数字信号处理习题集及答案

合集下载

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X ,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)14][]0[190===∑=n Nn x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理习题集

数字信号处理习题集

《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。

4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。

6、δ(n)的z变换是。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。

8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。

9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。

10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。

11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。

13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。

14.线性移不变系统的性质有、和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。

16.无限长单位冲激响应滤波器的基本结构有型,型和。

17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。

18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。

数字信号处理习题集

数字信号处理习题集

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数字信号处理习题集及答案

数字信号处理习题集及答案
(b)当N为偶数时,如果 ,则 。
证:
(a)
N为偶数:
N为奇数:
而 中间的一项应当满足:
因此必然有
这就是说,当N为奇数时,也有 。
(b)当N为偶数:
当N为偶数时, 为奇数,故 ;又由于 故有
10.设 ,求证 。
【解】因为
根据题意
因为
所以
11.证明:若 为实偶对称,即 ,则 也为实偶对称。
【解】根据题意
所以图3-7(e)中矩形序列 的DFT为( )
循环卷积的性质可以表示为
考虑到DFT关系的对偶性,自然两个N点序列乘积的DFT等于他们对英的离散傅里叶变换的循环卷积。具体地说,若 ,则

21.设 是一个2N点序列,具有如下性质
另设 ,它的N点DFT为 。
求 得2N点DFT 和 的关系。
【答案】
22.已知某信号序列 , ,试计算
下面我们令 进行变量代换,则
又因为 为实偶对称,所以 ,所以
可将上式写为
所以
即证。
注意:若 为奇对称,即 ,则 为纯虚数并且奇对称,证明方法同上。
计算题:
12.已知 ,用圆周卷积法求 和 的线性卷积 。
解: ,
因为 的长度为 , 的长度为
所以 的长度为 ,故应求周期 的圆周卷积 的值,即
所以
13.序列 ,序列 。
时,对序列 以N为周期进行周期延拓得到一个新的序列 ,求序列 的前M点的FFT即可得 。
(2) 时得到的结果与 等效,因为其满足频域取样定理。
8.已知 ,今对其z变换 在单位圆上等分采样,采样值为 ,求有限长序列IDFT
解方法一
IDFT
方法二
交换求和次序
(因为 , )

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

2. 给定信号:
2n+5
-4≤n≤-1
(x(n)=
6
0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列;
第 1 章 时域离散信号和时域离散系统
(3) 令x1(n)=2x(n-2), 试画出x1(n)波形; (4) 令x2(n)=2x(n+2), 试画出x2(n)波形; (5) 令x3(n)=x(2-n), 试画出x3(n)波形。 解: (1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
, 这是2π有理1数4, 因此是周期序
3
(2) 因为ω=
,
所以
1
8
=16π, 这是无理数, 因此是非周期序列。

第 1 章 时域离散信号和时域离散系统
4. 对题1图给出的x(n)要求:
(1) 画出x(-n)的波形;

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

数字信号处理(第三版)_课后习题答案全_(原题+答案+图)

第 1 章
(2) 令输入为
x(n-n0) 输出为
时域离散信号和时域离散系统
y′(n)=2x(n-n0)+3
y(n-n0)=2x(n-n0)+3=y′(n)
故该系统是非时变的。 由于 T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
m


第 1 章
时域离散信号和时域离散系统
题7图
第 1 章
时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章
解法(二)
时域离散信号和时域离散系统
采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
第 1 章
(4) y(n)=x(-n)
令输入为 x(n-n0) 输出为 y′(n)=x(-n+n0)
时域离散信号和时域离散系统
y(n-n0)=x(-n+n0)=y′(n) 因此系统是线性系统。 由于
T[ax1(n)+bx2(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)] 因此系统是非时变系统。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。

数字信号处理习题集大题与答案

数字信号处理习题集大题与答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理复习题及参考答案

数字信号处理复习题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。

(完整版)数字信号处理题库(附答案).doc

(完整版)数字信号处理题库(附答案).doc

数字信号处理复习题一、选择题1、某系统 y(n) g( n) x(n), g( n) 有界,则该系统(A )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统(D)。

