第三章 平面机构的运动分析
机械原理第三章 运动分析
例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC
?
3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23
平面机构的运动分析
2
极点
c'
n ''
vB
p'
aB
b'
aE a p ' e '
n
e'
n'
加速度多边形
★加速度多边形的特性
2
极点
c'
n ''
p'
vB
aB
注意:速度影像和加速度影像只适用于 同一构件上的各点。
b'
n
e'
n'
加速度多边形
①由极点 p’ 向外放射的矢量代表构件相应点的绝对加速度;
2)确定直接联接构件的瞬心位置
3)用三心定理求非直接联接构件的瞬心位置 枚举法用于构件数较少的机构,构件较多用点元法求解。
《机械原理》
第三章 平面机构运动分析 ——利用瞬心法进行机构速度分析
例1:图示五杆机构,标出全部瞬心。
1、瞬心数目:
N n(n 1) 2
5 (5 1) 2
10
A1 (A2)
2
P12
② 已知任意两点A、B的相对速 度方向,求瞬心点位置
( 二)速度瞬心的分类
◆ 绝对瞬心( absolute instant centre): 该点的绝对速度为零。 ◆ 相对瞬心( relative instant centre): 该点的绝对速度不为零。
1 2
P12
1 2
P12
P23
相联
瞬
心
P12
2
位
3
4
P34
置
的
确
1
定
两构 件非 运动
N n(n 1) 4 (4 1) 6
第三章平面机构的运动分析
第三章平⾯机构的运动分析第三章平⾯机构的运动分析§3-1 研究机构运动分析的⽬的和⽅法1、运动分析:已知各构件尺⼨和原动件的运动规律→从动件各点或构件的(⾓)位移、(⾓)速度、(⾓)加速度。
2、⽬的:判断运动参数是否满⾜设计要求?为后继设计提供原始参数3.⽅法:图解法:形象直观、概念清晰。
精度不⾼?(速度瞬⼼法,相对运动图解法)解析法:⾼的精度。
⼯作量⼤?实验法: §3-2速度瞬⼼法及其在机构速度分析上的应⽤1、速度瞬⼼:两构件作平⾯相对运动时,在任意瞬间总能找到这样的点:两构件的相对运动可以认为是绕该点的转动。
深⼊理解速度瞬⼼:1)两构件上相对速度为零的重合点,即同速点; 2)瞬时具有瞬时性(时刻不同,位置不同);3)两构件的速度瞬⼼位于⽆穷远,表明两构件的⾓速度相同或仅作相对移动;4)相对速度瞬⼼:两构件都是运动的;绝对速度瞬⼼:两构件之⼀是静⽌的(绝对速度为零的点;并⾮接触点的变化速度);2、机构中瞬⼼的数⽬年K :2)1(-=n n K n —— 构件数(包括机架) 3、瞬⼼位置的确定1)直接观察法(定义法,由于直接形成运动副的两构件);2=N P 23设:1k V 3、13)曲柄滑块机构4)直动平底从动件凸轮机构62)14(4=-?=N K5)图⽰机构,已知M点的速度,⽤速度瞬⼼法求出所有的瞬⼼,并求出V C,V D,i12。
解:直接观察:P12、P23、P34;P14=(n_-n).×V M ; P13= P12P23. ×P14P34P24= P12P14×C·P24P34 ; ω1= V M/ P14M ; V B= P14B·ω1ω2=V B/ P12P24 ; V C= P24C·ω2ω1/ω2=( V M/ P14M)/( V B/ P12P24); V D= P24D·ω2速度瞬⼼法⼩结:1)速度瞬⼼法仅⽤于求解速度问题,不能⽤于求解加速度问题。
第3章平面机构的运动分析
一、基本原理和方法
1.矢量方程图解法
设有矢量方程: D= A + B + C
因每一个矢量具有大小和方向两个参数,根据已 知条件的不同,上述方程有以下四种情况:
D= A + B + C 大小:? √ √ √ 方向:? √ √ √
D= A + B + C 大小:√ ? ? √
方向:√ √ √ √
B
A
D
C
②联接任意两点的向量代表该两点 在机构图中同名点的相对速度, 指向与速度的下标相反。如bc代 表VCB而不是VBC ,常用相对速 度来求构件的角速度。
P
C
A 作者:潘存云教授
B
D
a
③∵△abc∽△ABC,称abc为ABC的速 度影象,两者相似且字母顺序一致。
作者:潘存云教授
c
p
前者沿ω 方向转过90°。称△abc为
3.求传动比 定义:两构件角速度之比传动比。
ω 3 /ω 2 = P12P23 / P13P23 推广到一般:
2
P ω2 12
1
ω i /ω j =P1jPij / P1iPij
P ω 233
3
P13
结论:
①两构件的角速度之比等于绝对瞬心至相对
瞬心的距离之反比。
②角速度的方向为:
相对瞬心位于两绝对瞬心的同一侧时,两构件转向相同。 相对瞬心位于两绝对瞬心之间时,两构件转向相反。
B A
DC
D= A + B + C 大小:√ √ √ √ 方向:√ √ ? ?
