专题19立体几何中平行与垂直(解析版)

合集下载

(完整版)立体几何中平行与垂直证明方法归纳

(完整版)立体几何中平行与垂直证明方法归纳

c c ∥∥b a ba ∥⇒本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。

是一份不可多得的好资料。

一、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。

4)利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

5) 利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.6) 利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。

abαβba a =⋂⊂βαβα∥ba ∥⇒b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα βα⊥⊥b a ba ∥⇒αab7) 利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。

8) 利用定义:在同一个平面内且两条直线没有公共点(二)直线与平面平行的证明1) 利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2) 利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

3) 利用定义:直线在平面外,且直线与平面没有公共点(三)平面与平面平行的证明常见证明方法:1) 利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

αbaβαaβαα∥⊂a β∥a ⇒ααββ////∩⊂⊂b a P b a b a =αβ//⇒αβbaPb∥a b a αα⊂⊄α∥a ⇒2)利用某些空间几何体的特性:如正方体的上下底面互相平行等3)利用定义:两个平面没有公共点二、“垂直关系”常见证明方法(一)直线与直线垂直的证明1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。

探索立体几何中的平行与垂直关系

探索立体几何中的平行与垂直关系

探索立体几何中的平行与垂直关系在立体几何中,平行与垂直是两种基本的关系。

平行是指两条直线或两个平面在空间中永远不相交,而垂直则是指两条直线或一个直线与一个平面之间的相互垂直关系。

这两种关系在几何学中有着广泛的应用和研究价值。

本文将探索立体几何中的平行与垂直关系,并讨论它们的性质和特点。

1. 平行关系在空间中,两条直线或两个平面如果永远不相交,我们就称它们为平行关系。

平行关系具有以下性质:- 平行关系是相对的:两个物体的平行关系与观察者的视角有关。

对于一个观察者来说,两条直线可能是平行的,而对于另一个观察者来说,这两条直线可能不平行。

- 平行关系保持不变:平行关系在空间中是始终保持不变的,无论两个物体在空间中如何移动、旋转或缩放,它们之间的平行关系都不会发生改变。

- 平行线的性质:如果一条直线与另外两条直线平行,那么这两条直线也是平行的。

此外,如果两条直线分别与第三条直线平行,则这两条直线也是平行的。

- 平行面的性质:如果两个平面相交于一条直线,并且与另外一个平面平行,那么这两个平面也是平行的。

同样,如果两个平面分别与第三个平面平行,则这两个平面也是平行的。

2. 垂直关系垂直关系是指在空间中,两条直线或一个直线与一个平面之间的相互垂直关系。

垂直关系具有以下性质:- 垂直关系是相对的:两个物体的垂直关系也与观察者的视角有关。

对于一个观察者来说,两条直线或一个直线与一个平面可能是垂直的,而对于另一个观察者来说,它们可能不垂直。

- 垂直关系保持不变:垂直关系在空间中是始终保持不变的,无论两个物体如何移动、旋转或缩放,它们之间的垂直关系都不会发生改变。

- 垂直线的性质:如果一条直线与另外两条直线垂直,那么这两条直线也是垂直的。

此外,如果两条直线分别与第三条直线垂直,则这两条直线也是垂直的。

- 垂直面的性质:如果一个平面与另外两个平面相交于一条直线,并且与另外一个平面垂直,那么这两个平面也是垂直的。

同样,如果两个平面分别与第三个平面垂直,则这两个平面也是垂直的。

空间几何的平行与垂直解析几何的基本性质

空间几何的平行与垂直解析几何的基本性质

空间几何的平行与垂直解析几何的基本性质几何学是数学的一个分支,研究空间中的各种形状、大小、相对位置以及与它们相关的性质。

空间几何是其中的一个重要分支,主要研究空间中的点、线、面以及它们之间的关系。

平行与垂直是空间几何中的重要概念,下面将介绍平行和垂直的解析几何的基本性质。

一、平行线的解析几何性质平行线是指在同一个平面上永不相交的两条直线。

在解析几何中,我们可以利用坐标系来描述平行线的性质。

1. 两直线平行的判定条件在平面直角坐标系中,两条直线平行的条件为斜率相等。

假设直线L1的斜率为k1,直线L2的斜率为k2,若k1=k2,则直线L1与直线L2平行。

2. 平行线的性质(1)平行线之间的距离相等:设直线L1和直线L2分别为y=k1x+b1和y=k2x+b2,斜率相等且截距不相等,则直线L1与直线L2平行。

设点P1(x1, y1)和点P2(x2, y2)分别在直线L1和直线L2上,则点P1到直线L2的距离等于点P2到直线L1的距离。

(2)平行线的夹角为0度:两条平行线之间的夹角为0度。

二、垂直线的解析几何性质垂直线是指两条直线相交时互相垂直的性质。

同样,在解析几何中,我们可以利用坐标系来描述垂直线的性质。

1. 两直线垂直的判定条件在平面直角坐标系中,两条直线垂直的条件为斜率的乘积为-1。

假设直线L1的斜率为k1,直线L2的斜率为k2,若k1*k2=-1,则直线L1与直线L2垂直。

2. 垂直线的性质(1)直线与其法线的斜率互为相反数:设直线L的斜率为k1,直线L的法线的斜率为k2,则k1*k2 = -1。

(2)两条垂直线之间的夹角为90度:两条垂直线之间的夹角为90度。

三、平行与垂直的应用平行和垂直的概念在几何学中有广泛的应用。

在建筑、工程、地理学和艺术等领域中,平行和垂直关系的运用非常常见。

以建筑为例,建筑设计师在绘制平面图时需要准确地描述建筑物之间的相对位置。

这时,平行和垂直的概念就派上了用场。

设计师可以利用解析几何的性质来判断各个建筑物之间的平行和垂直关系,从而保证建筑的结构稳定和美观。

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定

立体几何基础平行与垂直的性质与判定立体几何基础——平行与垂直的性质与判定立体几何是数学中的一个重要分支,它研究的对象是在三维空间内的图形和物体。

在立体几何中,平行和垂直是两个基本概念,它们在判断和解决几何问题时起着重要的作用。

本文将介绍平行与垂直的性质和判定方法,帮助读者更好地理解立体几何的基础知识。

一、平行的性质与判定平行是指在同一平面内,两条直线永不相交的性质。

在立体几何中,我们常用平行性质来推导和证明定理。

以下是一些与平行相关的性质和判定方法。

1. 平行线性质:(1)平行线上的对应角相等:如果两条平行线被一条横截线所交,那么对应的角都是相等的。

(2)平行线上的内错角互补:如果两条平行线被一条横截线所交,那么内错角互补,即相互补充的角和为180度。

(3)平行线上的同旁内角相等:如果两条平行线被一条横截线所交,那么同旁内角相等,即相邻的内角相等。

2. 判定平行线的方法:(1)两条线段平行的充要条件是斜率相等:如果两条线段的斜率相等,那么它们是平行的。

(2)两个向量平行的充要条件是比值相等:如果两个向量的坐标分量比值相等,那么它们是平行的。

(3)两条直线互相垂直的充要条件是斜率乘积为-1:如果两条直线的斜率乘积为-1,那么它们互相垂直。

二、垂直的性质与判定垂直是指两条直线或线段在交点处互相成直角的性质。

垂直的性质在几何证明中经常被用到,下面是关于垂直的一些性质和判定方法。

1. 垂直线性质:(1)垂直线上的对应角互补:如果两条垂直线被一条横截线所交,那么对应的角互补,即相互补充的角和为90度。

(2)垂直线上的内角相等:如果两条垂直线被一条横截线所交,那么内角相等,即相邻的内角相等。

2. 判定垂直线的方法:(1)两条线段垂直的充要条件是斜率乘积为-1:如果两条线段的斜率乘积为-1,那么它们是垂直的。

(2)两个向量垂直的充要条件是内积为0:如果两个向量的内积为0,那么它们是垂直的。

三、平行和垂直在实际中的应用平行和垂直的性质在日常生活和工程实践中有广泛的应用。

立体几何中的平行与垂直

立体几何中的平行与垂直

立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。

立体几何中的平行与垂直关系

立体几何中的平行与垂直关系

立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是非常基本且重要的概念。

通过理解和应用这些关系,我们可以更好地解决与立体图形相关的问题。

本文将介绍平行和垂直关系的定义和性质,并通过实例进行说明,以帮助读者更好地理解和运用这些概念。

一、平行关系在立体几何中,当两个线、面或者空间图形之间的相对位置满足特定条件时,我们可以说它们是平行的。

具体而言,以下是平行关系的定义和性质:1. 定义:如果两条直线在同一平面内,且在平面内没有交点,那么这两条直线被称为平行线。

用简单的符号表示为"//"。

2. 性质:平行线具有以下重要性质:a) 平行线之间的距离始终相等。

也就是说,如果有一条直线与一组平行线相交,那么从这条直线到任意一条平行线的距离都相等。

b) 平行线夹角与其对应的第三条平行线夹角相等。

也就是说,如果有两组平行线相交,那么相交的两对对应线之间的夹角相等。

二、垂直关系垂直关系是平行关系的一种特殊情况。

当两条直线、面或者空间图形之间的相对位置形成直角时,我们可以说它们是垂直的。

具体而言,以下是垂直关系的定义和性质:1. 定义:如果两条直线或者平面相交时,相交的两条直线或者平面的交角为90°,那么它们被称为垂直的。

2. 性质:垂直关系具有以下重要性质:a) 垂直线之间的夹角是直角,即为90°。

b) 垂直平面之间的夹角也是直角。

通过理解和应用平行和垂直关系,我们可以在解决立体几何问题时更加便捷和准确。

以下是一些实例,用以说明如何运用平行和垂直关系:实例1:矩形的性质考虑一个矩形ABCD,其中AB平行于CD,AD平行于BC。

根据平行关系的性质,我们可以得出以下结论:a) AB和CD之间的距离相等。

b) AD和BC之间的距离相等。

c) AB和CD之间的夹角以及AD和BC之间的夹角都是直角。

d) 矩形的对角线AC和BD相交于O,而OA和OC以及OB和OD之间的夹角也都是直角。

推导立体几何中的平行与垂直关系

推导立体几何中的平行与垂直关系

推导立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是两个重要的几何概念。

本文将通过推导的方式来探讨平行和垂直之间的关系,从而更深入地理解它们在空间中的性质和应用。

1. 平行线的推导在立体几何中,平行线是指在同一个平面内永不相交的两条直线。

我们可以通过以下的推导过程来证明平行线之间的关系。

(省略推导过程,只列出结论)结论1:如果两条直线分别与一条第三条直线相交,并且这两个交点的两组内角互补或对顶角相等,那么这两条直线是平行的。

结论2:如果两条直线被一组平行线截断,并且这两组截断线的对应角互等,那么这两条直线是平行的。

结论3:如果两条直线被同一平面平行于第三条直线截断,并且截断线上的对应角互等,那么这两条直线是平行的。

2. 垂直关系的推导垂直关系是指两条线段、两个平面或两个立体体素之间的相互垂直性。

下面是垂直关系的推导过程。

结论4:如果两条线段的斜率相乘为-1,则它们是垂直的。

结论5:如果两个平面的法向量垂直,则这两个平面是垂直的。

结论6:如果两个立体体素的对应面之间的相交线段互相垂直,则这两个立体体素是垂直的。

通过上述的推导过程,我们可以明确平行线和垂直关系在立体几何中的性质和判定条件。

这些性质和条件在实际问题中有着广泛的应用,例如在建筑设计、空间规划和工程测量等领域。

总结起来,平行和垂直关系是立体几何中的重要概念。

通过推导我们可以得出平行线的判定条件和垂直关系的性质,从而更好地理解它们在空间中的应用。

对于解决实际问题和深入学习几何学来说,这些知识将会帮助我们更好地理解和应用平行和垂直的性质。

在实践中,我们可以通过几何题目的解答来进一步巩固对平行和垂直关系的理解。

通过本文的学习,相信读者对于立体几何中的平行和垂直关系有了更深入的认识。

在以后的学习和工作中,我们可以灵活运用这些概念和推导方法,更好地解决与立体几何相关的问题。

立体几何作为数学的一个重要分支,在应用中有着广泛的价值和意义。

因此,深入理解并掌握平行和垂直关系是我们学习立体几何的关键。

初二立体几何的平行与垂直关系

初二立体几何的平行与垂直关系

初二立体几何的平行与垂直关系立体几何是数学中的一个重要分支,它研究的是三维空间中的几何形状和其性质。

在立体几何中,平行与垂直关系是一个基础概念,对于我们理解立体图形的性质和应用具有重要意义。

本文将详细介绍初二阶段立体几何中的平行与垂直关系,帮助读者更好地理解和掌握相关知识。

一、平行关系1. 平行的定义在平面几何中,我们知道两条直线如果永不相交,那么它们是平行的。

类似地,在立体几何中,两个平面如果永不相交,那么它们也是平行的。

两个平行的平面可以近似地理解为平行于地面的两个水平板,它们之间的距离始终保持不变。

2. 平行关系的表示方法在数学中,平行关系可以用符号“||”表示。

例如,平面ABCD || 平面EFGH表示平面ABCD与平面EFGH是平行的。

3. 平行关系的性质平行关系具有以下性质:(1)平行关系具有传递性。

即如果平面A || 平面B,平面B || 平面C,则可得出平面A || 平面C。

(2)两个平行面之间的任意两条相交直线都是平行的。

这个性质在立体几何的证明中常常被使用。

二、垂直关系1. 垂直的定义在平面几何中,如果两条直线相交且交角为90度,那么我们称这两条直线为垂直线。

类似地,在立体几何中,两个平面如果相交且交线与两平面的交角都为90度,那么我们称这两个平面为垂直平面。

2. 垂直关系的表示方法在数学中,垂直关系可以用符号“⊥”表示。

例如,线段AB ⊥线段CD表示线段AB与线段CD是垂直的。

3. 垂直关系的性质垂直关系具有以下性质:(1)垂直关系具有对称性。

即如果线段AB ⊥线段CD,则可得到线段CD ⊥线段AB。

(2)在平行平面中,与同一条直线垂直的两条直线是平行的。

三、平行和垂直关系的应用平行和垂直关系在生活中和其他学科中有广泛的应用。

1. 建筑设计中,平行和垂直关系是设计师在设计房间平面图时必须要考虑的因素。

合理利用平行和垂直线,可以使房间具备更好的功能性和美观性。

2. 制图学中,平行和垂直线的运用对于绘制准确的图形至关重要。

押新高考第19题 立体几何(新高考)(解析版)

押新高考第19题 立体几何(新高考)(解析版)

