函数z = y − x 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v x y z 有反函数⎩⎨⎧=−=,,v y z v x 且11011−=−=′′′′=v z vzy y x x J , 则∫+∞∞−−=dv v z v p z p Z ),()(,作曲线簇y − x = z ,得z 的分段点为0, 当z ≤ 0时,zz v z v Z dv z p e 21e 21e )(0202=−==+∞+−+∞+−∫, 当z > 0时,z zzv z z v Z dv z p −+∞+−+∞+−=−==∫e 21e 21e )(22, 故Z = Y − X 的密度函数为⎪⎩⎪⎨⎧>≤=−.0,e 21,0,e 21)(z z z p zzZ 7. 设X 与Y 的联合密度函数为⎩⎨⎧<<<<=.,0,0,10,3),(其他x y x x y x p 试求Z = X − Y 的密度函数.解:方法一:分布函数法作曲线簇x − y = z ,得z 的分段点为0, 1, 当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,31203102102123233333)(z z z x x xzdx dx x xdy dx xdy dx z F z z zz z xzx z x Z −=+=+=+=∫∫∫∫∫∫−,当z ≥ 1时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X − Y 为连续随机变量, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=′=.,0,10),1(23)()(2其他z z z F z p Z Z方法二:增补变量法函数z = x − y 对任意固定的y 关于x 严格单调增加,增补变量v = y ,可得⎩⎨⎧=−=,,y v y x z 有反函数⎩⎨⎧=+=,,v y v z x 且11011==′′′′=vz vzy y x x J , 则∫+∞∞−+=dv v v z p z p Z ),()(,作曲线簇x − y = z ,得z 的分段点为0, 1,当z ≤ 0或z ≥ 1时,p Z (z ) = 0, 当0 < z < 1时,)1(23)(23)(3)(210210z v z dv v z z p z z Z −=+=+=−−∫, 故Z = X − Y 的密度函数为⎪⎩⎪⎨⎧<<−=.,0,10),1(23)(2其他z z z p Z 8. 某种商品一周的需要量是一个随机变量,其密度函数为⎩⎨⎧≤>=−.0,0,0,e )(1t t t t p t设各周的需要量是相互独立的,试求(1)两周需要量的密度函数p 2 (x );(2)三周需要量的密度函数p 3 (x ). 解:方法一:根据独立伽玛变量之和仍为伽玛变量设T i 表示“该种商品第i 周的需要量”,因T i 的密度函数为⎪⎩⎪⎨⎧≤>Γ=−−.0,0,0,e )2(1)(121t t t t p t可知T i 服从伽玛分布Ga (2, 1),(1)两周需要量为T 1 + T 2,因T 1与T 2相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2服从伽玛分布Ga (4, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 61.0,0,0,e )4(1)(3142x x x x x x x p x x (2)三周需要量为T 1 + T 2 + T 3,因T 1, T 2, T 3相互独立且都服从伽玛分布Ga (2, 1),故T 1 + T 2 + T 3服从伽玛分布Ga (6, 1),密度函数为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>Γ=−−−.0,0,0,e 1201.0,0,0,e )6(1)(5163x x x x x x x p xx 方法二:分布函数法(1)两周需要量为X 2 = T 1 + T 2,作曲线簇t 1 + t 2 = x ,得x 的分段点为0,当x ≤ 0时,F 2 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=xt x t t t xt x t t t t dt dt t t dt x F 02110221121221121)e e (e e e )( ∫−−+−−=xt x dt t t xt t 0111121]e e )[(1xt t x t t x t t 0121213111e e e 212131⎥⎦⎤⎢⎣⎡−−⎟⎠⎞⎜⎝⎛−−=−−−11)1(e e e 212131233−−−−⎟⎠⎞⎜⎝⎛−−=−−−x x x x x x xxx x x x x x −−−−−−−−=e 61e 21e e 132, 因分布函数F 2 (x )连续,有X 2 = T 1 + T 2为连续随机变量, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 61)()(322x x x x F