D= A + B + C 大小:√ ? √ √ 方向:√ √ ? √
B
A
机械原理-第3章 平面机构的运动分析和力分析
a
大小:2w1×vB2B1=2w1vB2B1sin90°=2w1vB2B1; k B 2 B1 方向:将vB2B1的方向沿w1转过90°。
vB1B2 1
2 B
(B1B2)
vB1B2 1
2 B
(B1B2)
ω1
a
k B 2 B1
ω1
a
k B 2 B1
(3)注意事项
B (B1B2)
1
2
vB1 = vB2,aB1 = aB2,
目的: 了解现有机构的运动性能,为受力 分析奠定基础。 方法:1)瞬心法(求速度和角速度); 2)矢量方程图解法; 3)解析法(上机计算)。
3.1
速度瞬心
(Instant center of velocity )
3.1.1 速度瞬心
两个互作平行平面运动的构件 定义:
上绝对速度相等、相对速度为
零的瞬时重合点称为这两个构 件的速度瞬心, 简称瞬心。瞬 心用符号Pij表示。
图(b) 2
(B1B2B3)
扩大刚体(扩大构件3),看B点。
B 1 A
b2
C
vB3 = vB2 + vB3B2
方向:⊥BD ⊥AB 大小: ? lAB w1 ∥CD ?
3
w1
D
4
p
选 v ,找 p 点 。
v
v B 3 pb3 μv ω3 (逆 ) l BD l BD
b3
(b)
例4:已知机构位臵、尺寸,w1为常数,求w2、a2。
C B
n t n t aC aC a B aCB aCB
2
1
E
方向:C→D ⊥CD B→A C→B ⊥CB 大小:lCD w32 ? lABw12 lCB w22 ?
机械原理第七版第三章
(二)、用解析法对平面连杆机构进行运动分析 用解析法对平面连杆机构进行运动分析又可分为:矢 量方程解析法、杆组法和矩阵法等。 矢量方程法是将机构中各种构件视为矢量,并构成封 闭矢量多边形,列出矢量方程,进而推导出未知量的表达 式。
复数矢量法 图示四杆机构,已知机构各构 件尺寸及原动件1的角位移θ 1和 角速度ω 1 ,现对机构进行位置、 速度、加速度分析 1、位置分析 矢量方程式:
第三章
平面机构的运动分析
§3-1 机构运动分析的任务、目的和方法 §3-2 用速度瞬心法作机构的速度分析
§3-3 用矢量方程图解法作机构的速度及 加速度分析
§3-4 综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析 §3-5 用解析法作机构的运动分析 返回
§3-1 机构运动分析的任务、目的和方法
i
2
l33e
i
3
l11 cos 1 l22 cos 2 l33 cos 3 l11 sin 1 l22 sin 2 l33 sin 3
3l3 sin( 3 2 ) 1l1 sin( 1 2 )
1L1 sin( 1 2 ) 3 L3 sin( 3 2 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
3、加速度分析
l11e i l22e i l33e i
1 2
3
2 i il1 1 e1
1
i l2 2e 2
1.任务 根据机构的尺寸及原动件已知运动规律,求构件中从动件上 某点的轨迹、位移、速度及加速度和构件的角位移、角速度及角 加速度。 2.目的 了解已有机构的运动性能,设计新的机械和研究机械动力性 能的必要前提。 3.方法 主要有图解法和解析法。图解法又有速度瞬心法和矢量方程 图解法(又称相对运动图解法)。 图解法: 形象、直观,用于平面机构简单方便,但精度 和求解效率较低。 解析法: 计算精度和求解效率高。可借助计算机计算。
机械原理-机构的运动分析
3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a
c´
aC a G e´
aCB
n2 ´ n2
p´
n3
aF
b´
加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。
机械原理第3章平面机构的运动分析
机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理
平面机构的运动分析
2.第二种情况——不同构件重合点
A
1 ω1
C
2
B1 (B2 B3 )
VB2 = VB1 VB3 = VB2 + VB3B2 大小: ? ω1LAB ? 方向:⊥BD ⊥AB ∥导路
3
p
D
4
b2 b1 b3
§3-3 用相对运动图解法对机构进行运动分析
anB3 + aτB3 = aB2 + akB3B2 + aτB3B2 大小: ω32 LBD ? ω12 LAB 2 ω2vB3B2 ?
