函数图象的分析与作图(一)(含答案)

合集下载

高中数学讲义:函数的图像

高中数学讲义:函数的图像

函数的图像一、基础知识1、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。

在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点(1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线特点:两点确定一条直线信息点:与坐标轴的交点(2)二次函数:()2y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。

函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确特点:对称性信息点:对称轴,极值点,坐标轴交点(3)反比例函数:1y x=,其定义域为()(),00,-¥+¥U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线特点:奇函数(图像关于原点中心对称),渐近线信息点:渐近线注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。

渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x ®+¥,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。

(2)水平渐近线的判定:需要对函数值进行估计:若x ®+¥(或-¥)时,()f x ®常数C ,则称直线y C =为函数()f x 的水平渐近线例如:2x y = 当x ®+¥时,y ®+¥,故在x 轴正方向不存在渐近线 当x ®-¥时,0y ®,故在x 轴负方向存在渐近线0y =(3)竖直渐近线的判定:首先()f x 在x a =处无定义,且当x a ®时,()f x ®+¥(或-¥),那么称x a =为()f x 的竖直渐近线例如:2log y x =在0x =处无定义,当0x ®时,()f x ®-¥,所以0x =为2log y x =的一条渐近线。

函数图象的变换作图与超越方程的解(精品有答案绝对好)

函数图象的变换作图与超越方程的解(精品有答案绝对好)

函数图象的变换、作图与超越方程的解前言:函数图像有几种变换:平移变换、对称变换、翻折变换.我们也常遇到根据函数)(x f y =的图像,作出函数a x f y a x f y x f y x f y x f y +=+===-=)(),(|,)(||),(|),(的图像.(注意:图像变换的本质在于变量对应关系的变换);要特别关注|)(||),(|x f y x f y ==的图像的区别.一.按向量平移后函数图像的解析式1。

点的平移我们知道,如果点()y x P ,按向量()k h a ,=平移后的对应点为()y x P ''',,那么⎩⎨⎧+='+='k y y hx x 例1.(1)点P(3,4)按向量()3,1--=a平移后的新点Q的坐标为 .(2)点P按向量()3,1--=a平移后得到新点Q的坐标为(3,4),那么点P的坐标为: .2.函数图像的平移定理:求函数)(x f y =的图象按向量()k h a ,=平移后新图像的函数解析式为:()h x f k y -=-,从而()k h x f y +-=;证明:在平移后新图象上任取一点()y x P ,,而点P是由Q(x 0,y 0)按()k h a ,=平移后得到.由点平移公式知⇒⎩⎨⎧+=+=k y y h x x 00⎩⎨⎧-=-=k y y hx x 00 由于点Q(x 0,y 0)=(x-h,y-k)在函数y=f(x)的图像上,故其坐标代入函数表达式成为恒等式. 从而的得平移后新图像的函数解析式:()h x f k y -=-,从而()k h x f y +-=;平移后的函数图象的解析式是用x -h 替换y =f (x )中x ,是用y-k 替换y =f (x )中y,使用起来很方便。

例2.抛物线y =-2x 2-4x -3向左平移3个单位,再向下平移4个单位,求所得抛物线的解析式.例3 将一抛抛物线向左平移2个单位,再向上平移3个单位所得的抛物线的解析式为y =x 2-2x +3,求此抛物线的解析式.例4 已知把直线y =-3x +2平移后经过点A (-4,2),求平移后得到的直线的解析式,并说明是向左还是向右平移几个单位得到的.例5、已知两条抛物线: C1:y =x 2-2x +5 C2:y =x 2-4x +7 问抛物线C1经过怎样的平移后与抛物线C2重合?3.按向量平移重要结论如下:结论1 原来的点()y x P ,按()k h a ,=平移后得到的新点为()k y h x P ++',; 结论2 函数()x f y =的图象按向量()k h a ,=平移后的新图像函数解析式为()h x f k y -=-,从而()k h x f y +-=;结论 3 曲线C '按向量()k h a ,=平移后得到图象C ,若C 的解析式为()x f y =,则C '的函数解析式为()h x f k y -=-,从而()k h x f y +-=;结论4 曲线C :()0,=y x f 按向量()k h a ,=平移后所得曲线C '的方程为()0,=--k y h x f ;结论 5 曲线C '按向量()k h a ,=平移后得到曲线C ,若C 的方程为()0,=y x f ,则C '的方程为()0,=++k y h x f 。

5.3一次函数图像(1)翟赛花

5.3一次函数图像(1)翟赛花

§5.3一次函数的图象(1)【指导思想与理论依据】本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。

基于这一原则,我对本节课教学设计的指导思想如下:(1)以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

(2)以现代教育理论为依据:注重学生的心理活动过程,强调教学过程的有序性。

(3)以基本的教学原则作指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。

(4)以现代信息技术为手段:适当地辅以电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学有机结合,以实现教学最优化,从而提高教与学的质量。