立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上.1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 4.平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,C D 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).1.(2021·湖南·高考真题)如图,四棱锥中,底面ABCD 是矩形,平面ABCD ,E 为PD 的中点.(1)证明:平面ACE ;(2)设,,直线PB 与平面ABCD 所成的角为,求四棱锥的体积.【详解】 (1)连接交于点,连接. 在中,因为,所以,因为平面,平面,则平面.(2)因为平面ABCD ,所以就是直线PB 与平面ABCD 所成的角,所以,又,,所以,所以四棱锥的体积,所以四棱锥的体积为.2.(2021·天津·高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD 的中点.(I)求证:平面;(II)求直线与平面所成角的正弦值.(III)求二面角的正弦值.【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,,,,,,因为E为棱BC的中点,F为棱CD的中点,所以,,所以,,,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.3.(2021·浙江·高考真题)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,. (1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以.(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为.4.(2021·北京·高考真题)如图:在正方体中,为中点,与平面交于点.(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5.(2021·全国·高考真题)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量, 则即,取,则,故. 而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1.(2022·河北秦皇岛·二模)如图,在四棱锥P ABCD -中,PA AB ⊥,PC CD ⊥,BC AD ∥,23πBAD ∠=, 2PA AB BC ===,4=AD .(1)证明:PA ⊥平面ABCD .(2)若M 为PD 的中点,求二面角M AC D --的大小. 【解析】 (1)证明:由题可知ABC 为等边三角形,所以2AC =,3π∠=CAD .在ACD △中,由余弦定理得2224224cos 233CD π=+-⨯⨯=,所以222AC CD AD +=,所以CD AC ⊥. 因为CD PC ⊥,且ACPC C =,所以CD ⊥平面PAC .因为PA ⊂平面PAC ,所以CD PA ⊥. 因为PA AB ⊥,且,AB CD 相交, 所以PA ⊥平面ABCD . (2)以A 为坐标原点,以AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -则()3,1,0C,()0,2,1M .设平面MAC 的法向量为(),,n x y z =,则30,20,n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令1x =,得()1,3,23n =-. 取平面ACD 的一个法向量为()0,0,1m =, 则233cos ,142⋅<>===⨯m n m n m n. 由图可知二面角M AC D --为锐角,所以二面角M AC D --的大小为6π.2.(2022·湖南永州·三模)如图,在三棱柱111ABC A B C -中,112AB AA AC BC ====.(1)求证:11A B B C ⊥;(2)若2AC =,160ABB ∠=,点M 满足132AM MC =,求二面角11A A B M --的余弦值. 【解析】 (1)连接11,A B AB 交于点O ,连接OC ,四边形11ABB A 为菱形,11A B AB ∴⊥,O 为1A B 中点, 又1CA CB =,1A B OC ∴⊥, 1AB OC O =,1,AB CO ⊂平面1ACB ,1A B ∴⊥平面1ACB ,又1B C ⊂平面1ACB ,11A B B C ∴⊥. (2)160ABB ∠=,12AB AA ==,3OB ∴=,1OA =,在Rt OBC 中,222OC BC OB =-,1OC ∴=, 在OAC 中,有222OA OC AC +=,OC OA ∴⊥,又OA OB O =,,OA OB ⊂平面11ABB A ,OC ∴⊥平面11ABB A ,则以O 为坐标原点,,,OA OB OC 为,,x y z 轴可建立如图所示空间直角坐标系,则()1,0,0A ,()10,3,0A -,()11,0,0B -,()0,0,1C ,()11,3,1C --,()12,3,1AC ∴=--,设(),,M x y z ,则()1,,AM x y z =-,()11,3,1MC x y z =---,132AM MC =,()()()()3121323321x x y y z z ⎧-=--⎪⎪∴=-⎨⎪=-⎪⎩,解得:152325x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,1232,55M ⎛⎫∴ ⎪ ⎪⎝⎭,1133255A M ⎛⎫∴= ⎪ ⎪⎝⎭,()113,0A B =-,设平面11MA B 的法向量(),,n a b c =,1111332055530A M n a c A B n a b ⎧⋅=++=⎪∴⎨⎪⋅=-+=⎩,令1b =,解得:3a =3c =-(3,1,23n ∴=-;又OC ⊥平面11ABB A ,则平面11AA B 的一个法向量为()0,0,1m =,3cos ,2m n m n m n⋅∴<>==⋅,又二面角11A A B M --为锐二面角,∴二面角11A A B M --的余弦值为32. 3.(2022·江苏·南京市第一中学三模)在正三棱柱111ABC A B C -中,122AA AB ==.D 为1CC 中点,E 为1B D 上一点.(1)求四棱锥11A BB C C -的体积;(2)若1B E CE CD +=,求三棱锥1D AEC -的体积. 【解析】 (1)解:取BC 的中点为O ,因为三棱柱111ABC A B C -为正三棱柱,所以ABC 为正三角形,四边形11BB C C 为矩形,且1C C ⊥平面ABC , 所以1C C AO ⊥,AO BC ⊥,又1BC CC C =, 所以AO ⊥平面11BB C C ,即为四棱锥11A BB C C -的高, 又122AA AB ==,所以32AO =, 所以四棱锥11A BB C C -的体积11111133123323A BBC C BB C C V S AO -=⋅=⨯⨯⨯=;(2)解:因为1B E CE CD +=,即1B E CD CE ED =-=,所以E 为1B D 的中点,所以11111111111111133112223232224E ADC B ADC A B C D D AEC B C DV V V V SAO ----====⨯⨯=⨯⨯⨯⨯⨯=. 4.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-,易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC , 又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.5.(2022·福建·模拟预测)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,60BAD BPD ∠=∠=︒,2PB PD ==.(1)证明:平面PAC ⊥平面ABCD ;(2)若二面角P BD A --的余弦值为13,求二面角B PA D --的正弦值.【解析】 (1) 设ACBD O =,连接PO ,在菱形ABCD 中,O 为BD 中点,且BD AC ⊥, 因为PB PD =,所以BD PO ⊥, 又因为POAC O =,且PO ,AC ⊂平面PAC ,所以BD ⊥平面PAC ,因为BD ⊂平面ABCD ,所以平面PAC ⊥平面ABCD ; (2)作OM ⊥平面ABCD ,以{},,OA OB OM 为x ,y ,z 轴,建立空间直角坐标系,易知2PB PD BD AB AD =====,则3OA OP ==,1OB =, 因为OA BD ⊥,OP BD ⊥,所以POA ∠为二面角P BD A --的平面角,所以1cos 3POA ∠=,则326,0,33P ⎛⎫ ⎪ ⎪⎝⎭,()3,0,0A ,()0,1,0B ,()0,1,0D -,所以()3,1,0AD =--,()3,1,0AB =-,2326,0,33AP ⎛⎫=- ⎪ ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,由00m AB m AP ⎧⋅=⎨⋅=⎩,得1111302326033x y x z ⎧-+=⎪⎨-+=⎪⎩ 取11z =,则12x =,16y =,所以()2,6,1m =,设平面PAD 的法向量为()222,,n x y z =,由00n AD n AP ⎧⋅=⎨⋅=⎩,得2222302326033x y x z ⎧--=⎪⎨-+=⎪⎩ 取21z =,则22x =,26y =-,所以()2,6,1n =-,设二面角B PA D --为θ,则2611cos 3261261m n m nθ⋅-+===++⋅++⋅,又[]0,πθ∈,则222sin 1cos 3θθ=-=.(限时:30分钟)1.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【详解】(1)若选①:7AD =在Rt BCD 中,2BC =,1CD =,3BD =,2AB =, 可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 又因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且ADBD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD ,因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,因为AB BC ⊥,且AB平面ABC ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()3,2A ,()3,0B ,()1,0,0C -,13,,122M ⎛⎫- ⎪ ⎪⎝⎭,30,2N ⎛⎫⎪ ⎪⎝⎭可得1,0,02MN ⎛⎫= ⎪⎝⎭,30,1AN ⎛⎫=- ⎪ ⎪⎝⎭,30,BN ⎛⎫= ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则111102302m MN x m AN y z ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩,取13y =1130,2x z ==-,所以30,3,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则222102302n MN x n BN y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取23y =,可得30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n m n m n -⋅===⋅+,故二面角A MN B --的正弦值437.2.如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值. 【详解】(1)证明:因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.又∵正ABC 中,AM MC BM AC =⇒⊥,∴BM CDBM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD , ∴BM AN ⊥.(2)解:连接MD 交AN 于G 点,连接PG ,因为//BM平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.∴()0,0,0C ,3330,,22A ⎛⎫ ⎪ ⎪⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,∴13302233330222x y z x y z ⎧+-=⎪⎪⎨⎪--=⎪⎩,令4x =,则1,3y z == ∴()4,1,3n =,平面ABC 的法向量为()1,0,0u =,425cos ,51613u v ==++, ∴平面APN 与平面ABC 所成角的正弦值为55.3.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求三棱锥A MNB -的体积.【详解】(1)若选①:7AD =Rt BCD 中,2BC =,1CD =,可得3BD =,又由2AB =,所以222AB BD AD +=,所以AB BD ⊥,因为AB BC ⊥,且BC BD B =,,BC BC ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,所以//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,CD AD ⊥,因为CD BD ⊥,可证得CD ⊥平面ABD ,又M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,又由CD ⊂平面CBD ,所以AB CD ⊥,因为CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .(2)由(1)知MN ⊥平面ABD ,其中ABD △为直角三角形, 可得3122ANB ADB S S ==△△,1122MN CD ==, 故三棱锥A MNB -的体积为131332A MNB M ABN V V --===.4.如图,在四棱锥P ABCD -中,//AB CD ,AB ⊥平面PAD ,24PA AD DC AB ====,27PD =,M 是PC 的中点.(1)证明:平面ABM ⊥平面PCD ;(2)求三棱锥M PAB -的体积.【详解】(1)取PD 中点N ,连接MN ,AN ,因为PA AD =,所以AN PD ⊥,由AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥,又由AN AB A =,且,AN AB ⊂平面ABN ,所以PD ⊥平面ABN ,因为MN 是PCD ∆中位线,所以////AB CD MN ,四边形ABMN 是平行四边形,于是PD ⊥平而ABM ,PD ⊂平面PCD ,所以平面ABM ⊥平面PCD .(2)由(1)可得//MN AB ,且AB平面PAB ,所以//MN 平面PAB , 所以AB M P N PAB B NAP V V V ---==,因为AB ⊥平面PAD ,可得13B NAP NAP V S AB -∆=⨯, 又由4AP =,7=PN ,AN PD ⊥, 所以2473AN -=,137732NAP S ∆== 所以137273B NAP V -==5.如图,三棱柱111ABC A B C -中,13AA AB ==,2BC =,E ,P 分别是11B C 和1CC 的中点,点F 在棱11A B 上,且12B F =.(1)证明:1//A P 平面EFC ;(2)若1AA ⊥底面ABC ,AB BC ⊥,求二面角P CF E --的余弦值.【详解】(1)证明:如图,连接1PB 交CE 于点D ,连接DF ,EP ,1CB .因为E ,P 分别是11B C 和1CC 的中点, 故11//2EP CB ,故112PD DB =. 又12B F =,113A B =,故1112A F FB =,故1//FD A P . 又FD ⊂平面EFC ,所以1//A P 平面EFC . (2)由题意知AB ,BC ,1BB 两两垂直,以B 为坐标原点,以1BB 的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz -.则()0,2,0C ,()10,0,3B ,()2,0,3F ,()0,1,3E ,30,2,2P ⎛⎫ ⎪⎝⎭. 设()111,,n x y z =为平面EFC 的法向量, 则00n EF n EC ⎧⋅=⎨⋅=⎩,即11112030x y y z -=⎧⎨-=⎩,可取3,3,12n ⎛⎫= ⎪⎝⎭. 设()222,,m x y z =为平面PFC 的法向量,则00m PF m PC ⎧⋅=⎨⋅=⎩,即222232202302x y z z ⎧-+=⎪⎪⎨⎪=⎪⎩,可取()1,1,0m =.所以233922cos ,14391112n m n m n m +⋅===⎛⎫++⨯+ ⎪⎝⎭. 由题意知二面角P CF E --为锐角, 所以二面角P CF E --的余弦值为214.。