1.同一构件上两点间的速度和加速度关系
构件上C点或B点的运动,可以看
作随其上任一点(基点)A 的牵连运 A
动和绕基点A 的相对转动。
C B
§3-3 用相对运动图解法对机构进行运动分析
2.两构件上重合点间的速度和加速度关系
构件2的运动可以看作是构件2跟 着构件1的牵连运动和构件2相对构件 1的相对运动的合成运动。构件3的运 动可以看作是构件3跟着构件2的牵连 运动和构件3相对构件2的相对运动的 合成运动。
确定瞬心位置分为如下两种情况
1)通过运动副直接相联的两构件的瞬心
两构件组成移动副:
两构件组成转动副:
P12在垂直于导路的无穷远处
P12在转动副的中心
§3-2 用瞬心法对机构进行速度分析
两构件组成纯滚动高副: 纯滚动接触点的相对速度为零,接触点为速度瞬心。
两构件组成滑动兼滚动高副: 瞬心应在过接触点的公法线nn上, 具体位置由其它条件共同来确定。
图环的解速法度的分学析习,要工作求量非常大。
根据运动合成原理能 正确地列出机构的速度和加速度矢量方程 准确地绘出速度和加速度矢量图 根据矢量图解出待求量
第三章 平面机构的运动分析
∥BD
D
μv
b1
(3) 求VE
大小
VE = VC + VEC ? √ √ ? ⊥EC
e
c
b2 P
方向 水平
E
2. 加速度分析 (1) 求aB2 aB2= aB1 + akB2B1 + arB2B1= anB2 + aτB2 大小 ? √
2ω3vB3B2
5
4 C ω1 1 3 6 c D e b2 P 2 B(B1,B2) b1
C→B ⊥CB
b′
m/s2/mm
c″
P′
b″
a′ ′ c″ c′
加速度多边形
加速度多边形特征如下: 1) 连接P′点和任一点的向 量代表该点在机构图中同名点的 绝对速度,其方向由P点指向该 点;
C A vA aA
aB方向
vB方向
B
2) 连接其它任意两点的向量
代表在机构中同名点间的相对速 度,其指向与相对下标相反; 3) 点P′—极点,代表该机 构上加速度为零的点(绝对速度瞬
位移分析可以:
◆ 进行干涉校验 ◆ 确定从动件行程
◆ 考查构件或构件上某点能否实现预定位置变化
的要求。 速度、加速度分析可以: ◆ 确定速度变化是否满足要求 ◆ 确定机构的惯性力、振动等
机构的运动分析:根据原动件的已知运动规律,分 析改机构上某点的位移、速度和加速度以及构件的角速 度、角加速度。 目的在于: 确定某些构件在运动时所需的空间;判断各构件间 是否存在干涉;考察某点运动轨迹是否符合要求;用于 确定惯性力等。 二、方法 图解法:形象直观,精度不高。 速度瞬心法 矢量方程图解法
24
vk= KP24 ×μ
l
第3章平面机构的运动分析
vc pcv
P
矢量方程图解法
pa 代表 V A pb 代表 V B pc 代表 V C ab 代表 V BA
b
a c
第三章 平面机构的运动分析 矢量方程图解法
概念:速度多边形 点p与各绝对速度矢端构成的图形pabc。 点p为速度极点,代表构件上速度为零的点。
注意: 1)由极点引出的矢量代表构件上同名点的绝对速度
第三章 平面机构的运动分析
任务、目的及方法
§3-1 机构运动分析的任务、目的及方法 ◆ 机构运动分析的任务
是在已知机构尺寸和原动件运动规律的情况下,确定机 构中其它构件上某些点的轨迹、位移、速度及加速度和某 些构件的角位移、角速度及角加速度。
目的: 分析、标定机构的性能指标。
位移轨迹分析
1、能否实现预定位置、轨迹要求; 2、确定行程、运动空间;
1、同一构件上两点间的关系(速度 、加速度)
刚体的平面运动原理: 刚体的平面运动是随 基点的移动与绕基点 转动的合成
铰链四杆机构,已知原动件O1A(2、2),以连杆3为 研究对象,分析同一构件上两点间的速度、加速度关系。
第三章 平面机构的运动分析 矢量方程图解法
1)速度关系
a. 取A为基点,列B点的速度矢量方程式
p aV A;p bV B;p cV C
2)连接任意两绝对速度矢端代表构件上同名点的相对速度, 指向与速度下标相反。
