高考数学函数专题习题及详细答案
高考数学专题《对数与对数函数》习题含答案解析
专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是()A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项.【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ;当x >0时,()f x 单调递増、所以排除选项B.故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( )A .0B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦.故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210aa ->,所以1a >成立.故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a>>D .c a b>>【答案】D 【解析】由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可.【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增,所以333131log 31log 5log 6log 6a c =<=<<=,因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >>故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数)A .42小时B .53小时C .56小时D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解.【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050t m a =⋅,③ ③÷①可得205t a -=,所以202025t -=,即20lg 2lg 51lg 20.720t -==-=,解得67t ≈(小时).故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( )A .a c <B .2ab =C .1abc a =+D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D.【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确;因为33222log 42log 2log 3b a====,所以2ab =,即B 正确;由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确.故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( )A .2101x x <<<B .1201x x <<<C .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误.【详解】由131log 0x x =->可得101x <<,同理可得201x <<,因为(0,1)x ∈时,恒有23log log x x<所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确;因为1201x x <<<,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误.故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________.【答案】9【解析】把2log 3a =代入4a 可得答案.【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________;【答案】6【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=.故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC V 为等边三角形,则t 的值为( )ABCD.3+【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C点的横坐标x t =-,结合A ,B两点的纵坐标和中点坐标公式列方程t =,解方程即可求得t 的值.【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =.设()3,log C x x ,因为ABC V 是等边三角形,所以点C 到直线AB所以t x -=,x t =-根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( )A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解.【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<.综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e -<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭.故选:D.3.(2021·全国高三三模)已知函数()xxf x e e-=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b>>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可.【详解】因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x ee f e --=='-,当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >>故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( )A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断.【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误;对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab ab ab a ba b a b ab++==+-log 21ab >-,有11log (log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( )A .21a b ->B .22log log 1a b ->C .228a b +>D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断.【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确.故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( )A .log 2log 2a b >B .ln ln a a b b ⋅>⋅C .122ab a b ++>D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可.【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确;对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确,故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln 55c =,则( )A .a b >B .b c>C .c a>D .2a b>【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小;对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小;【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=,又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 22b ==,1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误;对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a ==又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误.故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3x f x =,则13(log 19)f =__________.【答案】2719-【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log 1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+,所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3x f x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log 19f f f f =-=-+=327log 193392727(log 1)(log 3191919f f =-+=-=-=-.故答案为:2719-.9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________.【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解.【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩ ,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<,∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】⎫⎪⎪⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>=211lg(1)lg lg (1)lg (24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211(124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >,可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )练真题A .116B .19C .18D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=,故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a<<D .c a b<<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.4.(2019年高考全国Ⅲ卷理)设是定义域为R 的偶函数,且在单调递减,则A .(log 3)>()>()B .(log 3)>()>()C .()>()>(log 3)D .()>()>(log 3)【答案】C【解析】是定义域为的偶函数,.,又在(0,+∞)上单调递减,∴,即.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( )()f x ()0,+∞f 14f 322-f 232-f 14f 232-f 322-f 322-f 232-f 14f 232-f 322-f 14()f x R 331(log (log 4)4f f ∴=223303322333log 4log 31,1222,log 422---->==>>∴>> ()f x 23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23t t f t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A 【解析】c =0.30.2<0.30=1;log 27>log 24=2;1<log 38<log 39=2.故c <b <a .故选A.。
高考数学函数专题训练《含绝对值的函数》含答案解析
高考数学函数专题训练 含绝对值的函数一、选择题 1.函数xxx x x x y tan tan cos cos sin sin ++=的值域为( ) A .{}3,1 B.{}3,1- C.{}3,1-- D.{}3,1- 【答案】B【解析】当sin 0,cos 0x x >>时3y =,sin 0,cos 0x x ><时1y =-,sin 0,cos 0x x <>时1y =-,sin 0,cos 0x x <<时3y =,∴值域为{}3,1-2.函数()ln 11x f x x-=-的图象大致为 ( )A .B .C .D .【答案】D【解析】由于()ln 3022f =>,排除C 选项,()ln 1220f =->,排除B 选项,11221ln20f ⎛⎫=< ⎪⎝⎭,不选A,故选D.3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)1()1()(-+-=x g x f x h ,则下列结论中正确的是( )A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称 【答案】C【解析】因为函数()f x 是奇函数,所以()f x 是偶函数,即()f x 与()g x 均为偶函数,其图象均关于y 对称,所以(1)f x -与(1)g x -的图象都关于直线1x =对称,即()(1)(1)h x f x g x =-+-的图象关于直线1x =对称,故选C .4.已知()()211f x ax x a x =+--≤≤且1a ≤,则()f x 的最大值为( )A .54B .34C .3D .1【答案】A【解析】由题意得:()()222111f x a x x a x x x x =-+≤-+≤-+11x -≤≤ 22221511124x x x x x x x ⎛⎫∴-+=-+=-++=--+ ⎪⎝⎭∴当12x =,即12x =±时,()2max514x x -+=即:()54f x ≤,即()f x 的最大值为54,故选A .5.若函数()111101x x f x x x ⎧+-≠⎪=-⎨⎪=⎩,,,关于x 的方程2() ()0f x b f x c ++=有3个不同的实数根,则( ) A .b <﹣2且c >0 B .b >﹣2且c <0 C .b =﹣2且c =0 D .b >﹣2且c =0【答案】C【解析】令t =f (x ),则t 2+bt +c =0,设关于t 的方程有两根为t =t 1,t =t 2,关于x 的方程2() ()0f x b f x c ++=有3个不同的实数根等价于函数t =f (x )的图象与直线t =t 1,t =t 2的交点个数为3个,作出()f x 的简图如下:由函数t =f (x )的图象与直线t =t 1,t =t 2的位置关系可得: t 1=2,t 2=0,由韦达定理可得:1212022020b t t c t t -=+=+=⎧⎨=⋅=⨯=⎩,即b =﹣2,c =0,故选C . 6.已知函数()ln(1)f x x =-,满足()(4)f a f a >-,则实数a 的取值范围是( ) A .(1,2) B .(2,3)C .(1,3)D .(2,4)【答案】A【解析】函数()ln(1)f x x =-的定义域为()1,+∞,由()(4)f a f a >-可得:ln(1)ln(41)ln(3)a a a ->--=-,两边平方:[][][][]22ln(1)ln(3)ln(1)ln(3)ln(1)ln(3)0a a a a a a ->-⇔----+->则ln(1)ln(3)0ln(1)ln(3)01030a a a a a a --->⎧⎪-+->⎪⎨->⎪⎪->⎩(1)或ln(1)ln(3)0ln(1)ln(3)01030a a a a a a ---<⎧⎪-+-<⎪⎨->⎪⎪->⎩(2)解(1)得:a 无解 ,解(2)得:12a <<,所以实数a 的取值范围是(1,2),故选A.7.已知函数)0(|4|||)(>---=a a x a x x f ,若对R ∈∀x ,都有)(1)2(x f x f ≤-,则实数a 的最大值为( ) A .81 B .41 C .21D .1【答案】B【解析】(2)1()f x f x -≤,即为(2)()1f x f x -≤,即22441x a x a x a x a -----+-≤,设()2244g x x a x a x a x a=-----+-,则0,242,2 ()22,282,240,4axax a x ag x x a a x aa x a x ax a⎧≤⎪⎪⎪-<≤⎪⎪=-<≤⎨⎪⎪-<≤⎪⎪>⎪⎩,由题意,当2ax a<≤时,1()42212g x x a a a=-≤≤⇒≤,当2a x a<≤时,1()22212g x x a a a=-≤≤⇒≤,当24a x a<≤时,1()22414g x x a a a=-<≤⇒≤,所以14a≤,即a的最大值为14,选B.8.若函数()221f x x x ax=-+--没有零点,则实数a的取值范围是A.332a-≤<B.31a-≤<C.332a a≥<-或D.13a a≥<-或【答案】A【解析】因为函数()221f x x x ax=-+--没有零点,所以方程221x x ax-+-=无实根,即函数()221g x x x=-+-与()h x ax=的图像无交点,如图所示,则()h x的斜率a应满足332a-≤<,故选A.9.定义一种运算⎩⎨⎧>≤=⊗babbaaba,,,令()()t xxxxf-⊗-+=224(t为常数),且[]3,3-∈x,则使函数()x f最大值为4的t值是()A.2-或6B.4或6C.2-或4D.4-或4【答案】C.【解析】y=4+2x﹣x2在x∈[﹣3,3]上的最大值为4,所以由4+2x﹣x2=4,解得x=2或x=0.所以要使函数f(x)最大值为4,则根据定义可知,当t<1时,即x=2时,|2﹣t|=4,此时解得t=﹣2.当t>1时,即x=0时,|0﹣t|=4,此时解得t=4.故t=﹣2或4.10.已知函数()||––10||f x mx x m =>(), f (x )=|mx |–|x –1|(m >0),若关于x 的不等式()0f x <的解集中的整数恰有3个,则实数m 的取值范围为( ).A.0<m ≤1 B .34m ≤<23C.1<m <23D.23≤m <2【答案】B【解析】不等式()0f x <的解集中的整数恰有3个,即|||–|1mx x <的解集中的整数恰有3个. |||–|1mx x <可化为22()10,()mx x --<即([m (1)1]10][1,)m x x +-⋅-+<由于不等式解集中整数恰有三个,所以10,1,m m ->>不等式的解为11111x m m -<<<-+,从而解集中的三个整数为2,1,0--,132,1m --≤<--即1231m <≤-,2233m n m -<≤-,所以34m ≤<23.11.已知函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则3122341()x x x x x ++的取值范围是( ) A .(1,)-+∞ B .(]1,1- C .(,1)-∞ D .[)1,1- 【答案】B【解析】先画出函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象,方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,由0x ≤时,()1f x x =+,则横坐标为1x 与2x 两点的中点横坐标为1x =-,即:122x x +=-,当0x >时,由于2log y x =在(0,1)上是减函数,在(1,)+∞上是增函数,又因为34x x <,4232log log x x =,则4310x x <<<,有1log log 434232=⇒=-x x x x ,又因为方程ax f =)(有四个不同的解,所以1log 32≤-x ,则213≥x ,则3122341()x x x x x ++=3312x x +-,)121(3<≤x ,设t t t g 12)(+-=,(121<≤t ),由于012)(2<--='tt g ,则)(t g 在)1,21[上是减函数,则1)(1≤<-t g .12.