A. 若因果必稳定B. 若稳定必因果C.因果与稳定有关D. 因果与稳定无关3、某系统 y(n) nx(n), 则该系统(A )。

A. 线性时变B. 线性非时变C. 非线性非时变D. 非线性时变 4.因果稳定系统的系统函数 H ( z) 的收敛域是( D)。

A. z 0.9B. z 1.1C. z1.1D.z 0.95. x 1 (n) 3sin(0.5 n) 的周期( A)。

A.4B.3C.2D.16.某系统的单位脉冲响应h(n) ( 1) nu(n), 则该系统(C )。

2A. 因果不稳定B.非因果稳定C.因果稳定D. 非因果不稳定7.某系统 y(n) x(n) 5 ,则该系统(B )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定8.序列 x(n) a n u( n 1), 在 X ( z) 的收敛域为( A)。

A. z aB. zaC.z a D. z a9.序列 x(n)(1) nu(n) ( 1)n u( n 1), 则 X (z) 的收敛域为( D )。

1 3 12 1 1 1B. zC. z zA. z3 2 D. 223 10.关于序列 x( n) 的 DTFT X (ej) ,下列说法正确的是(C )。

A. 非周期连续函数B.非周期离散函数C.周期连续函数,周期为 2D.周期离散函数,周期为211.以下序列中( D )的周期为 5。

A. x( n)cos( 3n)B. x(n)sin( 3 n)5 588C. x( n) e j ( 2n)x(n)j (2n) 58D. e 5812. x(n)ej (n)3 6,该序列是( A )。

A. 非周期序列B.周期 N6C.周期 N6D.周期N 213. ((4)) 4 ________ 。

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<24.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3) (4) 5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3} (3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。

数字信号处理习题集

数字信号处理习题集

数字信号处理习题一、选择题1. 序列x(n)=Re(ejn π/12)+Im(ejn π/18),周期为( B )。

A. 18πB. 72C. 18πD. 362. 对于x(n)=n 21⎪⎭⎫ ⎝⎛u(n)的Z 变换,( B )。

A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21C. 零点为z=21,极点为z=1D. 零点为z=21,极点为z=23、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足( B )A.16>NB.16=NC.16<ND.16≠N4. 设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( B )。

A. H(ej ω)=ej ω+ej2ω+ej5ωB. H(ej ω)=1+2e-j ω+5e-j2ωC. H(ej ω)=e-j ω+e-j2ω+e-j5ωD. H(ej ω)=1+21e-j ω+51e-j2ω5. 设序列x(n)=2δ(n+1)+δ(n)-δ(n-1),则X(ej ω)|ω=0的值为( B )。

A. 1B. 2C. 4D. 1/26. 设有限长序列为x(n),N1≤n ≤N2,当N1<0,N2>0,Z 变换的收敛域为( A )。

A. 0<|z|<∞B. |z|>0C. |z|<∞D. |z|≤∞7.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs 与信号最高截止频率Ωc 应满足关系(A )A. Ωs>2ΩcB. Ωs>ΩcC. Ωs<ΩcD. |Ωs<2Ωc8.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( D )A.y(n)=y(n-1)x(n)B.y(n)=x(n)/x(n+1)C.y(n)=x(n)+1D.y(n)=x(n)-x(n-1)9.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为(D )A.有限长序列B.右边序列C.左边序列D.双边序列10.已知x(n)=δ(n),其N 点的DFT [x(n)]=X(k),则X(N-1)=(B )A.N-1B.1C.0D.-N+111.设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B )A.M+NB.M+N-1C.M+N+1D.2(M+N)12.下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构?(C )A.直接型B.级联型C.频率抽样型D.并联型13.下列关于FIR 滤波器的说法中正确的是( A )A.FIR 滤波器容易设计成线性相位特性B.FIR 滤波器的脉冲响应长度是无限的C.FIR 滤波器的脉冲响应长度是确定的D.对于相同的幅频特性要求,用FIR 滤波器实现要比用IIR 滤波器实现阶数低14.以下单位冲激响应所代表的线性移不变系统中因果稳定的是( C )。

