《锐角三角函数》 课件(锐角的余弦和正切)

合集下载

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

冀教版九年级数学上册《锐角三角函数的计算》PPT精品课件

冀教版九年级数学上册《锐角三角函数的计算》PPT精品课件

9
8
1
观察计算的结果,当α增大时,角α的正弦值、余弦值、正切值怎样变化?
正弦值随着角度的增大(或减ቤተ መጻሕፍቲ ባይዱ)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小)
知识讲解
2.已知一个锐角三角函数的值求锐角的度数
例2 用计算器求下列各锐角的度数:(结果精确到1″) (1)已知cosα=0.5237,求锐角α; (2)已知tanβ=1.6480,求锐角β.
知识讲解
(2)在计算器开机状态下,按键顺序为
2ndF tan-1 1 . 6 4 显示结果为58.750 786 43. 即β≈58.750 786 43°.
80=
再继续按键: 2ndF
DEG
显示结果为58□45□2.83.
即β≈58°45‘ 3″.
知识讲解
例3 如图所示,在Rt△ABC中,∠C=90°,AB=5,BC=4.
2.已知 sin232°+cos2α=1,则锐角α等于( A )
A.32°
B.58°
C.68°
D.以上结论都不对
3.用计算器验证,下列各式中正确的是( D ) A.sin18°24′+sin35°26′=sin45° B.sin65°54′-sin35°54′=sin30° C.2sin15°30′=sin31° D.sin72°18′-sin12°18′=sin47°42′
2.求cos72°的值. 第一步:按计算器 cos 键,
第二步:输入角度值72, 第三步:输入 键, 屏幕显示结果为0.309 016 994.
即cos 72°=0.309 016 994.

锐角三角函数(余弦、正切)

锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。

《锐角的三角函数——正弦与余弦》PPT课件

《锐角的三角函数——正弦与余弦》PPT课件

于点 D,则下列结论不正确的是( C )
A.sin B=AADB C.sin B=AADC
B.sin B=ABCC D.sin B=CADC
感悟新知
知1-练
2.如图,在 Rt△ ABC 中,∠C=90°,AB=10,AC
=8,则 sin A 等于( A )
3
4
3
4
A.5
B.5
C.4
D.3
感悟新知
知识点 2 余弦函数
知2-导
如图,在Rt△ABC中,我们把锐角A的邻边与斜边的比叫
做∠A的余弦(cosine),记作cosA,即
cosA=
A的邻边 斜边
AC AB
b. c
感悟新知
知识点
例2 求例1中∠A的余弦函数值、正切函数值.
解:
cos A AC 12 , AB 13
tan A BC 5 . AC 12
B.cos A=1123 D.tan B=152
感悟新知
知识点 3 锐角三角函数的取值范围
知3-导
1.锐角A的正弦、余弦和正切都是∠A的三角函数. 要点精析:在锐角三角函数的概念中,∠A是自变量,其取值范 围是0°<∠A<90°.三个比值是因变量,当∠A确定时,三个比 值 (正弦、余弦、正切)分别唯一确定,因此,锐角三角函数是以 角为自变量,以比值为因变量的函数.
第23章 解直角三角形
23.1 锐角的三角函数
第2课时
锐角的三角函数—— 正弦与余弦
学习目标
1 课时讲解 正弦函数、余弦函数、
锐角三角函数的取值范围
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 正弦函数

九年级数学《锐角三角函数》课件

九年级数学《锐角三角函数》课件

h
A
α
l
C
展示评讲
坡比(坡度):坡面的竖直高度h与水平长 B
度l的比叫做坡面的~ 即:i h
l
i h:l
h
A
l
C
正切:如图,在Rt∆ABC中,我们把锐角A
的对边与邻边的比叫做∠A的正切,即
B
tan
A
A的对边 A的邻边
BC AC
a b
ha
注意:tanA还可以写成tan∠A或A α tanα或tan∠BAC或tan∠1
锐角三角函数
引入新课
汽车爬坡能力是衡量汽车性 能的一个重要标志,很明显, 若汽车所爬坡面越陡,汽车 爬坡能力越强. 即:坡角越大,坡面就越陡.
B
h
A αl
C
学习目标
1、理解并掌握正切的定义,明确角 与线段的比的关系; 2、会利用正切的定义求任意一个锐 角的正切值; 3、利用坡度和坡比的概念解决实际 问题。
自学思考
1、水平长度一定时,坡角与什么因素有关呢?
竖直高度越大,坡面越陡,坡角越大
2、竖直高度一定时,坡角与什么因素有关呢?
水平长度越小,坡面越陡,坡角越大
3、水平长度与竖直高度都不同时,坡角与什么因素有关呢?
竖直高度与水平长度的比值越大,坡面越 陡,坡角越大
展示评讲 三角函数:在直角三角形中
B
lb
C
当堂检测
1、(25分)在∆ABC中,AC=5,BC=4,AB=3,则tanA= ,
tanB=
.
2、(25分)在∆ABC中,∠C=90度,AB=2BC,则
tanA= ,
tanB=
.
ห้องสมุดไป่ตู้
3、(25分)如3 图1所示为某拦水坝的横截面,迎水坡AB的