已知函数()121f x x =--,[0,1]x ∈.定义:1()()f x f x =,21()(())f x f f x =,……,1()(())n n f x f f x -=,2,3,4,n =满足()n f x x =的点[0,1]x ∈称为()f x 的n 阶不动点.则()f x 的n 阶不动点的个数是( )A.2n 个B.22n 个 C.2(21)n-个 D.2n 个【答案】D.【解析】函数12, 02()121122,12x x f x x x x ⎧≤≤⎪⎪=--=⎨⎪-<≤⎪⎩,当1[0,]2x ∈时,1()20f x x x x ==⇒=,当1(,1]2x ∈时,12()223f x x x x =-=⇒=,∴1()f x 的1阶不动点的个数为2,当1[0,]4x ∈,1()2f x x =,2()40f x x x x ==⇒=,当11(,]42x ∈,1()2f x x =,22()245f x x x x =-=⇒=,当13(,]24x ∈,1()22f x x =-,22()423f x x x x =-=⇒=,当3(,1]4x ∈,1()22f x x =-,24()445f x x x x =-=⇒=,∴2()f x 的2阶不动点的个数为22,以此类推,()f x 的n 阶不动点的个数是2n个.二、填空题 13.方程18|cos()||log |2x x π+=的解的个数为__________.(用数值作答)【答案】12【解析】由题意得求方程18sin log x x = 的解的个数,因为sin y x = 周期为π,而5π186π<<,又(0,1)x ∈时sin y x =与18log y x =-有一个交点,(1,π)x ∈时sin y x =与18log y x =有一个交点, (π,π+π),(1,2,3,4,5)x k k k ∈=时sin y x =与18log y x =有两个交点,因此共有2612⨯=个.14. 已知,函数在区间上的最大值是2,则__________.【答案】3或 【解析】当时,= 函数,对称轴为,观察函数的图像可知函数的最大值是.令,经检验,a=3满足题意.令,经检验a=5或a=1都不满足题意. 令,经检验不满足题意.当时,, 函数,对称轴为,观察函数的图像得函数的最大值是.当时,, 函数,对称轴为,观察函数的图像可知函数的最大值是.令, 令,所以.综上所述,故填3或.15.a 为实数,函数2()||f x x ax =-在区间[01],上的最大值记为()g a . 当a = 时,()g a 的值最小. 【答案】322-【解析】()()2f x x ax x x a =-=-.①当0a <时,函数()f x 的图像如图所示.函数()f x 在区间[]0,1上单调递增,()()()max 11f x g a f a ===-.aO yx②当0a =时,2()f x x =,()f x 在区间[]0,1上的最大值为()()11f g a a ==-.③当0a >时,函数()f x 的图像如图所示.xyO a(i )若12aa <<,即12a <<,()()2max 4a f a g a ==;(ii )若12a,即2a,()max 1f a a =-;(iii )若01a <<,()()()22max,22114max ,141,0221a a a f a a a a ⎧-<⎧⎫⎪=-=⎨⎬⎨⎩⎭⎪-<<-⎩. 综上所述,()()()212212212412a a ag a a a a ⎧-<-⎪⎪=-<⎨⎪⎪-⎩,,,,因此()()min 221322g a g ⎡⎤=-=-⎣⎦.16. 已知函数有六个不同零点,且所有零点之和为3,则的取值范围为__________. 【答案】【解析】根据题意,有,于是函数关于对称,结合所有的零点的平均数为,可得,此时问题转化为函数,在上与直线有个公共点,此时,当时,函数的导函数,于是函数单调递增,且取值范围是,当时,函数的导函数,考虑到是上的单调递增函数,且,于是在上有唯一零点,记为,进而函数在上单调递减,在上单调递增,在处取得极小值,如图:接下来问题的关键是判断与的大小关系,注意到,,函数,在上与直线有个公共点,的取值范围是,故答案为.。
高考数学专题《函数的概念及其表示》习题含答案解析
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析
专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项. 【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0, 又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0, 故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确. 令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()()24g t t t t =-=--,1x >时, 函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得(())02bf f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解. 【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02bf >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <, 则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以(())02b f f >,所以必要性成立; 反之,设()02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<, 此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件. 故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________. 【答案】1<a ≤2. 【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果. 【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21aa >⎧⎨⎩,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞- 【解析】∵不等式220ax x a ++<对任意x ∈R 恒成立, ∴函数22y ax x a =++的图象始终在x 轴下方,∴2440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+ 【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可. 【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞ 【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果. 【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数, 若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞, 故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________. 【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值. 【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++ 当232x =时,12max134x x -=. 故答案为:134. 10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围; (Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围. 【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞ 【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围. 【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A .3,3⎡--+⎣B .1,3⎡--+⎣C .[]3,1- D .3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--. 综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程练提升()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =--,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解, 取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=, 其他m 的取值,方程均无解,则m 的取值范围是{}4. 故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________. 【答案】2a <或3a >. 【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a < 【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点, 因为函数()g x 的对称轴为122a x =<, 所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <. 故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________. 【答案】12- 【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解. 【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈, 当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为() 1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-; 当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤, 所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=, 因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1- 【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值. 【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-, 当sin a x <时,211()(sin )4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+; 由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-; 当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+; 由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-; 当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭, ∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增; 11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1. 故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2)2. 【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值. 【详解】 解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()min M h x h x -2(),2xh x x R x =∈+ 当0()0x h x ==当10()2x h x x x≠=+, 令2()g x x x=+,当0,()22x g x>,当x =当0,()x g x <≤-x =()(,)g x ∴∈-∞-⋃+∞(),00,(0)44h x x ⎡⎫⎛∈-⋃≠⎪ ⎢⎪⎣⎭⎝⎦综上,()44h x ⎡∈-⎢⎣⎦2442M⎛∴--= ⎝⎭min 2M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈. (1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围; (2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值. 【答案】(1)[)1,+∞;(2)45. 【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+-- ⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求. 【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =. ①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+; ②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增, ()0f b =,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞; (2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b+=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭, 设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭, 由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =. 所以,当115x =,21x =时,2244a b b +-取最小值45. 9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出, (Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2. 当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9; 当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1; 故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54. 令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩, 解得m ≤﹣52或m ≥52. 10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=. (1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞. 【解析】(1)由二次函数的性质知()f x 在0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式; (2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可. 【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==, ∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠; (2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈, ∴222221814()44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦, ∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关练真题【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得{x ≥2x −4<0 或{x <2x 2−4x +3<0 ,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f(x)=x −4>0,此时f(x)=x 2−4x +3=0,x =1,3,即在(−∞,λ)上有两个零点;当λ≤4时,f(x)=x −4=0,x =4,由f(x)=x 2−4x +3在(−∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果. 详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=, 整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=, 整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩, 其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++-- 原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围. 结合对勾函数和函数图象平移的规律绘制函数()g x 的图象, 同时绘制函数y a =的图象如图所示,考查临界条件, 结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; 【答案】(1)()2h x x =; 【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】 (1)当214a b时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.。
高考数学专题《函数的奇偶性、对称性、周期性》填选压轴题及答案
6.(多选题)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()
A.f(x)为奇函数B.f(x)为周期函数
C.f(x+3)为奇函数D.f(x+4)为偶函数
专题03函数的奇偶性、对称性、周期性
【方法点拨】
1.常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)= (a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
对于 , 是函数 的一条对称轴,且函数 是周期为4的周期函数,则 是函数 的一条对称轴,
又由函数为奇函数,则直线 是函数 图象的一条对称轴, 正确;
对于 ,函数 在 , 上有7个零点:分别为 , , ,0,2,4,6; 错误;
对于 , 在区间 , 上为增函数且其周期为4,函数 在 , 上为增函数,
又由 为函数 图象的一条对称轴,则函数 在 , 上为减函数, 正确;
2.函数奇偶性、对称性间关系:
(1)若函数y=f(x+a)是偶函数,即f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称;一般的,若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 对称.
