等差数列的通项与前n项和
数列通项、数列前n项和的求法例题+练习
通项公式和前n 项和一、新课讲解:求数列前N 项和的办法 1. 公式法(1)等差数列前n 项和:特此外,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中央项乘以项数.这个公式在许多时刻可以简化运算. (2)等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要留意对公比的评论辩论.(3)其他公式较罕有公式:1.)1(211+==∑=n n k S nk n 2.)12)(1(6112++==∑=n n n k S nk n3.213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种办法是在推导等比数列的前n 项和公式时所用的办法,这种办法重要用于求数列{a n ·b n }的前n 项和,个中{ a n }.{ b n }分离是等差数列和等比数列.[例3]乞降:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和.演习:求:S n =1+5x+9x 2+······+(4n -3)xn-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x[4x(1-x n ) 1-x+1-(4n-3)x n ]3. 倒序相加法乞降这是推导等差数列的前n 项和公式时所用的办法,就是将一个数列倒过来分列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 4. 分组法乞降有一类数列,既不是等差数列,也不是等比数列,若将这类数列恰当拆开,可分为几个等差.等比或罕有的数列,然后分离乞降,再将其归并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 演习:求数列•••+•••),21(,,813,412,211nn 的前n 项和.5. 裂项法乞降这是分化与组合思惟在数列乞降中的具体运用. 裂项法的本质是将数列中的每项(通项)分化,然后从新组合,使之能消去一些项,最终达到乞降的目标. 通项分化(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项乞降)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立演习:求63135115131+++之和.6. 归并法乞降针对一些特别的数列,将某些项归并在一路就具有某种特别的性质,是以,在求数列的和时,可将这些项放在一路先乞降,然后再求S n .[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.7. 运用数列的通项乞降先依据数列的构造及特点进行剖析,找出数列的通项及其特点,然后再运用数列的通项揭示的纪律来求数列的前n 项和,是一个重要的办法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 演习:求5,55,555,…,的前n 项和.以上一个7种办法固然各有其特色,但总的原则是要擅长转变原数列的情势构造,使其能进行消项处理或能运用等差数列或等比数列的乞降公式以及其它已知的根本乞降公式来解决,只要很好地掌控这一纪律,就能使数列乞降化难为易,水到渠成.求数列通项公式的八种办法一.公式法(界说法)依据等差数列.等比数列的界说求通项 二.累加.累乘法1.累加法 实用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2.累乘法 实用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯三.待定系数法 实用于1()n n a qa f n +=+剖析:经由过程凑配可转化为1121()[()]n n a f n a f n λλλ++=+; 解题根本步调: 1.肯定()f n2.设等比数列{}1()n a f n λ+,公比为2λ3.列出关系式1121()[()]n n a f n a f n λλλ++=+4.比较系数求1λ,2λ5.解得数列{}1()n a f n λ+的通项公式6.解得数列{}n a 的通项公式例4 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一:设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列, 所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二: 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略留意:例 6 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.留意:形如21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例7 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅四.迭代法例8 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 五.变性转化法1.对数变换法 实用于指数关系的递推公式例9 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.2.倒数变换法 实用于分式关系的递推公式,分子只有一项 例10 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 3.换元法 实用于含根式的递推关系 例11 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.六.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例12 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 七.阶差法1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例13 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式. 解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a =当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --= 当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去 所以32n a n =-2.对无限递推数列例14 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =八.不动点法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例 15 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=--- (2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例16 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.。
等差数列的前N项和公式
证明:由等差数列前n项和公式,得 n(a2 n 1 a3n ) n(a1 an ) n(an 1 a2 n ) . S1 , S2 , S3 2 2 2
n(a1 an a2 n 1 a3n ) S1 S3 n(an 1 a2 n ) 2S 2 . 2
d a1 5d 0, 2 即 a1 6d 0.
也即 a6 0且a7 0, S6最大。
24 d 3 a 12 2 d , 解法2: 由 1 7 an 12 (n 3)d 0, 得 a 12 (n 2)d 0. 即 5.5 n 7. n1
n ( a a ) 1 2 n 1 S奇 2 2an an = . n S偶 2 a a n 1 n 1 (a2 a2 n ) 2
由等差数列的性质: a2 a2n2 a1 a2n1 2an .
若项数为2n-1
S偶 a2 a4 a2n2 n 1 n 1 (a2 a2 n 2 ) 2an (n 1)an 2 2 n S奇 a1 a3 a2n1 (a1 a2 n 1 )
n N , n 6, 即S6最大。
*Байду номын сангаас
关于等差数列奇数项与偶数项的性质:
若项数为2n,则
S偶 -S奇 a2 a4 a2n a1 a3 a2n1
(a2 a1 ) (a4 a3 ) (a2n a2n1 )
d d d nd
可让奴才抬着春凳将她抬回来,都别肯碰她壹根手指头の。而且昨天王爷刚把水清抱回来,今天就又来怡然居看她の主子,那让月影怎么可能别心生期盼。月影多么地希望昨天就是他 们两各人冰释前嫌、相亲相爱の良好开端。可是才刚刚有咯壹各良好の开端,怎么今天仆役就又将爷给气走咯呢?那么良好の开端,仆役为啥啊别会服各软,讨爷の欢心呢?担心被王 爷寻咯短处,恼恨水清别晓得积极争取,月影在焦急别安之中,就迎来咯晚膳时间。第壹卷 第538章 书案用过晚膳,水清就吩咐月影去将悠思小格格抱过来,月影刚刚出门,就见院 门外吵吵嚷嚷の声音,还别待她多走几步,就见三四各小太监,抬着壹张桌子绕过咯影壁墙,正朝正房走来。还没什么进院门の时候,小柱子早就听到咯院外の动静,赶快迎咯出来, 当即就认出那几各小太监是苏培盛の手下,于是慌忙说道:“几位公公,那是?”“方公公,那是苏总管吩咐我们给抬过来の,您查验壹下,没问题の话,我们就回去交差咯。”“没 问题,没问题,多谢几位公公。”送走咯那各小太监,小柱子仔细看咯看那桌子,分明就是壹各书案!于是他赶快吩咐自己院里の几各太监,将那各书案抬到咯水清の房外,他上前壹 步,站在门口,小声禀报道:“启禀主子,苏总管给咱们院子抬来壹各书案,请问您需要放置在哪儿?”水清正在等着悠思小格格,谁晓得竟然等来咯壹各书案!别用问她也晓得,壹 定是王爷吩咐苏培盛送过来の。既然是爷送来の,别管是否喜欢,是否需要,她别无选择,必须恭恭敬敬地迎进正屋才是。于是开口吩咐道:“放进屋里来吧,月影,您和竹墨两人帮 方公公壹把。”月影本来是去找吴嬷嬷带悠思格格来见水清,却迎面撞上众人在抬那各书案,于是她就傻愣愣地站在院子当中,眼看着那壹群人从眼前走过,半天没什么反应过来。此 时听到水清在屋里吩咐她,才算是回过神儿来,赶快帮着将书案抬进咯屋子。那么壹各大物件进咯屋子,摆在哪里成咯问题,水清思前想后,最后决定就摆在屋子当中。“仆役!摆在 屋子当中?”“怎么?别行吗?”“可是,摆在中间怎么走路啊!再说咯,也没什么那么壹各摆法儿啊!”“啥啊叫没什么那么壹各摆法儿,今天就看看您家仆役那各摆法!”虽然月 影对水清の决定提出咯质疑,但那是水清深思熟虑の结果。见月影被她说得别敢开腔咯,水清又有点儿别落忍,自顾自地说咯起来:“您说别摆在那里还能摆在哪儿?那书案明面上是 由苏总管调配过来の,实际上,还别是爷の吩咐?下午の时候,爷别是问咯壹句梳妆台就走咯吗?那么快苏总管就抬过来壹张书案,别是爷の吩咐还能是谁?既然是爷の吩咐,咱们还 能摆在哪里?摆在靠边の位置,要是被爷晓得,又得寻咱们の错处,认为咱们没把爷の恩典当回事儿!那回,咱们就给它摆在屋子当中,咱们给它供起来!看爷还能说啥啊!”听着水 清壹番头头是道の解释,月影别得别佩服仆役の远见卓识,于是再也别唱反调,乖乖地赶快干起活儿来。只是她壹边抹桌子掸土,又将笔墨纸砚之类の东西码放上来,片刻别得闲地忙 活着,壹边在嘴上还止别住地嘀咕着:“仆役,奴婢瞧那书案,怎么别像新の?”第壹卷 第539章 亲选那书案当然别是新の!下午の时候王爷虽然是生着壹肚子の闷气离开の怡然居, 可是当他回到书院之后,又有些懊恼起来。他别禁暗问自己:爷刚才那是干啥啊去咯?别是想看看她吗?怎么连句正经话都没什么说呢,就直接回来咯?还有她那各用梳妆台临时充当 の书案,看着真是让人心疼呢。那丫头怎么那么傻,连各书案都别说添置壹各?当时谁也别晓得那各新娶进来の侧福晋会读书写字,以为和大家壹样全都是大字别识壹各の诸人呢,所 以排字琦在为他们两人成亲张罗布置新房の时候,想当然地没什么将书桌问题考虑进去。当初淑清进府の时候,因为认识那么壹两各字,高兴得王爷亲自给她置办咯壹张极为奢华の紫 檀书案,虽然后来也别见她怎么用,但是作为他唯壹壹各识文断字の诸人,王爷自然是宠爱无比。但是今天看到学富五车、能读会写の水清居然用梳妆台充作书案,给咯他极大の震撼。 自从将她娶进府来,他总是口口声声地说他给咯那各侧福晋多么奢华の生活,多么崇高の地位,只在排字琦壹人之下,所有诸人之上。可是实际上,她连壹各正经像样の书桌都没什么, 竟然是用梳妆台拼凑の,那番寒酸の样子,别但令他始料未及,更是令他内疚别已。当年给淑清置办の那各豪华书案,既是他高高兴兴、心甘情愿,也是她刻意暗示、左挑右选の结果。 现在再看到怡然居那里,那各最有理由需要书桌の人,却是拿各梳妆台凑合咯五年时间!那各结果让他心中很别是滋味。回到书院后,他早就忘记咯刚刚是因为啥啊而怒气冲冲地拂袖 而去,反而是壹门心思地想要尽快解决她の书桌问题。心情急切の他,连吩咐奴才立即出府采办の时间都等别及,壹回咯书院,就满院子地找咯起来。朗吟阁里有好几各地方都摆有书 案,大书房、小书房、藏书阁、休憩室„„各各地方他都亲自转咯壹各遍。大书房の书案尺寸太大,她那么瘦瘦小小の壹各人用着实在别方便;小书房の书案用咯相当长の壹段时间, 是最旧の壹各;藏书阁の书案颜色有些深,和怡然居の其它家具别配套。看来看去,也就只剩下摆在休憩室の那各书案还顺眼壹些:尺寸适中,颜色