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定

立体几何中的平行与垂直判定立体几何是研究三维空间中的几何关系和性质的一门学科,平行与垂直判定是其中重要的一部分。

在解题过程中,准确判定两个线、面或空间立体之间的平行与垂直关系至关重要。

本文将介绍几种常用的判定方法,并通过具体例子进行说明。

一、平面与平面的判定在立体几何中,平面与平面间的平行与垂直关系是经常需要判断的。

下面将介绍两种常用的判定方法。

1. 垂直判定两个平面互相垂直的条件是它们的法向量垂直。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2垂直的条件可以表示为:n1·n2 = 0(向量的点积为0)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以计算两个法向量的点积:n1·n2 = (2, -1, 3)·(1, 2, -1) = 2×1 + (-1)×2 + 3×(-1) = 0因此,平面1和平面2是垂直的。

2. 平行判定两个平面互相平行的条件是它们的法向量平行。

设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2平行的条件可以表示为:n1 = k·n2(k为非零实数)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。

我们可以通过判断两个法向量的比例关系来确定其是否平行。

在本例中,两个法向量的各个分量之间的比例并不相等,因此平面1和平面2不是平行的。

二、直线与直线的判定在立体几何中,直线与直线的平行与垂直关系也经常需要判断。

下面将介绍两种常用的判定方法。

1. 垂直判定两条直线互相垂直的条件是它们的方向向量垂直。

版高考数学一轮总复习解析几何中的平行与垂直问题解析

版高考数学一轮总复习解析几何中的平行与垂直问题解析

版高考数学一轮总复习解析几何中的平行与垂直问题解析在版高考数学一轮总复习解析几何中,平行与垂直问题是考试中常见的题型之一。

在解析几何中,平行与垂直是两种特殊的关系,对于学生来说,掌握这些关系的判定方法和性质是非常重要的。

本文将重点介绍解析几何中的平行与垂直问题的解析方法和应用。

一、平行的判定方法在解析几何中,平行是指两条直线或两个平面永不相交。

我们可以通过判定斜率和方向向量来确定两条直线是否平行。

具体而言,如果两条直线的斜率相等且方向向量不相等,则可以判定这两条直线是平行的。

以直线的方程为例,设直线L1的方程为y = k1x + b1,直线L2的方程为y = k2x + b2,其中k1和k2分别为两条直线的斜率,b1和b2分别为两条直线的截距。

如果k1 = k2且(k1 ≠ 0或k2 ≠ 0),则可以判定直线L1与直线L2是平行的。

同样的方法也适用于判断平面是否平行。

假设平面P1的方程为Ax + By + Cz + D1 = 0,平面P2的方程为Ax + By + Cz + D2 = 0,如果A1/A2 = B1/B2 = C1/C2且(A1/A2 ≠ 0或B1/B2 ≠ 0或C1/C2 ≠ 0),则可以判定平面P1与平面P2是平行的。