(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0恒成立,则函数y=f(x)关于点(a,0)中心对称;一般的,若对于R上的任意x都有f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.
高考数学历年函数试题及答案
1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有(Ⅰ)设);41(),21(,2)1(f f f 求=(Ⅱ)证明)(x f 是周期函数。
2. 设函数.,1|2|)(2R x x x x f ∈--+=(Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象4.(本小题满分12分)求函数xx x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos C B A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围. 9.已知函数32()1f x x ax x =+++,a ∈R .x(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答: 2. 解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数.由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 4.解:xx x x x x x f cos sin 22cos sin )cos (sin )(22222--+=所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41 5. 解:函数f (x )的导数:.163)(2-+='x ax x f(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a时,函数))((R x x f ∈不是减函数.综上,所求a 的取值范围是 6. 解: 由,222,AC B C B A -=+=++ππ得所以有 .2sin 2cos A C B =+当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π7. 解:其判别试.81212124222a a a -=+-=∆(ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f ax x 所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f所以 ,232>a 即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈当.)(,0)(',),(21为减函数时x f x f x x x <∈依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a -解得 1≤.26<a由2x ≤1得,232a -≤3,a -解得 .2626<<-a 从而 .)26,1[∈a综上,a 的取值范围为),26,1[),26[]26, +∞-∞- 即 ∈a ).,1[]26,(+∞--∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增; 当23a>,由()0f x '=求得两根为3a x -=即()f x在3a ⎛⎫--∞ ⎪ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,⎝⎭递减,∴23313a ⎧---⎪⎪-,且23a>,解得:2a ≥。
高考数学专题指数函数、对数函数、幂函数试题及其答案详解
1.函数()3(02)xf x x =<≤值域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞,2.给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =3.以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln24.若A=}822|{2<≤∈-xZ x ,B=}1|log ||{2>∈x R x ,则)(C R B A I 的元素个数为( )A .0个B .1个C .2个D .3个 5.设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞U6.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②7.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数8.设,,a b c 均为正数,且11222112log ,log ,log ,22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c << 9.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M I N ( ) A .{}1>x x B .{}1<x x C .{}11<<-x x D .∅10.设a ∈{-1,1,21,3},则使函数y=x a的定义域为R 且为奇函数的所有a 值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,311.设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x,则有( )A .)31(f <)23(f <)32(fB .)32(f <)23(f <)31(f C .)32(f <)31(f <)23(f D . )23(f <)32(f <)31(f12.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 13.函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )14.设1>a ,函数)(x f =x a log 在区间]2,[a a 上的最大值与最小值之差为21,则a =( ) A .2 B .2 C .22 D .4 15.若1>a ,且y a x aa y a xlog log -<---,则x 与y 之间的大小关系是( )A .0>>y xB .0>=y xC .0>>x yD .无法确定 16.函数|1|||ln --=x ey x 的图象大致是( )17.函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x =____________。
高考数学函数专题习题与详细答案
函数专题练习1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值围是(A )(0,1)(B )1(0,)3 (C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3-∞- 6、下列函数中,在其定义域既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈ D7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈ B .()2ln 2ln (0)f x x x =>g)C .()22()xf x e x R =∈ D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
高考数学函数专题训练《含绝对值的函数》含答案解析
高考数学函数专题训练《含绝对值的函数》含答案解析1.函数y=sinxcosxtanx的值域为()+()A.{1,3} B.{-1,3} C.{-1,-3} D.{1,-3}答案】B解析】当sinx>0,cosx>0时y=3,sinx>0,cosx0时y=-1,sinx<0,cosx<0时y=3,所以值域为{-1,3}。
2.函数f(x)=lnx-1/(1-x)的图像大致为()A. B. C. D.答案】D解析】由于f(3)>ln2/2,排除C选项,f(-1)>0,排除B选项,f(1/2)<0,不选A选项,所以选D。
3.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,设h(x)=f(x-1)+g(x-1),则下列结论中正确的是() A.h(x)关于(1,)对称 B.h(x)关于(-1,)对称 C.h(x)关于x=1对称 D.h(x)关于x=-1对称答案】C解析】因为函数f(x)是奇函数,所以f(x-1)是偶函数,即f(x-1)与g(x-1)均为偶函数,其图像均关于y轴对称,所以f(x-1)与g(x-1)的图像都关于直线x=1对称,即h(x)=f(x-1)+g(x-1)的图像关于直线x=1对称,故选C。
4.已知f(x)=ax+x-a(-1≤x≤1)且a≤1,则f(x)的最大值为()A.5/4 B.3/4 C.3 D.1答案】A解析】由题意得:f(x)=ax-1+x≤ax-1+x≤x-1+x/2,-1≤x≤1.所以当x=±1时,x-1+x=±2,f(x)max=5/4,即f(x)≤5/4,所以选A。
5.若函数f(x)=1(x≠1),f(x+)=2x-1,则关于x的方程f(x)+bf(x)+c=0有3个不同的实数根,则()A.b0 B.b-2且c>0 D.b>-2且c<0答案】C解析】因为f(x+)=2x-1,所以当x>1时,f(x)=2x-1;当x1时,f(x)max=2x-1;当x1时,f(x)≤2x-1;当x1时,f(x)≤2x-1,即b≥2;当x-2且c>0,所以选C。
高考数学函数专题训练《取整函数》含答案解析
高考数学函数专题训练 取整函数一、选择题x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数 【答案】D【解析】因为 )(][]1[1)1(x f x x x x x f =-=+-+=+ ,所以函数()[]f x x x =-是以1为周期的周期函数.故选D2.设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有A. [-x ] =-[x ]B.[2x ] = 2[x ]C. [x +y ]≤[x ]+[y ]D. [x -y ]≤[x ]-[y ] 【答案】D【解析】取x=2.5,则[-x]=[-2.5]=-3,-[x]=-[2.5]=-2,所以A 错误;[2x]=[5],2[x ]=2[2.5]=4,所以B 错误;再取y=2.8,则[x+y]=[5.3]=5,[x]+[y]=[2.5]+[2.8]=2+2=4,所以C 错误;故选D.3.如果对于任意实数x ,[]x 表示不超过x 的最大整数. 例如[]3.273=,[]0.60=.那么][][y x =是1x y -<的 ( )A .充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】【解析】若][][y x =m =,则1+<≤m x m ,1+<≤m y m ,∴11≤-≤-y x 即1x y -<, 另外取9.0,1==y x ,则1x y -<,但是][][y x ≠,∴][][y x =是1x y -<的充分而不必要条件.4.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数, []x 就是x ,当x 不是整数时, []x 是点x 左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如[][][]22, 1.52,2.52-=--=-=. 求][][][2222111log log log log 1432⎡⎤+++⎢⎥⎣⎦][][][2222log 1log 2log 3log 4⎡⎤++++⎣⎦的值为( ) A .0 B .