数列通项公式和前n项和的求法
数列通项公式和前n 项和的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒,∵0≠d , ∴d a =1①∵255a S = ∴211)4(2455d a d a +=⋅⨯+② 由①②得:531=a ,53=d , ∴n n a n 5353)1(53=⨯-+=二、累加法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例2 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=-, 211=a ,nn a n 1231121-=-+=∴三、累乘法(逐商相乘法):把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴四、待定系数法:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
求数列通项公式和前N项和的方法
求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和。
解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值。
解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n }的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n —3)x n —1① ①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n —3)x n ②①—②得,(1-x)S n =1+4(x+ x 2+x 3+······+ nx )-(4n —3)x n当x=1时,S n =1+5+9+······+(4n —3)=2n 2—n 当x ≠1时,S n =1 1—x [ 4x(1-x n) 1-x +1-(4n —3)xn]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +。
高中数学《等差数列前n项和的性质及应用》知识点讲解及重点练习
第2课时 等差数列前n 项和的性质及应用学习目标 1.进一步熟练掌握等差数列的通项公式和前n 项和公式,了解等差数列前n 项和的一些性质.2.掌握等差数列前n 项和的最值问题.知识点一 等差数列前n 项和的性质1.若数列{a n }是公差为d 的等差数列,则数列{S n n }也是等差数列,且公差为d2.2.设等差数列{a n }的公差为d ,S n 为其前n 项和,则S m ,S 2m -S m ,S 3m -S 2m ,…仍构成等差数列,且公差为m 2d .3.若等差数列{a n }的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n.4.若等差数列{a n }的项数为2n +1,则S 2n +1=(2n +1)·a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n n +1.思考 在性质3中,a n 和a n +1分别是哪两项?在性质4中,a n +1是哪一项?答案 中间两项,中间项.知识点二 等差数列{a n }的前n 项和公式的函数特征1.公式S n =na 1+n (n -1)d2可化成关于n 的表达式:S n =d 2n 2+(a 1-d 2)n .当d ≠0时,S n 关于n的表达式是一个常数项为零的二次函数式,即点(n ,S n )在其相应的二次函数的图象上,这就是说等差数列的前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d 2x 2+(a 1-d 2)x 上横坐标为正整数的一系列孤立的点.2.等差数列前n 项和的最值(1)在等差数列{a n }中,当a 1>0,d <0时,S n 有最大值,使S n 取得最值的n 可由不等式组Error!确定;当a 1<0,d >0时,S n 有最小值,使S n 取到最值的n 可由不等式组Error!确定.(2)S n =d 2n 2+(a 1-d 2)n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最小值;当d <0时,S n 有最大值.当n 取最接近对称轴的正整数时,S n 取到最值.1.在等差数列{a n }中,若a 1+a 2=2,a 3+a 4=4,则a 7+a 8等于( )A .7 B .8 C .9 D .10答案 B解析 ∵a 1+a 2=2,a 3+a 4=4,由等差数列的性质得a 5+a 6=6,a 7+a 8=8.2.已知数列{a n }为等差数列,a 2=0,a 4=-2,则其前n 项和S n 的最大值为( )A.98 B.94C .1 D .0答案 C解析 由a 4=a 2+(4-2)d ,得-2=0+2d ,故d =-1,a 1=1,故S n =n +n (n -1)2·(-1)=-n 22+3n2=-12(n -32)2+98.所以当n =1或2时,S n 的最大值为1.3.(多选)已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为( )A .22 B .23 C .24 D .25答案 BC解析 由a n ≤0即2n -48≤0得n ≤24.∴所有负项的和最小,即n =23或24.4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.答案 2 020解析 由等差数列的性质可得{S n n}也为等差数列,设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1,∴S nn =S 11+(n -1)d =n -2 019.故S 2 0202 020=2 020-2 019=1,∴S 2 020=2 020.一、等差数列前n 项和的性质例1 (1)在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.答案 2解析 由Error!得Error!所以S 偶-S 奇=5d =10,所以d =2.(2)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m .解 方法一 在等差数列中,∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列,∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m2m =S mm +S 3m3m.即S 3m =3(S 2m -S m )=3×(100-30)=210.反思感悟 利用等差数列前n 项和的性质简化计算(1)在解决等差数列问题时,先利用已知求出a 1,d ,再求所求,是基本解法,有时运算量大些;(2) 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.(3)设而不求,整体代换也是很好的解题方法.跟踪训练1 (1)已知数列{a n }是项数为偶数的等差数列,它的奇数项的和是50,偶数项的和为34,若它的末项比首项小28,则该数列的公差是________.答案 -4解析 设等差数列{a n }的项数为2m ,∵末项与首项的差为-28,∴a 2m -a 1=(2m -1)d =-28,①∵S 奇=50,S 偶=34,∴S 偶-S 奇=34-50=-16=md ,②由①②得d =-4.(2)已知一个等差数列的前10项和为100,前100项和为10,求前110项之和.解 S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列.设其公差为d ,前10项和为10S 10+10×92d =S 100=10,解得d =-22,∴S 110-S 100=S 10+(11-1)d =100+10×(-22)=-120,∴S 110=-120+S 100=-110.二、等差数列前n 项和的最值问题例2 在等差数列{a n }中,a 1=25,S 8=S 18,求前n 项和S n 的最大值.解 方法一 因为S 8=S 18,a 1=25,所以8×25+8×(8-1)2d =18×25+18×(18-1)2d ,解得d =-2.所以S n =25n +n (n -1)2×(-2)=-n 2+26n =-(n -13)2+169.所以当n =13时,S n 有最大值为169.方法二 同方法一,求出公差d =-2.所以a n =25+(n -1)×(-2)=-2n +27.因为a 1=25>0,由Error!得Error!又因为n ∈N *,所以当n =13时,S n 有最大值为169.方法三 因为S 8=S 18,所以a 9+a 10+…+a 18=0.由等差数列的性质得a 13+a 14=0.因为a 1>0,所以d <0.所以a 13>0,a 14<0.所以当n =13时,S n 有最大值.由a 13+a 14=0,得a 1+12d +a 1+13d =0,解得d =-2,所以S 13=13×25+13×122×(-2)=169,所以S n 的最大值为169.方法四 设S n =An 2+Bn .因为S 8=S 18,a 1=25,所以二次函数图象的对称轴为x =8+182=13,且开口方向向下,所以当n=13时,S n取得最大值.由题意得Error!解得Error!所以S n=-n2+26n,所以S13=169,即S n的最大值为169.反思感悟 (1)等差数列前n项和S n最大(小)值的情形①若a1>0,d<0,则S n存在最大值,即所有非负项之和.②若a1<0,d>0,则S n存在最小值,即所有非正项之和.(2)求等差数列前n项和S n最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用Error!或Error!来寻找.②运用二次函数求最值.跟踪训练2 在等差数列{a n}中,a10=18,前5项的和S5=-15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取最小值.解 (1)设等差数列的公差为d,因为在等差数列{a n}中,a10=18,S5=-15,所以Error!解得a1=-9,d=3,所以a n=3n-12,n∈N*.(2)因为a1=-9,d=3,a n=3n-12,所以S n=n(a1+a n)2=12(3n2-21n)=32(n-7 2)2-1478,所以当n=3或4时,前n项的和S n取得最小值S3=S4=-18.三、求数列{|a n|}的前n项和例3 数列{a n}的前n项和S n=100n-n2(n∈N*).(1)判断{a n}是不是等差数列,若是,求其首项、公差;(2)设b n=|a n|,求数列{b n}的前n项和.解 (1)当n≥2时,a n=S n-S n-1=(100n-n2)-[100(n-1)-(n-1)2]=101-2n.∵a1=S1=100×1-12=99,适合上式,∴a n =101-2n (n ∈N *).又a n +1-a n =-2为常数,∴数列{a n }是首项为99,公差为-2的等差数列.(2)令a n =101-2n ≥0,得n ≤50.5,∵n ∈N *,∴n ≤50(n ∈N *).①当1≤n ≤50时,a n >0,此时b n =|a n |=a n ,∴数列{b n }的前n 项和S n ′=100n -n 2.②当n ≥51时,a n <0,此时b n =|a n |=-a n ,由b 51+b 52+…+b n =-(a 51+a 52+…+a n )=-(S n -S 50)=S 50-S n ,得数列{b n }的前n 项和S n ′=S 50+(S 50-S n )=2S 50-S n =2×2 500-(100n -n 2)=5 000-100n +n 2.由①②得数列{b n }的前n 项和为S n ′=Error!n ∈N *.反思感悟 已知等差数列{a n },求绝对值数列{|a n |}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.跟踪训练3 在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解 (1)由Error!得Error!∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533,∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴数列{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2(-32×172+1032×17)-(-32n 2+1032n)=32n 2-1032n +884.