【教材分析】一、教材分析(一)教学内容:本课是苏科版八年级上册第五章第3节本节内容知识结构如下:该课时主要内容是:一次函数的图象主要包括的知识点:一次函数图象的画法(二)本节内容在教材中的所处的地位和作用从数学之深的发展角度看,变量和函数的引入,标志着数学从初等数学向变量数学的迈进,而一次函数是初中阶段研究的第一个函数关系,他的研究方法具有一般性和代表性。

本课时内容安排在一次函数的概念之后。

通过这一节课的学习使学生会用两点法画一次函数图象。

它既是正比例函数的图象和性质的拓展,也为后面反比例函数、二次函数的研究奠定基础,并在今后学习高中代数、解析几何及其他数学分支打好伏笔。

同时,在整个初中阶段:一次函数的图象和性质的学习还是一元一次方程、二元一次方程组、一元一次不等式及不等式组的解法提供新的途径。

本节内容起着承上启下的作用。

更是学生进一步学习“数形结合”这一数学思想方法的很好素材。

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。

4.3一次函数的图象(第1课时)

4.3一次函数的图象(第1课时)
的图象上吗?
都在
(2)正比例函数y=-3x的图象上的点
(x,y)都满足关系式y=-3x吗?
满足
(3)正比例函数y = kx 图象有何特点?
你是怎样理解的?
正比例函数 y = kx (k≠0) 的图象是一
原点(0,0)
直线
条经过 _______________
的_______。
y
5
4
3
2
1
-3 -2 -1 0 1 2 3
(1,5),(-1,5),(0.5,-2.5),(-5,1).
解:将各点的坐标依次代入验证,可知点(-1,5),
(0.5,-2.5)在正比例函数y=-5x的图象上.
2.画出下列正比例函数的图象:
2
2
(1)y 4 x;(2)y x; (3)y x .
3
3
解:三个函数分别列表如下:
(1)
例题讲解
例1 画出正比例函数 y =2x 的图象
解:
y
1. 列表
x … -2 -1 0 1
2 …
y … -4 -2 0
4
2
2. 描点
3. 连线
它是一条直线。

5
4
3
2
1
y=2x
-3 -2 -1 0 1 2 3
-1
-2
-3
-4
x
做一做
议一议
(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x
(1)、当k>0时,图象经过第 一、三
右 上升 ,y的值随着x值得增大而
象限,从左向
增大
;
(2)、当k<0时,图象经过第 二、四 象限,从左向

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

高三数学一轮复习 第2章 函数、导数及其应用第7课时 函数的图象精品课件

答案: D
3.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所 有的点( )
A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度 C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度 解析: 由y=2x得到y=2x-3-1,只需向右平移3个单位,向下平 移1个单位. 答案: A
1.(2010·重庆卷)函数f(x)=4x2+x 1的图象(
)
A.关于原点对称
B.关于直线y=x对称
C.关于x轴对称
D.关于y轴对称
解析: ∵f(x)=4x2+x 1=2x+2-x,∴f(-x)=f(x),是偶函数. 答案: D
2.(2009·北京卷)为了得到函数y=lg
x+3 10
的图象,只需把函数y=
答案: A
【变式训练】 3.若1<x<3,a为何值时,x2-5x+3+a=0有两解、 一解、无解?
解析: 原方程化为:a=-x2+5x-3,① 作出函数 y=-x2+5x-3(1<x<3)的图象如图, 显然该图象与直线 y=a 的交点的横坐标是方程①的解, 由图可知,当 3<a<143时,原方程有两解; 当 1<a≤3 或 a=143时,原方程有一解; 当 a>143或 a≤1 时,原方程无解.
分别画出下列函数的图象: (1)y=|lg x|; (2)y=2x+2; (3)y=x2-2|x|-1.
lg x x≥1 解析: (1)y=-lg x 0<x<1. 图象如图①. (2)将y=2x的图象向左平移2个单位.图象如图②.
x2-2x-1 x≥0 (3)y=x2+2x-1 x<0 .图象如图③.
有两个不同实根,则a的取值范围为( )