-2 C .-1 D .1【答案】C【解析】22222221112,21,1,10,21,132,42432log log log log log log log =--<<-=-==<<=, 由“取整函数”的定义可得,[][][][]222222211112344322210112 1.log log log log log log log ⎡⎤⎡⎤⎡⎤++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=---++++=- 故选C. 5.我们定义函数(表示不大于的最大整数)为“下整函数”;定义(表示不小于的最小整数)为“上整函数”;例如.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为小时,则李刚应缴费为(单位:元)A .B .C .D .【答案】C【解析】如时,应缴费2元,此时,,排除A 、B ;当时,缴费为2元,此时排除D ,故选C 6.遂宁二中将于近期召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..5时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数][x y =(][x 表示不.大于..x 的最大整数)可以表示为( )(A )]10[x y = (B )]103[+=x y (C )]104[+=x y (D )]105[+=x y 【答案】C【解析】可以采用特殊值法,由于已知中当各班人数除以10的余数大于..5时再增选一名代表,比如当x=56时,则可知被10除的余数大于5,因此y=6,这样选项A,B 中代入得到的结论为5,不符合题意.再看x=55,那么可知5[][6]610x y +===,而55被10除的余数等于5,因此得到y=5,显然不成立,排除法选C. 7.已知当[],x R x ∈表示不超过x 的最大整数,称[]y x =为取整函数,例如[][]1,21,2,33=-=-,若()[]f x x =,且偶函数()()()2110g x x x =--+≥,则方程()()()f f x g x =的所有解之和为( ) A .1 B .-2 C 53 D .53【答案】D【解析】设0x <,则0x ->,又()g x 为偶函数,所以()()()()221111g x g x x x =-=---+=-++.由()[]f x x =,得()()[]f f x x =.在同一坐标系中画出()()f f x 与()g x 的图象,如图所示.由图知同,两个图象有四个交点,交点的纵坐标分别为1,0,3,4--,当0x ≥时,方程()()()ff xg x =的解是0和1;当0x <时,由()()2113g x x =-++=-解得3x =-,由()()2114g x x =-++=-解得15x =--.综上,得()()()f f x g x =的所有解之和为0131535+---=--,故选D .8.在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),[]x 表示不超过x 的最大整数.例如:[2]2,[3.1]3,[ 2.6]3==-=-.设函数21()122x x f x =-+,则函数[()][()]y f x f x =+-的值域为 ( ) A .{}0 B .{}1,0- C .{}1,0,1- D .{}2,0-【答案】B【解析】)12(21221212)(+-=-+=x x x x x f Θ,且)()21(221)12(212)(x f x f x xx x -=+-=+-=---,即函数)(x f 为奇函数;又⎪⎭⎫ ⎝⎛-∈+-=21,2112121)(x x f ;当0)(=x f 时,[][]0)()(=-+x f x f ;当0)(≠x f 时,不妨设0)(>x f ,则[]0)(=x f ,[]1)(-=-x f ,则[][]1)()(-=-+x f x f ;故选B .9.把不超过实数x 的最大整数记为[]x ,则函数[]()f x x =称作取整函数,又叫高斯函数,在[]1,4 上任取x ,则[]2x x ⎡=⎣的概率为( )A .14B .13C .12D .23【答案】D【解析】当2≤x <3时,[x]=2x =2;当3≤x <4时,[x]=3,2x =2;当4≤x <4.5时,[x]=4,2x =2;当4.5≤x <5时,[x]=4,[2x ]=3.符合条件的x ∈[2,3),由长度比可得,[x]=[2x ]的概率为321523-=-. 故选B .10.定义区间(),a b 、[),a b 、(],a b 、[],a b 的长度均为d b a =-,用[]x 表示不超过x 的最大整数,例如[]3.23=,[]2.33-=-.记{}[]x x x =-,设()[]{}f x x x =,()1g x x =-,若用d 表示不等式()f x <()g x 解集区间长度,则03x ≤≤当时有( )A .1d =B .2d =C. 3d = D .4d =【答案】A【解析】()[]{}[][]()[][]()()[][]22,,1,f x x x x x x x x x f x g x x x x x =⋅=-=-<-<-由得即[]()[]211x x x -<-,当[)[]0,1,0=∈x x 时,不等式的解为1>x ,不符合题意;当[)2,1∈x 时,[]1=x ,不等式无解,不合题意;当[]3,2∈x 时,[]1>x ,不等式可化为[]1+<x x ,此时不等式恒成立,所以不等式解集为32≤≤x .综上可得不等式()()x g x f <解集区间的长度为1=d ,故选A.11.对任意正整数n 与,表示不超过(表示不超过实数x 的最大整数)且与n 互素的正整数的个数.则(). A .l1 B .13 C .14 D .19【答案】C【解析】由,知所求为1至33中与100互素的数的个数.先去掉所有的偶数,还剩下17个奇数,再去掉5的倍数(共三个),从而,所求为14.12.设表示不超过x 的最大整数,Z 表示整数集,方程的解集为M ,则有(). A .B .C .D .M 与Z 互不包含【答案】C【解析】显然,.设,令.代入方程得.而.当时,. 于是,a=0.当t=0时,,a=0,即,所以,. 因此,. 故选C.二、填空题 13.函数[]y x =称为高斯函数,又称取整函数,对任意实数,[]x x 是不超过x 的最大整数,则函数[]1(0.5 2.5)y x x =+-<<的值域为 . 【答案】}{0,1,2,3【解析】①当-0.5<x <0时,y=[x]+1的函数值为0;②当0≤x <1时,y=[x]+1的函数值为1;③当1≤x <2时,y=[x]+1的函数值为2;④当2≤x <2.5时,y=[x]+1的函数值为3;综上所述,得函数y=[x]+1(-0.5<x <2.5)的值域为{0,1,2,3}.14.对于任意x ∈R ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若数列{}n a 满足()4n n a f =()n +∈N ,且数列{}n a 的前n 项和为n S ,则4n S 等于 .【答案】22n n -【解析】由定义知41235678940,1,2,n a a a a a a a a a a n==========,244(12...1)2n S n n n n∴=+++-+=-. 15.对于实数,称为取整函数或高斯函数,亦即是不超过的最大整数.例如:.直角坐标平面内,若满足,则的取值范围是 . 【答案】(1,5)[10,20)⋃【解析】由[x-1]2+[y-1]2=4,得 [x-1]=±2, [y-1]=0 或 [x-1]=0, [y-1]=±2 然后得到可行域x 2+y 2看作可行域内点到坐标原点距离的平方.AO 2=1,BO 2=5此时x 2+y 2∈[1,5).CO 2=10,DO 2=20, 此时x 2+y 2∈[10,20).所以x 2+y 2∈[1,5)∪[10,20).16.][x 表示不超过x 的最大整数,则方程]2[][log sin 2x x =的解集为___________. 【答案】{π≤≤x x 2|或25π=x } 【解析】22211sin 1sin ≤≤∴≤≤-x ,Θ, }210{]2[sin ,,∈∴x ⑴若]2[][log sin 2x x==0,则⎩⎨⎧<≤-<≤0sin 11log 02x x 即⎩⎨⎧<≤-<≤0sin 121x x ,该不等式组的解集为空集;⑵若]2[][log sin 2xx==1,则⎩⎨⎧<≤-<≤0sin 12log 12x x 即⎩⎨⎧<≤<≤1sin 042x x , 解得π≤≤x 2; ⑶若]2[][log sin 2x x==2,则⎩⎨⎧=<≤1sin 3log 22x x 即⎩⎨⎧=<≤1sin 84x x ,解得25π=x . 综上得方程]2[][log sin 2x x =的解集为{π≤≤x x 2|或25π=x }.。
(完整版)高考数学函数专题习题及详细答案
函数专题练习1。
函数1()x y e x R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2。
已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3 (C )11[,)73(D )1[,1)73。
在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x=(B )()||f x x = (C )()2x f x =(D )2()f x x =4。
已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C 。
11(,)33- D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C 。
,y x x R =∈R7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A 。
4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数(C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()x f x e x R =∈B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+>)10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )311、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥b a b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3(一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
(完整版)新高考真题《函数的概念与基本初等函数》小题专题训练(含答案)
因为 为偶函数,故 ,
时 ,整理得到 ,
故 ,
7.【2020年高考全国I卷理数】若 ,则
A. B.
C. D.
【答案】B
【解析】设 ,则 为增函数,因为
所以 ,
所以 ,所以 .
,
当 时, ,此时 ,有
当 时, ,此时 ,有 ,所以C、D错误.
【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.
13.【2020年高考天津】函数 的图象大致为
A B
CD
【答案】A
【解析】由函数的解析式可得: ,则函数 为奇函数,其图象关于坐标原点对称,选项CD错误;
当 时, ,选项B错误.
【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
14.【2020年高考天津】设 ,则 的大小关系为
A. B.
C. D.
【答案】D
【解析】因为 ,
,
,
所以 .