∴S n =Error!等差数列前n 项和公式的实际应用典例 某单位用分期付款的方式为职工购买40套住房,共需1 150万元,购买当天先付150万元,按约定以后每月的这一天都交付50万元,并加付所有欠款利息,月利率为1%,若交付150万元后的一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少钱?全部付清后,买这40套住房实际花了多少钱?解 因购房时付150万元,则欠款1 000万元,依题意分20次付款,则每次付款的数额依次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5,a 3=50+(1 000-50×2)×1%=59,a 4=50+(1 000-50×3)×1%=58.5,所以a n =50+[1 000-50(n -1)]×1%=60-12(n -1)(1≤n ≤20,n ∈N *).所以{a n }是以60为首项,-12为公差的等差数列.所以a 10=60-9×12=55.5,a 20=60-19×12=50.5.所以S 20=12×(a 1+a 20)×20=10×(60+50.5)=1 105.所以实际共付1 105+150=1 255(万元).[素养提升] (1)本题属于与等差数列前n 项和有关的应用题,其关键在于构造合适的等差数列.(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,抽象出数列的模型,并用有关知识解决相关的问题,是数学建模的核心素养的体观.1.已知数列{a n}满足a n=26-2n,则使其前n项和S n取最大值的n的值为( ) A.11或12 B.12C.13 D.12或13答案 D解析 ∵a n=26-2n,∴a n-a n-1=-2(n≥2,n∈N*),∴数列{a n}为等差数列.又a1=24,d=-2,∴S n=24n+n(n-1)2×(-2)=-n2+25n=-(n-252)2+6254.∵n∈N*,∴当n=12或13时,S n最大.2.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2 D.1,0.5答案 A解析 由于项数为10,故S偶-S奇=15-12.5=5d,∴d=0.5,由15+12.5=10a1+10×92×0.5,得a1=0.5.3.(多选)设{a n}是等差数列,S n为其前n项和,且S5<S6=S7>S8,则下列结论正确的是( ) A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案 ABD解析 ∵S5<S6=S7>S8,∴a6>0,a7=0,a8<0.∴d<0.∴S6与S7均为S n的最大值.S9-S5=a6+a7+a8+a9=2(a7+a8)<0.∴S9<S5,故C错.4.已知在等差数列{a n}中,|a5|=|a9|,公差d>0,则使得其前n项和S n取得最小值的正整数n 的值是________.答案 6或7解析 ∵公差d>0,|a5|=|a9|,∴-a5=a9,即a5+a9=0.由等差数列的性质,得2a7=a5+a9=0,解得a7=0.故数列的前6项均为负数,第7项为0,从第8项开始为正.∴S n 取得最小值时的n 为6或7.5.已知等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =________.答案 5解析 由题意得Error!故S 偶=192,S 奇=162,所以6d =S 偶-S 奇=30,故d =5.1.知识清单:(1)等差数列前n 项和的一般性质.(2)等差数列前n 项和的函数性质.2.方法归纳:整体思想、函数思想、分类讨论思想.3.常见误区:求数列{|a n |}的前n 项和时不讨论,最后不用分段函数表示.1.在等差数列{a n }中,a 1=1,其前n 项和为S n ,若S 88-S 66=2,则S 10等于( )A .10B .100C .110D .120答案 B解析 ∵{a n }是等差数列,a 1=1,∴{S n n }也是等差数列且首项为S 11=1.又S 88-S 66=2,∴{S n n }的公差是1,∴S 1010=1+(10-1)×1=10,∴S 10=100.2.若等差数列{a n }的前m 项的和S m 为20,前3m 项的和S 3m 为90,则它的前2m 项的和S 2m 为( )A .30B .70C .50D .60答案 C解析 ∵等差数列{a n }中,S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,∴2(S 2m -S m )=S m +S 3m -S 2m ,∴2(S 2m -20)=20+90-S 2m ,∴S 2m =50.3.已知数列{2n -19},那么这个数列的前n 项和S n ( )A .有最大值且是整数 B .有最小值且是整数C .有最大值且是分数 D .无最大值和最小值答案 B解析 易知数列{2n -19}的通项a n =2n -19,∴a 1=-17,d =2.∴该数列是递增等差数列.令a n =0,得n =912.∴a 1<a 2<a 3<…<a 9<0<a 10<….∴该数列前n 项和有最小值,为S 9=9a 1+9×82d =-81.4.(多选)已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,下列判断正确的是( )A .d <0B .S 11>0C .S 12<0D .数列{S n }中的最大项为S 11答案 AB 解析 ∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,A 正确;又S 11=112(a 1+a 11)=11a 6>0,B 正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,C 不正确;数列{S n }中最大项为S 6,D 不正确.故正确的选项是AB.5.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 018,S k =S 2 009,则正整数k 为( )A .2 017 B .2 018 C .2 019 D .2 020答案 D解析 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S2 011=S2 018,S k=S2 009,可得2 011+2 0182=2 009+k2,解得k=2 020.6.已知在等差数列{a n}中,公差d=1,且前100项和为148,则前100项中的所有偶数项的和为________.答案 99解析 由题意,得S奇+S偶=148,S偶-S奇=50d=50,解得S偶=99.7.已知在等差数列{a n}中,S n为其前n项和,已知S3=9,a4+a5+a6=7,则S9-S6=________.答案 5解析 ∵S3,S6-S3,S9-S6成等差数列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.8.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为________.答案 6解析 由7a5+5a9=0,得a1d=-173.又a9>a5,所以d>0,a1<0.因为函数y=d2x2+(a1-d2)x的图象的对称轴为x=12-a1d=12+173=376,取最接近的整数6,故S n取得最小值时n的值为6.9.已知在等差数列{a n}中,a1=9,a4+a7=0.(1)求数列{a n}的通项公式;(2)当n为何值时,数列{a n}的前n项和取得最大值?解 (1)由a1=9,a4+a7=0,得a1+3d+a1+6d=0,解得d=-2,∴a n=a1+(n-1)·d=11-2n.(2)方法一 a1=9,d=-2,S n=9n+n(n-1)2·(-2)=-n2+10n=-(n-5)2+25,∴当n=5时,S n取得最大值.方法二 由(1)知a1=9,d=-2<0,∴{a n}是递减数列.令a n≥0,则11-2n≥0,解得n≤11 2 .∵n∈N*,∴当n≤5时,a n>0;当n≥6时,a n<0.∴当n=5时,S n取得最大值.10.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.解 (1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴{a n}是等差数列,又∵a1=8,a4=2,∴d=-2,a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则S n=8n+n(n-1)2×(-2)=9n-n2.∵a n=10-2n,令a n=0,得n=5.当n>5时,a n<0;当n=5时,a n=0;当n<5时,a n>0.∴当n≤5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a n=9n-n2.当n>5时,T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-9n+n2=n2-9n+40,∴T n=Error!11.若数列{a n}的前n项和是S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( ) A.15 B.35 C.66 D.100答案 C解析 易得a n =Error!|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.12.已知等差数列{a n }的前n 项和为S n ,a 2=11,S 1515-S 77=-8,则S n 取最大值时的n 为( )A .6B .7C .8D .9答案 B解析 设数列{a n }是公差为d 的等差数列,则{S n n }是公差为d2的等差数列.因为S 1515-S 77=-8,故可得8×d2=-8,解得d =-2;则a 1=a 2-d =13,则S n =-n 2+14n =-(n -7)2+49,故当n =7时,S n 取得最大值.13.已知S n ,T n 分别是等差数列{a n },{b n }的前n 项和,且S n T n =2n +14n -2(n ∈N *),则a 10b 3+b 18+a 11b 6+b 15=________.答案 4178解析 因为b 3+b 18=b 6+b 15=b 10+b 11,所以a 10b 3+b 18+a 11b 6+b 15=a 10+a 11b 10+b 11=10(a 10+a 11)10(b 10+b 11)=S 20T 20=2×20+14×20-2=4178.14.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,那么S 8S 16=________.答案 310解析 设S4=k,S8=3k,由等差数列的性质得S4,S8-S4,S12-S8,S16-S12构成等差数列.所以S8-S4=2k,S12-S8=3k,S16-S12=4k.所以S12=6k,S16=10k.S8S16=3 10.15.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.答案 11 7解析 设等差数列{a n}的项数为2n+1(n∈N*),S奇=a1+a3+…+a2n+1=(n+1)(a1+a2n+1)2=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n(a2+a2n)2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11,为所求的中间项.16.已知数列{a n}的前n项和为S n,a n>0,a1<2,6S n=(a n+1)(a n+2).(1)求证:{a n}是等差数列;(2)令b n=3a n a n+1,数列{b n}的前n项和为T n,求证:T n<1.证明 (1)因为6S n=(a n+1)(a n+2),所以当n≥2时,6S n-1=(a n-1+1)(a n-1+2),两式相减,得到6a n=(a2n+3a n+2)-(a2n-1+3a n-1+2),整理得(a n-a n-1)(a n+a n-1)=3(a n+a n-1),又因为a n>0,所以a n-a n-1=3,所以数列{a n}是公差为3的等差数列.(2)当n=1时,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因为a1<2,所以a1=1,由(1)可知a n-a n-1=3,即公差d=3,所以a n=a1+(n-1)d=1+(n-1)×3=3n-2,所以b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,所以T n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1.。
等差数列前n项和的性质
则
S偶-
S奇=
nd 2
.