数字信号处理(三版)课后习题答案全(原题 答案 图)

数字信号处理(三版)课后习题答案全(原题 答案 图)

m n4

最后结果为
0
y(n)=
n<0或n>7
0≤n≤3
n+1
8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。
(2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)
y(n)的波形如题8解图(二)所示
1 2
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+
δ(n-2)
=2x(n)+x(n-1)+
x(n-2)
1 2
将x(n)的表示式代入上式, 得到
1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n 2 )+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
x(n-n1) 输出为 y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于 T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)] 故延时器是线性系统。
(4) y(n)=x(-n)
令输入为 x(n-n0) 输出为 y′(n)=x(-n+n0) y(n-n0)=x(-n+n0)=y′(n) 因此系统是(n)]=ax1(-n)+bx2(-n)
=aT[x1(n)]+bT[x2(n)] 因此系统是非时变系统。

数字信号处理习题集

数字信号处理习题集

数字信号处理习题集一、单项选择题1.数字信号的特征是()A.时间离散、幅值连续C.时间连续、幅值量化B.时间离散、幅值量化D.时间连续、幅值连续2.若一线性移不变系统当输入为某(n)=δ(n)时,输出为y(n)=R2(n),则当输入为u(n)-u(n-2)时,输出为()A.R2(n)-R2(n-2)B.R2(n)+R2(n-2)C.R2(n)-R2(n-1)3.下列序列中z 变换收敛域包括|z|=∞的是()A.u(n+1)-u(n)B.u(n)-u(n-1)C.u(n)-u(n+1)D.u(n)+u(n+1)4.下列对离散傅里叶变换(DFT)的性质论述中错误的是()A.DFT是一种线性变换B.DFT具有隐含周期性C.DFT可以看作是序列z变换在单位圆上的抽样D.利用DFT可以对连续信号频谱进行精确分析5.若序列的长度为M,要能够由频域抽样信号某(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥MB.N≤MC.N≥M/26.基-2FFT算法的基本运算单元为()A.蝶形运算B.卷积运算C.相关运算D.延时运算7.以下对有限长单位冲激响应(FIR)滤波器特点的论述中错误的是()A.FIR滤波器容易设计成线性相位特性B.FIR滤波器的单位冲激抽样响应h(n)在有限个n值处不为零C.系统函数H(z)的极点都在z=0处D.实现结构只能是非递归结构8.下列结构中不属于IIR滤波器基本结构的是()A.直接型B.级联型C.并联型D.频率抽样型9.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是()A.数字频率与模拟频率之间呈线性关系B.能将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是平面到z平面的多值映射D.可以用于设计低通、高通和带阻等各类滤波器310.离散时间序列某(n)=co(n-)的周期是()78A.7B.14/3C.14D.非周期D.N≤M/2D.R2(n)+R2(n-1)11.下列系统(其中y(n)是输出序列,某(n)是输入序列)中______属于线性系统。

数字信号处理大题(含答案)

数字信号处理大题(含答案)

四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。

解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。

对应三种不同的原序列。

-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。

解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理习题(全)

数字信号处理习题(全)

习题一1 判断下列信号中哪一个是周期信号,如果是周期信号,求出它的周期。

(a )sin1.2n (b )sin9.7n π (c ) 1.6j neπ(d )cos(3/7)n π (e ) 3cos 78A n ππ⎛⎫- ⎪⎝⎭ (f )18j n e π⎛⎫- ⎪⎝⎭2 以下序列是系统的单位脉冲响应h(n),试说明系统是否是因果的和稳定的。

(1)21()u n n (2) 1()!u n n (3)3()nu n (4)3()n u n - (5) 0.3()nu n (6) 0.3(1)nu n -- (7)(4)n δ+3 假设系统的输入和输出之间的关系分别如下式所示,试分别分析系统是否是线性时不变系统。