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性: ,当 时,函数递增;当 时,函数递减;
A.10名B.18名
C.24名D.32名
【答案】B
【解析】由题意,第二天新增订单数为 ,设需要志愿者x名,
高考数学专题《函数的单调性与最值》习题含答案解析
专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。
高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)
高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。
求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。
一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D ⊆,若对于1212,,x x I x x ∀∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。
若对于1212,,x x I x x ∀∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。
2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ⇒∀∈≥,此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。
等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。
(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x ⇒∀∈≤,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x ∀∈,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。
(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。
函数高考真题及答案及解析
函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。
本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。
问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。
解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。
f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。
问题二:已知函数g(x) = |x-1|,求g(-2)的值。
解析:g(x) = |x-1|表示的是x-1的绝对值。
要求g(-2)的值,就是将x替换为-2,带入函数进行计算。
g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。
问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。
解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。
h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。
通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。
这种题型相对简单,只需要将给定的值代入函数进行计算即可。
下面我们再来看一些更加复杂的函数题。
问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。
解析:根据题目所给条件,P(x)等于2P(x-1)加1。
初始条件是P(0)等于1。
要求P(3)的值,就需要使用递推的方式来解决这个问题。
首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。
高中数学高考总复习函数概念习题及详解
高中数学高考总复习函数概念习题及详解一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.高考总复习含详解答案6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x高考总复习含详解答案-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是()A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f高考总复习含详解答案2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)高考总复习含详解答案[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)高考总复习含详解答案=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。
高考数学一次函数与二次函数单选题专题复习题(含答案)
高考数学一次函数与二次函数单选题专题复习题1.函数()()()f x x a x b =--(其中a b >)的图象如图所示,则函数()2x g x a b =+-的图像是()A. B.C. D.2.某超市商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x =-+-,那么该商品的日利润最大时,当日售价为()A.120元 B.150元 C.180元D.210元3.若0ab >,2240a ab b c -+-=,当cab取最小值时,2a b c +-的最大值为()A.76B.1312C.1918D.25244.若全集U =R ,集合{}21A y y x ==+,{}12B x x =-≤≤,则()A B =U ð()A.(),1-∞-B.()1,+∞C.()(),12,-∞-+∞ D.()(),12,-∞+∞ 5.如果函数()f x 的导函数为()f x ',且满足2()(0)f x f x x '=⋅-,那么()f x 的最大值一定为()A.14-B.0C.14D.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为12x =-.有下列4个结论:①<0abc ;②b a c <+;③34b c <-;④当12x >-时,y 随x 的增大而增大.其中,正确的结论有()A.1个B.2个C.3个D.4个7.二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为()A.-3B.3C.-4D.48.如果不等式20ax x c -+>的解集为{21}x x -<<∣,那么函数2y ax x c =++的图象大致为()A. B.C. D.9.已知函数()222,0,2,0,x x x f x x x x ⎧+≥=⎨-+<⎩,如果满足()()22f a f a ->,那么实数a 的取值范围是()A.()(),12,-∞-+∞B.()1,2-C.()2,1- D.()(),21,-∞-+∞10.设函数()()()2ln f x a x x b =-+,若()0f x ≤,则22a b +的最小值为()A.15B.5C.12D.211.如图所示,关于二次函数2y ax bx c =++的图象有四个不同说法:①0ac <;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当1x >时,y 随x 的增大而增大。
高考数学专题指数函数、对数函数、幂函数试题及其答案
指数函数、 对数函数、曷函数专题1.函数 f(x) 3x (0 x w 2)值域为( A. (0,) B. (1,9] C. (0,1) D. [9,2.给出以下三个等式:f (xy) f(x) f(y), f(x y) f(x)f(y), f (x y)f (x) f(y)以下1 f(x)f(y)函数中不满足其中任何一个等式的是 A. f(x) 3x B. f (x) sin x C.f (x) log 2 x D . f(x) tan x3. 以下四个数中的最大者是( A . (ln2) 2 B. In (ln2)C. ln<2D. ln24. 假设 A= { x Z |2 B={x R||log 2x| 1},那么 A (C R B)的元素个数为(5. A . 0个设f(x)1gsB, 1个C. 2个D. 3个6. 假: a)是奇函数,那么使 f (x) 0的x 的取值范围是 A. ( 1,0)对于函数①f(x)命题甲: 命题乙: 命题丙: B. (0,1)C.(,0)D.(,0) (1,)lg(x 2| 1),②f(x 2)是偶函数; f(x)在(,)上是减函数, f(x 2) f(x)在(,f(x) (x在(2,2)2 ,③ f (x))上是增函数; )上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是 A.①③ B.①② 7.函数y=- 2 (A)奇函数 (B)偶函数 (C)既奇又偶函数cos(x2),判断如下三个命题的真(D)非奇非偶函数8.设a,b,c 均为正数,且 2alog 1 a,2log 1 b, 12 2log 2 c,那么A. a b cB. c b aC. cD. b一 ........... 1 9 .函数f(x) ___________ ^的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3B, - 1, 1C. - 1, 3D, -1, 1, 311 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1 ,那么有()A. f(l) f(3) f(-)B. f(-)f(3) f(1)vQ 7 'O'VQ 7vQ 7'O'VQ 732 33 2 3 213 3 2 1 C. f(-) f(-)f(-) D,f(-) f(-) f(-) 33 2 23 34x 4, x 1 12.函数f x 2的图象和函数g x log 2x 的图象的交点个数是()x 4x 3, x 1A. 4B. 3C. 2D. 1A. J2 B, 2 C, 2<2 D, 415.假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定13.函数f (x) =1 log 2x 与g(x) = 2 x 1在同一直角坐标系下的图象大致是()14.设a 1,函数f(x)=log a x 在区间[a,2a ]上的最大值与最小值之差为;,那么a =()16.函数y e |lnx| |x 1 |的图象大致是()17.函数y f (x)的图象与函数y log3x (x 0)的图象关于直线y x对称,那么f(x)lg 4 x ....................函数f x ------- ----------的定义域为 x 3设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为24.将函数y log 2 x 的图象向左平移一个单位,得到图象 C I ,再将C I 向上平移一个单位得到图象 C 2,那么C 2的解析式为假设函数y=lg (ax 2+2x+1)的值域为R,那么实数a 的取值范围为 假设函数y=log 2 (kx 2+4kx+3)的定义域为 R,那么实数k 的取值范围是 给出以下四个命题: xxa (a 0且a 1)与函数y log a a (a 0且a 1)的定乂域相同;(x 1)2与y 2x1在区间[0,)上都是增函数.