特别地, 若 m+n=2p, 则 am+an=2ap .
2.等差中项
b=
a+c 2
3.若数列 {an}是等差数列,则 d k 2d
Sk , S2k Sk , S3k S2k , S4k S3k , 也是等差数列
4.若等差数列 {an} 的前 2n-1 项和为 S2n-1, 等差数列 {bn} 的
前 2n-1 项和为 T2n-1,
则
S2n-1 T2n-1
=
an bn
.
三、判断、证明方法
1.定义法; 2.通项公式法; 3.等差中项法.
{an}为等差数列 an kn b
Sn An2 Bn
注: 三个数成等差数列, பைடு நூலகம்设为 a-d, a, a+d(或 a, a+d, a+2d) 四个数成等差数列, 可设为a-3d, a-d, a+d, a+3d.
一、概念与公式
1.定义 若数列 {an} 满足: an+1-an=d(常数), 则称 {an} 为等差数列.
2.通项公式 an=a1+(n-1)d=am+(n-m)d.
3.前n项和公式
Sn=na1+
n(n-1)d 2
=
n(a1+an) 2
.
二、等差数列的性质
1.若 m+n=p+q(m、n、p、qN*), 则 am+an=ap+aq .
四、Sn的最值问题
1.若 a1>0, d<0 时,
满足
an≥0, an+1≤0.
等差数列的前n项和之间的关系
等差数列的前n项和之间的关系
等比数列前n项和公式:当q≠1时,Sn=a1(1-q^n)/(1-
q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。
除此之外,Sn为前n项和。
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
注:q=1时,an为常数列(n为下标)。
等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x 上的一群孤立的点。
如果等比通项公式为an=a1*qn-1,当q=1时,求和公式为
Sn=n*a1;当q≠1时,求和公式为Sn=a1(1-qn)/(1-q)。
由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
等差数列的各种公式:
等差数列的通项公式为:an=a1+(n-1)d(1)。
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)。
以上n均属于正整数。
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
高考数学一轮复习等差数列及其前n项和
第2节等差数列及其前n 项和最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前 n 项和公式; 3•能在具体的问题情境中识别数列的等差关系, 并能用等差数列的有关知识解决 相应的问题;4.了解等差数列与一次函数的关系.I 基础摻断丨回归教材,夯实基础知识梳理1. 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等差数列的公差^公差通常用字母 d表示.数学语言表达式:a n +1 — a n — d(n € N , d 为常数),或a n — a n -1 — d(n 》2, d 为常 数).一 a + b ⑵若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A —=丁.2. 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n — a 1 + (n - 1)d .通项公式的推* a n — a m + (n — m)d(m ,n € N ). (2)等差数列的前n 项和公式 项).3. 等差数列的有关性质已知数列{a n }是等差数列,S 是{a n }的前n 项和.*(1)若 m + n — p + q(m ,n ,p ,q € N ),则有 a m + a n — a p + a q .S n —n (a 1 + a n )2 n (n — 1) 2d(其中n € N *,a 1为首项, d 为公差,a n 为第n(2)等差数列{a n}的单调性:当d>0时,{a n}是递增数列;当d v0时,{a n}是递减数列;当d —0时,{a n}是常数列.⑶若{a n}是等差数列,公差为d,则a k, a k+ m, a k+2m,…(k, m€ N )是公差为md 的等差数列.(4)数列S m, S2m- S m, S3m- Mm ,…也是等差数列.4 •等差数列的前n项和公式与函数的关系数列{a n}是等差数列? S n= An2+ Bn (A, B为常数).5 •等差数列的前n项和的最值在等差数列{a n}中,a i> 0, d v 0,贝U S n存在最大值;若a iv 0, d> 0,贝U S n存在最小值.[常用结论与微点提醒]1 .用定义法证明等差数列应注意“从第2项起”,如证明了a n+1-a n= d(n》2)时,应注意验证a2-a i是否等于d,若a2-a i^d,则数列{a n}不为等差数列.2. 利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.诊断自测1. 思考辨析(在括号内打“V”或“X”)(1)数列{a n}为等差数列的充要条件是对任意n€ N*,都有2a n+i二a n+ a n+2.()(2)等差数列{a n}的单调性是由公差d决定的.()⑶已知数列{a n}的通项公式是a n= pn+ q(其中p, q为常数),则数列{a n}一定是等差数列.()(4)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()⑸等差数列的前n项和公式是常数项为0的二次函数.()解析(4)若公差d = 0,则通项公式不是n的一次函数.(5)若公差d = 0,则前n项和不是二次函数.答案(1)2⑵V ⑶V (4)X ⑸X2. 在等差数列{a n}中,若a2= 4, a4 = 2,则a6等于()A. - 1B. 0C. 1D. 6解析由等差数列的性质,得a6 = 2a4-a2= 2X2-4 = 0,选B.答案B3. (2017全国I卷)记S n为等差数列{a n}的前n项和.若a4 + a5 = 24, S6 = 48, 则{a n}的公差为()A. 1 B . 2 C. 4 D . 8a4 + a5 = 24,解析设{a n}的公差为d,由SISs= 48,2a i + 7d = 24,得丫解得d = 4.6a i + 15d= 48,答案C4. (2018宁波十校适应性考试)等差数列{a n}的公差d v0,且aja^,则数列{a n}的前n项和S n取得最大值时的项数n是()A. 8 或9 B . 9 或10C. 10或11 D . 11 或12解析由题意知,a〔=i a17,又因为d v 0,所以a1 = —a17,故a1 = —8d, a9= 0, a n= a1 + (n—1)d= (n —9)d,当a n> 0 时,n W 9,所以当n = 8 或9 时,S n 取最大值. 答案A5. (必修5P68A8 改编)在等差数列{a n}中,若a3 + a4 + a5 + a6+ a7= 450,则a2+ a8= ________ .解析由等差数列的性质,得a3 + a4 + a5 + a6 + a7= 5a5= 450, •••a5= 90,二a2 + a8 = 2a5= 180.答案1806. (2018湖州调研)设等差数列{a n }的公差是d ,前n 项和是S n .若 ◎ = 1, a 5= 9, 贝U 公差 d = ___ , S n= _____ .、 a 5 — a 1 n (n — 1) 2 解析 公差 d = = 2,前 n 项和 S n = n a 1+ 2 d = n +n (n —1) = n.5— 1 2答案2 n 2 I 考点突破丨分类讲练■、以俺求沱考点一等差数列基本量的运算【例11 (1)(2016全国I 卷)已知等差数列{a n }前9项的和为27, a 10= 8,则ae o =() A . 100B . 99C . 98D . 97⑵(2017全国川卷)等差数列{a n }的首项为1,公差不为0若a 2, a s , a 6成等比数 列,则{a n }前6项的和为( )A . — 24B . — 3C . 3D . 8〔9a 1+ 36d = 27,解析 (1)设等差数列{a n }的公差为d ,由已知,得, a 1 + 9d = 8,所以血=一 1,¥ 所以 a 100= a 1 + 99d =— 1 + 99= 98.l d = 1,X. 1(2)等差数列中a1 = 1,根据题意得即(a i + 2d)2= (a i + d)(a i + 5d),解得d = — 2, d = 0(舍去).6X 5 6 X 5所以数列{a n }的前6项和为6a i + —d = 1X 6 + 〒 X (— 2)= — 24. 答案(1)C (2)A规律方法 (1)等差数列的通项公式及前n 项和公式共涉及五个量a i , a n , d , n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.•76a aa(2) 数列的通项公式和前n项和公式在解题中起到变量代换作用,而a i和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练11 (1)(—题多解)设等差数列{a n}的前n项和为S n, 83= 6, &= 12,贝U S6= .⑵(2015浙•江卷)已知{a n}是等差数列,公差d不为零.若a2, a s, a?成等比数列,且 2a i + a 2= 1,贝U a i = _________ , d = ________ . 解析(1)法一 设数列{a n }的首项为a i ,公差为d ,由S 3= 6,53= 3a i + 3d = 6,a i = 0,S 4= 12,可得解得54= 4a i + 6d = 12, d = 2,即 S 6= 6a 1+ 15d = 30.法二 由{a n }为等差数列,故可设前n 项和S n = An 2 + Bn ,= 9A + 3B = 6,由 S 3= 6, S 4= 12,可得I S 4= 16A + 4B = 12,即 S n = n 2— n ,贝U S 6 = 36 — 6 = 30.2 2⑵因为 a 2, a 3, a 7 成等比数列,所以a 3= a 2a 7, 即 (a 〔 + 2d) = (a 〔+ d)(a 1 + 6d), 2=3, d =— 1.考点二 等差数列的判定与证明(变式迁移)【例2】(经典母题)若数列{a n }的前n 项和为S n ,且满足a n + 2S n Sn -1= 0(n 》2), 1a 1 = 2*(1) 求证:1成等差数列; (2) 求数列{a n }的通项公式.(1) 证明 当 n 》2 时,由 a n + 2S h S n -1 = 0, 1 1得 S n — S n -1 = — 2S n S n -1,所以&—= 2 ,S n S n —1又S =1 = 2,故1是首项为2,公差为2的等差数列. 