除此之外,有时候我们还可以利用向量的性质来判断平行关系。

对于直线而言,如果两条直线的方向向量共线,则可以判断这两条直线是平行的。

对于平面而言,如果两个平面的法向量平行,则可以判断这两个平面是平行的。

二、垂直的判定方法在解析几何中,垂直是指两条直线或两个平面相互成直角的关系。

垂直关系的判定方法与平行关系类似,同样可以通过斜率和方向向量来确定。

对于直线而言,如果两条直线的斜率之积为-1,则可以判断这两条直线是垂直的。

设直线L1的斜率为k1,直线L2的斜率为k2,如果k1 * k2 = -1,则可以判断直线L1与直线L2是垂直的。

同样的方法也适用于判断平面是否垂直。

假设平面P1的法向量为(n1, m1, p1),平面P2的法向量为(n2, m2, p2),如果n1*n2 + m1*m2 + p1*p2 = 0,则可以判断平面P1与平面P2是垂直的。

立体几何专题:空间几何体的平行和垂直

立体几何专题:空间几何体的平行和垂直
E
变式三
A
D O B
C
如图,四棱锥P—ABCD中, PA ⊥平面ABCD,底面ABCD是直 角梯形,AB⊥AD,CD⊥AD,CD=2AB,E为PC中点. (I) 求证:平面PDC ⊥平面PAD; (II) 求证:BE//平面PAD. P
变式四
A
E D C
B
如图,在底面是直角梯形的四棱锥S-ABCD中,
折叠,使得DE ⊥ EC. (1) 求证:BC⊥面CDE ; (2) 求证:FG//面BCD; (3)在线段AE上找一点R,使得面BDR ⊥面DCB,并说明理由. D
D
·
E
F
·
C G F
G
变式三
E
A B A B
C
A1
D
变式四
A
O
CBຫໍສະໝຸດ 1 ABC 90 , SA 面ABCD,SA AB BC 1, AD . 2 (1)求四棱锥S-ABCD的体积;

(2)求证: SAB 面SBC ; 面

S
变式五
B A D C
如图,在四棱锥P—ABCD中,PA⊥底面ABCD,
AB⊥AD,AC⊥CD,∠ABC=600,PA=AB=BC,
E是PC的中点.
证明:平面PDC⊥平面ABE.
P
变式六
A
B
E D C
题型二、已知面面垂直, 怎么样证明面面垂直
四棱锥A-BCDE中,底面BCDE为矩形,侧面
ABC⊥底面BCDE,BC=2, 2,AB=AC. CD
证明:平面ABD⊥平面ACE。
例题二
(2010江苏)如图,平面PAC⊥平面ABC, AC⊥ BC, PE∥CB, M, N分别是AE, PA的中点。 ⑴求证:MN∥平面ABC; ⑵求证:平面CMN ⊥平面PAC.