四点,那么这四点从上到下的排列次序是 18. 19. 20.方程9x6 3x7 0的解是21. 假设函数f(x) e (x)2................................................. ..... .) (e 是自然对数的底数)的最大值是,且f(x)是偶函数,那么m22. 函数y(a 0且a 1)的图象如图,那么函数x的图象可能是23. 设 f (x) log a x (a 0且 a 1),假设 f (x 1) f (x 2)F R , i 1,2, ,n),那么 f(x 13) f(x 23)一, 3、f(% )的值等于25.26. 27. ②函数x 3和y 3x 的值域相同;③函数1 1匚——x —与 y2 2x 1(1 2x )x?2x 2一都是奇函①函数④函数其中正确命题的序.(把你认为正确的命题序号都填上)28. 直线x a ( a 0)与函数y 2x 、y 10x 的图像依次交于 A 、B 、C 、D29.假设关于x 的方程25 |x 1| 4?5 |x1|m 有实根,那么实数 m 的取值范围是Ixlax ..30.lgx+lgy=2lg (x —2y),求log 区一的值.y................................... _ x x . . 31 .根据函数y |2 1|的图象判断:当实数m为何值时,方程|2 1 | m无解?有一解?有两解?32.x1是方程xlgx=2021的根,x2是方程x - 10x=2021的根,求x1x2的值.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.. 1 x34.f(x) log a------------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f (x)的奇偶性;(3)求使f(x).. ........................... 1、〜35.函数f(x) 1 f(—)?10g2乂. x(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x)36.函数f (x) log a(a a x) ( a 1).(1)求f(x)的定义域、值域;(2)判断f(x)的单调性;(3)解不等式f 1(x2 2) f(x).0的x的取值范围. f(2)o指数函数、对数函数、曷函数专题1 .函数 f (x) 3x(0 xw 2)值域为()A. (0, )B..9]C. (01)D. [9,)B;[解析]函数f (x) 3x (0 xW 2)的反函数的定义域为原函数的值域,原函数的值域为(1,9].2 .给出以下三个等式: f(xy) f (x) f(y), f (x y) f (x)f(y), f(x y) fx-fiy) .下1 f(x)f(y)列函数中不满足其中任何一个等式的是()xA. f (x) 3B. f(x) sinxC. f(x) log 2xD. f (x) tan xB ;[解析]依据指、对数函数的性质可以发现A 满足f (x y) f(x) f (y) ,C 满足f(xy) f (x) f(y), 而D 满足f(x y) f (x) f (y), B 不满足其中任何一个等式.1 f(x)f(y)3 .以下四个数中的最大者是( )A. (ln2) 2B. ln (ln2)C. ln 〞D. ln2D;[解析]:. ln2 1 , ln (ln2) <0, (ln2) 2<ln2 ,而 ln 72 =工 ln2<ln2 , • .最大的数是 ln2.2[考点透析]根据对数函数的根本性质判断对应函数值的大小关系,一般是通过介值( 0, 1等一些特殊值)结合对数函数的特殊值来加以判断.4 .假设 A={x Z |2 22 x 8}, B={x R||log 2x| 1},那么 A (C R B)的元素个数为( )A.0个B. 1个C. 2个D. 3个2 xC ;[解析]由于 A={x Z |2 2 8} ={x Z|1 2 x 3} ={x Z| 1 x 1} = {0, 1},而 一 _一一—1 ,、B={x R||log 2x| 1} ={x R|0 x—或x 2},那么 A (C R B) = {0, 1},那么 A(C R B)的兀素个2数为2个.[考点透析]从指数函数与对数函数的单调性入手,解答相关的不等式,再根据集合的运算加以分析和 判断,得出对应集合的元素个数问题.25.设f(x) lg(—— a)是奇函数,那么使f (x) 0的x 的取值范围是()1 x A. ( 1,0) B. (0,1)C. (,0) D. (,0)U(1,)1 x 1 x1 xA;[解析]由 f(0) 0得a1, f(x) lg —— 0,得 ।x1 x1 x 1 x[考点透析]根据对数函数中的奇偶性问题,结合对数函数的性质,求解相关的不等式问题,要注意首要 条件是对数函数的真数必须大于零的前提条件.6.对于函数① f(x) lg(x 2 1),②f(x) (x 2)2,③f(x) cos(x 2),判断如下三个命题 的真假: 命题甲:f(x 2)是偶函数;命题乙:f(x)在(,)上是减函数,在(2,)上是增函数; 命题丙:f(x 2) f (x)在(,)上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③B.①②C.③D.②2…•2) cos(x 2)不是偶函数,排除函数③,只有函数② f (x) (x 2)符合要求.[考点透析]根据对数函数、哥函数、三角函数的相关性质来分析判断相关的命题,也是高考中比拟常见 的问题之一,正确处理对应函数的单调性与奇偶性问题.7.函数y=-21. 1一 b 1 ,由一 log 2 c 可知 c 0 2 2D ;[解析]函数①f(x) lg(x 2 1),函数f(x2) = lg(|x| 1)是偶函数;且f (x)在(,)上是 减函数,在(2,)上是增函数;但对命题丙:f(x 2)f(x) = lg(|x| 1) lg(| x 2| 1)lg|x| 1 |x 2| 1在…一⑼时,1g(|f^1g工2lg(1 ^^)为减函数,排除函数①,对于函数③, x 3f (x) cos(x 2)函数 f (x(A)奇函数(B)偶函数(C)既奇又偶函数b...........-a ,18.设a,b,c 均为正数,且2a log 1 a,一2 2c1log 1 b, - log 2C,贝U2 2A. a b cB. c b aC. c a bA ;[解析]由2a log 1 a 可知a 022a 1log 1 a 12(D)非奇非偶函数 ) D. b a cb- 1 . 10 a -,由 一 log 1b 可知2 2〞b 0 0 log 1 b 120 log 2 c 1[考点透析]根据指、对数函数的性质及其相关的知识来处理一些数或式的大小关系是全面考察多个基 本初等函数比拟常用的方法之一.关键是掌握对应函数的根本性质及其应用.,一,,一、 1 ............. .................................................. 一 9 .函数f(x) , 的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.1 C ;[解析]依题息可彳#函数 f(x) / 的7E 义域M={x|1 x 0}二{x|x 1},,1 xg(x) ln(1 x)的定义域N={x|1 x 0}={x|x 1},[考点透析]此题以函数为载体,重点考查募函数与对数函数的定义域,集合的交集的概念及其运算等 根底知识,灵活而不难.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3 B, - 1, 1 C. - 1, 3D, -1, 1, 3A ;[解析]观察四种哥函数的图象并结合该函数的性质确定选项.[考点透析]根据募函数的性质加以比拟,从而得以判断.熟练掌握一些常用函数的图象与性质,可以 比拟快速地判断奇偶性问题.特别是指数函数、对数函数、哥函数及其一些简单函数的根本性质.11 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1,那么有()132 23 1 A. f(-)f ㈠ f(-) B. f(-)f(3) f(-) 3 2 3 3 2 3 C. f(2)f(1) f(3) D. f(-)f(-) f(1) 3322 3 3B;[解析]当x 1时,f(x) =3x 1,其图象是函数 y 3x 向下平移一个单位而得到的x 1时图象部分,如下图,又函数f (x)的图象关于直线x =1对称,那么函数f (x)的图象如以下图中的实线局部,所以 M N={x | x 1}{ x | x1}= x1x1.即函数f (x)在区间(,1)上是单调减少函数,3. 1 1 又 f (2)= f (2),而 32 ,那么有f (;) f (1) f (旨,即 f (-2) f e f (3)•根据以上图形,可以判断两函数的图象之间有三个交点.[考点透析]作出分段函数与对数函数的相应图象,根据对应的交点情况加以判断. 指数函数与对数函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工 具作用.特别注意指数函数与对数函数的图象关于直线 y X 对称.在求解过程中注意数形结合可以使解题过程更加简捷易懂.13.函数f (X ) =1 唠2*与g(x) = 2 X 1在同一直角坐标系下的图象大致是()log 2x 的图象向上平移1个单位而得来的;又由于g(x) = 2 X 1 = 2 (X 1) ,那么函数g(x)=2 X 1的图象是由函数y 2 x 的图象向右平移1个单位而得来的; 故两函数在同一直角坐标系下的图象大致是:Co[考点透析 的性质关利用指数函数的图象结合题目中相应的条件加以分析,通过图象可以非常直观地判断对应 12.函数f4x 2X4, 4X X 3,x的图象和函数g X log 2X 的图象的交点个数是(A. 4B.B ;[解析] 函数f3 4X 2X4, 4X X 3,x C. 21D. 1的图象和函数gX log 2X 的图象如下:1] C;[解析]函数f (X ) = 1 log 2*的图象是由函数 y[考点透析]根据函数表达式与根本初等函数之间的关系,结合函数图象的平移法那么,得出相应的正确 判断. 、— -, ,一、1,、 14.设a 1 ,函数f(x)=log a x 在区间[a,2 a ]上的最大值与最小值之差为那么a =()A.应B. 2C. 2yp2D. 41D ;[解析]由于a 1,函数f(x) = log a X 在区间[a,2a ]上的最大值与最小值之差为-,111c那么 log a 2a log a a =—,即 log a 2 = _ ,解得 a 22 ,即 a =4.2 2[考点透析]根据对数函数的单调性,函数 f(x)=log a X 在区间[a,2a ]的端点上取得最值,由 a 1知 函数在对应的区间上为增函数.15 .假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定A;[解析]通过整体性思想,设 f(x) a x log a x ,我们知道当 a 1时,函数y 1 a x 与函数y log a x 在区间(0,)上都是减函数,那么函数f(x) a x log a x 在区间(0,)上也是减函数,那么问题就转化为 f(x) f(y),由于函数f(x) a x log a x 在区间(0,)上也是减函数,那么就有[考点透析]这个不等式两边都由底数为 a 的指数函数与对数函数组成,且变量又不相同,一直很难下 手.