1 1(2) 解 由(1)可得 S n = 2n , • S n = 当n 》2时,解得21B =—2由于 d M 0,二 a 1 = — 3d , 2a 1 +a = 1, ••• 2a 1 + a 1+ d = 1, 即卩 3a 1 + d = 1,二 a 1 2一3an —®-1 — 2n -2 (n -1) 2n (n -1) 2n (n -1)-n — 1,n — 1 — n当n = 1时, 1a 1—不适合上式. a n 1 2n (n - 1),nA 2.1【变式迁移1】 将本例条件“ a n + 2SS -1 — 0(n 》2), a 1—㊁”改为“ S n (S n - a n ) + 2a n — 0(n >2), a 〔 — 2”,冋题不变,试求解. (1)证明 当--S n [S n — (S n — S n -1)] + 2(S n — S n -1)= 即 S n S n -1 + 2(Sn — S n -1)— 0. 1 1 1「1 1 1 即 Sn S n -1 2.又 S 1 a 1 2.S 是以首项为2,公差为1的等差数列. 1 n 2故数列(2)解 由(1)知S ; — 2,- S n — n ,当 n A 2 时, 2n (n -1)当n — 1时,a 1 — 2不适合上式,a n — S h -S n -1 —n — 1,故an — i一 、小-3 , n 》2・ 【变式迁移2】 已知数列{a n }满足2a n -1 — a n a n -1 — 1(n 》2), a 1 = 2,证明数列 1a n -1 是等差数列,并求数列{a n }的通项公式.1解当 n A 2 时,a n — 2 — ,a n -11 1 — 1 1 — 1 1 — a n -1 1 a n — 1 a n -1 — 11a n -1 — 1 彳 1a n -1 — 1 a n -1 — 1 a n -1 — 1 a n -1a n -1—卅—K 常数). a n —1 — 11 -- ~ — 1 + (n 一 1) x 1 = n , a n — 1 n + 1 /. a n =n •规律方法 等差数列的四种判断方法:(1) 定义法:对于n 》2的任意自然数,验证a n — a n —1为同一常数. (2) 等差中项法:验证2a n — 1 — a n + a n — 2(n 》3, n € N )都成立. (3) 通项公式法:验证a n — pn + q.(4) 前n 项和公式法:验证S n =An 2+ Bn •后两种方法只能用来判断是否为等差数 列,而不能用来证明等差数列,主要适合在选择题中简单判断.【训练2】(2017江苏卷)对于给定的正整数 k ,若数列{a n }满足:a n -k + a n — k +1 + •••+ a n -1+ a n +1 +…+ a n + k -1+ a n +k — 2ka n ,对任意正整数 n(n>k)总成立,则称 数列{a n }是“ P(k)数列”.(1) 证明:等差数列{a n }是“P(3)数列”;(2) 若数列{a n }既是“ P(2)数列”,又是“ P(3)数列”,证明:{a n }是等差数列. 证明(1)因为{a n }是等差数列,设其公差为d , 则 a n = a 〔+ (n — 1)d , 从而,当n 》4时,a n — k + a n +k = a 1 + (n — k — 1)d + a 1 + (n + k — 1)d —2a 1 + 2(n — 1)d = 2a n , k = 1, 2, 3,所以 a n —3+ a n —2 + a n — 1 + a n +1 + a n + 2+ a n +3 — 6a n , 因此等差数列{a n }是“P(3)数列”.⑵数列{a n }既是“ P(2)数列”,又是“ P(3)数列”,因此, 当 n 》3 时,a n —2 + a n — 1 + a n +1 + a n + 2— 4a n ,① 当 n 》4 时,a n—3 + a n—2+ a n —1 + a n +1 + a n +2 + an+ 3— 6a n .②以首项为1,公差为1的等差数列.•••数a n由①知,a n-3 + a n-2—4a n-1 —(a n+ a n +1),③a n +2 + a n +3= 4a n +1 — (a n — 1 + a n ) •④ 将③④代入②,得a n -1+ a n +1 = 2a n ,其中n 》4, 所以a 3, a ;, a 5,…是等差数列,设其公差为 d '. 在①中,取 n = 4,贝U a 2 + a 3 + a 5 + a 6= 4a 4, 所以 a 2= a 3 — d',在①中,取 n = 3,贝U a 1 + a 2 + a 4+ a 5= 4a 3, 所以 a 1 = a 3 — 2d ', 所以数列{a n }是等差数列.考点三等差数列的性质及应用【例3】(1)设S n 是等差数列{a n }的前n 项和,若a 1 + a 3+ a 5 = 3,则Ss =( )A . 5B . 7C . 9D . 11S; 1 S 8⑵(2018浙江名校三联)已知等差数列{a n }的前n 项和为S n ,且&=3,则觅=(3) 已知S 是等差数列{a n }的前n 项和,若a i = — 2 014, ? 0;;- 2 008=6,则S 20仃= ________ .解析 (1) T {a n }为等差数列,.••a i + a 5= 2a 3,得 3a 3= 3,所以 a 3 = 1, A & =(2) 因为S n 为等差数列{a n }的前n 项和,所以S ;, S 8 — S ;, S 12 — S s , Si 6—S 12也成S ; 1 S 8等差数列,而 S ;= 3,所以 S 8= 3S ;,则(S 8— S ;) — S ;= S ;,则得 S 16= 10S ;,所以S 8 3_ = 10.(3) 由等差数列的性质可得|也为等差数列.S^ 014 S 2 008设其公差为 d ,则2 01;— 2 008= 6d = 6, A d = 1. 故 S017= 1 + 2 016d = — 2 014+ 2 016= 2,1- 31- 25 (a i + a 5)2=5a 3= 5,故选 A.A S2 017= 2X 2 017= 4 034.答案(1)A (2)A (3)4 034规律方法等差数列的性质是解题的重要工具.(1) 在等差数列{a n}中,数列S m, S2m一S m , S3m一S2m也成等差数列.(2) 在等差数列{a n}中,数列詈也成等差数列.【训练3】(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A. 13B. 12C. 11D. 10⑵在等差数列{a n}中,若a3 + a4 + a5 + a6 + a7= 25,则a2 + a8 = _______ .解析(1)因为印+ a2+ a3 34, a n -2 + a n— 1 + a n146, a1+ a2 + a3 + a n—2+ a n— 1 + a n= 34 + 146= 180,又因为a1 + a n= a2 + a n—1 = a3 + a n—2,所以3(a1 + a n) = 180,从而a1 + a n= 60,n (a1 + a n) n x 60所以Sn= 2 = —2—= 390,即n= 13.(2)因为{a n}是等差数列,所以a3 + a7= a4 + a s = a2 + a8 = 2a5, a3 + a4 + a5 + a6 + a7=5a5= 25,即卩a5= 5, a2 + a8 = 2a5= 10.答案(1)A (2)10考点四等差数列前n项和及其最值【例4】(1)(一题多解)等差数列{a n}的前n项和为S n,已知a1= 13, S3= S11,当S n最大时,n的值是()A. 5 B . 6 C. 7 D . 8⑵设数列{a n}的通项公式为a n = 2n —10(n€ N*),则閔| + |a2| +…+曲5匸解析(1)法一由S3= S11,得a4 + a5+ ^ + an = 0,根据等差数列的性质,可得a7 + a8 = 0.根据首项等于13可推知这个数列递减,从而得到a7>0, a8<0,故n=7时S n最大.法—-由S s= S11,可得3a i + 3d= 11a i + 55d,把a i= 13代入,得d= —2,故Sn2=13n-n(n—1)=—n + 14n.根据二次函数的性质,知当n= 7时S n最大.⑵由a n = 2n—10(n€ N )知{a n}是以一8为首项,2为公差的等差数列,又由a n =2n—10> 0 得n> 5,二n< 5 时,a n< 0,当n>5 时,a n>0, •,•田|+ |a2|+…+ |a15| =—(a1 + a2 + a3 + a4)+ (a5+ a6 + …+ a15)= 20+ 110= 130.答案(1)C (2)130规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;⑵利用性质求出其正负转折项,便可求得和的最值;(3) 将等差数列的前n项和S n= An2+ Bn (A, B为常数)看作二次函数,根据二次函数的性质求最值.【训练4】(1)设等差数列{a n}的前n项和为S n, a1>0且a6=9,则当S取最大a5 II 值时,n的值为()A. 9B. 10C. 11D. 12⑵(2018金丽衢十二校二联)已知公差为d的等差数列{a n}的前n项和为S n,若有确定正整数n。
等差等比数列通项及前N项和公式
等差等比数列通项及前N项和公式数列是数学中的一个重要概念,它是由一组按照一定规律排列的数所组成的序列。
在数列中,等差数列和等比数列是最基本的两种形式。
而通项公式和前N项和公式则是用来表示等差数列和等比数列的重要公式。
本文将详细介绍等差数列和等比数列的概念,并给出它们的通项公式和前N 项和公式。
一、等差数列等差数列是指数列中相邻两项之间的差值是一个常数d,这个常数称为公差。
等差数列的通项公式和前N项和公式如下:1.通项公式:设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为:an = a1 + (n - 1)d2.前N项和公式:设等差数列的首项为a1,公差为d,前N项的和为Sn,则等差数列的前N项和公式为:Sn = (a1 + an) * n / 2在等差数列中,从第一项到第N项的和可以用前N项和公式来表示。
根据这个公式,我们可以很方便地计算等差数列的前N项和。
二、等比数列等比数列是指数列中相邻两项之间的比值是一个常数q,这个常数称为公比。
等比数列的通项公式和前N项和公式如下:1.通项公式:设等比数列的首项为a1,公比为q,第n项为an,则等比数列的通项公式为:an = a1 * q^(n-1)2.前N项和公式:设等比数列的首项为a1,公比为q,前N项的和为Sn,则等比数列的前N项和公式为:Sn=(a1*(q^N-1))/(q-1)(当q≠1时)在等比数列中,从第一项到第N项的和可以用前N项和公式来表示。
需要注意的是,当公比q等于1时,等比数列通项公式中含有0的指数项,这时候通项公式的形式为an = a1,等比数列变成了一个常数数列。
三、等差数列和等比数列的应用等差数列和等比数列在数学中有着广泛的应用。
在实际生活中,很多事物的变化规律都可以用等差数列或等比数列来描述。
1.等差数列应用举例:(1)一些数学问题中常常出现等差数列的求和问题,比如计算一些等差数列的前N项和,这在数学竞赛中是经常出现的题型。
等差数列的通项公式和前n项和
用 a1, d 表示,当做一个二元方程组,解出答案即可。过程略, a5 10 。
内乡高中数学组 李浩
5. 结 合 等 差 数 列 前
n
项和公式
Sn
n
a1 2
an
=na1
nn 1
d 2
及等差数列性质(如果
m n p q 2r ,那么 am an ap aq 2ar , m, n, p, q, r N 。),可得以下几点
即: an a1 n 1 d
由上面通项公式可知 an a1 n 1 d,am a1 m 1 d ,
两式相减可得: an am n m d
例:在等差数列 51,47,43,…中,第一个负数项是第几项?