实验1_函数的图形

实验1_函数的图形

实验1曲线绘图实验目的•学习Matlab绘图命令;•进一步理解函数概念。

1.曲线图Matlab作图是通过描点、连线来实现的,故在画一个曲线图形之前,必须先取得该图形上的一系列的点的坐标(即横坐标和纵坐标),然后将该点集的坐标传给Matlab函数画图.命令为:PLOT(X,Y,’S’)线型X,Y是向量,分别表示点集的横坐标和纵坐标PLOT(X,Y)--画实线PLOT(X,Y1,’S1’,X,Y2,’S2’,……,X,Yn,’Sn’)--将多条线画在一起例1在[0,2*pi]用红线画sin(x),用绿圈画cos(x). x=linspace(0,2*pi,30);解:y=sin(x);z=cos(x);plot(x,y,'r',x,z,‘g o')G 绿色o 圈表1 基本线型和颜色符号颜色符号线型y黄色.点m紫红0圆圈c青色x x标记r红色+加号g绿色*星号b兰色-实线w白色:点线k黑色-.点划线--虚线2.符号函数(显函数、隐函数和参数方程)画图(1) ezplotezplot(‘f(x)’,[a,b])表示在a<x<b绘制显函数f=f(x)的函数图ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax])表示在区间xmin<x<xmax和ymin<y<ymax绘制隐函数f(x,y)=0的函数图ezplot(‘x(t)’,’y(t)’,[tmin,tmax])表示在区间tmin<t<tmax绘制参数方程x=x(t),y=y(t)的函数图例2 在[0,pi]上画y=cos(x)的图形解输入命令ezplot('cos(x)',[0,pi])解输入命令ezplot('cos(t)^3','sin(t)^3',[0,2*pi])例4 在[-2,0.5],[0,2]上画隐函数0)sin(=+xy e x的图 解输入命令ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2])例3 在[0,2*pi]上画t x 3cos =,t y 3sin =星形图如何利用ezplot画出颜色图(2) fplotfplot(‘fun’,lims)表示绘制字符串fun指定的函数在lims=[xmin,xmax]的图形.注意:[1] fun必须是M文件的函数名或是独立变量为x的字符串.[2] fplot函数不能画参数方程和隐函数图形,但在一个图上可以画多个图形。

2.7 函数的图像

2.7 函数的图像

∴x - <a 在x∈(-1,1)恒成立,
2
2 1
x
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
令g(x)=x - ,φ(x)=a ,
2
2 1
x
当x∈(-1,1)时,g(x)的图象在φ(x)的图象的下方.
高考第一轮复习用书· 数学(理科)
-1
第二章 2.7 函数的图像
当a>1时,结合图象可知a ≥ ,即1<a≤2;当0<a<1时,结合图
5.若定义在R上的函数f(x)关于点(a,c)成中心对称,关于直线x =b(b>a)成轴对称,则函数f(x)为周期函数,4b-4a是它的一个周 期.
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
1.方程log2(x+4)=3 的实根的个数为 ( (A)0个. (B)1个. (C)2个.
x
) (D)3个.
【解析】借助图形,由图可知.
【答案】C
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
2.函数f(x)=
ln | x | x
的图象大致是(
)
【解析】f(-x)= 排除A、B、C. 【答案】D
ln | x | ln | x | =- x x
=-f(x),故f(x)为奇函数;又f(1)=0,故
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
变式训练3 已知f(x)是R上的单调函数,且对任意的实数a∈ R,有f(-a)+f(a)=0恒成立,若f(-3)=2. (1)试判断f(x)在R上的单调性,并说明理由; (2)解关于x的不等式:f(

第二十四节二次函数图象与性质-(一)

第二十四节二次函数图象与性质-(一)

二次函数图象与性质 (一)【知识要点】1.你能用描点法作出二次函数2ax y =图像吗?你能总结出2ax y =有什么性质吗? 2.通过2ax y =作图,我们能得到c ax y +=2和2)(h x a y -=有哪些图像性质吗? 3.你能说明以上三个函数图像他们之间的联系和区别吗?4.你能举例说明哪些实际生活问题可以建立二次函数c ax y +=2的数学模型?【典型例题】例1 、在同一坐标轴中作出二次函数y=x 2和y=-x 2的图象,并在下表总填出它的性质。

例2 试在同一坐标系内画出22x y -=与322+-=x y 以及322--=x y 的图像,并依据图像回答问题:抛物线22x y -=与322+-=x y 和322--=x y 有什么关系?小结:y=ax 2+c 的图象与y=ax 2的图象形状①其对称轴为 轴 ②顶点坐标为( , )③当a>0时,开口 ,y=ax 2+c 图象有最 点;当x=0时,y 有最 值为 ;当a<0时,开口 ,图象有最 点,当x=0时,y 有最大值为 。

④当c>0时,是由y=ax 2向 平移c 个单位,当c<0时,是由y=ax 2向 平移|c|个单位。

简称“ ”例3 在同一平面直角坐标系中画出下列二次函数的图象; y= -21x 2 , y= -21(x+1)2 , 与y=-21(x-1)2结合图象分析研究以下问题: (1)抛物线y=-21(x+1)2,y=-21(x-1)2与y=-21x 2的相同点与不同点是什么? (2)抛物线y=-21 (x+1)2的开口方向是_____,对称轴是_____,顶点坐标是_____; (3)抛物线y=--21 (x-1)2的开口方向是____,对称轴是_______,顶点坐标是______。

小结:y=a(x -h)2的图象与y=ax 2的图象形状 ,①对称轴为平行y 轴的直线x= ②顶点坐标为( ,___)③当a>0时,开口向上,图象有最_____点,当x=h 时,y 有最 值为0; 当a<0时,开口向下,图象有最 点,当x=h 时,y 有最大值为0④当h>0时,由y=ax 2的图象向右平移h 个单位;当h<0时,由y=ax 2向左平移|h|个单位,简称“ ” 例4 函数32-=kx y 与y=xk(k ≠0)在同一直角坐标系中的图象可能是( )例5 如果二次函数m ax y +=2的值恒大于0,那么必有( ) A 、a >0,m 取任意实数B 、a >0,m >0C 、a <0,m >0D 、a ,m 均可取任意实数例 6 若二次函数c ax y +=2,当x 取)(,2121x x x x ≠时,函数值等,则当x 取21x x +时,函数值为( ).A 、c a +B 、c a -C 、c -D 、c例7 已知抛物线)0(2>=a ax y 上有两点A 、B ,其横坐标分别为-1,2,请探求关于a 的取值情况,△ABO 可能是直角三角形吗?不能,说明理由;能是直角三角形,写出探求过程,并与同伴交流.例8 如图,深圳某中学的校门是一抛物线形状的水泥建筑物,大门在地面跨度为8米,两侧距地面4米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为6米,则校门的高度为 。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