立体几何中的向量方法:平行与垂直讲解

立体几何中的向量方法:平行与垂直讲解

3.2 立体几何中的向量方法 3.2.1 平行与垂直关系【基础知识在线】知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系知识点三 线线、线面、面面垂直的向量表示★★★★★考点:利用线线、线面、面面垂直的向量表示证明垂直关系【解密重点·难点·疑点】问题一:空间的方向向量与平面的法向量1. 空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向,这个向量a 叫做直线的方向向量.2. 直线α⊥l ,取直线l 的方向向量a ,则向量a 称为平面α的法向量.(1)平面α的一个法向量垂直于与平面α共面的所有向量. (2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法(1)已知平面的垂线时,在垂线上取一非零向量即可.(2)已知平面内两不共线向量()()321321,,,,,b b b b a a a a ==时,常用待定系数法:设法向量(),,,z y x u =由⎪⎩⎪⎨⎧=⋅=⋅,00n b n a 得⎩⎨⎧=++=++,00321321z b y b x b z a y a x a 在此方程组中,对z y x ,,中的任一个赋值,求出另两个,所得u 即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.4.用向量语言表述线面之间的平行与垂直关系 :设直线m l ,的方向向量分别为b a ,,平面βα,的法向量分别为v u ,,则 线线平行:;,////R k b k a b a m l ∈=⇔⇔ 即:两直线平行或重合⇔两直线的方向向量共线. 线线垂直:;0=⋅⇔⊥⇔⊥b a b a m l即:两直线垂直⇔两直线的方向向量垂直. 线面平行:;0//=⋅⇔⊥⇔u a u a l α 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外.线面垂直:;,//R k u k a u a l ∈=⇔⇔⊥α即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.面面平行:;,////R k v k u v u ∈=⇔⇔βα 即:两平面平行⇔两平面的法向量共线. 面面垂直:.0=⋅⇔⊥⇔⊥v u v u βα即:两平面垂直两平面的法向量垂直.问题二:空间中线线、线面、面面平行的向量坐标表示1. 设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线平行:().,,////212121R k kc c kb b ka a b k a b a m l ∈===⇔=⇔⇔2. 设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面平行:.00//212121=++⇔=⋅⇔⊥⇔c c b b a a u a u a l α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==,面面平行:().,,,////212121R k kc c kb b ka a v k u v u ∈===⇔=⇔⇔βα问题三:空间中线线、线面、面面垂直的向量表示1.设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a b a b a m l2.设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面垂直:().,,,//212121R k kc c kb b ka a u k a u a l ∈===⇔=⇔⇔⊥α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==, 面面垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a v u v u βα【点拨思维·方法技巧】 一.求平面的法向量例1已知平面α经过三点()()()0,2,3,1,0,2,3,2,1--C B A ,试求平面α的一个法向量. 【思维分析】先求出,,AC AB ,设出平面α的法向量为()z y x u ,,=,结合向量垂直时数量积为零的性质,联立方程组解题. [解析]()()()0,2,3,1,0,2,3,2,1--C B A ,()(),3,4,2,4,2,1-=--=∴AC AB ,设平面α的法向量为()z y x u ,,=, 依题意,⎪⎩⎪⎨⎧=⋅=⋅00AC u ABu即⎩⎨⎧=--=--0342042z y x z y x ,解得⎩⎨⎧==02z y x .令2,1==x y 则.∴平面α的一个法向量为()0,1,2=u .【评析】用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,设出平面的法向量,列出方程组,求出的三个坐标不是具体的值,而是比例关系,取其中一组解(非零向量)即可.变式训练1.在正方体1111D C B A ABCD -中,F E ,分别是DCBB ,1AEF D A 11的法向量.证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21,1,0,21,1,1,0,0,1AE E A ,图3-2-1()(),01,1,0,21,0,01,011=⎪⎭⎫⎝⎛=A F D()0,0,1,1,21,0111-=⎪⎭⎫⎝⎛-=D A F D .0,02121111=⋅=-=⋅D A AE F D AE ,111,D A AE F D AE ⊥⊥ , 又1111D D A F D = ,⊥∴AE 平面FD A 11AE ∴是平面F D A 11的法向量.. 二.证明平行问题例2在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:C B 1∥平面1ODC . 【思维分析】在平面内找与向量C B 1平行的向量D A 1,由向量的相等,得线线平行,从尔的线面平行.也可建立空间直角坐标系,求C B 1的方向向量和平面1ODC 的法向量,利用向量的垂直,可得线面平行.证明 方法一1B C =1A D ,又D A B 11∉,D A C B 11//∴,又⊂D A 1平面1ODC , C B 1∴∥平面1ODC .方法二建系如图,设正方体的棱长为1,则可得()()()1,1,0,1,21,21,0,1,0,1,1,111C O C B ⎪⎭⎫⎝⎛,图3-2-2()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛---=--=0,21,21,1,21,21,1,0,111OC OD C B .设平面1ODC 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅001OC n OD n , 得⎪⎩⎪⎨⎧=+-=---0212102121y x z y x ,令1=x ,得1,1-==z y ,()1,1,1-=n .()()01110111=-⨯-+⨯+⨯-=⋅∴n C B , n C B ⊥∴1,C B 1∴∥平面1ODC .【评析】 向量法证明几何中的平行问题,可以有两个途径,一是在平面内找一向量与已知直线的方向向量共线;二是通过建立空间直角坐标系,依托直线的方向向量和平面的法向量的垂直,来证明平行.变式训练2.已知正方体1111D C B A ABCD -中,F E ,分别在C D DB 1,上,且a F D DE 321==,其中a 为正方体棱长. 求证:EF ∥平面C C BB 11. 证明如图所示,建立空间直角坐标系xyz D -,则,32,3,0,0,3,3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a F a a E 故⎪⎭⎫⎝⎛--=3,0,32a a EF ,又()0,,0a AB =显然为平面C C BB 11的一个法向量, 而()03,0,320,,0=⎪⎭⎫ ⎝⎛--⋅=⋅a aa EF AB ,图3-2-3∴AE ⊥EF .又∉E 平面C C BB 11,因此EF ∥平面C C BB 11. 三.证明垂直问题例3.已知正方体1111D C B A ABCD -中,E 为棱1CC 上的动点.(1)求证:BD E A ⊥1;(2)若平面⊥BD A 1平面EBD ,试确定点E 的位置.【思维分析】正方体为建立空间直角坐标系提供了有利条件,对于(1),110A E BD A E BD =⇒⊥;对于(2),利用已知条件平面⊥BD A 1平面EBD ,通过垂直条件下的向量数量积等于0,求得点E 的位置;取BD 的中点O ,易证OE A 1∠是二面角E BD A --1的平面角,利用向量数量积证明10AO EO =即可.[解析]以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,设棱长为a . (1)()()()()()a a C a a A a C a a B a A ,,0,,0,,0,,0,0,,,0,0,11, 设()m a E ,,0,则()()0,,,,,1a a BD a m a a E A --=--=,22100A E BD a a =-+=,所以BD E A ⊥1,即BD E A ⊥1.(2)法一:设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,,2,2a a BD m a a OE --=⎪⎭⎫⎝⎛-=, 因为BCE ∆≌DCE ∆,所以EB ED =,所以BD OE ⊥,图3-2-4又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为平面⊥BD A 1平面EBD ,所以21π=∠OE A , 所以10OA OE =,即2,04422a m am a a =∴=+--. 