因为公差为-4,首项为 51,所以数列的通项公式为 an 55 4n
,令 55 4n 0
得 Sn 0 的 n 的最大值为 19.
②等差数列中依次 k 项的和仍构成等差数列,即 Sk , S2k Sk , S3k S2k , 构成等差数列,公差
为 k2d 。
例:已知等差数列an 的前 n 项和为 Sn , S3 12, S6 48 ,求 S12 =?
S3
S6 S3
S9 S6
Sn
na1
nn 1
2
d
。
例,函数 f x 对任意 x R ,都有 f x f 1 x 1 ,
2
求
f
ቤተ መጻሕፍቲ ባይዱ
1 2020
f
2 2020
f
2018 2020
f
2019 2020
的值。
令S
f
1 2020
f
2 2020
f
2018 2020
高中数学数列的通项与前n项和的关系探究
高中数学数列的通项与前n项和的关系探究数列是高中数学中的重要概念之一,它在数学中有着广泛的应用。
在解决数列问题时,我们常常需要求出数列的通项公式以及前n项和的表达式。
本文将重点探究数列的通项与前n项和的关系,并通过具体题目举例,说明其中的考点和解题技巧。
一、等差数列的通项与前n项和的关系等差数列是指数列中相邻两项之差恒定的数列。
对于等差数列,我们可以通过观察数列的规律来求出其通项公式和前n项和的表达式。
例如,考虑等差数列1,4,7,10,13,...,其中首项为1,公差为3。
我们可以通过观察得知,每一项都是首项1加上前面的项数乘以公差3得到的。
因此,该等差数列的通项公式为an = 1 + (n-1) * 3。
其中,an表示第n项。
接下来,我们来求该等差数列的前n项和。
首先,我们可以将数列的前n项分别相加,得到前n项和的表达式Sn = 1 + 4 + 7 + ... + (1 + (n-1) * 3)。
观察表达式可以发现,每一项都是由首项1加上相应的公差乘以前面的项数得到的。
因此,我们可以将表达式进行化简,得到Sn = n * (2 + (n-1) * 3) / 2。
其中,Sn表示前n项和。
通过以上的分析,我们可以得出等差数列的通项公式为an = a1 + (n-1) * d,前n项和的表达式为Sn = n * (2a1 + (n-1) * d) / 2。
其中,a1表示首项,d表示公差。
二、等比数列的通项与前n项和的关系等比数列是指数列中相邻两项之比恒定的数列。
对于等比数列,我们同样可以通过观察数列的规律来求出其通项公式和前n项和的表达式。
例如,考虑等比数列2,6,18,54,162,...,其中首项为2,公比为3。
我们可以通过观察得知,每一项都是前一项乘以公比3得到的。
因此,该等比数列的通项公式为an = 2 * 3^(n-1)。
其中,an表示第n项。
接下来,我们来求该等比数列的前n项和。
首先,我们可以将数列的前n项分别相加,得到前n项和的表达式Sn = 2 + 6 + 18 + ... + (2 * 3^(n-1))。
等差数列的通项与求和公式
等差数列的通项与求和公式等差数列是数学中常见的数列形式,它的每个元素与前一个元素之间的差值都是相等的。
在解决等差数列相关问题时,我们需要了解通项公式和求和公式,这两个公式是解题的基础。
本文将介绍等差数列的通项公式和求和公式,并提供一些示例来帮助读者更好地理解。
一、等差数列的通项公式在等差数列中,通项是指数列中的第n个元素。
为了求解通项公式,我们需要知道等差数列的首项和公差。
首项是数列中的第一个元素,用字母a表示;公差是每个元素与前一个元素之间的差值,用字母d表示。
设等差数列的第n个元素为an,通项公式的一般形式可以表示为:an = a + (n-1)d其中,a为首项,d为公差,n为元素的位置。
通项公式告诉我们,通过已知的首项、公差和元素位置,我们可以求得等差数列的任意一个元素。
例如,对于等差数列1, 4, 7, 10, 13,我们可以计算第5个元素的值:a = 1d = 3n = 5an = 1 + (5-1) * 3 = 13因此,该等差数列的第5个元素为13。
二、等差数列的求和公式除了通项公式,求和公式也是解决等差数列问题常用的工具。
求和公式可以帮助我们计算等差数列中指定范围内的元素之和。
设等差数列的首项为a,末项为l,元素个数为n,求和公式的一般形式可以表示为:Sn = (n/2)(a + l)其中,Sn表示等差数列的和。
求和公式告诉我们,通过已知的首项、末项和元素个数,我们可以求得等差数列的和。
例如,对于等差数列1, 4, 7, 10, 13,我们可以计算前3个元素的和:a = 1l = 7n = 3Sn = (3/2)(1 + 7) = 12因此,该等差数列前3个元素的和为12。
三、示例为了帮助读者更好地理解等差数列的通项公式和求和公式,我们提供以下示例。
示例一:考虑等差数列3, 6, 9, 12, 15,我们可以计算第6个元素的值:a = 3d = 3n = 6an = 3 + (6-1) * 3 = 18因此,该等差数列的第6个元素为18。
等差数列及其前n项和
第二节 等差数列及其前n 项和❖ 基础知识1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数). (2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.在一个等差数列中,从第2项起,每一项有穷等差数列的末项除外都是它的前一项与后一项的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的通项公式及前n 项和公式与函数的关系(1)a n =a 1+(n -1)d 可化为a n =dn +a 1-d 的形式.当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列.(2)数列{a n }是等差数列,且公差不为0⇔S n =An 2+Bn (A ,B 为常数).❖ 常用结论已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)在等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d . (5)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(6)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12.(7)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.(8)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(9)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .考点一 等差数列的基本运算[典例](1)(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12(2)已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( )A .3B .7C .9D .10[解析](1)设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)= -10.(2)因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,d =(22-4a 2)2=3,a 1=a 2-d =4-3=1,a n =a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,解得n =10. [答案] (1)B (2)D[解题技法] 等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.[提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷. [题组训练]1.(2019·开封高三定位考试)已知等差数列{a n }的前n 项和为S n ,且a 1+a 5=10,S 4=16,则数列{a n }的公差为( )A .1B .2C .3D .4 解析:选B 设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+a 1+4d =10,4a 1+4×32×d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2,故选B.2.已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192× (-2)=-340,选D.3.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )A .12B .18C .24D .30解析:选C 设等差数列{a n }的首项为a 1,公差为d ,因为a 5+a 10=12, 所以2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(2a 1+13d )=2×12=24.考点二 等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.[解] (1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式.所以a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[题组训练]1.(2019·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R )可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2),∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及应用考法(一) 等差数列项的性质 [典例](1)已知在等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25(2)(2019·福建模拟)设S n ,T n 分别是等差数列{a n },{b n }的前n 项和,若a 5=2b 5,则S 9T 9=( )A .2B .3C .4D .6[解析](1)因为2a 1·2a 2·…·2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20.选B.(2)由a 5=2b 5,得a 5b 5=2,所以S 9T 9=9(a 1+a 9)29(b 1+b 9)2=a 5b 5=2,故选A.[答案] (1)B (2)A考法(二) 等差数列前n 项和的性质[典例] 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27[解析] 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B. [答案] B考法(三) 等差数列前n 项和的最值[典例] 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17[解析] ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值. [答案] A[解题技法]1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[题组训练]1.在等差数列{a n }中,若a 3=-5,a 5=-9,则a 7=( )A .-12B .-13C .12D .13解析:选B 法一:设公差为d ,则2d =a 5-a 3=-9+5=-4,则d =-2,故a 7=a 3+4d =-5+4×(-2)=-13,选B.法二:由等差数列的性质得a 7=2a 5-a 3=2×(-9)-(-5)=-13,选B.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. 答案:18[课时跟踪检测]A 级1.在数列{a n }中,a 1=2,a n +1=a n +2,S n 为{a n }的前n 项和,则S 10等于( )A .90B .100C .110D .130解析:选C 由递推公式可知该数列是公差为2的等差数列,S 10=10×2+10×92×2=110.故选C.2.(2018·北京东城区二模)已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( )A .30B .29C .28D .27解析:选C 由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.故选C. 3.(2019·山西五校联考)在数列{a n }中,a n =28-5n ,S n 为数列{a n }的前n 项和,当S n 最大时,n =( )A .2B .3C .5D .6解析:选C ∵a n =28-5n ,∴数列{a n }为递减数列.令a n =28-5n ≥0,则n ≤285,又n ∈N *,∴n ≤5.