a cV C;A b cV C;B a bV B A
第三章 平面机构的运动分析 矢量方程图解法
3
vBA(m/s) lAB
abv
lAB
方向逆时针(将ab平移)
图形abc为构件图形ABC的速度影像,字母顺 序相同,逆时针方向。为构件图形沿3方向旋转 90°,利用影像法可方便地求出点C的速度。
第三章平面机构的运动分析
P24
K = N(N-1)/ 2
3
2 ∞
= 4(4-1)/ 2
=6
2、求出全部瞬心 P34
∞ P34
P13
1
P12
2
1
P23
3
P14
4
3、求出3的速度
∵P13为构件1、3等速重合点
v 3 v P13 1 p14 p13 l
P34∞
VP13
2
P24
P34∞
P13
1
P12
a
实际加速度 图示尺寸
m / s2 mm
, 作矢量多边形。
c´
p b
n
由加速度多边形得:
aC a pc m / s 2
t 2 aCB l BC
a nc l BC
同样,如果还需求出该构件上E 点的加速度 aE,则
c´ p
acbt
n t aE aB aEB aEB
速度分析 ① 位移、轨迹分析
加速度分析
通过分析,了解从动件
①
②
确定各构件及其上某些点的加
速度; 了解机构加速度的变化规律;
的速度变化规律是否满足工
作要求。如牛头刨床; ② 为加速度分析作准备。
③
为机构的力分析打基础。
3. 机构运动分析的方法
速度瞬心法 ● 图解法 矢量方程图解法 ● 解析法
第三章 平面机构的运动分析
基本要求: 本章重点: 的应用;
明确机构运动分析的目的
和方法;
速度瞬心的概念和“三心定理” 应用相对运动图解法原理求二
级机构构件上任意点和构件的运 动参数。
理解速度瞬心(绝对瞬心
第三章机构的运动分析
1、构件(或原动件)—— 同一构件上点的运动分析 已知该构件上一点的运动(位置、速度、加速 度),构件的运动(角位置、角速度、角加速度), 及已知点到所求点的距离。求同一构件上其它点的 运动(位置、速度、加速度)。 如图 b-1 所示的构件 AB ,已知:
运动副A的(xA、yA、x 、yA、x 、y A)和
∵ P23为2、3两构件的同速点,
V3 =V3 P23 = V2 P23 = ω2 P12 P23μL (方向垂直向上)
P13
∞
P12
图3-3
§3—3 用解析法作机构的运动分析
常用的解析法有: 矢量方程解析法、矩阵法、 复数矢量法、杆组法。
一、复数矢量法 复数矢量法是先写出机构位置的封闭矢量方 程式,然后将它对时间求一次和二次导数即得 速度和加速度矢量方程式,最后用复数矢量运 算法求出所需的运动参数。 机构位置的封闭矢量方程式
第三章 平面机构的运动分析
§3—1 机构运动分析的目的及方法 §3—2 用速度瞬心法作机构的速度分析 §3—3 用解析法作机构的运动分析
§3—1 机构运动分析的目的及方法
机构的运动分析,就是根据原动件给定的运动规律, 来分析这个机构其它构件上某些点的位移、轨迹、速度、 加速度,以及构件的角位移、角速度、角加速度。 一、运动分析的目的 1、进行机构的位移或轨迹分析 1)确定某些构件在运动时所需的 空间、执行构件的行程; 2)判断机构运动时各构件之间是 否会发生互相干涉; 3)考察某构件或构件上某些点能 否实现预定的位置或轨迹要求。
L3 θ3+isinθ3) + (cos
L4
(cos θ2+isinθ2) = L1 (cosθ1+isinθ1)+ L 2
第03章 平面机构的运动分析
例题分析
实际尺寸 1、取长度比例尺l m / mm , 作机构运动简图。 图示尺寸 2、速度分析
a)列出速度矢量方程式
vC vB vCB
方向:∥xx
⊥AB ⊥CB
大小: ?
√
?
实际速度 m / s b)根据矢量方程式,取速度比例尺v , 图示尺寸 mm 作矢量多边形。
、α υ χ
大小: ?
√
?
√
?
α υ C、 χ υ α
C
极点
χ
构件BCE的速度影像
a)
(vE )vB vEB vC vEC
方向: ? ⊥AB ⊥BE √ ⊥CE
vE v pe m / s
大小: ?