(1) ()3()8y n x n =+ (2) ()(1)1y n x n =-+ (3) ()()0.5(1)y n x n x n =+- (4) ()()y n nx n =习题二 4 已知因果系统的差分方程为()0.5(1)()0.5(1)y n y n x n x n =-++- 求系统的单位脉冲响应h(n)。

5 设系统的差分方程为()(1)()y n ay n x n =-+,0<a<1,(1)0y -=。

分析系统是否是 线性、时不变系统。

习题三 6 试求以下序列的傅里叶变换。

(1) 1()(3)x n n δ=- (2)211()(1)()(1)22x n n n n δδδ=+++- (3) 3()()nx n a u n = 0<a<1 (4)4()(3)(4)x n u n u n =+--7 设()j X e ω是()x n 的傅里叶变换,利用傅里叶变换的定义或者性质,求下面序列的傅里叶变换。

(1)()(1)x n x n -- (2) *()x n (3)*()x n - (4) (2)x n (5)()nx n习题四8 假设信号1,2,3,2,1,n 2,1,0,1,20,()x n ---=--⎧⎨⎩=其他,它的傅里叶变换用()j X e ω表示,不具体计算()j X e ω,计算下面各式的值:(1)0()j X e (2) ()j X e ω∠ (3)()j X e d πωπω-⎰(4) ()j X e π(5)2()j d X e ππωω-⎰习题五9 设图P2.5所示的序列()x n 的FT 用()j X e ω表示,不直接求出()j X e ω,完成下列运算 (1) 0()j X e (2)()j X e d πωπω-⎰ (3)()j X e π(4)确定并画出傅里叶变换为(())j e R X e ω的时间序列()e x n(5)2()j d X e ππωω-⎰ (6)2()j d dX e d ππωωω-⎰10 求以下各序列的Z 变换和相应的收敛域,并画出相应的零极点分布图。

数字信号处理习题库选择题附加答案

数字信号处理习题库选择题附加答案

第1章选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 。

( B )A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.数字信号的特征是( B )A .时间离散、幅值连续B .时间离散、幅值量化C .时间连续、幅值量化D .时间连续、幅值连续3.下列序列中属周期序列的为( D )A .x(n) = δ(n)B .x(n) = u(n)C .x(n) = R 4(n)D .x(n) = 14.序列x(n)=sin ⎪⎭⎫ ⎝⎛n 311的周期为( D ) A .3 B .6 C .11 D .∞5. 离散时间序列x (n )=cos(n 73π-8π)的周期是 ( C ) A. 7 B. 14/3 C. 14 D. 非周期 6.以下序列中( D )的周期为5。

A .)853cos()(ππ+=n n x B. )853sin()(ππ+=n n x C. )852()(π+=n j e n x 7.下列四个离散信号中,是周期信号的是( C )。

A .sin100n B. n j e 2 C. n n ππ30sin cos + D. n j n j e e5431π- 8.以下序列中 D 的周期为5。

A.)853cos()(π+=n n x B.)3sin()(π+=n n x C.)852()(π+=n j e n x 9.离散时间序列x (n )=cos ⎪⎭⎫ ⎝⎛+353ππn 的周期是( C ) A.5 B.10/3 C.10 D.非周期10.离散时间序列x(n)=sin (5n 31π+)的周期是( D ) A.3 B.6 C.6π D.非周期11.序列x (n )=cos ⎪⎭⎫ ⎝⎛n 5π3的周期为( C ) A.3 B.5C.10D.∞ 12.下列关系正确的为( C )A .u(n)=∑=n k 0δ (n)B .u(n)=∑∞=0k δ (n)C .u(n)=∑-∞=n k δ (n-k) D .u(n)=∑∞-∞=k δ (n) 13.设系统的单位抽样响应为h(n),则系统因果的充要条件为( C )A .当n>0时,h(n)=0B .当n>0时,h(n)≠0C .当n<0时,h(n)=0D .当n<0时,h(n)≠014.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 数字信号处理概述判断说明题:1.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