通过整体思维,结合指数函数与对数函数的性质加以分析,可以巧妙地转化角度,到达判断的目的. 16 .函数y e |lnx| |x 1 |的图象大致是()又当0 x 1时,y 0 ,可排除(B),应选(D).[考点透析]把相应的含有指数函数和对数函数的关系式,加以巧妙转化,转化成相应的分段函数,结D ;[解析]函数y e |lnx| |x 1|可转化为y1-1 0x1,— ................................ .x 1, 0 x[根据解析式可先排除(A),(C), 1, x 1b合分段函数的定义域和根本函数的图象加以分析求解和判断.17 .函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线 y x 对称,那么f(x) .x ,f (x) 3 (x R);[解析]函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线y x 对 称,那么f(x)与函数y log 3x (x 0)互为反函数,f (x) 3x (x R) o[考点透析]对数函数与指数函数互为反函数, 它们的图象关于直线 y=x 对称,在实际应用中经常会碰到, 要加以重视.lg 4 x ) 18 .函数f x ---------- ------------的定义域为.x 3厂4 x 0 । 厂x x 4 且 x 3 ;[解析]x x 4且 x 3 .x 3 0[考点透析]考察对数函数中的定义域问题,关键是结合对数函数中的真数大于零的条件,结合其他相 关条件来分析判断相关的定义域问题.19 .设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为 .[5, +8);[解析]反函数的定义即为原函数的值域,由 x>3得x-1>2,所以log 2(x 1) 1 ,所以y >5,反函数的定义域为[5, +°°),填[5, +8).[考点透析]根据互为反函数的两个函数之间的性质: 反函数的定义即为原函数的值域, 结合对应的对数函数的值域问题分析相应反函数的定义域问题. xx20 .方程96 37 0的解是.x log 37;[解析](3x )2 6 3x 7 03x 7或3x1 (舍去),x 10g 37.[考点透析]求解对应的指数方程,要根据相应的题目条件,转化为对应的方程加以分析求解,同时要注 意题目中对应的指数式的值大于零的条件.值是m10 1,又f(x)是偶函数,那么 0,,me[考点透析]根据函数的特征,结合指数函数的最值问题,函数的奇偶性问题来解决有关的参数,进而 解得对应的值.研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作用 ,注意从特殊到一般的思想方法的应用,渗透概括水平的培养.1 |x 22 .函数 y a |x| (a 0且a 1)的图象如图,那么函数 y — 的图象可能是 .a21.假设函数f(x) e (x )2 ( e 是自然对数的底数)的最大值是 m ,且f (x)是偶函数,那么m(x )2( )2I 1;[解析]f (x) e一 ,仅 t xet 0,此时f(x)』t 是减函数,那么最大e1 IXD;[解析]根据函数y a3的图象可知a 1,那么对应函数y —的图象是D.a[考点透析]根据对应指数函数的图象特征,分析对应的底数a 1 ,再根据指数函数的特征分析相应的图象问题.23 .设f (x) log a x ( a 0且a 1),假设f (x1) f (x2) f (x n) 1 ( x i R , i 1,2, ,n ),一,3、,3、, 3、那么f(x1 ) f(x2 ) f (x n )的值等于3;[解析]由于f(x1) f(x2) f (x n) = log a x1 log a x2 log a x n = log a(x1x2 xj =1 ,而3 3 3 3 3 33f(x1 ) f(x2 ) f(x n ) = log a x1 log a x2 log a x n =log a(x1x2 x n) =3log a ('x? x n) =3[考点透析]根据对数函数的关系式,以及对数函数的特征加以分析求解对应的对数式问题, 关键是加以合理地转化.24 .将函数y log 2 x的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,那么C2的解析式为.y log 2(x 1) 1;[解析]将函数y log2 x的图象向左平移一个单位, 得到图象C1所对应的解析式为y log 2(x 1);要此根底上,再将C1向上平移一个单位得到图象C2,那么C2的解析式为y 1 log 2(x 1).[考点透析]根据函数图象平移变换的规律加以分析判断平移问题, 一般可以结合“左加右减,上减下加〞的规律加以应用.25 .假设函数y=lg (ax2+2x+1)的值域为R,那么实数a的取值范围为.[0, 1];[解析]由于函数y=lg (ax2+2x+1)的值域为R (0, + ) {u (x) |u (x) =ax2+2x+1},a 0当a=0时,u (x) =2x+1的值域为R,符合题意;当时,即0 a 1时也符合题意.4 4a 0[考点透析]通过引入变元,结合原函数的值域为R,转化为u (x)的问题来分析,要根据二次项系数的取值情况加以分类解析.26 .假设函数y=log 2 (kx2+4kx+3)的定义域为R,那么实数k的取值范围是.0,-;[解析]函数y=log 2 (kx2+4kx+3)的定义域为R kx2+4kx+3>0恒成立,当k=0时,3>0恒成立;4[考点透析]把函数的定义域问题转化为有关不等式的恒成立问题,再结合参数的取值情况加以分类解析.27 .给出以下四个命题:①函数y a x 〔 a 0且a 1〕与函数y log a a x 〔 a 0且a 1〕的定义域相同; ②函数y x 3和y 3x 的值域相同;_ x 2一〞 1 1. 〔1 2x 〕2③函数y ——与y 3 ----------- J 都是奇函数;2 2x 1 x?2xC — e,2x 1............................④函数y 〔x 1〕与y 2 在区间[0,〕上都是增函数.其中正确命题的序号是: .〔把你认为正确的命题序号都填上〕①、③;[解析]在①中,函数y a x 〔a 0且a 1〕与函数y log a a x 〔a 0且a 1〕的定义3xy x 3的值域为R, y 3x 的值域为R ,那么结论错误;在③中,函■ ■ ,, / x 、2y — —一与y 〔 ------------- 都是奇函数,那么结论正确;在④中,函数y 〔x 1〕2在[1,2 2x 1x?2xx 1............ ..............................数,y 2 在R 上是增函数,那么结论错误.[考点透析]综合考察指数函数、对数函数、哥函数的定义、定义域、值域、函数性质等相关内容.xx… … 一,1 1 -x -x ................................... ......28.直线x a 〔 a 0〕与函数y 一、y -、y2、y10的图像依次交于 A 、B 、C 、D 32四点,那么这四点从上到下的排列次序是 .D 、C 、B 、A;[解析]结合四个指数函数各自的图象特征可知这四点从上到下的排列次序是 D 、C 、B 、Ao[考点透析]结合指数函数的图象规律, 充分考察不同的底数情况下的指数函数的图象特征问题, 加以判断对应的交点的上下顺序问题.29.假设关于x 的方程25 |x 1| 4?5 |x 1| m 有实根,那么实数 m 的取值范围是 .{m| m 4 };[解析]令 y 5 |x 1| ,那么有 0 y 1 ,那么可转化 25 |x1| 4?5 |x 1| m 得22. ......................... 一2^ 一 . 一.y 4ym 0 ,根据题意,由于 y 4y m 0有实根,那么 〔4〕4〔 m 〕 0 ,解得m 4.[考点透析]通过换元,把指数方程转化为一元二次方程来分析求解, 关键要注意换元中对应的参数y 的取值范围,为求解其他参数问题作好铺垫.x ..k 0 16k 2 12k时,即0 k-时也符合题意.4域都是R,那么结论正确;在②中,函数〕上是增函30.lgx+lgy=2lg (x —2y),求log行一的值. y[分析]考虑到对数式去掉对数符号后,要保证 x 0, y 0, x —2y 0这些条件成立.假设 x=y ,那么有 x —2y=—x 0,这与对数的定义不符,从而导致多解.[解析]由于 lgx+lgy=2lg (x —2y),所以 xy= (x —2y) 2, 即 x 2—5xy+4y 2=0,所以(x —y) (x —4y) =0,解得 x=y 或 x=4y , 又由于x 0, y 0, x- 2y 0,所以x=y 不符合条件,应舍去,_ xx所以 一二4,即 log 2 — = log 2 y y[考点透析]在对数式log a N 中,必须满足a 0, a 1且N 0这几个条件.在解决对数问题时,要重 视这几个隐含条件,以免造成遗漏或多解.31 .根据函数y |2x 1|的图象判断:当实数 m 为何值时,方程|2x 1 | m 无解?有一解?有两解? [分析]可以充分结合指数函数的图象加以判断.可以把这个问题加以转换,将求方程 的个数转化为两个函数 y |2x 1|与y m 的图象交点个数去理解.xx[解析]函数y |2 1|的图象可由指数函数 y 2的图象先向下平移一个单位,然后再作 x 轴下方的局部关于x 轴对称图形,如以下图所示,函数y m 的图象是与x 轴平行的直线, 观察两图象的关系可知:当m 0时,两函数图象没有公共点,所以方程|2x 1| m 无解;当m 0或m 1时,两函数图象只有一个公共点,所以方程 |2x 11 m 有一解;当0 m 1时,两函数图象有两个公共点,所以方程|2x 11 m 有两解.[考点透析]由于方程解的个数与它们对应的函数图象交点个数是相等的,所以对于含字母方程解的个数讨论,往往用数形结合方法加以求解,准确作出相应函数的图象是正确解题的前提和关键. 32.x 1是方程xlgx=2021的根,x 2是方程x - 10x =2021的根,求x 1x 2的值.[分析]观察此题,易看到题中存在lgx 和10x ,从而联想到函数 y 1gx 与y 10x ,而x 1可以看成2021 ........................................................ x 2021 .................................y 1gx 和y 己竺 交点的横坐标,同样 X 2可看成y 10、和y 三丝女交点的横坐标,假设利用函数4 =4.|2x 1| m 的解x xy 1gx与y 10x的对称性,此题便迎刃而解了.…人 . 2021 、…、,[解析]令y a 1gx, y b -------------------------- ,设其交点坐标为(x[,y i),xx 2021同样令y c 10 ,它与y b -------------------------- 的交点的横坐标为(x2,y2),x由于反比例函数关于直线y x对称,那么有(为,y1)和(x2, y2)关于直线y x对称,一........ 2021 ......................点(x[,y i)即点(x1,x2)应该在函数y b -------------------- 上,所以有x1x2=2021.x[考点透析]中学数学未要求掌握超越方程的求解,故解题中方程是不可能的.而有效的利用指数函数和对数函数的性质进行解题此题就不难了,否那么此题是一个典型的难题.以上求解过程不能算此题超纲.