√
?
√
?
3、加速度分析 a)根据运动合成原理,列
出加速度矢量方程式:
aC aB aCB aB aCB aCB
'
n
' '
同样,如果还需求出该构件上E点的加速度 aE,则:
α ω α υ 、 χ
C C
υ α
χ
构件BCE的加速度影像
a)
n t n t ( aE ) aB aEB aEB aC aEC aEC 极点
aC a p' c' m / s2
c'
方向: √ E→B ⊥BE
大小: √ ω2 lBE ?
aC 2 aC 1 aC 2 C 1 aC 2 C 1
方向: ? 大小: ?
√ √
k
k
r
√ √
∥AB ?
r n t
k
大小:a aC 2 aC 1 aC 2 C 1 aC 2C 1w1C 3 D aC 3 D 2 av
第3章 平面机构的运动分析习题解答
第3章 平面机构的运动分析本章关键词:速度瞬心法、矢量方程图解法、解析法。
3-1 何谓速度瞬心?相对瞬心与绝对瞬心有何异同点?[解答] (1)互作平面相对运动的两构件上瞬时速度相等的重合点称为两构件的速度瞬心,简称瞬心。
(2)区分相对瞬心与绝对瞬心关键看瞬心处的绝对速度是否为零,为零则称为绝对瞬心;否则则称为相对瞬心。
3-2 何谓三心定理?何种情况下的瞬心需用三心定理来确定?[解答] (1) 所谓三心定理,三个彼此作平面运动的构件的三个瞬心位于同一直线上。
(2)确定不通过运动副直接相连的两构件间的瞬心位置需借助三心定理。
3-3 [解答]3-4 [解答]由三心定理,求得齿轮1与齿轮3的同速重合点,也即相对瞬心13P 。
由瞬心的性质可得: l l P P P P P v μωμω361331613113==传动比 1613361331P P P P =ωω (如需尺寸直接从图上量取) 3-6题[解答] mm mm l /2=μ(1)由三心定理确定出构件2、4的等速重合点,也即相对瞬心24P 。
由瞬心性质得 l l P P P P P v μωμω241442412224== ) ( 4.5rad/s (49/109)10 2414241224顺时针=⨯==P P P P ωωs mm l v CD C /4055.4904=⨯==ω 方向如图示(2)由三心定理确定出构件1、3的等速重合点,也即绝对瞬心13P 。
在此瞬时,可将构件3视为绕点13P 转动,从而求得构件3的BC 线上速度最小的点E 。
s rad P P P P /5.25.11930102313231223=⨯==ωω 方向如图示 s mm E P v l E /3552715.2133=⨯⨯==μω 方向如图示 (3)结合(2)的分析可知,要使0=C v ,须满足C 、E 两点重合,而要满足C 、E 两点重合,只需令A 、B 、C 三点共线即可。
机械原理 第3章 平面机构的运动分析
VD5 = VD4+ VD5D4 大小 ? √ ?
方向 ⊥DF √ ∥移动方向
ω5= VD5/LDF
aD5
= aD5n +
a
t D5
=aD4
+
aD5D4k (哥氏加速度) +
aD5D4r
大小 ω52* LDF ? √ 2ω4* VD5D4
?
方向
√ D→F ⊥DF
VD5D4方向沿ω4转过900
∥移动方向
二.实例分析
1、矢量方程图解法的基本原理和作法 原理:相对运动原理 方法:对矢量方程进行图解 1)同一构件上两点间速度和加速度的关系 同一构件上一点的运动可看成是随该构件上另 一点的平动和绕该点的转动的合成。
VB=VA+VBA aB=aA+aBAn+aBAt
1 同一构件两点间的和关系
构件2:已知B和B
1)去除局部自由度; 2)剔除虚约束;(D?)
3)正确确定运动副的数目; 4)构件编号; 5) 列式计算 • F=3×5-2×6-1×2
•用速度瞬心作机构的速度分析
•用矢量方程图解法作机构的速度分 析及加速度分析
第三章 平面机构的运动分析
3-1 平面机构运动分析的任务目的和方法 平面机构的运动分析是指 :
已知原动件的运动规律、机构尺寸,求其 它构件上某点的运动(s、v、a)
方法:
1 、图解法 特点: 形象直观,精度低,用于求个别
位置的运动特性
VC = VB + VCB
大小 ? √
?