( ) 答:错。

需要增加采样和量化两道工序。

2.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

( )答:错。

受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、离散时间信号与系统频域分析 计算题:1.设序列)(n x 的傅氏变换为)(ωj e X ,试求序列)2(n x 的傅里叶变换。

解: 由序列傅氏变换公式 DTFT ∑∞-∞=-==nnj j e n x e X n x ωω)()()]([可以得到DTFT 2)()2()]2([n j n n jn en x en x n x '-∞-∞='-∑∑'==ωω为偶数)()(21)(21)(21)(21)(21)]()1()([2122)2(2)2(22ωωπωωπωωωj j j j n j n n jn n j nn e X e X e X e X e n x e n x e n x n x -+=+=+=-+=++-∞-∞=∞-∞=--∞-∞=∑∑∑2.计算下列各信号的傅里叶变换。

(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ 解:(a )∑∑-∞=--∞-∞==-=2][2)(n nj n nj n ne en u X ωωωωωj nn j e e 2111)21(0-==∑∞= (b )∑∑∞-=--∞-∞==+=2)41(]2[41)(n n j n n j n n e e n u X ωωω)( ωωωj j m m j m e e e -∞=---==∑41116)41(20)2(2 (c )ωωωδω2]24[][)(j n n j nj n e e n en x X -∞-∞=--∞-∞==-==∑∑ 7.计算下列各信号的傅立叶变换。

(1){})2()3()21(--+n u n u n(2))2sin()718cos(n n +π(3)⎪⎩⎪⎨⎧≤≤=其它-041)3cos()(n n n x π【解】(1){}∑∞-∞=---+=n kn N j n e n u n u k X π2)2()3()21()(∑∑∞=-∞-=--=2232)21()21(n knN j n n kn N j n ee ππ k Nj k N j k Nj k N j e ee eππππ222223211412118------=k Nj kN j kN j e e e πππ225523211)21(18----= (2)假定)718cos(n π和)2sin(n 的变换分别为)(1k X 和)(2k X ,则∑∞-∞=⎥⎦⎤⎢⎣⎡--+--=k k k N k k Nk X )27182()27182()(1πππδπππδπ∑∞-∞=⎥⎦⎤⎢⎣⎡-++--=k k k N k k N j k X )222()222()(2ππδππδπ所以 )()()(21k X k X k X +=∑∞-∞=⎥⎦⎤⎢⎣⎡-++-----+--=k k k N j k k N j k k N k k N )22()222()27182()27182(ππδππδπππδπππδπ(3)∑-=-=4423cos )(n k Njnnek X ππ∑-=--+=44233)(21n k N jn n j nj e e eπππ∑∑=++=--+=90)23()32(490)23()32(42121n nN j k N j n n k N j k N j e e e e ππππππππ)23()23()32(4)23()23()32(41121112199k Nj k N j k N j k Nj k N j k N j ee e ee e ππππππππππππ+++---+-++-=第三章 离散傅立叶变换一、离散傅立叶变换定义 填空题1.某DFT 的表达式是∑-==10)()(N k klM W k x l X ,则变换后数字频域上相邻两个频率样点之间的间隔是( )。

解:M π22.某序列DFT 的表达式是∑-==10)()(N k klM W k x l X ,由此可看出,该序列的时域长度是( ),变换后数字频域上相邻两个频率样点之间隔是( )。