26.1 锐角三角函数 - 第2课时课件(共21张PPT)

26.1 锐角三角函数 - 第2课时课件(共21张PPT)
例3 在Rt△ABC中,∠C=90°,AC=5,BC=12.求sinA,cosA,tanA的值.
归纳
在直角三角形中,锐角α的对边与邻边的比、邻边与斜边的比以及对边与邻边的比,都是唯一确定的;当锐角α变化时,相应的值也会发生相应的变化. 我们把锐角α的正弦、余弦和正切统称为α的三角函数. 为方便起见,今后将(sinα)2,(cosα)2,(tanα)2分别记作sin2α,cos2α,tan2α.
随堂练习
1.△ABC中,∠C=90°,AB=8,cosA= ,则AC的长是______.2.已知A为锐角,tanA= ,则sinA=___ ,cosA=_____ .3.如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα= ,AB=4,则AD的长为_____.
6
4.如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sin∠ECM.
定义中应该注意的几个问题:1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA是一个完整的符号,分别表示∠A的正弦,余弦,正切 (习惯省去“∠”号).3.sinA,cosA,tanA 是一个比值.注意比的顺序.且sinA,cosA,tanA均大于0,无单位.4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.
解:设正方形ABCD的边长为4x,由勾股定理可知,∵M是AD的中点,BE=3AE,∴AM=DM=2x,AE=x,BE=3x.∴EM2=AM2+AE2=(2x)2+x2=5x2∴CM2=DM2+DC2=(2x)2+(4x)2=20x2∴EC2=BC2+BE2=(4x)2+(3x)2=25x2∴EC2=EM2+CM2 由勾股定理逆定理可知,△EMC为直角三角形.∴sin∠ECM= = = .

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

冀教版九年级数学上册26.1《锐角三角函数》(共19张PPT)

30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2 3
典例精析 例2. 求下列各式的值:
(1) 2sin 30 3 tan 30 tan 45
(2) sin2 45 tan 60 sin 60
第二十六章 解直角三角形
26.1 锐角三角函数
第2课时 正弦与余弦
导入新课
讲授新课
当堂练习
课堂小结
复习巩固
1.正切的定义:
Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作
tanA,即
tanA=2ຫໍສະໝຸດ 特殊角的正切值:A的对边 A的邻边
B
tan30° tan45° tan60°
31 3
3
斜边 ∠A的对边
AB 10 5
课堂小结
锐角三角函数
在Rt△ABC中
sinA= A的对边 = a
A的斜边
c
cosA= A的邻边 = b
A的斜边
c
tanA= A的对边 = a
A的邻边
b
课堂小测
1. 在Rt△ABC中,∠C=90°,AC=3,BC=4,则 sinA的值为(D )
A.
B.
C.
D.
2. sin2 30 cos2 30 tan 45 0
典例精析1、 例题3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,
的三角函数A值.
C
5
12
解:由勾股定理
A

锐角三角函数(第二课时)课件

锐角三角函数(第二课时)课件

a2 b2 c2
A
sin A a ,sin B b
cБайду номын сангаас
c
sin2 A sin2 B a 2 b 2 c c
a2 b2 c2
1
B
c
a

b
C
1、300,450,600角的三角函数值 2、三角函数值的计算与应用
老师提示:
Sin2600表示 (sin600)2,
cos2600表示 (cos600)2, 其余类推.
1、 sin 12 sin 1为锐角
解:原式= sin 1 sin 1
sin 1 sin 1 0
2:已知tanA·tan20°=1 求∠A。
解:因为tanA·tan200=1 所以∠A=900-200=700
tan B 3:已知:
求∠A,∠B的度数。
3 2sin A
2
3 0,
2
解: tan B 3 2sin A 3 0
tan B 3 0,2sin A 3 0
即tan B 3,sin A 3 2
A 600 , B 600
4:已知2cos 2A-1=0,求∠A
解: 2 cos2 A 1 0 cos2 A 1 2 cos A 1 2 22 A 450
BcoCs=B6=,__则3__si_n_B_=.________, 5
C
5
A
2、在Rt△ABC中,∠C=900,
AB=3,BC=2,求tanA的值。
5
10 6
B
3
tan A 5 2
2
C
B
300角的各类三角函数值的探索
2
B
1
30°
A

浙教版数学九年级下册 1.1 锐角三角函数 课件(共25张PPT)

浙教版数学九年级下册  1.1 锐角三角函数 课件(共25张PPT)