方向∥X-X ⊥AB ⊥BC
设速度比例尺,作速度图,
设p(小写)为速度极点,
速度极点的速度为零。
机械原理 第3版 第3章 平面连杆机构的运动分析
3、瞬心位置的确定
2)两个构件之间没有用运动副连接时,可
用三心定理求出的瞬心位置
Kennedy Theorem
Aronhold-Kenndy Theorem
1)两个构件之间用运动副连接时,可直接
判断出的瞬心位置
primary center
10
1. 选择一个适当的比例尺画出机构运动简图;
2. 找出机构的全部瞬心并标注在机构简图上;
17
已知机构尺寸和主动件角速度1,求2和3
1、利用Vp12求2
18
2、利用Vp13求3
求3的思路
19
P12
P23
1、利用瞬心P12,求V2
已知凸轮角速度1,求推杆速度V2
P13
P23
20101011-04-2-08
速度瞬心法 相对运动图解法
复数法 矩阵法 矢量法
二、运动分析的方法
6
1、瞬心概念:作平面相对运动的两构件,以 看成是围绕一个瞬时重合点作相 对转动,该重合点称为瞬时速度 中心,简称瞬心。
24
第三节 用相对运动图解法对机构进行运动分析
一、相对运动图解法的基本原理
理论力学知识1、同一构件上两点之间的速度、加速度的关系2、两构件重合点处的速度与加速度关系
25
速度关系
加速度关系
1、同一构件上两点之间的速度、加速度的关系
牵连运动是移动,相对运动是转动。
26
2.两构件重合点处的速度和加速度矢量关系
第三章 平面机构的运动分析
2010.10.13 第5次课
21
复 习
1.平面机构的结构分析把一个机构分解为原动件和杆组的过程。机构结构分析的一般步骤 a计算自由度确定原动件 b高副低代,去掉局部自由度和虚约束 c开始拆杆组注意:拆去杆组后,剩余部分仍然是机构 同一个机构选用不同构件作原动件时,其机构的级别可能不同
第三章 平面机构的运动分析
第三章 平面机构的运动分析
➢机构中瞬心的数目
因为每两个构件就有一个瞬心,所以由 m个构件(含机架)组成的机构,总的瞬 心数K为
k = m(m-1) / 2
m----机构中的构件(含机架)数。
第三章 平面机构的运动分析
➢机构中瞬心位置的确定
(1)通过运动副直接连接的两构件的瞬心
(2)不直接相连的两构件的瞬心
例6:如图所示为一导杆机构,其特点是铰链点B2不在
导杆3的导杆线上。已知原动件1以匀角速度1 转动。 试求导杆3的角速度3 和角加速度 3
第三章 平面机构的运动分析
例7 如图a所示为一平底摆动从动件盘形凸轮机构, 平底2与凸轮1在点K相切成高副。已知凸轮1的匀角
速度为1 ,求从动件2的角速度 2 和角加速度 2
va ve vr
第三章 平面机构的运动分析
牵连运动为平动时的加速度合成定理:当牵连运 动为平动时,动点在每一瞬时的绝对加速度等于牵连 加速度与相对加速度的矢量和。
aa ae ar
牵连运动为转动时的加速度合成定理:当牵连运动
。
为转动时,动点的每一瞬时的绝对加速度等于相对加 速度、牵连加速度与哥氏加速度三者的矢量和。
基本要求: (1)明确理解速度瞬心(绝对速度瞬心和相对 速度瞬心)的概念。并能运用“三心定理”确 定一般平面机构多瞬心的位置。 (2)能以相对运动图解法对一般平面机构进行 速度分析和加速度分析。 (3)能以解析法写出一般平面机构的位置方程、 速度方程和加速度方程。
第三章 平面机构的运动分析
重点: (1)速度瞬心以及“三心定理”的运用。 (2) 矢量方程图解法,一般平面机构的速度多 边形及加速度多边形的作法。 难点: 速度瞬心和矢量方程图解法求机构的加速度, 特别是哥氏加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P21 2
1
瞬时:瞬心的位置随时间而变 重合:瞬心既在构件1上,也在构件2上,是两构件的重合点。 通常用符号P表示。绝对速度相同,相对速度为零。
§3-2 用瞬心法对机构进行速度分析
v = rω VA2A1 VB2B1
P21
2
1
ω VA2A1
2
1
VB2B1
3、机构中瞬心的数目
中总的瞬心数为: K= N(N-1)/2
绝对顺心与相对顺心
每两个构件有一个瞬心,设机构中有N个(包括机架)构件,则该机构
§3-2 用瞬心法对机构进行速度分析
4、机构中瞬心位置的确定