x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,F 3 (x ) = 0,当x > 0时,∫∫∫−−−−−−−−−⋅=⋅=x x x t t x x x x t x t x dx dt t x dx x F 003322003332232332232)e e (e 61e e 61)(∫−−+−−=x x x dx x x x x x 0232323242]e e )[(6`12 xx x x x x x x x x x x x 0222324242522222e 6e 6e 3e e 41415161⎥⎦⎤⎢⎣⎡−−−−⎟⎠⎞⎜⎝⎛−−=−−−−− )1(e e e 21e 61e 4141516123455−−−−−−⎟⎠⎞⎜⎝⎛−−=−−−−−x x x x x x x x x x x xx x x x x x x x x x −−−−−−−−−−−−=e 1201e 241e 61e 21e e 15432, 因分布函数F 3 (x ) 连续,有X 3 = T 1 + T 2 + T 3为连续随机变量, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=′=−.0,0,0,e 1201)()(533x x x x F x p x 方法三:卷积公式(增补变量法)(1)两周需要量为X 2 = T 1 + T 2,卷积公式∫+∞∞−−=2222)()()(21dt t p t x p x p T T ,作曲线簇t 1 + t 2 = x ,得x 的分段点为0, 当x ≤ 0时,p 2 (x ) = 0, 当x > 0时,xxx xxxt t x x t x t dt t xt dt t t x x p −−−−−−=⎟⎠⎞⎜⎝⎛−=−=⋅−=∫∫e 61e3121e )(e e )()(30322202222022)(2222, 故X 2 = T 1 + T 2的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 61)(32x x x x p x(2)三周需要量为X 3 = T 1 + T 2 + T 3 = X 2 + T 3,卷积公式∫+∞∞−−=3333)()()(32dt t p t x p x p T X ,作曲线簇x 2 + t 3 = x ,得x 的分段点为0,当x ≤ 0时,p 3 (x ) = 0,21当x > 0时,∫∫−−−−−+−=−=x x xt t x dt t xt t x t x dt t t x x p 03433323233033)(333e )33(61e e )(61)(33 x xx x t x t x t x t −−=⎟⎠⎞⎜⎝⎛−+−=e 1201e 51432161505343233323, 故X 3 = T 1 + T 2 + T 3的密度函数为⎪⎩⎪⎨⎧≤>=−.0,0,0,e 1201)(53x x x x p x9. 设随机变量X 与Y 相互独立,试在以下情况下求Z = X + Y 的密度函数:(1)X ~ U (0, 1),Y ~ U (0, 1); (2)X ~ U (0, 1),Y ~ Exp (1). 解:方法一:分布函数法(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,当z < 0时,F Z (z ) = 0,当0 ≤ z < 1时,2020002121)(1)(z x zx dx x z dy dx z F zz zxz Z =⎟⎠⎞⎜⎝⎛−=−==∫∫∫−,当1 ≤ z < 2时,1121110110110)(211)(111)(−−−−−−−−−=−+=+=∫∫∫∫∫∫z z z z xz z Zx z z dx x z dx dy dx dy dx z F121221)1(21122−−=+−−−=z z z z , 当z ≥ 2时,F Z (z ) = 1,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≤−<≤=′=.,0,21,2,10,)()(其他z z z z z F z p Z Z(2)作曲线簇x + y = z ,得z 的分段点为0, 1,当z < 0时,F Z (z ) = 0, 当0 ≤ z < 1时,z z x z zx z zx z y z xz y Z z x dx dx dy dx z F −+−+−−−−−+−=−=−=−⋅==∫∫∫∫e 1)e ()e 1()e (e )(0000,当z ≥ 1时,z z x z x z x z y xz y Z x dx dx dy dx z F −−+−+−−−−−+−=−=−=−⋅==∫∫∫∫e e 1)e ()e 1()e (e )(111110,因分布函数F Z (z ) 连续,有Z = X + Y 为连续随机变量, 故Z = X + Y 的密度函数为⎪⎩⎪⎨⎧<≥−<≤−=′=−−.0,0,1,e )1(e ,10,e 1)()(z z z z F z p z z Z Z方法二:卷积公式(增补变量法) 卷积公式∫+∞∞−−=dy y p y z p z p Y X Z )()()(,(1)作曲线簇x + y = z ,得z 的分段点为0, 1, 2,2。

