专题19立体几何中平行与垂直(解析版)

专题19立体几何中平行与垂直(解析版)
专题19立体几何中平行与垂直(解析版)

专题19立体几何中平行与垂直(解析版)

在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。

立体几何中平行与垂直的易错点

易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一

谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。

易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视

",//,"a a b b αα??三个条件中的某一个。

易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一

谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;

题组一:基本性质定理

1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD

⊥平面ABCD ,M 是线段ED 的中点,则( )

A .BM =EN ,且直线BM 、EN 是相交直线

B .BM ≠EN ,且直线BM ,EN 是相交直线

C .BM =EN ,且直线BM 、EN 是异面直线

D .BM ≠EN ,且直线BM ,EN 是异面直线

【解析】 如图所示,联结,.因为点为正方形

的中心,为正三角形,平面平

面,是线段的中点,所以平面

,平面,

因为是中边上的中线,是中

边上的中线,直线,是相交直线,设,则,

BE BD N ABCD ECD △ECD ⊥ABCD M ED BM ?BDE EN ?BDE BM BDE △DE EN BDE △BD BM EN DE a =2BD a =

, 所以,, 所以.故选B . 2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是

A .α内有无数条直线与β平行

B .α内有两条相交直线与β平行

C .α,β平行于同一条直线

D .α,β垂直于同一平面

【解析】 对于A ,内有无数条直线与平行,则与相交或,排除; 对于B ,内有两条相交直线与平行,则;

对于C ,,平行于同一条直线,则与相交或,排除;

对于D ,,垂直于同一平面,则与相交或,排除.

故选B .

3.(2013新课标Ⅱ)已知为异面直线,⊥平面,⊥平面.直线满足,

,则( )

A .∥且∥

B .⊥且⊥

C .与相交,且交线垂直于

D .与相交,且交线平行于

【解析】 作正方形模型,为后平面,为左侧面

可知D 正确.

4.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:

①如果m n ⊥,m α⊥,n β∥,那么αβ⊥.

②如果m α⊥,n α∥,那么m n ⊥.

③如果a β∥,m α?,那么m β∥.

④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等.

BE =

=2

BM a

=

EN a ==BM EN ≠αβαββα∥αββα∥αβαββα∥αβαββα∥,m n m αn βl ,l m l n ⊥⊥,l l αβ??αβl ααβl βαβl αβl αβ

其中正确的命题有 .(填写所有正确命题的编号)

【解析】 ②③④【解析】对于命题①,可运用长方体举反例证明其错误:

如图,不妨设AA '为直线m ,CD 为

直线n ,ABCD 所在的平面为α.

ABC D ''所在的平面为β,显然这些

直线和平面满足题目条件,但αβ⊥不成立.

命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则l n ∥, 由m α⊥,有m l ⊥,从知m n ⊥结论正确.

由平面与平面平行的定义知命题③正确.

由平行的传递性及线面角的定义知命题④正确.

题组二:线面平行

6.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面

三角形ABCD ,12

AB BC AD ==,90BAD ABC ∠=∠=,E 是PD 的中点. (1) 证明:直线CE ∥平面PAB ;

【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,

12EF AD =

.由90BAD ABC ∠=∠=得BC AD ∥,又12

BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ?平面PAB ,CE ?平面PAB ,故CE ∥平面PAB . 7.(2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,

E 为PD 的中点.

(Ⅰ)证明:PB ∥平面AEC ;

E

M D C B A

P

【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .

因为ABCD 为矩形,所以O 为BD 的中点.

又E 为PD 的中点,所以EO ∥PB .

EO ?平面AEC ,PB ?平面AEC ,所以PB ∥平面AEC .

8.(2013新课标Ⅱ)如图,直三棱柱中,分别是的中点,

(Ⅰ)证明://平面;

【解析】(Ⅰ)连结,交于点O ,连结DO ,则O 为的中点,

因为D 为AB 的中点,所以OD ∥,又因为OD 平面,

平面,所以 //平面;

9.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,

E 为PD 的中点.

(Ⅰ)证明:PB ∥平面AEC ;

【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .

因为ABCD 为矩形,所以O 为BD 的中点.

又E 为PD 的中点,所以EO ∥PB .

EO ?平面AEC,PB ?平面AEC ,所以PB ∥平面AEC .

10.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,

=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =,

111ABC A B C -,D E 1,AB

BB 12

AA AC CB AB ===1BC 1A CD

A 1

1AC 1A C 1AC 1BC

?1A CD 1BC ?1A CD 1BC 1A CD

N 为PC 的中点.(Ⅰ)证明MN 平面PAB ;

【解析】(Ⅰ)由已知得232==AD AM ,取

BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==

BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为?AT 平面PAB ,?MN 平面PAB ,所以//MN 平面PAB .

11.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;

【解析】 (1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =B 1C .

又因为N 为A 1D 的中点,所以ND =A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN 平面EDC 1,所以MN ∥平面C 1DE .

P

A

B D

C N

M 1212

===?

题组三线线垂直

12.(2013新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.

(Ⅰ)证明1AB A C ⊥;

【解析】(Ⅰ)取AB 中点E ,连结CE ,,,

∵AB =,=,∴是正三角形,

∴⊥AB , ∵CA =CB , ∴CE ⊥AB ,

∵=E ,∴AB ⊥面, ∴AB ⊥;

13.(2012新课标)如图,直三棱柱111C B A ABC -中,112

AC BC AA ==

,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;

【解析】(Ⅰ)在Rt DAC ?中,AD AC =,得:45ADC ?∠=

同理:1114590A DC CDC ??∠=?∠=

得:111,DC DC DC BD DC ⊥⊥?⊥面1BCD DC BC ?⊥

15.(2011新课标)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=?,

2AB AD =,PD ⊥底面ABCD .

(Ⅰ)证明:PA BD ⊥;

1A B 1A E 1AA 1BAA ∠0

601BAA ?1A E 1CE A E ?1CEA 1A

C A C B

1B 1A D

1

C

【解析】(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得BD =

从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD

所以BD ⊥平面P AD . 故 P A ⊥BD

题组四?:线面垂直

16.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,

点E ,F 分别在AD ,CD 上,54

AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF

折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;

【解析】(I )证明:∵54

AE CF ==,∴AE CF AD CD =,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,

∴EF DH ⊥,∴EF D H '⊥.

∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AE OH OD AO =

?=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥.

又∵OH EF H =,∴'D H ⊥面ABCD .

17.(2018全国卷Ⅱ)如图,在三棱锥-P ABC 中,==AB BC PA PB PC ===

4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;

【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥

,且OP =

连结OB

.因为AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122

OB AC ==.由222OP OB PB +=知PO OB ⊥. 由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .

18.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;

【解析】 (1)由已知得,平面,平面,

故.又,所以平面.

题组五:面面垂直

18.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ;

O M P

C

B

A

11B C ⊥11ABB A BE ?11ABB A 11B C ⊥BE 1BE EC ⊥BE ⊥11EB

C

【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .

又AF ?平面ABEF ,故平面ABEF ⊥平面EFDC .

20.(2019全国Ⅲ理19)图1是由矩形ADEB 、

R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.

(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;

【解析】 (1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从

而A ,C ,G ,D 四点共面.由已知得AB BE ,AB BC ,故AB 平面BCGE .

又因为AB 平面ABC ,所以平面ABC 平面BCGE .

21.(2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,

以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.

(1)证明:平面PEF ⊥平面ABFD ;

【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .

又BF ?平面ABFD ,所以平面PEF ⊥平面ABFD .

22.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面

垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;

⊥⊥⊥?⊥P

F E

D

C B A M

D

C B A

【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .

因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .

又BC CM =C ,所以DM ⊥平面BMC .

而DM 平面AMD ,故平面AMD ⊥平面BMC .

23.(2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,

且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;

【解析】(1)由已知90BAP CDP ∠=∠=?,得AB ⊥AP ,CD ⊥PD .

由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD .

又AB ?平面P AB ,所以平面P AB ⊥平面P AD .