确定瞬心位置分为如下两种情况
1)通过运动副直接相联的两构件的瞬心 两构件组成移动副: 两构件组成转动副:
E E EE E 4 44 4 4 4D E E D DD 55 5 D D 4 D5 5 D 2 5 2 Bφ 3 2 1 B B2φ φ1 1 1 FF 3 11 1 1 A 2 B 1 A A 6 BB 3 3 B 6 3 3 2 3 B 3 2 2 CC
§3-3 用相对运动图解法对机构进行运动分析
1 A
§3-2 用瞬心法对机构进行速度分析
例题2: 已知构件2的角速度ω2 和长度
求:从动件3 的速度V3;
由直接观察法可得P12,由 三心定理可得P13和P23如图所 示。
P13
凸轮机构
§3-2 用瞬心法对机构进行速度分析
例题3: 已知构件2的角速度ω2和长度 比例尺μl ; 求:图示位置时滑块的速度以及 连杆上最小速度点的位置 解:瞬心数为: N=n(n-1)/2=6 n=4 直接观察求瞬心 P12、P23、P34、P14 三心定理求瞬心 P13、P24 P12、P23、 P23、P34、 P13 P24
P12在垂直于导路的无穷远处
P12在转动副的中心
§3-2 用瞬心法对机构进行速度分析
两构件组成纯滚动高副:
纯滚动接触点的相对速度为零,接触点为速度瞬心。 两构件组成滑动兼滚动高副: 瞬心应在过接触点的公法线nn上, 具体位置由其它条件共同来确定。 2v1
ω
v1 P12
P12
滑动兼滚动高副
§3-2 用瞬心法对机构进行速度分析
§3-3 用相对运动图解法对机构进行运动分析
机构运动分析中应注意的若干问题 1. 速度和加速度是矢量,注意矢量的加减法
2.
3. 4.
由“绝对运动=牵连运动+相对运动”,可从已知到未知
,逐一求出各点的速度和加速度 待求速度或加速度的构件与某点不相连时,扩大构件 使之与该点重合,即可建立矢量方程 正确理解科氏加速度
5、速度瞬心法在平面机构速度分析中的应用
例题1 : 已知各构件长度和1的角速度ω1 求:VE和ω3=? 设定比例尺μl ;
P24
分析:各瞬心如图所示。
因在P13点,构件1和3的绝对速度 相等,故 v1=v2 ω1(P13P14)=ω3(P13P34)
P13 C 2 B P12 ω1 P14 4 P34 3 D P23 E
2
O1
1 4
3 O2
A1(A2A3)
§3-3 用相对运动图解法对机构进行运动分析
二、相对运动图解法
1.第一种情况 ——同一构建不同点
VC = 大小: ? 方向:⊥CD
VB ⊥AB
+
VCB ?
ω1LAB
⊥BC
vE
E
b 2 c C 3 F 1 f D 4 e p
vB
B
ω1 A
§3-3 用相对运动图解法对机构进行运动分析
P21∞
速度三角形
§3-2 用瞬心法对机构进行速度分析
2、瞬心的种类
根据构成瞬心的两个构件是否处于运动中,瞬心可分为两类:
绝对瞬心:构成瞬心的两个构件中,其中一个构件固定不动,则瞬心 点的绝对速度为零。 相对瞬心:构成瞬心的两个构件均处于运动中,则瞬心点的绝对速度 等、相对速度为零。 绝对瞬心是相对瞬心的一种特殊情况。
ω1
B1 (B2 B3 )
b2′
ω3 p′ b3′
§3-3 用相对运动图解法对机构进行运动分析
关于科氏加速度 科氏加速度是动参系的转动与动点相对动参系运动相互 耦合引起的加速度,即 ak = 2ω×v 上述为矢量叉乘,有方向。科氏加速度方向由右手螺旋 法则决定。 ω
ak v ak
ω ω v 对于平面机构,科氏加速度的方向是相对速 度方向v按动系的角速度方向ω转90°
1、机构运动分析的目的
第三章 平面机构的运动分析
§3-1 §3-2 §3-3 §3-4 平面机构运动分析概述 用速度瞬心法对机构进行速度分析 用相对运动图解法对机构进行运动分析 用解析法对机构进行运动分析
1
§3-1平面机构运动分析概述
1、机构运动分析的目的 1)分析现有机构的工作性能,检验创新机构是否符 合要求。 2)轨迹分析:确定构件运动所需空间,判断运动是
3、机构运动பைடு நூலகம்析的方法
1)图解法:相对运动图解法。形象、直观。精度不高。 对于速度分析,瞬心法。
2)解析法: 效率高,速度快 ,精度高,便于对机构进行
深入的研究。整体运动分析法、杆组法。
3)实验法:通过位移、速度、加速度传感器进行测量