函数的图像和性质

函数的图像和性质

用到数形结合、函数与方程、转化与 化归等数学思想,用好这些思想方法 解题就会事半功倍。
函数的图象和性质专题复习
课堂练习
1. 设函数 f ( x) ln(1 x) ln(1 x) ,则 f ( x) 是 ( A.奇函数,且在 (0,1) 上是增函数 C.偶函数,且在 (0,1) 上是增函数
函数的图象和性质
专题复习
董波
重庆市江津第八中学校
函数的图象和性质专题复习
学过的初等函数
一次函数 二次函数 指数函数 对数函数
反比例函数
三角函数
幂函数
……….
函数的图象和性质专题复习
函数的主要性质
定义域 值 域 奇偶性 周期性
最 值
单调性
对称性
………
函数的图象和性质专题复习
考向分析
函 数 的 图 象 和 性 质
y 的取值范围是 x 1
3 0, 4
作图分析
函数的图象和性质专题复习
考点突破
y

-1
3 k= 4
.
o
1 2
k=0

x
函数的图象和性质专题复习
考点二:函数的性质
考点突破
2
例 2.已知函数 f ( x) x sin x( x R) ,且 f ( x 3x) f ( x 8) 0 ,
有 8 个不同的零点,则实数 b 的取值范围为
1 由方程t bt 1 0得b t , t 典型错误!!! 且t 0,4 ,则b 2, .
2
函数的图象和性质专题复习
考点突破
分析: 方程t bt 1 0有两不同根t 、t , 1, 且t t b,t t 1, 对于b t 1 中的 t 和 t t 就应视为t ,t ,

第五节 函数的图象(一)

第五节 函数的图象(一)
2
(2)在同一个坐标系中画出函数y=ax,y=sin ax的部分图象,其中a>0且a≠1, 则下列所给图象中正确的是( )
解析:(2)当 a>1 时,函数 y=sin ax 的最小正周期 T= 2π <2π,故选项 A,C 错误; a
当 0<a<1 时,函数 y=sin ax 的最小正周期 T= 2π >2π,故选项 B 错误,选项 D 正确.因 a
(A)y= 1 x
(C)y=2x
(B)y=-x2+1 (D)y=lg|x+ 1|
解析:对于 A,函数 y= 1 的图象关于原点对称且在(0,+∞)上单调递减;对于 B,函数 x
y=-x2+1 的图象关于 y 轴对称且在(0,+∞)上单调递减;对于 C,函数 y=2x 无对称性;对 于 D,函数 y=lg|x+1|的图象关于 x=-1 对称且在(-1,+∞)上单调递增.故选 D.
x 2 , x 1,
解析:(2)f(x )=min{|x-2|,x2,|x+2|} =
x2
,
1
x
1,
x
2
,
x
1,
如图所示,图象关于 y 轴对称,所以 f(x)是偶函数,故 A 正确;当 x≥1 时,f(x)=|x-2|,f(x-2) 的图象可看作 f(x) 的图象向右平移 2 个单位得到,显然当 x>1 时 f(x)的图象在 f(x-2)图 象之上,故 B 正确;由图象知 0≤f(x)≤x,所以 f(f(x))≤f(x),故 C 正确;在 D 选项中可取 特殊值 x=-4,f(-4)=2,f(-4)-2=0,显然 f(-4)>|f(-4)-2|,所以 D 不正确,故选 D.

函数的性质曲线的凹凸性与分析作图法

函数的性质曲线的凹凸性与分析作图法

9
1
y 10(x2)13 10
9
9
1 0[1
(x
2)3 ]
1
9( x 2)3
x1 3 时 y 0 ; x 2 2 时 y 不存在
(3)列表
1
y 10(x2)13 10
9
9
10[1
(x
2)3 ]
1
9( x 2)3
x1 3 时 y 0; x 2 2 时 y 不存在
x
(, 2) 2 (2,3) 3 (3, )
f (x)
0
0
f(x) f (x)
0
极大值
拐点
32 27
( 1 , 16 ) 3 27
y
极小值
0
B(0,1)
C (3,5) 28
A(1,0)
1
1 o 1
1
x
3
3
yx3x2x1
四、小结
函数图形的描绘综合运用函数性态的研究,是 导数应用的综合考察.
y
凸的
单增
yf(x)