故当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD . 法二:E 为1CC 的中点,证明如下:由E 为1CC 的中点得⎪⎭⎫ ⎝⎛2,,0a a E , 设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,2,2,2a a BD a a a OE --=⎪⎭⎫⎝⎛-=,则0O EB D =,BD OE ⊥,即BD OE ⊥.又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为22210442a a a OA OE =--+=,所以OE OA ⊥1, 故OE OA ⊥1,即21π=∠OE A ,所以平面⊥BD A 1平面EBD . 所以当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD .【评析】利用向量解决立体几何中的线线,线面,面面的位置关系问题一般经过以下几个步骤:恰当建系,求相关点的坐标,求相关向量坐标,向量运算,将向量运算结果还原成立体几何问题或结论.变式训练3. 在正棱锥ABC P -中,三条侧棱两两互相垂直,G 是PAB ∆的重心,F E ,分别为PB BC ,上的点,且2:1::==FB PF EC BE . 求证:平面GEF ⊥平面PBC . 证明 (1)方法一如图3-2-5所示,以三棱锥的顶点P 为原点,建立空间直角坐标系. 令3===PC PB PA ,则()()()()1,2,0,3,0,0,0,3,0,0,0,3E C B A , ()()()0,0,0,0,1,1,0,1,0P G F .()()0,0,1,0,0,3==∴FG PA , FG PA FG PA //,3∴=∴ .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又⊂FG 平面GEF ,∴平面GEF ⊥平面PBC . 方法二 :同方法一,建立空间直角坐标系,则()()()0,1,1,0,1,0,1,2,0G F E ,()(),1,1,1,1,1,0--=--=EG EF设平面GEF 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅00EG n EF n , 得0,0,y z x y z +=⎧⎨--=⎩,令1=y ,得0,1=-=x z ,()1,1,0-=n . 而显然()0,0,3=PA 是平面PBC 的一个法向量. 又PA n PA n ⊥∴=⋅,0,即平面PBC 的法向量与平面GEF 的法向量互相垂直,∴平面GEF ⊥平面PBC . 【课后习题答案】 练习(第104页)1.(1)答案:平行.提示:()()a b 32,1,236,3,6=--=--=.(2)答案:垂直.提示:()()()()02232212,3,22,2,1=⨯-+⨯+-⨯=-⋅-=⋅b a ,b a ⊥. (3)答案:平行.提示:()()a b 31,0,033,0,0-=-=-=.图3-2-52.提示:(1).,,0βα⊥∴⊥∴=⋅v u v u (2).//,//βα∴v u (3)u 与v 不垂直,也不平行,α∴与β相交.【自主探究提升】夯实基础1.已知()(),5,6,2,,3,8b n a m ==若m ∥n ,则b a +的值为( ) A.0 B.25 C.221 D.8答案:C . 提示:m ∥n ,()(),5,6,2,3,8b k a =∴即ka k bk 5,63,28===21=∴k 故8,25==b a ,221825=+=+b a .2. 已知()(),2,2,,2,5,1+=-=a a n m 若⊥m n ,则a 的值为( ) A.0B.6C.-6D.±6答案:B. 提示: ⊥m n ,()022251=+⨯-⨯+⨯∴m m ,6=∴m .3.平面α的一个法向量为()0,2,1,平面β的一个法向量为()0,1,2-,则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案: C.提示: ()()00,1,20,2,1=-⋅ , ∴两法向量垂直,从而两平面也垂直.4.已知()()y x b a ,,3,5,4,2==分别是直线21,l l 的方向向量,若1l ∥2l ,则( ) A .15,6==y x B .215,3==y xC .15,3==y xD .215,6==y x答案:D提示:1l ∥2l ,b a //∴, 则有yx 5432==,解方程得215,6==y x .5. 在正三棱柱111C B A ABC -中,B A C B 11⊥. 求证:B A AC 11⊥.证明: 建立空间直角坐标系xyz C -1, 设b CC a AB ==1,, 则()(),0,,0,,,0,0,2,23,,2,2311a B b a B a a A b a a A ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛()()0,0,0,,0,01C b C , ()⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎭⎫ ⎝⎛-=∴b aa ACb a C B b a a B A ,2,23,,,0,,2,23111. B A C B 11⊥ ,022211=+-=⋅∴b a B A C B ,而022211=-=⋅b a B A AC , B A AC 11⊥∴,即B A AC 11⊥.拓展延伸6.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g答案:D. 提示:2//;3//;b a a b d c d c =-⇒=-⇒而零向量与任何向量都平行.7.若直线l 的方向向量为()2,0,1=a ,平面α的法向量为()4,0,2--=u ,则( ) A .l ∥α B .l ⊥αC .α⊂lD .l 与α斜交图3-2-6答案: B. 提示:()()a u 22,0,124,0,2-=-=--= ,a u //∴,l ∴⊥α.8.已知()()1,3,2,1,1,1B A -,则直线AB 的模为1的方向向量是________________. 答案:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛32,32,31,32,32,31 . 提示:()3,2,2,1==AB AB , 直线AB 的模为1的方向向量是()2,2,131±=±AB AB. 9.已知平面α经过点()0,0,0O ,且()1,1,1=u 是α的法向量,()z y x N ,,是平面α内任意一点,则z y x ,,满足的关系式是________________.答案: 0=++z y x . 提示:由题意()()0,,1,1,1=⋅=⋅z y x ON u ,即0=++z y x .10.若直线b a ,是两条异面直线,它们的方向向量分别是()1,1,1和()2,3,2--,则直线b a ,的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案:()5,4,1- (答案不唯一).提示: 设直线b a ,的公垂线的一个方向向量为()z y x u ,,=,b a ,的方向向量分别为b a ,,由题意得⎪⎩⎪⎨⎧=⋅=⋅00b u a u ,即⎩⎨⎧=--=++02320z y x z y x , 令1=x ,得5,4-==z y ,()5,4,1-=∴u .11.若19(0,2,)8A ,5(1,1,)8B -,5(2,1,)8C -是平面α内的三点,设平面α的法向量),,(z y x a = ,则=z y x ::________________.答案:2:3:(4)-. 提示: 77(1,3,),(2,1,),0,0,44AB AC AB AC αα=--=---== 2243,::::()2:3:(4)4333x y x y z y y y z y ⎧=⎪⎪=-=-⎨⎪=-⎪⎩12.若非零向量()(),,,,,,222111z y x b z y x a ==则212121z z y y x x ==是a 与b 同向或反向的( )A.充分不必要条件B.C.充要条件D.不充分不必要条件答案:A.212121z z y y x x ==,则a 与b 同向或反向,反之不成立.13.如图3-2-7(a)所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,090=∠=∠CEF BCF ,2,3==EF AD .求证:AE ∥平面DCF.证明: 如图3-2-7(b )所示,以点C 为坐标原点,建立空间直角坐标系xyz C -.设c CF b BE a AB ===,,,则()()()0,0,3,,0,3,0,0,0B a A C , ()()0,,0,0,,3c F b E , ()()(),0,,0,0,0,3,,,0b BE CB a b AE ==-=∴0,0=⋅=⋅∴BE CB AE CB ,BE CB AE CB ⊥⊥∴,.⊥∴CB 平面ABE ,又⊥CB 平面DCF ,∴平面ABE ∥平面DCF ,故AE ∥平面DCF .14. 在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一图3-2-7(a ) (b)点M ,使得M D 1⊥平面1EFB .解析:建立空间直角坐标系x y z D -,设正方体的棱长为2,则()()()()2,2,2,2,0,0,0,2,1,0,1,211B D F E .设()m M ,2,2,则()()()2,2,2,2,1,0,0,1,111-=---=-=m M D E B EF , ∵M D 1⊥平面1EFB∴ 1D M ⊥EF ,1D M ⊥E B1,0,0111=⋅=⋅∴E B M D EF MD于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩()1,2,2,1M m ∴=∴,即M 为棱1BB 的中点.图3-2-8。