24.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ?是正三角形,ACD ?是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;

【解析】(1)由题设可得,ABD CBD ???,从而AD DC =.

又ACD ?是直角三角形,所以0=90ACD ∠

取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =.

又由于ABC ?是正三角形,故BO AC ⊥.

所以DOB ∠为二面角D AC B --的平面角.

??D C

A P

A

B

C D

E

在Rt AOB ?中,222BO AO AB +=.

又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.

所以平面ACD ⊥平面ABC .

25(2015新课标Ⅰ)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同

一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ;

【解析】(Ⅰ)连接BD ,设BD AC G ,连接,,EG FG EF .

在菱形ABCD 中,不妨设1GB ,由120∠=ABC ,可得3AG

GC , 由⊥BE 平面ABCD ,AB

BC 可知,AE EC , 又∵⊥AE EC ,∴3EG

,⊥EG AC , 在Rt EBG ?中,可得2BE ,故22DF .在Rt FDG ?中,可得62

FG . 在直角梯形BDFE 中,由2BD ,2BE ,22DF ,可得322

EF , ∴222EG FG EF +=,∴EG ⊥FG ,

∵AC ∩FG =G ,∴EG ⊥平面AFC ,

∵EG ?面AEC ,∴平面AFC ⊥平面AEC .

高中立体几何证明平行的专题

D B A 1 A F 立体几何——平行的证明 【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 【例2】如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC。 (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分 析 : 连 EA , 易 证 C 1EAD 是 平 行 四 是 (第1题图)

P E D C B A MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFG 求证: AB 1 ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//= 1 2 AD BE //= 12 AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行 四边形的性质 【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O 2 1 中点为PD E 求证:AE ∥平面PBC ; 分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形 【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90?,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。若M是线段AD的中点,求证:GM∥平面ABFE; (I )证法一: 因为 EF 90ACB ∠=? 90,EGF ABC ∠=??. EFG ?BC FG 2 1= ABCD BC AM 2 1=FA ?GM ? A B C D E F G M

立体几何中的平行与垂直(测试卷)

1.如图,在正方体ABCD-A1B1C1D1中,给出以下四个结论: (1)直线D1C∥平面A1ABB1; (2)直线A1D1与平面BCD1相交; (3)直线AD⊥平面D1DB; (4)平面BCD1⊥平面A1ABB1 . 上述结论中,所有正确结论的序号为__________. 2.在所有棱长都相等的三棱锥P-ABC中,D,E,F分别是AB,BC,CA的中点,下列四个命题: (1)BC∥平面PDF;(2)DF∥平面PAE;(3)平面PDF⊥平面ABC; (4)平面PDF⊥平面PAE. 其中正确命题的序号为__________. 解析:由条件可证BC∥DF ,则BC∥平面PDF ,从而(1)正确;因为DF 与AE相交,所以(2)错误;取DF 中点M(如图),则PM⊥DF ,且可证PM与AE不垂直,所以(3)错误;而DM⊥PM,DM⊥AM,则DM⊥平面PAE.又DM?平面PDF ,故平面PDF ⊥平面PAE,所以(4)正确.综上所述,正确命题的序号为(1)(4).

3.如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,其中正确命题的序号为__________. ①|BM|是定值; ②点M在圆上运动; ③一定存在某个位置,使DE⊥A1C; ④一定存在某个位置,使MB∥平面A1DE. 解析:取DC中点N,连接MN,NB,则MN∥A1D,NB∥DE,所以平面MNB∥平面A1DE, 4.(2017·苏锡常镇二模)如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°. (1)求证:AB⊥平面EDC; (2)若P为FG上任一点,证明:EP∥平面BCD.