凹的
拐 点
大 值
0
拐点
(3, 26) 9
极小值
3
lx i m f(x)lx i [m 4(x x 21)2]2, 得水平渐近 y线 2;
lx i0m f(x)lx i0[m 4(x x 21)2] ,得 垂 直 渐 近 线 x 0 .
补充点: (13 ,0 ),(13 ,0 );
A(1,2), 作图
B(1,6), C(2,1). y
1、 曲线 y e x 的水平渐近线为_______________.
2、 曲线 y 1 的水平渐近线为______________, x1

第一章 正弦函数、余弦函数的图象

第一章 正弦函数、余弦函数的图象

人教A版必修四·新课标·数学
版块导航
自测自评
1.以下对正弦函数 y=sinx 的图象的描述不正确的是 ( ) A.在 x∈[2kπ,2(k+1)π],k∈Z 上的图象形状相同,只 是位置不同 B.介于直线 y=1 与直线 y=-1 之间 C.关于 x 轴对称 D.与 y 轴仅有一个交点
人教A版必修四·新课标·数学
)
人教A版必修四·新课标·数学
版块导航
3 3.y=1+sinx,x∈[0,2π]的图象与直线 y=2交点的个数 是( ) A.0 B.1 C.2 D.3
解析:画出图象,数形结合,可知有 2 个交点.
答案:C
人教A版必修四·新课标·数学
版块导航
4.不等式 cosx<0,x∈[0,2π]的解集为( π 3π π 3π A.(2, 2 ) B.[2, 2 ] π π C.(0,2) D.(2,2π)
解:要使 y= 2sinx+1有意义,则必须满足 2sinx+1≥0 1 即 sinx≥- .结合正弦曲线或单位圆,如图所示: 2
π 知函数 y= 2sinx+1的定义域为{x|2kπ- ≤x≤2kπ+ 6 7π ,k∈Z}. 6
人教A版必修四·新课标·数学
版块导航
正弦函数、余弦函数的对称性 π 【例 3】 函数 y=sin2x+3的对称轴是________,对 称中心是________.
版块导航
正弦函数、余弦函数图象的应用 【例 4】 函数 f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直 线 y=k 有且仅有两个不同的交点,则 k 的取值范围是 ________.
人教A版必修四·新课标·数学
版块导航
解析:将函数 f(x)化为分段函数,且作出其图象,由图象观察即 可解决. 3sinx, x∈[0,π), , ∵f(x)= -sinx, x∈[π,2π] ∴y=f(x)的图象如下图.