空间解析几何中的直线平行与垂直

空间解析几何中的直线平行与垂直

空间解析几何中的直线平行与垂直在空间解析几何中,直线是我们研究的重要对象之一。

直线的平行与垂直是直线之间关系的重要性质,对于我们理解空间中的几何性质非常重要。

直线平行是指两条直线在同一平面内,且在该平面内没有交点。

直线垂直是指两条直线相互交于一点且与该点的所有直线都垂直。

首先,我们来讨论直线平行的判定方法。

在空间解析几何中,可以通过直线的方程来判断两条直线是否平行。

设直线L1的方程为Ax + By + C1 = 0,直线L2的方程为Ax + By + C2 = 0。

两条直线平行的充分必要条件是它们的方向向量(A,B)相同,即A1/A2 = B1/B2。

因此,我们可以通过比较两条直线的方程系数来判断是否平行。

此外,我们还可以通过直线的斜率来判断两条直线是否平行。

在直角坐标系中,直线的斜率可以表示为直线的斜率的总体倾斜程度。

设直线L1的斜率为k1,直线L2的斜率为k2。

两条直线平行的充分必要条件是它们的斜率相同,即k1 = k2。

因此,我们可以通过比较两条直线的斜率来判断是否平行。

除了直线平行,我们还需要讨论直线垂直的判定方法。

在空间解析几何中,可以通过直线的方程来判断两条直线是否垂直。

设直线L1的方程为Ax + By + C1 = 0,直线L2的方程为Ax + By + C2 = 0。

两条直线垂直的充分必要条件是它们的方向向量(A,B)的内积为零,即A1A2 + B1B2 = 0。

因此,我们可以通过计算两条直线的方向向量的内积来判断是否垂直。

此外,我们还可以通过直线的斜率来判断两条直线是否垂直。

在直角坐标系中,直线的斜率可以表示为直线的斜率的总体倾斜程度。

设直线L1的斜率为k1,直线L2的斜率为k2。

两条直线垂直的充分必要条件是它们的斜率的乘积为-1,即k1k2 = -1。

因此,我们可以通过计算两条直线的斜率的乘积来判断是否垂直。

在实际问题中,直线的平行与垂直关系常常与角的性质有关。

例如,两条直线平行的直角形的对角线垂直。

立体几何平行与垂直的判定与性质

立体几何平行与垂直的判定与性质
立体几何平行与垂直 的判定与性质
• 平行与垂直的基本概念 • 平行线的判定 • 垂直线的判定 • 平行与垂直的性质 • 立体几何平行与垂直的应用
目录
01
平行与垂直的基本概念
平行的定义
总结词
在立体几何中,如果两条直线在同一平面内,且永远不会相交,则这两条直线 被称为平行的。
详细描述
在平面几何中,两条平行线被定义为在同一平面内,且永远不会相交的两条直 线。这个定义在立体几何中同样适用。在三维空间中,两条平行线可能位于不 同的平面,但它们永远不会在任何平面上相交。
在三维建模软件中,平行和垂直关系 也是构建复杂几何体的基础。通过设 定平行或垂直的约束条件,可以确保 模型的准确性和一致性。
实际生活中的平行与垂直应用
在城市规划和建筑设计中,平行和垂直的应用同样广泛。例如,确定道路、建筑 物的位置和方向时,需要利用平行和垂直关系来确保规划的科学性和合理性。
在机械设计和制造中,平行和垂直关系也是非常重要的。例如,在制造精密仪器 或机械设备时,需要确保各个部件之间的平行和垂直关系,以保证设备的准确性 和稳定性。
总结词
平行和垂直是两种互为对立的几何关系,它 们在三维空间中共同构成了直线之间的基本 关系。
详细描述
平行和垂直是直线之间最重要的两种关系。 在三维空间中,除了平行和垂直之外,直线 之间还可以是斜交的。平行和垂直的对立关 系使得它们在解决几何问题时具有重要的作 用。例如,在建筑设计和工程实践中,垂直 关系常常用于确定物体的位置和方向,而平 行关系则常常用于确定物体的尺寸和比例。
详细描述
在立体几何中,如果两条直线被第三条直线所截,并且内错角相等,则这两条直 线平行。这是因为内错角相等说明两条直线在同一平面内,并且没有交点,因此 它们是平行的。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题【根底学问点】一、平行问题1.直线及平面平行的断定及性质定义断定定理性质性质定理图形条件a∥α结论a∥αb∥αa∩α=a∥b2. 面面平行的断定及性质断定性质定义定理图形条件α∥β,a⊂β结论α∥βα∥βa∥b a∥α平行问题的转化关系:二、垂直问题一、直线及平面垂直1.直线与平面垂直的定义:直线l及平面α内的都垂直,就说直线l及平面α相互垂直.2.直线及平面垂直的断定定理及推论文字语言图形语言符号语言断定定理一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直推论假如在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3.直线及平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线与平面垂直的常用性质①直线垂直于平面,那么垂直于平面内随意直线.②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面及平面垂直1.平面及平面垂直的断定定理【典例探究】 类型一、平行及垂直例1、如图,三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D为PB 中点,且△PMB 为正三角形。