概率论与数理统计 --- 第三章{多维随机变量及其分布} 第五节:两个随机变量的函数的分布(1)

概率论与数理统计 --- 第三章{多维随机变量及其分布} 第五节:两个随机变量的函数的分布(1)

当 0<s<2时, 如图所示, 有:
概率论
F(s) f (x,y)dxd y1 1
xys
2
2
s
1 sd ydx x
s (1 ln2 lns) 2
于是:
0,
F
(s)
s 2
(1
ln2
lns),
1,
s 0, 0 s 2,
s2
故S的概率密度为:
f
(s)
F
(s)
1 (ln 2 2
ln
由独立性
i0
r
P( X i)P(Y r i)
i0
=a0br+a1br-1+…+arb0 , r=0,1,2, …
例2 若X 和Y 相互独立,
概率论
它们分别服从参数为 λ1, λ2 的泊松分布,
证明: Z=X+Y服从参数为λ1+λ2的泊松分布.
解: 依题意:
P(X
i)
e1 i 1
,
i = 0,
它们的分布函数分别为 FX(x) 和 FY(y), 我们来求 M = max(X,Y) 及 N = min(X,Y) 的分布函数.
1. M = max(X,Y) 的分布函数 FM(z)=P(M≤z) =P(X≤z,Y≤z) 由于 X 和 Y 相互独立,
M
z
X Y
z z
于是得到 M = max(X,Y) 的分布函数为:
1, 2,…;
P(Y
j)
e2 j 2
,j =
0, 1, 2, …
于是:
i!
j!
r
P(Z r) P(X i,Y r i)
i0

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布

概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=0, X2=1) = P(|Y|≥1, |Y|<2) = P(1≤|Y|<2) = 2[Φ(2) Φ(1)] = 0.2719
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

概率论与数理统计第3章

概率论与数理统计第3章

i
31
二维离散型随机变量的边缘分布
关于X的边缘分布列
X
x1
x2
x3

概率 P1.
P2.
P3.

pi P{X xi} pij
关于Y的边缘分布列
j
Y
y1
y2
y3

概率 P.1
P.2
P.3

p j P{Y y j} pij
32
i
16
2019-9-16
例1 设二维离散型随机变量(X,Y)的联合分布律为
30
15
2019-9-16
二维离散型随机变量的边缘分布
Y
X
y1
y2
y3

Pi.
x1
p11
p12
p13

P1.
x2
p21
p22
p23

P2.
x3
p31
p32
p33

P3.
…………… …
p.j p.1 p.2 p.3 …
关于X的边缘分布律 关于Y的边缘分布律
pi P{X xi} pij
j
p j P{Y y j} pij
22
11
2019-9-16
第4节 常见多维随机变量
23
1. 多项分布
在独立重复试验中,设每次实验必有A1, A2 , , Ar 之一发生,且事件Ai在每次实验中发生的概率为pi, 记Xi为Ai出现的次数,则 X1, X 2 , , X r 的分布律为
P{X1 n1, X 2 n2 , , X r nr}
20
10
2019-9-16
(4) P{X Y} f (x, y)dxdy y x 0, y 0

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.

天津大学《概率论与数理统计》课件-第三章多维随机变量及其分布

天津大学《概率论与数理统计》课件-第三章多维随机变量及其分布

综上
,
,
, = ,
,
,
(2) P{ + ≤1} = ඵ
< 或 < ;
≤ ≤ , ≤ ≤ ;
≤ ≤ , > ;
> , ≤ ≤ ;
≥ , ≥ .
,
{+≤}
X-型
O
x
y1
O
x1
x2
x
有了联合分布函数,就可以计算(X, Y)落入某一区域的概率:
P{ x1 X x2 , y1 Y y2 } F ( x2 , y2 ) F ( x1 , y2 ) F ( x2 , y1 ) F ( x1 , y1 )
联合分布函数F(x, y)的性质
解:(1) 由规范性:

+∞ +∞
= ‫׬‬−∞ ‫׬‬−∞ ,



= ‫ = ׬ ׬‬,

y
故 = .
x+y1
(2) P{ + ≤ }
=ඵ
,
O
{+≤}
=
/

‫ ׬ ׬‬
=





, = ‫; = ׬ ׬‬
(Ⅳ)当 ≤ ≤ 且 > 时, ,
(Ⅴ)当 > 且 ≤ ≤ 时, ,




1
x



= ‫; = ׬ ׬‬


= ‫ = ׬ ׬‬.
(1) 单调性:F(x, y)是关于变量x和y的单调不减函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx
z 令 t x , 得 2
1 fZ z e 2π

z2 4
1 e dt 2π e
t2
z2
z2 4
π
2 1 2 2 e 2π 2
可见 Z=X+Y 服从正态分布 N(0,2).
9
若X和Y 独立 , 具有相同的分布 N(0,1) , 则Z=X+Y 服从正态分布 N(0,2).
=1-P(X>z,Y>z)
X z N z Y z
由于 X 和 Y 相互独立,于是得到 N = min(X,Y) 的分布 函数为: FN(z) =1- P(X>z)P(Y>z) 即有 FN(z)= 1-[1-FX(z)][1-FY(z)]
13
概率论
设 X1,…,Xn 是 n 个相互独立的随机变量,它们的 分布函数分别为 FX i z (i = 1, …, n) 我们来求 M=max(X1,…,Xn) 和N=min(X1,…,Xn) 的分布函数. 用与二维时完全类似的方法,可得 M=max(X1,…,Xn)的分布函数为:
价值.
24
概率论
四、小结
在这一节中,我们讨论了两个随机变量的函数
的分布的求法.
25
FM(z)=P(M≤z) =P(X≤z,Y≤z)
X z M z Y z
由于 X 和 Y 相互独立,于是得到 M = max(X,Y) 的分布 函数为: FM(z) =P(X≤z)P(Y≤z)
即有
FM(z)= FX(z)FY(z)
12
概率论
2. N = min(X,Y) 的分布函数 FN(z)=P(N≤z) =1-P(N>z)
由于当且仅当系统 L1 , L2 都损坏时, 系统 L 才停 止工作, 所以此时 L 的寿命为
Z max X ,Y
故 Z max X ,Y 的分布函数为
L1
X
Fmax z FX x FY y
(1 e αz )(1 e βz ) , z 0 , z0, 0 ,

1 e αx , x 0 , FX x x0, 0 , 1 e βy , y 0 , FY y y0, 0 ,
x0

x

x
类似地 , 可求得 Y 的分布函数为
18
概率论
于是 Z min X ,Y 的分布函数为
Fmin z = 1-[1-FX(z)][1-FY(z)]




f X ( x ) fY ( z x )dx
下面我们用卷积公式来求Z=X+Y的概率密度.
7
概率论
例3 若X和Y 是两个相互独立的随机变量 , 具 有相同的分布 N(0,1) , 求 Z=X+Y 的概率密度. 解 由卷积公式

f Z ( z ) f X ( x ) fY ( z x )dx

以上两式即是两个随机变量和的概率密度的一般公式.
6
概率论
特别地,当 X 和 Y 独立,设 (X,Y) 关于 X , Y 的边 缘密度分别为 fX(x) , fY(y) , 则上述两式化为:
f ( z) Z
卷积公式
f Z ( z ) f X ( z y ) fY ( y )dy

z

由概率密度与分布函数的关系, 即得Z=X+Y的概率 密度为:
f Z ( z ) F ( z ) f ( z y, y)dy
' Z

由X和Y的对称性, fZ (z)又可写成
f Z ( z ) F ( z ) f ( x , z x )dx
' Z
y
当 z>0 时,
f Z z αe
z 0
α z y
βe
βy
dy
22
概率论
f Z z αe
z 0
α z y
βe βy dy dy
αβe
αz

z
0
e
β α y
αβ (e αz e βz ). βα
这里积分区域 D={(x, y): x+y ≤z} 它是直线 x+y =z 及其左下方的半平面.
0
x
x y z
4
FZ ( z )

x y z
f ( x, y)dxdy
z y
y y 0
概率论
化成累次积分,得
x y z 固定z和y,对方括号内的积分作变量代换, 令 x=u-y,
1 e ( α β ) z , z 0 , z0, 0 ,
Z min X ,Y 的概率密度为
α β e ( α β ) z , z 0 , z f min z Fmin z0, 0 ,
19
概率论
(ii) 并联的情况
2 若X和Y 独立, X ~ N ( 1 , 12 ),Y ~ N ( 2 , 2 ), 结论又如何呢?