期末复习专题5:一次函数的图像与性质(解答题)(一)—解析版

期末复习专题5:一次函数的图像与性质(解答题)(一)—解析版

期末复习专题5:一次函数的图像与性质(一)1. 在学习一次函数时,我们经历了“确定函数的表达式--利用函数图象研究其性质--应用函数解决问题”的学习过程,在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|2x+b|+kx (k≠0)中,当x=0时,y=1;当x=-1时,y=3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=21x-1的图象如图所示,结合你所画的函数图形,直接写出不等式|2x+b|+kx≤21x-1的解集.【解答】(1)将x=0,y=1;x=-1,y=3分别代入函数y=|2x+b|+kx (k≠0)得:⎪⎩⎪⎨⎧=-+-=321k b b ,解得:⎩⎨⎧-==21k b 或()舍⎩⎨⎧=-=01k b ,∴y=|2x+1|-2x . (2)当2x+1≥0,即x≥-21时,y=1;当2x+1<0,即x <-21时,y=-1-4x ;∵y=1为平行于x 轴的直线,y=-1-4x 为过(-1,3)、(-23,5)的射线故可作图如下:这个函数的一条性质为:函数图象不过原点.(3)由(2)中图象可知不等式|2x+b|+kx≤21x-1的解集为x≥4.2.已知函数y=|x﹣4|(1)在平面直角坐标系中画出函数图象;(2)函数图象与x轴交于点A,与y轴交于点B.已知P(x,y)是图象上一个动点,若△OP A的面积为6,求P点坐标;(3)已知直线y=kx+1(k≠0)与该函数图象有两个交点,求k的取值范围.【解答】(1)当x≥4时,y=x﹣4,当x<4时,y=4﹣x,按照一次函数画出函数如下图象.(2)如上图所示,点P只可能在点A右侧的图象上,设点P(m,m﹣4),m≥4,△OP A的面积=AO×y P=6,则y P=3=m﹣4,解得:m=7,故点P(7,3)或(1,3);(3)设直线y=kx+1(k≠0)与y轴交于点C(0,1),当直线在m、n之间时,直线y=kx+1(k≠0)与该函数图象有两个交点,①直线m过点C、A,将点A的坐标代入直线方程得:0=4k+1,解得:k=﹣;②直线n与直线AP平行,在k=1,故﹣<k<1且k≠0.3.如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.【解答】(1)∵直线AB:y=kx+b经过A(,﹣1),B(2,0),∴,解得,∴直线AB的解析式为y=﹣2x+4;(2)如图,设点E(x E,m),点F(x F,m),则m=﹣2x E+4,m=x F,∴x E=﹣m+2,x F=m.∵点F在点E的右边,∴m>﹣m+2,解得m>,即m满足的条件是m>.4.已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.【解答】(1)y=kx+2k=k(x+2),∴直线经过定点(﹣2,0),∴P(﹣2,0);(2)当a=1时,y=|x﹣1|+1,函数图象如下:直线与函数y=|x﹣a|+a的图象存在唯一的公共点,有以下三种情况:①当直线过点A(1,1)时,将点A的坐标代入y=kx+2k得:1=3k,解得:k=;②k=1直线和函数恰好有一个交点,且直线与图象右侧直线平行,故当k≥1时,直线和函数恰好有一个交点;③k=﹣1直线与图象左侧直线平行,直线和函数恰好没有交点,且故当k<﹣1时,直线和函数恰好没有交点;综上,k=或k≥1或k<﹣1;(3)如下图,图象的顶点为H(a,a),函数与正方形的交点为点T、点A,①当图象与函数无交点时,S=0,a>2;②当点T在AD上时,如图2(左),此时0<a≤2,过点H作HM⊥AD于点M,则S=×MH×AD=(2﹣a)×2×(2﹣a)=a2﹣4a+4;③当点T在边CD上时,此时﹣2<a≤0,连接HC,S=S△ACD﹣S△THC=8﹣×(2﹣a)(2﹣a)=﹣a2﹣4a+4;④当点T与点C重合时,S=8;综上,S=.5.如图,一次函数y=kx+b的图象经过点A (-2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=31S△BOC,求点D的坐标.【解答】(1)当x=1时,y=3x=3,∴C(1,3),将A (-2,6),C(1,3)代入y=kx+b,得⎩⎨⎧3=b+k6=b+2k-,解得⎩⎨⎧=-=41bk∴直线AB的解析式是y=-x+4;(2)y=-x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=21×OB×|y C|=21×4×3=6,S△COD=21×OD×|x C|=21|m|×1=-21m,∵S△COD=31S△BOC,∴-21m=31×6,解得m=-4,∴D(0,-4).6.如图,已知点A(6,0)、点B(0,2).(1)求直线AB所对应的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,试求点C的坐标.【解答】(1)设直线AB所对应的函数表达式为y=kx+b(k≠0).由题意得:⎩⎨⎧==+26bbk,解得,⎪⎩⎪⎨⎧=-=231bk,∴直线AB所对应的函数表达式为y=−31x+2.(2)由题意得OB=2.又∵△OBC的面积为3,∴△OBC中OB边上的高为3.当x=-3时,y=−31x+2=3;当x=3时,y=−31x+2=1.∴点C的坐标为(-3,3)或(3,1).。

函数的图象

函数的图象
|1-x|

解析 函数 f(x)=ln|1|x--x1| |的定义域为(-∞,1)∪(1,+∞), 且图象关于x=1对称,排除B,C. 取特殊值,当 x=12时,f(x)=2ln 12<0,故选 D.
解析 答案
(2)已知函数f(x)的图象如图所示,则f(x)的解析式
可以是
√A.f(x)=lnx|x|

解析 y=21-x=12x-1,因为 0<12<1,所以 y=12x-1 为减函数,取 x=0, 则 y=2,故选 A.
1234567
解析 答案
4.[P75A组T10]如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1) 的解集是_(_-__1_,1_]_.
解析 在同一坐标系内作出y=f(x)和y= log2(x+1)的图象(如图).由图象知不等式 的解集是(-1,1].
基础保分练
1.函数f(x)=xs2i+n x1的图象大致为

解析 因为f(x)=xs2i+n x1,所以f(0)=f(π)=f(-π)=0,排除选项C,D; 当0<x<π时,sin x>0,所以当0<x<π时,f(x)>0,排除选项B,故选A.
跟踪训练 (1)(2017·湖南长沙四县联考)函数f(x)=lnsxin+x2 的图象可能是

解析 由题意知xln+x2+>02,≠0, ∴x>-2 且 x≠-1,故排除 B,D, 由 f(1)=slinn31>0 可排除 C,故选 A.
解析 答案
(2)(2017·安徽“江南十校”联考)函数y=log2(|x|+1)的图象大致是
(3)伸缩变换 ①y=f(x) ―――――0―<a―>a―<1,1―,―横―横坐―坐―标―标―缩伸―短―长―为―为原―原―来―来的―的―a1―倍a1―倍,―,―纵―纵坐―坐―标―标不―不―变―变――――→ y= f(ax) .