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.[分析]在解题过程中,遇到求某数的平方根时,一般应求出两个值来,再根据题设条件来决定取舍, 如果仅仅取算术平方根,那么往往会出现漏解.[解析]由于2b=a+c, a+b+c=15,所以3b=15,即b=5,由于2b=a+c=10 ,那么可设a=5— d, c=5+d ,由于2lg (b—1) =lg (a+1) +lg (c— 1),所以21g4=lg (6—d) +lg (4+d),即16=25— (d—1) 2,那么有(d—1) 2=9,所以d—1= 3,那么d=4 或d= — 2,所以实数a、b、c的值分别为1, 5, 9或7, 5, 3.1 x _ _34.f (x) log a ----------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求使f(x) 0的x的取值范围.1 x x 1[解析](1) 0,即乙」0,等价于(x 1)(x 1) 0,得1 x 1,1 x x 1所以f(x)的定义域是(1,1);1 x 1 x⑵ f (x) f ( x) log a-- log a-- = log a 1 = 0 ,1 x 1 x所以f( x) f (x),即f (x)为奇函数;1 x _(3)由f (x) 0,得log a ——0,1 x, ,一, , 1 x , 一r 一 ,当a 1时,有1 ,解得0 x 1;1 x一 , . 1 x当0 a 1时,有0 —— 1 ,解得1 x 0;1 x故当a 1 时,x (0,1);当0 a 1 时,x ( 1,0).1、~35.函数 f(x) 1 f(—)?10g 2X .X(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x) f(2).[解析](1)由于 f(x) 1 f (-) ?1og 2 X , Xf(-) 1 f(x)?10g 21,那么有 f (1) 1x x x把 f(1) 1 f(x)?10g 2x 代入 f (x) 1 f (1)?1og 2 x 可得: x xf (x) 1 [1 f (x) ? 10g 2 x] ?10g 2 x ,解得 f (x)⑵由(1)得 f(x)Ld0^,那么 f(2) 1;1 10g2 x1 10g2 2(3)由(1)得 f(x)1 10g22x ,那么(2)得 f(2) 1,1 10g2 x那么有 f(x) -一10g22xf (2) 1,即 1 10g 2 x 1 10g 22 x,1 10g2 x解得10g 2 x 0或10g 2x 1,所以原方程的解为:x 1或x 2.[考点透析]对于给定抽象函数关系式求解对应的函数解析式,要合理选取比拟适合的方法加以分析处 1 ..................... ………理,关键是要结合抽象函数关系式的特征,这里用到的是以 一代x 的方式来到达求解函数解析式的目的.x36.函数 f (x)10g a (a a x ) ( a 1).(1)求f (x)的定义域、值域;(2)判断f(x)的单调性; (3)解不等式 f 1(x 2 2) f(x).[分析]根据对数函数的特征,分析相应的定义域问题,同时结合指数函数的特征,综合分析值域与单调 性问题,综合反函数、不等式等相关内容,考察相关的不等式问题.[解析](1)要使函数f(x) 10g a (a a x ) (a 1 )有意义,那么需要满足 a a x 0, 即a x a ,又a 1 ,解得x 1 ,所以所求函数f(x)的定义域为(,1); 又10g a (a a x ) 10g a a 1,即f(x) 1 ,所以所求函数 f(x)的值域为(,1);(2)令a a x ,由于a 1 ,那么 a a x 在(,1)上是减函数,x又y 10g a 是增函数,所以函数 f (x) 10g a (a a )在(,1)上是减函数;1 上式中,以1代x 可得: xf (x)?10g 2x, 1 10g 2 x-; 2~ ;1 10g2 x(3)设y log a(a a x),那么a y a a x,所以a x a a y,即x log a(a a y),所以函数f(x)的反函数为f 1(x) log a(a a x),2由于f (x 2) f(x),得log a(a a ) log a(a a ),2 2由于a 1 ,那么a a' a a",即a' a x,所以x2 2 x,解得1 x 2,而函数f(x)的定义域为(,1),故原不等式的解集为{x| 1 x 1}.[考点透析]主要考查指数函数与对数函数相关的定义域、值域、图象以及主要性质,应用指数函数与对数函数的性质比拟两个数的大小,以及解指数不等式与对数不等式等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数专题练习【1】1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞B . 1(,1)3-C . 11(,)33-D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2y x=∈7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈B .()2ln 2ln (0)f x x x =>)C .()22()xf x e x R =∈D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0(B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0B .1C .2D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
2设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________3.已知函数()1,21xf x a =-+,若()f x 为奇函数,则a =________。
4.设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为。
(二) 解答题(6个) 1.设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明;(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方. 2、设f(x)=3ax 0.2=++++c b a c bx b若,f (0)>0,f (1)>0,求证:(Ⅰ)a >0且-2<ba<-1; (Ⅱ)方程f (x )=0在(0,1)内有两个实根.3.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数。
(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;4.设函数f (x )=,22aax x c ++其中a 为实数. (Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间. 5.已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值; (II )求证:()()f x g x ≥(0x >).6.已知函数2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设11a =,1()'()n n n n f a a a f a +=-(n =1,2,……) (1)求,αβ的值;(2)证明:对任意的正整数n ,都有n a >a ; (3)记ln n n n a b a aβ-=-(n =1,2,……),求数列{b n }的前n 项和S n 。
解答: 一、选择题 1解:由1x y e +=得:1ln ,x y +=即x=-1+lny ,所以1ln (0)y x x =-+>为所求,故选D 。
2解:依题意,有0<a <1且3a -1<0,解得0<a <13,又当x <1时,(3a -1)x +4a >7a -1,当x >1时,log a x <0,所以7a -1≥0解得x ≥17故选C 3解:2112121212x x 111|||||x x x x x x |x x |--==-|12x x 12∈,(,)12x x ∴>1121x x ∴<1∴1211|x x -|<|x 1-x 2|故选A4解:已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设644()()()555a f f f ==-=-,311()()()222b f f f ==-=-,51()()22c f f ==<0,∴c a b <<,选D .5解:由1311301<<-⇒⎩⎨⎧>+>-x x x ,故选B .6解:B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A . 7解:0)(=x f 的根是=x 2,故选C8解:A 中()()()F x f x f x =-则()()()()F x f x f x F x -=-=,即函数()()()F x f x f x =-为偶函数,B 中()()()F x f x f x =-,()()()F x f x f x -=-此时()F x 与()F x -的关系不能确定,即函数()()()F x f x f x =-的奇偶性不确定, C 中()()()F x f x f x =--,()()()()F x f x f x F x -=--=-,即函数()()()F x f x f x =--为奇函数,D 中()()()F x f x f x =+-,()()()()F x f x f x F x -=-+=,即函数()()()F x f x f x =+-为偶函数,故选择答案D 。
9解:函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,所以()f x 是x y e =的反函数,即()f x =ln x ,∴ ()2ln 2ln ln 2(0)f x x x x ==+>,选D .10解:f (f (2))=f (1)=2,选C11解:当x <-1时,|x +1|=-x -1,|x -2|=2-x ,因为(-x -1)-(2-x )=-3<0,所以2-x >-x -1;当-1≤x <12时,|x +1|=x +1,|x -2|=2-x ,因为(x +1)-(2-x )=2x -1<0,x +1<2-x ;当12≤x <2时,x +1≥2-x ;当x ≥2时,|x +1|=x +1,|x -2|=x -2,显然x +1>x -2;故2((,1)12([1,))2()11([,2))21([2,))x x x x f x x x x x -∈-∞-⎧⎪⎪-∈-⎪=⎨⎪+∈⎪⎪+∈+∞⎩据此求得最小值为32。
选C12解:关于x 的方程()011222=+---k x x 可化为()22211011x x k x x --+=≥≤(-)(或-)…(1) 或()222110x x k -+=+(-)(-1<x <1) (2)① 当k =-2时,方程(1)的解为(2)无解,原方程恰有2个不同的实根② 当k =14时,方程(1)有两个不同的实根±2,方程(2)有两个不同的实根±2,即原方程恰有4个不同的实根③ 当k =0时,方程(1)的解为-1,+1,,方程(2)的解为x =0,原方程恰有5个不同的实根 ④ 当k =29时,方程(1)的解为±3,±3,方程(2)的解为±3,±3,即原方程恰有8个不同的实根 选A二、填空题。
1解:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+。