概率论
用类似的方法可以证明:
Z X Y ~ N ( 1 2 , )
2 1 2 2
此结论可以推广到n个独立随机变量之和的情形, 请自行写出结论.
10
概率论
一、Z X Y 的分布
例1 若 X、Y 独立,P(X=k)=ak , k=0 , 1 , 2 ,…, P(Y=k)=bk , k=0,1,2,… ,求 Z=X+Y 的概率函数. 解
P( Z r) P( X Y r)
P ( X i ,Y r i ) P ( X i ) P (Y r i )
概率论
第五节 两个随机变量的函数 的分布
Z X Y 的分布
M=max(X,Y)及N=min(X,Y)的分布
1
概率论
在第二章中,我们讨论了一维 随机变量函数的分布,现在我们进一 步讨论: 当随机变量 X, Y 的联合分布已知时,如何 求出它们的函数 Z = g ( X, Y ) 的分布?
2
概率论
更一般地, 可以证明:
有限个独立正态变量的线性组合仍然服从正态 分布.
11
概率论
二、M=max(X,Y)及N=min(X,Y)的分布
设 X,Y 是两个相互独立的随机变量,它们的分 布函数分别为FX(x) 和 FY(y),我们来求 M = max(X,Y) 及 N = min(X,Y) 的分布函数. 1. M = max(X,Y) 的分布函数
20
L2 Y
概率论
于是 Z max X ,Y 的概率密度为
z f max z Fmax
αe αz βe βz α β e ( α β ) , z 0 , z0, 0 , (iii) 备用的情况
由于当系统 L1 损坏时, 系统 L2 才开始工作, L1 X 因此整个系统 L 的寿命为
X Y X Y
L1
L2
L2
16
Y
L2
概率论
解 (i) 串联的情况 由于当系统 L1 , L2 中有一个损坏时, 系统 L 就停 止工作, 所以此时 L 的寿命为
Z min X ,Y
因为 X 的概率密度为
X
αx
Y
αe fX x 0 ,
所以 X 的分布函数为
, x0, x0,

1 2 e e dx 2π z2 1 2 ( x 2 zx ) e e dx 2π
x2 2
2 z x
1 e 2π
z2 4



e
z ( x )2 2
dx
8
概率论
1 e 2π
z2 4



e
z ( x )2 2
i 0 i 0 r r
由独立性
=a0br+a1br-1+…+arb0
3
r=0,1,2, …
概率论
例2 设X和Y的联合密度为 f (x,y) , 求 Z=X+Y 的概率密度.
解 Z=X+Y的分布函数是:
y
FZ z P Z z
P X Y z
D
f ( x, y)dxdy
于是 Z X Y 的概率密度为 αβ (e αz e βz ), z 0, βα fZ z 0 , z 0.
23
概率论
需要指出的是,当X1,…,Xn相互独立且具有相 同分布函数F(x)时, 常称
M=max(X1,…,Xn),N=min(X1,…,Xn) 为极值 . 由于一些灾害性的自然现象,如地震、洪水等 等都是极值,研究极值分布具有重要的意义和实用
FM z [ F z ]n FN z 1 [1 F z ]
n
15
概率论
例4 设系统 L 由两个相互独立的子系统 L1 , L2 连接而成,连接的方式分别为 (i) 串联, (ii) 并联, (iii) 备用 (当系统 L1 损坏时, 系统 L2 开始工作) , 如下图 所示.设 L1 , L2 的寿命分别为 X ,Y , 已知它们的概 率密度分别为 αe αx , x 0 , β e βy , y 0 , fX x fY y x0, y0, 0 , 0 , 其中 α 0, β 0 且 α β . 试分别就以上三种连接方 L1 式写出 L 的寿命 Z的概率密度. X L1
相关文档
最新文档