最新空间几何—平行垂直证明(高一)

空间几何平行垂直证明专题训练知识点讲解 (一)直线与直线平行的证明 1)利用某些平面图形的特性:如平行四边形的对边互相平行 2)利用三角形中位线性质 3)利用空间平行线的传递性:m//a,m//b = a//b 平行于同一条直线的两条直线互相平行。 4)利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 a II - ' a= a II b -b - 5)利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. -// I _ o(nY = a〉= a // b 6)利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行 a _ :' b _ = a // b 7)利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行 8)利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 两个平面互相平行,则其中一个平面内的任一直线平行于另 (二)平面与平面平行的证明 常见证明方法: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 、“垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如 直角三角形的两条直角边互相垂直 等。 2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质: 1) 利用直线与平面平行的判定定理: 2) a // b 丿 利用平面与平面平行的性质推论: 个平面 3) 1) 利用平面与平面平行的判定定理: 2) 3) // // b = P :?:〃: 利用某些空间几何体的特性:如 利用定义:两个平面没有公共点 利用定义:直线在平面外,

专题4:立体几何中垂直关系的证明基础练习题

专题4:立体几何中垂直关系的证明基础练习题 1.如图,在四棱锥P–ABCD中,P A⊥平面ABCD,AD⊥CD,AD//BC,P A=AD=CD=2, BC=3.E为PD的中点,点F在PC上,且 1 3 PF PC =,求证:CD⊥平面P AD. 2.如图所示,P是边长为1的正六边形ABCDEF所在平面外一点,1 PA=,P在平面ABC内的射影为BF的中点O.证明PA BF ⊥. 3.如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B 的任意一点,A1A=AB=2.求证:BC⊥平面A1AC. 4.如图,在三棱锥P-ABC中,CD AB ⊥,垂足为D,PO⊥底面ABC,垂足为O,且O在CD上,求证:AB PC ⊥.

5.已知AB是圆的直径,PA垂直圆所在的平面,C是圆上任一点.求证:平面ABC⊥平面PAC. 6.三棱锥P—ABC中,PO⊥面ABC,垂足为O,若PA⊥BC,PC⊥AB,求证: (1)AO⊥BC (2)PB⊥AC 7.P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC. 8.如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点.证明:平面AMD 平面BMC. 9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1,证明:BE⊥平面EB1C1

10.如图,在四棱锥P?ABCD 中,底面ABCD 为平行四边形,平面P AD ⊥平面ABCD ,P A =PD ,E 为AD 的中点.求证:PE ⊥BC . 11.如图所示,四面体ABCD 中,O 为BD 的中点,2AC BC CD BD ====,2AB AD ==,求证:AO ⊥平面BCD . 12.如图所示,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2AP AD AB BC ===,M 、N 分别为PC 、PB 的中点.求证:DM PB .

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

立体几何证明平行专题

A B C D B A 1 A F 立体几何证明平行专题训练 命题:*** 1. 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、PD 的中点. 求证:AF ∥平面PCE ; 2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:FG∥面BCD ; (Ⅱ)求证:BC⊥面CDE ; 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ) C 1D∥平面B 1FM. (Ⅱ)C 1D⊥BC; (第1题图)

4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 求证: //EB PAD 平面; 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE A B C D E F G M

P E D C B A 7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求 证 : AB 1ABEF ⊥ABCD ABEF ABCD 0 90,BAD FAB BC ∠=∠=//=12AD BE //=12AF ,G H ,FA FD //BC DHG 平面,,,C D F E 1C 2 1 中点为PD E 求证:AE ∥平面PBC ; 11、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND BN , 求证:MN ∥平面SDC 12、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;

高中数学立体几何平行与垂直练习题

立体几何-平行与垂直练习题 令狐采学 1. 空间四边形SABC 中,SO ⊥平面ABC ,O 为?ABC 的垂心, 求证:(1)AB ⊥平面SOC (2)平面SOC ⊥平面SAB 2. 如图所示,在正三棱柱ABC- A1B1C1中,E ,M 分别为BB1,A1C 的中点,求证: (1) EM ⊥平面A A1C1C; (2)平面A1EC ⊥平面AA1C1C ; 3. 如图,矩形ABCD 中,AD⊥平面ABE,BE=BC,F 为CE 上的点,且BF⊥平面ACE,G 为AC 与BD 的交点.(1)求证:AE⊥平面BCE.(2)求证:AE∥平面BFD. 4. 设P,Q 是边长为a 的正方体AC1的面AA1D1D,面A1B1C1D1的中心,如图, (1)证明PQ∥平面AA1B1B ;(2)求线段PQ 的长. 5. 如图,在四棱锥P-ABCD 中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(Ⅰ)当主视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的三视图.(要求标出尺寸);(Ⅱ)若M 为PA 的中点,求证:DM //面PBC . 6. 已知直四棱柱ABCD —A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F 为棱BB1的中点,M 为线段AC1的中点. 求证:(1)直线MF∥平面ABCD ;(2)平面AFC1⊥平面ACC1A1. 7. 如图,PA⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.