观察以上计算结果,你发现了什么?
sinA=cosB ,cosA=sinB (∠A+∠B=90)
tanA·tanB=1
(∠A+∠B=90)
B
c
a

A
b
C
sin A a cos A b tan A a
c
c
b
sin B b cos B a
c
c
tan B b a
如图,在△ABC中,若AB=5,BC=3,则下列结论正确
锐角A,A′的余弦值的关系为( ) A
A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定 2.如图,已知P是射线OB上的任意一点,PM⊥OA于M,
且PM:OM=3:4,则cosα的值等于( C)
3 A.4
4 B.3
C.4 5
3
D.
5
3.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,
是关于锐角α的三角函数。
AB AB AC
B
A
C
锐角α的正弦,余弦和正切统称∠α的三角函数.
比值 BC 叫做∠α的正弦(sine),记做sinα.
AB
BC
比值 AC
即sinα= AB
叫做∠α的余弦(cosine) ,记做cosα.
AB
即cosα= AC
AB 比值 叫做∠α的正切(tangent) ,记做tanα.
b,c,则下列各项中正确的是( ) B
A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确
4.在Rt△ABC中,∠C=90°,cosA= 2 ,则tanB等于( )
C

锐角三角函数复习课件公开课

锐角三角函数复习课件公开课
锐角三角函数复习课件公 开课
欢迎来到锐角三角函数复习课件公开课! 在本课程中,我们将回顾锐角三角 函数的基本概念,常见公式,性质和图像,解三角方程,以及一些实际应用。
锐角三角函数的基本概念
锐角三角函数是用于描述锐角三角形中角度和边长之间关系的函数。包括正弦、余弦和正切等函 数。
1 正弦函数
描述角的对边与斜边之间的关系。
总结和回顾
在本课程中,我们回顾了锐角三角函数的基本概念、常见公式、性质和图像。学习了如何利用锐角三角 函数求解三角方程,并了解了一些实际应用。希望你已经对锐角三角函数有了更深入的理解!
锐角三角函数在直角三角形的图像中不断变化,并呈现出一些特殊的性质。
单位圆
单位圆是用于可视化锐角三角 函数图像和特殊性质的工具。
正弦函数
正弦函数是一条波浪形曲线, 用于描述周期性变化。
余弦函数
余弦函数是一条类似正弦函数 的波浪形曲线,但相位差90度。
利用锐角三角函数求解三角方程
锐角三角函数可以用于解决涉及三角函数的方程,从而求得角度的值。
2 余弦函数
描述角的邻边与斜边之间的关系。
3 正切函数
描述角的对边与邻边之间的关系。
常见的锐角三角函数公式
锐角三角函数有一些常见的公式用于计算和简化角度的计算。
倍角和半角公式
• 正弦和余弦的倍角和半角公式。 • 正切的双角和半角公式。
和差公式
• 正弦和余弦的和差公式。 • 正切的和差公式。
锐角三角函数的性质和图像
1
方程转化
将方程转化为以三角函数为未知数的
方程求解
2
方程。
利用三角函数的运算特性和解方程的
方法求解得出角度的值。
3
验证解

沪科版数学九年级上册23.锐角三角函数-正弦和余弦课件

沪科版数学九年级上册23.锐角三角函数-正弦和余弦课件

∵AB=AC, AD⊥BC
∴BD=
1 2BC=
21×6=3
47
B

C
3D
在Rt△ABD中,BD=3,AB=4
∴AD= AB2 BD2 42 32 7
∴在Rt△ABD中,
cosB= BD 3 , tanB= AD 7 ,
AB 4
BD 3
(拓展类)
⑴在如图所示的格点图中,
D
要求出锐角 的三角函数值;
B1 B
30°
A
C C1
B1
B
45°
A
C C1
上升高度 飞行路程
当∠A=30°时,BC B1C1 1
AB AB1 2
当∠A=45°时,BC B1C1 2
AB AB1 2
对于每一个确定的锐角,在角的边上 任意取一点B作BC⊥AC于点C,
BC B1C1 AB AB1
AC AC1 AB AB1
AC
的正切(tangent) ,记做tan

即tan= BC
AC
B’ B
C C’
锐角 的正弦,余弦和正切统称∠ 的三角函数
正弦 sinA =
A的对边 斜边
余弦
cosA =
A的邻边 斜边
正切 tanA = A的对边
A的邻边
一定要记住哦!
0<sinA<1 0<cosA<1
正对正
弦对斜
tanA﹥0 切无斜
你能说出下面直角三角形中各锐角的三角函数吗?
E B
A
c
b
C
A

GB
a
C


F
是是非非(巩固类)