函数图像

函数图像
b 3a, b 0
例6、 甲 、 乙 二 人 沿 同 一 方向 去B地 , 途 中 都 用 两 种 不 同的 速 度
v1与v2 (v1 v2 ).甲 前 一 半 的 路 程 用 速 度v1, 后 一 半 的 路 程 用 速 度v2;







使

速度v

1






使

速度v
第八讲 函数的图象
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,
y),均在其图象上 。

cos
logcos x (0 x logcos x (1 x)
1)

x(0 x

1 x
(1

x)
1)
y
o
x
返回
1 (3) log x y log y x log x y log x y log x y 1 y x或y 1 ( x, y 0且x, y 1)
2
y x 2 4 | x | 3 | x |2 4 | x | 3
y
-3
-2
-1
–4 –3 –2 –1
|
|
|
|
o
1 234
|
|
|
|
- –1
x
返回
(2) y cos |logcos x| (0 );

函数的表示法(一)

函数的表示法(一)

2021-2022学年高中数学必修一第3章3.1.2函数的表示法(一)学习目标 1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图象上获取有用的信息.知识点函数的表示方法思考函数三种表示法的优缺点?答案1.任何一个函数都可以用解析法表示.(×)2.任何一个函数都可以用图象法表示.(×)3.函数f(x)=2x+1不能用列表法表示.(√)4.函数的图象一定是一条连续不断的曲线.(×)一、函数的表示方法例1某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解(1)列表法:x/台12345678910 y/元 3 000 6 0009 00012 00015 00018 00021 00024 00027 00030 000(3)解析法:y=3 000x,x∈{1,2,3,…,10}.反思感悟应用函数三种表示方法应注意以下三点(1)解析法必须注明函数的定义域;(2)列表法必须罗列出所有的自变量与函数值的对应关系;(3)图象法必须清楚函数图象是“点”还是“线”.跟踪训练1由下表给出函数y=f(x),则f(f(1))等于()x 12345y 4532 1A.1 B.2 C.4 D.5答案 B解析由题中表格可知f(1)=4,所以f(f(1))=f(4)=2.二、求函数解析式例2求下列函数的解析式:(1)已知函数f(x+1)=x+2x,求f(x);(2)已知函数f(x)是二次函数,且f(0)=1,f(x+1)-f(x)=2x,求f(x).解(1)方法一(换元法)设t=x+1,则x=(t-1)2(t≥1).∴f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f(x)=x2-1(x≥1).方法二(配凑法)∵x+2x=(x)2+2x+1-1=(x+1)2-1,∴f(x+1)=(x+1)2-1(x+1≥1),∴f(x)=x2-1(x≥1).(2)设f(x)=ax2+bx+c(a≠0).∵f (0)=1,∴c =1. 又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1. 反思感悟 求函数解析式的常用方法(1)换元法(有时可用“配凑法”):已知函数f (g (x ))的解析式求f (x )的解析式可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f (g (x ))中求出f (t ),从而求出f (x ).(2)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________________. 答案 f (x )=x 2-4(x ≥2)解析 因为f (x 2+2)=x 4+4x 2=(x 2+2)2-4, 令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2), 所以f (x )=x 2-4(x ≥2).(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________. 答案 2x -13或-2x +1解析 因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1. 所以f (x )=2x -13或f (x )=-2x +1.三、函数的图象例3 作出下列函数的图象. (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].解 (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分.(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分.(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.延伸探究 根据作出的函数图象求其值域. 解 观察图象可知: (1)中函数的值域为[1,5]. (2)中函数的值域为(0,1]. (3)中函数的值域为[-1,8].反思感悟 作函数y =f (x )图象的方法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象.跟踪训练3 作出下列函数的图象: (1)y =1-x (x ∈Z ); (2)y =x 2-4x +3,x ∈[1,3]. 解 (1)因为x ∈Z ,所以图象为直线y =1-x 上的孤立点,其图象如图①所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图②所示.函数图象的应用典例(1)已知f(x)的图象如图所示,则f(x)的定义域为________,值域为________.考点函数图象题点函数图象的应用答案[-2,4]∪[5,8][-4,3]解析函数的定义域对应图象上所有点横坐标的取值集合,值域对应纵坐标的取值集合.(2)若函数f(x)=x2-4x+3(x≥0)的图象与y=m有两个交点,求实数m的取值范围.考点函数图象题点函数图象的应用解f(x)=x2-4x+3(x≥0)的图象如图,f(x)的图象与直线y=m有2个不同交点,由图易知-1<m≤3.[素养提升](1)函数图象很直观,在解题过程中常用来帮助理解问题的数学本质,依托函数图象可以更直观地寻求问题的解决思路和要点.(2)借助几何直观认识事物的位置关系,形态变化与运动规律;利用图形分析数学问题,是直观想象的核心内容,也是数学的核心素养.1.已知函数f(x)由下表给出,则f(f(3))等于()x 123 4f (x )3 24 1A .1B .2C .3D .4 考点 函数的表示法 题点 函数的表示法 答案 A2.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .f (x )=3x +2 B .f (x )=3x +1 C .f (x )=3x -1 D .f (x )=3x +4答案 A解析 方法一 令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.方法二 因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2.3.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( )考点 函数图象题点 函数图象的判断与理解 答案 C 4.