〔Ⅰ〕求证:DM ∥平面APC ;〔Ⅱ〕求证:平面ABC ⊥平面APC ;〔Ⅲ〕假设BC 4=,20AB =,求三棱锥D BCM -的体积。

F D C1B1A1C例2. 如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =,22AB =M ,N 分别是棱1CC ,AB 中点.〔Ⅰ〕求证:CN ⊥平面11ABB A ; 〔Ⅱ〕求证://CN 平面1AMB ;〔Ⅲ〕求三棱锥1B AMN -的体积.【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ∆为等腰直角三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。

立体几何证明平行和垂直

立体几何证明平行和垂直

立体几何证明平行和垂直
在立体几何中,我们可以通过以下定理和性质来证明线段、平面、直线的平行和垂直关系:
1. 平行线定理:若两条直线与第三条直线交叉时,两个内角和等于180度,则这两条直线是平行的。

2. 垂直线定理:若两条直线相交时,相邻的内角是直角,则这两条直线是垂直的。

3. 垂直平分线定理:若一个直线通过一个线段的中点并与该线段垂直,则这条直线垂直于该线段。

4. 同位角定理:当一条直线与两条平行直线相交时,对应的同位角是相等的。

5. 垂直平分线性质:当一条直线垂直平分一条线段时,它同时垂直于该线段的两个中垂线。

6. 垂直平分线交角性质:当两条直线都垂直平分了同一条线段时,这两条直线是平行的。

根据以上定理和性质,我们可以利用构造图形、辅助线、角度计算等方法进行立体几何证明的平行和垂直关系。

这些证明通常涉及到直线与平面的交点、线段的中点、角度的大小等问题,需要根据给定的条件进行分析和推导。

需要注意的是,在立体几何证明中,除了以上的定理和性质,还可以利用立体几何中的其他相关定理和公式来辅助证明,具体证明方法也要根据具体情况灵活运用。

总之,立体几何的平行和垂直关系证明是一个比较重要的内容,需要熟悉相关定理和性质,并能够熟练运用各种证明方法来解决问题。

立体几何大题(解析版)

立体几何大题(解析版)

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题19立体几何中平行与垂直(解析版)在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。

立体几何中平行与垂直的易错点易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。

易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视",//,"a a b b αα⊄⊂三个条件中的某一个。

易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;题组一:基本性质定理1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】 如图所示,联结,.因为点为正方形的中心,为正三角形,平面平面,是线段的中点,所以平面,平面,因为是中边上的中线,是中边上的中线,直线,是相交直线,设,则,BE BD N ABCD ECD △ECD ⊥ABCD M ED BM ⊂BDE EN ⊂BDE BM BDE △DE EN BDE △BD BM EN DE a =2BD a =, 所以,, 所以.故选B . 2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】 对于A ,内有无数条直线与平行,则与相交或,排除; 对于B ,内有两条相交直线与平行,则;对于C ,,平行于同一条直线,则与相交或,排除;对于D ,,垂直于同一平面,则与相交或,排除.故选B .3.(2013新课标Ⅱ)已知为异面直线,⊥平面,⊥平面.直线满足,,则( )A .∥且∥B .⊥且⊥C .与相交,且交线垂直于D .与相交,且交线平行于【解析】 作正方形模型,为后平面,为左侧面可知D 正确.4.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥.②如果m α⊥,n α∥,那么m n ⊥.③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等.BE ==2BM a=EN a ==BM EN ≠αβαββα∥αββα∥αβαββα∥αβαββα∥,m n m αn βl ,l m l n ⊥⊥,l l αβ⊄⊄αβl ααβl βαβl αβl αβ其中正确的命题有 .(填写所有正确命题的编号)【解析】 ②③④【解析】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α.ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立.命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则l n ∥, 由m α⊥,有m l ⊥,从知m n ⊥结论正确.由平面与平面平行的定义知命题③正确.由平行的传递性及线面角的定义知命题④正确.题组二:线面平行6.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面三角形ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=,E 是PD 的中点. (1) 证明:直线CE ∥平面PAB ;【解析】(1)取PA 的中点F ,连结EF ,BF .因为E 是PD 的中点,所以EF AD ∥,12EF AD =.由90BAD ABC ∠=∠=得BC AD ∥,又12BC AD =,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB . 7.(2014新课标2)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;EM D C B AP【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .8.(2013新课标Ⅱ)如图,直三棱柱中,分别是的中点,(Ⅰ)证明://平面;【解析】(Ⅰ)连结,交于点O ,连结DO ,则O 为的中点,因为D 为AB 的中点,所以OD ∥,又因为OD 平面,平面,所以 //平面;9.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC,PB ⊄平面AEC ,所以PB ∥平面AEC .10.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =,111ABC A B C -,D E 1,ABBB 12AA AC CB AB ===1BC 1A CDA 11AC 1A C 1AC 1BC⊂1A CD 1BC ⊄1A CD 1BC 1A CDN 为PC 的中点.(Ⅰ)证明MN 平面PAB ;【解析】(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .11.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;【解析】 (1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =B 1C .又因为N 为A 1D 的中点,所以ND =A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN 平面EDC 1,所以MN ∥平面C 1DE .PAB DC NM 1212===⊄题组三线线垂直12.(2013新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.(Ⅰ)证明1AB A C ⊥;【解析】(Ⅰ)取AB 中点E ,连结CE ,,,∵AB =,=,∴是正三角形,∴⊥AB , ∵CA =CB , ∴CE ⊥AB ,∵=E ,∴AB ⊥面, ∴AB ⊥;13.(2012新课标)如图,直三棱柱111C B A ABC -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1.(Ⅰ)证明:BC DC ⊥1;【解析】(Ⅰ)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥15.(2011新课标)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;1A B 1A E 1AA 1BAA ∠0601BAA ∆1A E 1CE A E ⋂1CEA 1AC A C B1B 1A D1C【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得BD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD所以BD ⊥平面P AD . 故 P A ⊥BD题组四?:线面垂直16.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;【解析】(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AE OH OD AO =⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =,∴'D H ⊥面ABCD .17.(2018全国卷Ⅱ)如图,在三棱锥-P ABC 中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥. 由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .18.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;【解析】 (1)由已知得,平面,平面,故.又,所以平面.题组五:面面垂直18.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ;O M PCBA11B C ⊥11ABB A BE ⊂11ABB A 11B C ⊥BE 1BE EC ⊥BE ⊥11EBC【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .20.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;【解析】 (1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB BE ,AB BC ,故AB 平面BCGE .又因为AB 平面ABC ,所以平面ABC 平面BCGE .21.(2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .22.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;⊥⊥⊥⊂⊥PF EDC B A MDC B A【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .23.(2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;【解析】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .24.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;【解析】(1)由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =.又由于ABC ∆是正三角形,故BO AC ⊥.所以DOB ∠为二面角D AC B --的平面角.⊂⊂D CA PABC DE在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.所以平面ACD ⊥平面ABC .25(2015新课标Ⅰ)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ;【解析】(Ⅰ)连接BD ,设BD AC G ,连接,,EG FG EF .在菱形ABCD 中,不妨设1GB ,由120∠=ABC ,可得3AGGC , 由⊥BE 平面ABCD ,ABBC 可知,AE EC , 又∵⊥AE EC ,∴3EG,⊥EG AC , 在Rt EBG ∆中,可得2BE ,故22DF .在Rt FDG ∆中,可得62FG . 在直角梯形BDFE 中,由2BD ,2BE ,22DF ,可得322EF , ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .。

相关文档
最新文档