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册

1.1锐角三角函数(第一课时)课件(共17张PPT)浙教版数学九年级下册


cosA=
=

∠的邻边
温馨提醒:以正弦为例
sinA(省去角的符号),
30°的正弦表示为sin30°,比值 叫做∠A的正切值,记做tanA,即
斜边

∠BAC的正弦表示为sin∠BAC

,∠1的正弦表示为:sin∠1.
tanA=
∠的对边
∠的邻边
=

概念运用
①BC=8,AC=6
概念



cosA=

= ,

tanA=

4
3
sinA=
4
5
3
= ,
5
= .
解后反思:在直角三角
形中,已知什么条件可
以求三角函数值?
课堂练习
1.如图,在Rt△ABC中,∠ACB=90°,作CD⊥AB于
点D,若BC=5,BD=4,求sin∠A.
C
A
B
思路1:求AB的长
思路2:等角转化
△BCD∽△BAC
B"
P
C" Q
图(1)
图(2)
角为30°
’’ 1
""
=
= =
’’ 2
"
’’
3 "
=
=
=
’’
2
"
’’
3 ""
=
=
=
’’
3
"
请先按暂停键!
思考完成后
再按回播放键!
边的比值为定值
探索规律
当∠PAQ发生改变时,刚才所获得的发现是否还成立呢?
解:设AB=5k,AC=3k,

锐角三角函数——余弦和正切 优质课件

锐角三角函数——余弦和正切 优质课件
第 二 十 八
第二十八章 锐角三角函数章锐 角 Nhomakorabea 角 函 数
28.1 第2课时 余弦和正切
探究 如图,在 Rt△ABC 中,∠C=90°,当锐角
A 确定时,∠A的对边与斜边的比就随之确定. B
此时,其他边之间的比是否也确定了 呢?
A
C
28.1 第2课时 余弦和正切
在RtABC和RtA'B'C'中,C C'
A
BC AB
160
3, 5
10 6
cos
A
AC AB
180
54,
tan
A
BC AC
6 8
43.
28.1 第2课时 余弦和正切
练习 1.分别求出下列直角三角形中两个锐角的正弦值、 余弦值和正切值.
(1)sin A= 5 , cos A 12 , tan A 5 ; sin B=12 , cos B= 5 , tan B=12.
28.1 第2课时 余弦和正切
在Rt△ ABC中,∠C =90°,把∠A的邻边与斜 边的比叫做∠A的余弦,记作cosA,即
cos
A
A的邻边 斜边
b c
.
c b
a
28.1 第2课时 余弦和正切
在Rt△ABC中,∠C=90°,把∠A的对边与邻边 的比叫做∠A的正切,记作tan A,即
tan
A
A的对边 A的邻边
28.1 第2课时 余弦和正切 3.在Rt△ABC中,∠A的∠正A切的是对边与邻边 __tAa_n______tA_a=_n___AA_的的__邻对_边边_;的记比作_______,即 _________________. 4.在Rt△ABC中,∠A的对边习惯上记作a, ∠B的 对边记作b,斜边记作c, sin A=______, sin B=_______,cos A=______,cos B=_______, tan A=_____,tan B=_____.

1.1锐角三角函数课件

1.1锐角三角函数课件
义务教育教科书(北师)九年级数学下册
第一章 直角三角形的边角关系
上节课我们学习直角三角形 中边角关系的函数是什么?
:锐角三角函数--正切函数
在Rt△ABC中,锐角A的对边与邻边的比 叫做∠A的正切,记作tanA,即
tanA=
A的对边 A的邻边
斜 边
A ∠A的邻 边
B
∠A的对 ┌边 C
学习之星,非我莫属!
13.在Rt△ABC中,∠C=90°,sinA和cosB有什 么关系?
14. 在Rt△ABC中,∠C=90°.
(1)AC=25.AB=27.求sinA,cosA,tanA, 和
sinB,cosB,tanB,.
(2)BC=3,sinA=0.6,求AC 和AB.
(3)AC=4,cosA=0.8,求BC.
4.sinA,cosA,tanA, 的大小只与∠A的大小有关,而与 直角三角形的边长无关.
5.角相等,则其三角函数值相等;两锐角的三角函数 值相等,则这两个锐角相等.
例题探究
如图:在Rt△ABC中 ,∠C=900,AC=10, 求:AB,sinB.
看谁更灵活
cos A 12 . 13
B

C
A
注意到这里cosA=sinB,其中有没有什么内在的关系 ?
你知道吗?我们学习的锐角三角函数(直角 三角形边角关系的函数)共有以下三个。
1.锐角三角函数定义:
tanA=
A的对边 A的邻边
sinA=
A的对边 斜边
cosA=
A的邻边 斜边
B
斜边
∠A的对边 ┌ A ∠A的邻边 C
请思考:在Rt△ABC中, sinA和cosB有什么关系?
1.如图:在等腰△ABC中,AB=AC=5,BC=6.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档