解:N M π2 判断说明题:3.一个信号序列,如果能做序列傅氏变换对它进行分析,也就能做DFT 对它进行分析。

( )解:错。

如果序列是有限长的,就能做DFT 对它进行分析。

否则,频域采样将造成时域信号的混叠,产生失真。

计算题4.试求以下有限长序列的N 点DFT (闭合形式表达式) (1))()(n R a n x N n= (2))()(n nR n x N =解:(1)因为)()(n R a n x N n=,所以k Nj N N n nk Njn aea ea k X ππ21211)(--=---==∑(2)由)()(n nR n x N =,得∑-==10)()(N n N nkN k R nW k X∑-=+=1)1()()(N n N k n N k Nk R nW k X W ∑∑-=+-=-=-1)1(1)()()1)((N n N kn N N n nk Nk Nk R nW nWW k X [])())1(()()1)2(2()1(3211)1(32)1(32k R W N k R N W N W W W N W W W N N n nk N N kN N k N k N k N N k N k N k N ∑-=--+--=-+-+++--++++= )()(11)1(k NR k R W W N N Nk N k N -=⎥⎦⎤⎢⎣⎡--+--= 所以)(1)(k R W Nk X N kN--=5.计算下列序列的N 点DFT :()116P (1)10,)(-≤≤=N n a n x n(2)=)(n x ⎪⎭⎫⎝⎛nm N π2cos ,N n ≤≤0,N m <<0解:(1)kNNk N NK N N N n nk Nn aW a aW W a Wa k X --=--==∑-=1111)(10,10-≤≤N k (2)∑∑-=---=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=1022210212cos )(N n nk N j mn N j mn N j N n nk N e e e W m n N k X ππππ⎪⎪⎪⎭⎫⎝⎛--+--=+-+-----)(2)(2)(2)(2111121m k N j m k j m k N j m k j e e e e ππππ ⎪⎪⎪⎭⎫ ⎝⎛--+--=++-+-++-+-+-------ππππππππππ)(1)()()()()(1)()()()(21m k N N j m k N j m k N j m k j m k j m k N N j m k N j m k N j m k j m k j e e e e e e e e e e ()()()⎥⎥⎦⎤⎢⎢⎣⎡+++--=++--+-ππππππ)(1)(1)(sin )(sin )(sin ))sin((21m k NN jm k NN jeNm k m k eN m k m k 2N, k=m 或k=-m =0, 其它6.已知一个有限长序列)5(2)()(-+=n n n x δδ (1) 求它的10点离散傅里叶变换)(k X(2) 已知序列)(n y 的10点离散傅立叶变换为)()(210k X W k Y k=,求序列)(n y解:(1)[]∑∑-==-+==109010)5(2)()()(N n n nknk NW n n Wn x k X δδ =1+2kW 510=1+2k j e 5102π-=1+2k )1(-,9,...,1,0=k(2)由)()(210k X W k Y k=可以知道,)(n y 是)(n x 向右循环移位2的结果,即())7(2)2()2()(10-+-=-=n n n x n y δδ7、已知序列:102sin )(-≤≤⎪⎭⎫ ⎝⎛=N n n N n x ,π,求)(n x 的N 点DFT 。

解:)(k X knN j N n en N ππ212sin --=∑⎪⎭⎫ ⎝⎛=∑-=--⎪⎪⎭⎫ ⎝⎛-=1022221N n kn N j n N j n N j e e e j πππ ∑-=+--⎪⎪⎭⎫ ⎝⎛-=10)1(2)1(221N n n k N j n k N j e e j ππ1,2=-k Nj = 1,2-=k Nj0, 其它8、计算下列有限长序列)(n x 的DFT ,假设长度为N 。

(1)na n x =)( 10-≤≤N n(2){}1,3,2,1)(--=n x 解:(1)()∑∑-=-===1010)(N n nkN N n nkNn aW Wa k X()k NN kNNkNaW a aW aW --=--=1111 10-≤≤N k (2) ∑==34)()(n nk W n x k Xk k k k k k WW W W W W W 3424342440432132--+=--+=k k k j j ----+=)1(3)(21 )30(≤≤k三、离散傅立叶变换性质 填空题:1.已知序列}{3,2,1,0;1,3,2,2][=--=k k x ,序列长度4=N ,写出序列][])2[(4k R k x N -的值( )。

解:{}{}3,2,1,0;1,2,2,33,2,1,0];3[],0[],1[],2[][])2[(4=--===-k k x x x x k R k x N2.已知}{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和][n h 的5点循环卷积为( )。

解:{}]3[]2[][][][][---+⊗=⊗k k k k x k h k x δδδ{}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x 3.已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--===k n h k n x 则][][n h n x 和的 4点循环卷积为( )。

相关文档
最新文档