(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若二面角P-DC-A=45°,求证:MN⊥平面PDC. 8. 如图,在三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(1)求证:MN∥平面BCC1B1;(2)求证:MN⊥平面A1B1C;(3)求三棱锥M-A1B1C的体积. 9. 如图所示,在四棱锥S—ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD=2.求证:平面SAD⊥平面SBC. 10. 如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.(1) 求证:平面AB1C1⊥平面AC1;(2) 若AB1⊥A1C,求线段AC与AA1长度之比;(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由. 11. 如图,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC, (1)求证:平面ABD⊥平面ABC;(2)求二面角C-BD-A的余弦值. 12. 如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、D、N三点的平面交PC 于M,E为AD的中点.(1)求证:EN∥平面PCD;(2)求证:平面PBC⊥平面ADMN;(3)求平面PAB与平面ABCD所成

立体几何平行证明题

立体证明题(2) 1?如图,直二面角 D- AB- E中,四边形 ABCD是正方形,AE=EB F为CE上的点,且 BF丄 平面ACE (1)求证:AE丄平面BCE (2)求二面角 B-AC- E的余弦值. 2?等腰△ ABC中, AC=BC= r, AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C到P,得到四棱锥 P- ABFE且AP=BP*. (1) 求证:平面 EFP1平面 ABFE (2) 求二面角 B-AP- E的大小. 02

PADL 底面ABCD 且 ABCD 3?如图,在四棱锥 P- ABCD 中,底面是正方形,侧面 PA=PD=2 AD,若E 、F 分别为PC BD 的中点. (I) 求证:EF//平面PAD 4?如图:正△ ABC 与Rt △ BCD 所在平面互相垂直,且/ (1)求证:AB 丄CD

BCD=90°,Z CBD=30° 5?如图,在四棱锥 P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形 是平行四边形,/ ADC=120 , AB=2AD 6?如图,在直三棱柱 ABC- A i BQ 中,/ ACB=90°, AC=CB=CC2, E是 AB中点. (I)求证:AB丄平面A i CE (H)求直线 AG与平面A i CE所成角的正弦值. (1)求证:平面PADL平面PBD

7?如图,在四棱锥 P- ABCD中, PA丄平面 ABCD / DAB为直角,AB// CD, AD=CD=2AB=2 E, F分别为PC, CD的中点. (I)证明:AB丄平面BEF; (H)若PA=丄,求二面角 E- BD- C. 8?如图,在四棱锥 P-ABCD 中,PA丄平面 ABCD , PA=AB=AD=2,四边形 ABCD 满足 AB 丄 AD , BC // AD 且 BC=4,点 M 为 PC 中点. (1)求证:DM丄平面PBC ; BE (2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角 P- DE - B的 EC 2 余弦值为-?若存在,求出实数入的值;若不存在,请说明理由. 3

第2讲 空间中的平行与垂直

第2讲空间中的平行与垂直 高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题. 真题感悟 1.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则() A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 解析连接BD,BE, ∵点N是正方形ABCD的中心, ∴点N在BD上,且BN=DN, ∴BM,EN是△DBE的中线, ∴BM,EN必相交. 连接CM,设DE=a,则EC=DC=a,MC=3 2a,