∵S n 为数列{a n }的前n 项和,∴当n =5时,S n 最大.故选C.4.(2019·广东中山一中统测)设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66解析:选D ∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列, ∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.5.(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为( )A .20B .40C .60D .80解析:选D 设等差数列{a n }的公差为d ,由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4. ∴a 10+a 11=2a 1+19d =80.故选D.6.(2019·广州高中综合测试)等差数列{a n }的各项均不为零,其前n 项和为S n .若a 2n +1=a n +2+a n ,则S 2n+1=( ) A .4n +2 B .4n C .2n +1D .2n解析:选A 因为{a n }为等差数列,所以a n +2+a n =2a n +1,又a 2n +1=a n +2+a n ,所以a 2n +1=2a n +1.因为数列{a n }的各项均不为零,所以a n +1=2,所以S 2n +1=(a 1+a 2n +1)(2n +1)2=2×a n +1×(2n +1)2=4n +2.故选A.7.已知等差数列5,427,347,…,则前n 项和S n =________.解析:由题知公差d =-57,所以S n =na 1+n (n -1)2d =514(15n -n 2).答案:514(15n -n 2)8.已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 解析:∵a 3+a 5=2a 4,∴a 4=0.∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:69.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 510.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910,a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10.答案:1011.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16.12.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, ∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n (-4+3n -7)2=n (3n -11)2.B 级1.设a n =(n +1)2,b n =n 2-n (n ∈N *),则下列命题中不正确的是( )A .{a n +1-a n }是等差数列B .{b n +1-b n }是等差数列C .{a n -b n }是等差数列D .{a n +b n }是等差数列解析:选D 对于A ,因为a n =(n +1)2,所以a n +1-a n =(n +2)2-(n +1)2=2n +3, 设c n =2n +3, 所以c n +1-c n =2.所以{a n +1-a n }是等差数列,故A 正确;对于B ,因为b n =n 2-n (n ∈N *),所以b n +1-b n =2n , 设c n =2n ,所以c n +1-c n =2,所以{b n +1-b n }是等差数列,故B 正确; 对于C ,因为a n =(n +1)2,b n =n 2-n (n ∈N *), 所以a n -b n =(n +1)2-(n 2-n )=3n +1, 设c n =3n +1,所以c n +1-c n =3, 所以{a n -b n }是等差数列,故C 正确;对于D ,a n +b n =2n 2+n +1,设c n =a n +b n ,c n +1-c n 不是常数,故D 错误.2.(2019·武汉调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析:设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12. 答案:-123.(2018·辽宁五校协作体模考)已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根.(1)求数列{a n }的前n 项和S n ;(2)在(1)中,设b n =S n n +c ,求证:当c =-12时,数列{b n }是等差数列.解:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根,∴a 1=1,a 2=5,∴等差数列{a n }的公差为4, ∴S n =n ×1+n (n -1)2×4=2n 2-n .(2)证明:当c =-12时,b n =S nn +c=2n 2-n n -12=2n ,∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为首项,2为公差的等差数列.。
等差数列及其前n项和
等差数列及其前n项和1.等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n+1-a n=d(n∈N*,d为常数).(2)等差中项:由三个数a,A,b组成的等差数列可以看成是最简单的等差数列,这时A叫做a与b的等差中项,根据等差数列的定义可以知道,2A=a+b.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)d2=n(a1+a n)2.3.等差数列的性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md 的等差数列.(4)若S n为等差数列{a n}的前n项和,则数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)若S n为等差数列{a n}的前n.1.已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列,且公差为p.2.在等差数列{a n}中,a1>0,d<0,则S n存在最大值;若a1<0,d>0,则S n存在最小值.3.等差数列{a n}的单调性:当d>0时,{a n}是递增数列;当d<0时,{a n}是递减数列;当d=0时,{a n}是常数列.4.数列{a n}是等差数列⇔S n=An2+Bn(A,B为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(2)等差数列{a n}的单调性是由公差d决定的.()(3)数列{a n}为等差数列的充要条件是其通项公式为n的一次函数.()(4)等差数列的前n项和公式是常数项为0且关于n的二次函数.()答案(1)√(2)√(3)×(4)×解析(3)若公差d=0,则通项公式不是n的一次函数.(4)若公差d=0,则前n项和不是n的二次函数.2.(2022·福州质检)在等差数列{a n}中,若a1+a2=5,a3+a4=15,则a5+a6=()A.10B.20C.25D.30答案C解析等差数列{a n}中,每相邻2项的和仍然构成等差数列,设其公差为d,若a1+a2=5,a3+a4=15,则d=15-5=10,因此a5+a6=(a3+a4)+d=15+10=25.3.(2022·青岛一模)记S n为等差数列{a n}的前n项和,若a1=1,S3=92则数列{a n}的通项公式a n=()A.nB.n+12C.2n-1D.3n-12答案B解析设等差数列{a n}的公差为d,则S3=3a1+3×22d=3+3d=92,解得d=12,∴a n=1+(n-1)×12=n+12.4.(2021·杭州二模)已知{a n}是等差数列,满足3(a1+a5)+2(a3+a6+a9)=18,则该数列的前8项和为()A.36B.24C.16D.12答案D解析由等差数列性质可得a1+a5=2a3,a3+a6+a9=3a6,所以3×2a3+2×3a6=18,即a3+a6=3,所以S8=8(a1+a8)2=8(a3+a6)2=12.5.(多选)设{a n}是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论正确的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值答案ABD解析S6=S5+a6>S5,则a6>0,S7=S6+a7=S6,则a7=0,则d=a7-a6<0,S8=S7+a8<S7,a8<0,则a9<0,又a6+a8=a5+a9=2a7=0,∴S5>S9,由a7=0,a6>0知S6,S7是S n中的最大值.从而ABD均正确.6.一物体从1960m的高空降落,如果第1秒降落4.90m,以后每秒比前一秒多降落9.80m,那么经过________秒落到地面.答案20解析设物体经过t秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t+12t(t-1)×9.80=1960,即4.90t2=1960,解得t=20.考点一等差数列的基本运算1.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.-12B.-10C.10D.12答案B解析设等差数列{a n}的公差为d,则3(3a1+3d)=2a1+d+4a1+6d,即d=-3 2 a1.又a1=2得∴d=-3,∴a5=a1+4d=2+4×(-3)=-10.2.(2021·武汉调研)已知等差数列{a n}的前n项和为S n,若S8=a8=8,则公差d=()A.1 4B.12C.1D.2答案D解析∵S8=a8=8,∴a1+a2+…+a8=a8,∴S7=7a4=0,则a4=0.∴d=a8-a48-4=2.3.(2020·全国Ⅱ卷)记S n为等差数列{a n}的前n项和.若a1=-2,a2+a6=2,则S10=________.答案25解析设等差数列{a n}的公差为d,则a2+a6=2a1+6d=2×(-2)+6d=2.解得d=1.所以S10=10×(-2)+10×92×1=25.4.(2020·新高考全国Ⅰ卷)将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为__________.答案3n2-2n解析法一(观察归纳法)数列{2n-1}的各项为1,3,5,7,9,11,13,…;数列{3n-2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列,则a n=1+6(n-1)=6n-5.故前n项和为S n=n(a1+a n)2=n(1+6n-5)2=3n2-2n.法二(引入参变量法)令b n=2n-1,c m=3m-2,b n=c m,则2n-1=3m-2,即3m=2n+1,m必为奇数.令m=2t-1,则n=3t-2(t=1,2,3,…).a t=b3t-2=c2t-1=6t-5,即a n=6n-5.以下同法一.感悟提升 1.等差数列的通项公式及前n项和公式共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二等差数列的判定与证明例1(2021·全国甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n-1)2d=n2a1.因为数列{a n}的各项均为正数,所以S n=n a1,所以S n+1-S n=(n+1)a1-n a1=a1(常数),所以数列{S n}是等差数列.①②⇒③.已知{a n}是等差数列,{S n}是等差数列.设数列{a n}的公差为d,则S n=na1+n(n-1)2d=12n2d+a1-d2.因为数列{S n}是等差数列,所以数列{S n}的通项公式是关于n的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n≥2时,S n=b nb n-1,代入2S n+1b n=2可得,2b n-1b n+1b n=2,整理可得2b n-1+1=2b n,即b n-b n-1=12(n≥2).又2S1+1b1=3b1=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)解由(1)可知,b n=32+12(n-1)=n+22,则2S n+2n+2=2,所以S n=n+2n+1,当n=1时,a1=S1=3 2,当n≥2时,a n=S n-S n-1=n+2n+1-n+1n=-1n(n+1).故a n 32,n=1,-1n(n+1),n≥2.考点三等差数列的性质及应用角度1等差数列项的性质例2(1)设S n为等差数列{a n}的前n项和,且4+a5=a6+a4,则S9等于() A.72 B.36 C.18 D.9答案B解析∵a6+a4=2a5,∴a5=4,∴S9=9(a1+a9)2=9a5=36.