1、瞬心的基本概念
两个作平面相对运动的构件,在运动的 任一瞬时,总存在一个绝对速度相同的点, 或是相对速度为零的重合点。除非它们之间 §3-2 用瞬心法对机构进行速度分析 作平动。 在任一瞬时,两构件的相对运动都可看 作是绕于该点作相对转动。 该点称为—瞬时速度中心,简称瞬心。
1.同一构件上两点间的速度和加速度关系 构件上C点或B点的运动,可以看 作随其上任一点(基点)A 的牵连运 动和绕基点A 的相对转动。
C A B
§3-3 用相对运动图解法对机构进行运动分析
2.两构件上重合点间的速度和加速度关系
构件2的运动可以看作是构件2跟 着构件1的牵连运动和构件2相对构件 1的相对运动的合成运动。构件3的运 动可以看作是构件3跟着构件2的牵连 运动和构件3相对构件2的相对运动的 合成运动。 构件3跟构件1的关系亦然。 点A3的运动可以看作跟着点A1的 牵连运动和点A3相对点A3的相对运动 的合成运动。
根据运动合成原理能 正确地列出机构的速度和加速度矢量方程 准确地绘出速度和加速度矢量图 根据矢量图解出待求量
§3-3 用相对运动图解法对机构进行运动分析
一、相对运动图解的基本原理 当机构运动时,构件上相应点之间的速度和加 速度关系,可根据理论力学运动合成原理,列出机 构的速度和加速度矢量方程,对矢量方程进行作图 求解。
t ve 342 5 2.14rad / s 2 lef 160
§3-3 用相对运动图解法对机构进行运动分析
综合运用瞬心法和矢量方程图解法对复杂机构进行速度分析
P46
F ω4
4 P43 E D 3
5
G
P65 ω5 2 B 1 A 6
P35
p b
C c P63 ω3
ω1
已知:∠CAE=90°, AB=150mm,AC=550mm, BD=80mm,DE=500mm, ω1=10rad/s, 求当 ∠BAC=45°时,构件5 的速度和加速度。
∞ P23
4 2 P12 1 v1 =v3 P13 P24 P14 ω1 3 P34 ω3
§3-2 用瞬心法对机构进行速度分析
§3-2 用瞬心法对机构进行速度分析
§3-2 用瞬心法对机构进行速度分析
试求图示六杆机构所有瞬心
P13 K= n(n-1) 2 =6×(6-1)÷2 =15 P23∞ P26 1 6 5 4 3 P25 P15 P46
5.
注意机构在极限、共线、垂直或平行等特殊位置
§3-3 用相对运动图解法对机构进行运动分析
例:已知:LAB=50mm, LAC=100mm, LCD=180mm, LDE=120mm, LEF=160mm,LAF=160mm, ω 1=20 rad/s。求:当φ1=45°、120°时,构件5的角速度和角加速度。
2)两构件不直接相联时瞬心的位置 三心定理:作平面运动的三个构件共有三个瞬心,且它们
位于同一条直线上。
假设P23不在P12 P13的连线上, 而在连线之外的M点。 分析:M点处构件2、3的速度不 同,这与瞬心的定义相矛盾。 所以, P23必在P12 P13的连线上。
三心定理分析用图
P23
§3-2 用瞬心法对机构进行速度分析
VB2 = VB1 VB3 = VB2 + VB3B2
A C 1 2 3 D 4 大小: ?
ω1LAB
?
ω1
B1 (B2 B3 ) p
方向:⊥BD ⊥AB ∥导路
b2 b1 b3
§3-3 用相对运动图解法对机构进行运动分析
anB3 + aτB3 = aB2 + akB3B2 + aτB3B2 大小: ω32 LBD ? ω12 LAB 2 ω2vB3B2 ? 方向: ∥BD A C 1 2 3 E D 4 ⊥BD ∥BA ⊥CE ∥EC
c
b3 d3 bk b2
dn dt e4
d3 d3n d3t
bn3bt3 bt
vb 2 1l AB 1000 mm/ s
n 2 2 ab / s2 2 1 l AB 20 50 20000 k 2 ab 2 v 2 6 . 168 505 . 4 6251 . 8 / s 2 2 32 k 2 ab 2 v 2 6 . 168 505 . 4 6251 . 8 / s 2 2 32 n 2 2 2 ab l 6 . 168 139 . 9 5322 . 3869 / s 3 3 BC n 2 aed 4 lED 3.6852 120 1629 .507/ s 2