∵平面ECD ⊥平面ABCD ,且BC ⊥DC , ∴BC ⊥平面EDC , 则BD =2a ,BE = a 2+a 2=2a , BM = ? ?? ?? 32a 2 +a 2=72a , 又EN = ? ????a 22 +? ?? ?? 32a 2 =a , 故BM ≠EN . 答案 B 2.(2019·全国Ⅰ卷)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________. 解析 如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离. 再过O 作OE ⊥AC 于E ,OF ⊥BC 于F , 连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC . 所以PE =PF =3,所以OE =OF , 所以CO 为∠ACB 的平分线, 即∠ACO =45°. 在Rt △PEC 中,PC =2,PE =3,所以CE =1, 所以OE =1,所以PO =PE 2-OE 2= (3)2-12= 2. 答案 2 3.(2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

空间中的平行与垂直

空间中的平行与垂直(文/理) 热点一空间线面位置关系的判定 空间线面位置关系判断的常用方法 (1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题; (2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. 例1(1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 (2)关于空间两条直线a、b和平面α,下列命题正确的是() A.若a∥b,b?α,则a∥α B.若a∥α,b?α,则a∥b C.若a∥α,b∥α,则a∥b D.若a⊥α,b⊥α,则a∥b 答案(1)D(2)D 解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交. (2)线面平行的判定定理中的条件要求a?α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D. 思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中. 跟踪演练1设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;

立体几何平行问题专题(学生版)

高三复习——立体几何平行问题专题(学生版) ——李洪波一、基础过关 1. 定理性质梳理 2.平行关系的总结 面面平行 线面平行线线平行

二、概念理解——判断下列命题真假 (1)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;( ) (2)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;( ) (3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点;( ) (4)平行于同一平面的两条直线互相平行;( ) (5)αα//,//a b b a ??; ( ) (6)b a b a ////,//?αα; ( ) (7)αα////,//a b b a ?; ( ) (8)b a b a //,//??αα; ( ) (9)已知平面 α,β 和直线 m ,若,//,m m αβ?,则 α

练习:如图13,正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 .求证:PQ∥平面BCE. 点P、Q,且AP DQ

解法二:(简要过程) A B C D F E P Q 解法三:(简要过程) A B C D F E P Q 四、举一反三 1.(17文科1)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 2.(17文科2)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC = 1 2 AD ,

∠BAD =∠ABC =90°.证明:直线BC∥平面PAD ; 3.(16文科3)如图,四棱锥中,平面,AD BC ,AB , 4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.证明MN 平面PAB .

立体几何平行垂直问题专题复习

立体几何平行、垂直问题【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题

一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l 与平面α互相垂直. 2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面 3.直线与平面垂直的性质定理 文字语言图形语言符号语言性质定理 垂直于同一个平面 的两条直线平行 ①直线垂直于平面,则垂直于平面内任意直

线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 【典例探究】 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中, ,,AP PC AC BC ⊥⊥M 为AB

F D E C1 A1 C A 中点,D 为PB 中点,且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 例 2. 如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =, 22AB =,M ,N 分别是棱1CC ,AB 中点. (Ⅰ)求证:CN ⊥平面11ABB A ; (Ⅱ)求证://CN 平面1AMB ; (Ⅲ)求三棱锥1B AMN -的体积. 【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ?为等腰直角 三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。 (1)求证://DE 平面ABC ; (2)求证:⊥F B 1平面AEF ; (3)设AB a =,求三棱锥D AEF -的体积。 二、线面平行与垂直的性质 例3、如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,225AB DC == A B C A 1 B 1 C 1 M N

16-17版 第1部分 专题4 突破点11 空间中的平行与垂直关系

突破点11 空间中的平行与垂直关系 提炼1 异面直线的性质 (1)面内的两条直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)平行的性质定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线.

回访1异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为() A. 3 2 B. 2 2 C. 3 3 D. 1 3 A[设平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2.] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D[由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l

高中立体几何证明平行的专题训练1

高中立体几何证明平行的专题训练 立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质 (3)利用对应线段成比例。(4)利用面面平行,等等。 第一类 通过“平移”再利用平行四边形的性质 1. 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点. 求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1, BC =2,CD =1+ 3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, (第1题图)

D E B 1 A 1 C 1 C A B F M M 为BE 的中点, AC ⊥BE. 求证: (Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证 明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形 第二类 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥ 平面EFG 。 分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线 6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 A B C D E F G M

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

相关文档
最新文档