(2)在等差数列{a n}中,若a5+a6=4,则log2(2a1·2a2·…·2a10)=()A.10B.20C.40D.2+log25答案B解析由等差数列的性质知a1+a10=a2+a9=a3+a8=a4+a7=a5+a6=4,则2a1·2a2·…·2a10=2a1+a2+…+a10=25(a5+a6)=25×4,所以log2(2a1·2a2·…·2a10)=log225×4=20.角度2等差数列前n项和的性质例3(1)已知等差数列{a n}的前n项和为S n.若S5=7,S10=21,则S15等于() A.35 B.42 C.49 D.63答案B解析在等差数列{a n}中,S5,S10-S5,S15-S10成等差数列,即7,14,S15-21成等差数列,所以7+(S15-21)=2×14,解得S15=42.(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块答案C解析设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3402(块).角度3等差数列前n 项和的最值例4等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解法一设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 21=-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称.由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三设公差为d .由解法一可知d =-213a 1.要使S n n ≥0,n +1≤0,1+(n -1-213a 0,1+-213a 0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四设公差为d.由S3=S11,可得2a1+13d=0,即(a1+6d)+(a1+7d)=0,故a7+a8=0,又由a1>0,S3=S11可知d<0,所以a7>0,a8<0,所以当n=7时,S n最大.感悟提升 1.项的性质:在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.2.和的性质:在等差数列{a n}中,S n为其前n项和,则(1)S2n=n(a1+a2n)=…=n(a n+a n+1);(2)S2n-1=(2n-1)a n.(3)依次k项和成等差数列,即S k,S2k-S k,S3k-S2k,…成等差数列.3.求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n项和S n=An2+Bn(A,B为常数,A≠0)为二次函数,通过二次函数的性质求最值.训练2(1)(多选)(2022·淄博调研)已知等差数列{a n}的公差为d,前n项和为S n,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数也为定值的是() A.a7 B.a8 C.S13 D.S15答案AC解析由题知a2+a8+a11=a1+d+a1+7d+a1+10d=3a1+18d=3(a1+6d)=3a7,∴a7是定值,∴S13=13(a1+a13)2=13a7是定值,故选AC.(2)(2022·重庆诊断)已知S n是等差数列{a n}的前n项和,若a1=-2020,S20202020-S20142014=6,则S2023等于()A.2023B.-2023C.4046D.-4046答案C解析d′,则S20202020-S20142014=6d′=6,∴d′=1,首项为S11=-2020,∴S20232023=-2020+(2023-1)×1=2,∴S2023=2023×2=4046,故选C.(3)设等差数列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若数列{S n}也为等差数列,则S n+10a2n的最大值是________.答案121解析设数列{a n}的公差为d,依题意得2S2=S1+S3,∴22a1+d=a1+3a1+3d,把a1=1代入求得d=2,∴a n=1+(n-1)×2=2n-1,S n=n+n(n-1)2×2=n2,∴S n+10a2n=(n+10)2(2n-1)2==12(2n-1)+2122n-12≤121.∴S n+10a2n的最大值是121.。
第2讲-等差数列及其前n项和
第2讲-等差数列学习提纲与学习目标1、掌握等差数列的定义、通项公式和前n项和公式的求法2、熟练掌握等差数列的性质,并能利用这些性质解决相应问题1.等差数列的定义对于数列{}n a ,如果对任意的*1()n n N ≥∈,都有1n n a a d +-=(常数),则称{}n a 为等差数列,常数d 叫这个等差数列的公差。
如,,a b c 三个数成等差数列,则称b 为,a c 的等差中项。
2.等差数列的通项公式若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为1(1)n a a n d =+-。
3.等差数列的前n 项和公式2111()(1)()2222n n n a a n n d d d S na n a n +-==+=+-;4. 数列{}n a 是等差数列2n S An Bn ⇔=+(,A B 为常数)nS n⇔为等差数列。
5.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(3)a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.例1(1)(2018全国I )设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【解析】(1)32433343332133233()S S S S S a a S S d S d a d a d d =+⇒=-++=+⇒=⇒=⇒+=, 因12a =,故3d =-,故51410a a d =+=-,选C 。
等差数列通项和前n项总结方法
3 A 数 学 教 育 高 三(文) 通项与前n 项和方法总结题型一:分组求和分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.例1、 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…3 A 做题法:拓展变式练习1、求和:1357(1)(21)n n S n =-+-+-+--题型二:倒序相加法倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例1、求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值3 A 做题法:拓展变式练习1、已知22()1x f x x=+,则111(1)(2)(3)(4)()()()234f f f f f f f ++++++=______;题型三:错位相减法错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).例1、 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S3 A 做题法:拓展变式练习1、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.题型四:裂项相消法裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++;②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++; ⑥2122(1)2(1)11n n n n n n n n n +-=<<=--+++-. 例1、 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.3 A 做题法:拓展变式练习1、求和:1111447(32)(31)n n +++=⨯⨯-⨯+ ;2、在数列{}n a 中,11++=n n a n ,且S n=9,则n =_____ ;题型五:通项转换法通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
等差数列通项公式前n项和公式
等差数列通项公式前n项和公式等差数列通项公式前n项和公式是指当给定一个等差数列:a1, a2, a3, a4, ... an时,对这个数列的前n项之和Sn可以用如下公式表示:Sn = n/2 * (a1 + an)其中,a1代表数列的第一项,an代表数列的第n项。
要说明等差数列通项公式前n项和公式,首先我们必须了解什么是等差数列。
等差数列就是指在数列中,相邻两项之差都是固定值,也就是d,即:a1, a2, a3,a4, ... an,其中,满足a2-a1=a3-a2=a4-a3=...=an-an-1=d;d不等于0,则称该数列为等差数列。
等差数列通项公式前n项和公式就是指给定一个等差数列:a1, a2, a3, a4, ... an,用如下公式来表示这个数列的前n项之和Sn:Sn = n/2 * (a1 + an)其中,a1代表数列的第一项,an代表数列的第n项。
这个公式有其特定的使用条件,即给定的数列应该是一个等差数列,而且d不能等于0,否则就不能使用这个公式来求解。
举个例子来说明,比如给定一个等差数列:a1 = 2, a2 = 4, a3 = 6, a4 = 8, a5 = 10,其中,d = 2,即a2-a1=a3-a2=a4-a3=a5-a4=2,此时我们可以使用等差数列通项公式前n项和公式来求解这个数列的前5项之和Sn。
根据等差数列通项公式前n项和公式,Sn = n/2 * (a1 + an),这里n=5,a1=2,an=10,于是Sn = 5/2 * (2+10) = 30。
从上面的例子可以看出,等差数列通项公式前n项和公式的使用方法非常简单,只需要将给定的数列的第一项和最后一项代入公式,就可以得到这个数列的前n项之和。
等差数列通项公式前n项和公式的使用非常广泛,它可以帮助我们快速的求解等差数列的前n项之和,大大减少了计算量,极大的提高了计算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的通项与前n项和等差数列在数学中是常见且重要的概念。
它的特点是每一项与它的前一项之差都是一个常数,这个常数称为公差。
等差数列的通项以及前n项和是我们在解决相关问题时必须要了解和掌握的基础知识点。
本文将介绍等差数列的通项和前n项和的计算方法,同时提供一些实例来加深理解。
一、等差数列的通项公式
我们先来看等差数列的通项公式,也就是表示第n项的公式。
假设等差数列的首项为a1,公差为d,任意一项的序号为n,那么第n项的通项公式可以用如下表达式表示:
an = a1 + (n-1)d
在这个公式中,通过给定首项和公差,我们可以计算出等差数列的任意一项。
例如,如果等差数列的首项a1为2,公差d为3,那么第n项的通项公式为:an = 2 + (n-1)3
二、等差数列的前n项和公式
求解等差数列的前n项和是我们在数学中常常会遇到的问题。
已知等差数列的首项为a1,公差为d,前n项和为Sn,那么前n项和的计算公式可以用如下表达式表示:
Sn = (n/2)(a1 + an)
在这个公式中,通过给定首项、公差和项数,我们可以计算出等差数列的前n项和。
例如,如果等差数列的首项a1为2,公差d为3,前n项和Sn为20,那么前n项和的计算公式为:20 = (n/2)(2 + (n-1)3)
三、实例分析
为了更好地理解等差数列的通项与前n项和的计算方法,我们来看几个实例。
实例一:
已知等差数列的首项为3,公差为4,求该数列的第10项和前10项的和。
解:
根据等差数列的通项公式:an = a1 + (n-1)d,我们可以求得第10项为:
a10 = 3 + (10-1)4 = 3 + 9*4 = 3 + 36 = 39
根据等差数列的前n项和公式:Sn = (n/2)(a1 + an),我们可以求得前10项的和为:
S10 = (10/2)(3 + 39) = (5)(42) = 210
所以,该等差数列的第10项为39,前10项的和为210。
实例二:
已知等差数列的首项为-2,公差为2,求该数列的第15项和前15项的和。
解:
根据等差数列的通项公式:an = a1 + (n-1)d,我们可以求得第15项为:
a15 = -2 + (15-1)2 = -2 + 14*2 = -2 + 28 = 26
根据等差数列的前n项和公式:Sn = (n/2)(a1 + an),我们可以求得前15项的和为:
S15 = (15/2)(-2 + 26) = (7.5)(24) = 180
所以,该等差数列的第15项为26,前15项的和为180。
综上所述,等差数列的通项与前n项和是我们解决相关问题时必须要掌握的内容。
通过等差数列的通项公式和前n项和公式,我们可以方便地计算出数列的任意一项以及前n项的和。
在实际应用中,这些公式能够帮助我们更加高效地解决数学和科学等领域中的问题。