设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x 1-x(x ≠-1) B.1+x x -1(x ≠-1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t1+t,即f (x )=1-x1+x.5.已知二次函数f (x )的图象经过点(-3,2),顶点是(-2,3),则函数f (x )的解析式为__________. 答案 f (x )=-x 2-4x -1解析 设f (x )=a (x +2)2+3(a ≠0), 由y =f (x )过点(-3,2),得a =-1, ∴f (x )=-(x +2)2+3=-x 2-4x -1.1.知识清单: (1)函数的表示方法. (2)求函数解析式. (3)函数的图象. 2.方法归纳:(1)待定系数法、换元法. (2)数形结合法.3.常见误区:求函数解析式时易忽视定义域.1.已知函数f (x -1)=x 2-3,则f (2)的值为( ) A .-2 B .6 C .1 D .0 答案 B解析 令t =x -1,则x =t +1, ∴f (t )=(t +1)2-3=t 2+2t -2, ∴f (2)=22+2×2-2=6.2.已知函数y =f (x )的对应关系如表所示,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )x 1 2 3 f (x )23A.3 B .2C .1D .0 答案 B解析 ∵g (2)=1, ∴f (g (2))=f (1)=2.3.从甲市到乙市t min 的电话费由函数g (t )=1.06·(0.75[t ]+1)给出,其中t >0,[t ]为不超过t 的最大整数,则从甲市到乙市5.5 min 的电话费为( ) A .5.04元 B .5.43元 C .5.83元 D .5.38元 答案 A解析 依题意知g (5.5)=1.06(0.75×5+1) =5.035≈5.04,故选A.4.如果f ⎝⎛⎭⎫1x =x 1-x ,则当x ≠0,1时,f (x )等于( ) A.1x B.1x -1 C.11-x D.1x -1 考点 求函数的解析式 题点 换元法求函数解析式 答案 B解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x , 则有f (t )=1t1-1t =1t -1,故f (x )=1x -1.故选B.5.函数y =x1+x的大致图象是( )考点 函数图象题点 求作或判断函数的图象 答案 A解析 方法一 y =x1+x 的定义域为{x |x ≠-1},排除C ,D ,当x =0时,y =0,排除B. 方法二 y =x 1+x =1-1x +1,由函数的平移性质可知A 正确.6.已知函数f (x )=x -mx ,且此函数图象过点(5,4),则实数m 的值为________.答案 5解析 将点(5,4)代入f (x )=x -mx,得m =5.7.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为________kg.答案 19解析 设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨⎪⎧330=30a +b ,630=40a +b ,解得⎩⎪⎨⎪⎧a =30,b =-570.即y =30x -570,若要免费,则y ≤0,所以x ≤19.8.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________. 答案 2解析 ∵f (x )=x 2+4x +3, ∴f (ax +b )=(ax +b )2+4(ax +b )+3 =a 2x 2+(2ab +4a )x +b 2+4b +3 =x 2+10x +24,∴⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24,∴⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-7. ∴5a -b =2.9.如图所示,有一块边长为a 的正方形铁皮,将其四角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V 以x 为自变量的函数式,并指明这个函数的定义域.解 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , 所以此盒子的体积V =(a -2x )2·x =x (a -2x )2,其中自变量x 应满足⎩⎪⎨⎪⎧a -2x >0,x >0,即0<x <a 2.所以此盒子的体积V 以x 为自变量的函数式为V =x (a -2x )2,定义域为⎝⎛⎭⎫0,a2. 10.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域. 考点 函数图象 题点 函数图象的应用解 函数f (x )=-x 2+2x +3的定义域为R , 列表:x -1 0 1 3 y34描点,连线,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].11.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还经过的点的坐标为( ) A.⎝⎛⎭⎫12,5 B.⎝⎛⎭⎫14,4 C .(-1,3) D .(-2,1)答案 A解析 设一次函数的解析式为y =kx +b (k ≠0),则该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧ k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,所以此函数的解析式为y =2x +4,只有A 选项的坐标符合此函数的解析式.故选A.12.设函数f ⎝⎛⎭⎫1+1x =2x +1,则f (x )的表达式为( ) A.1+x1-x(x ≠1) B.1+xx -1(x ≠1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 B解析 令1+1x =t ,则t ≠1,∴x =1t -1,t ≠1,∴f (t )=2t -1+1=1+t t -1,t ≠1,∴f (x )=1+xx -1(x ≠1),故选B.13.已知函数F (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且F ⎝⎛⎭⎫13=16,F (1)=8,则F (x )的解析式为________. 答案 F (x )=3x +5x(x ≠0)解析 设f (x )=kx (k ≠0),g (x )=m x (m ≠0,且x ≠0),则F (x )=kx +mx .由F ⎝⎛⎭⎫13=16,F (1)=8,得⎩⎪⎨⎪⎧13k +3m =16,k +m =8,解得⎩⎪⎨⎪⎧k =3,m =5,所以F (x )=3x +5x(x ≠0).14.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))=g (f (x ))的x 的值为________.x 1 2 3 4 f (x ) 1 3 1 3 g (x )3232考点 函数的表示法 题点 函数的表示法 答案 2或4解析 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=3. 当x =3时,f (g (3))=f (3)=1,g (f (3))=g (1)=3. 当x =4时,f (g (4))=f (2)=3,g (f (4))=g (3)=3. 满足f (g (x ))=g (f (x ))的x 的值只有2或4.15.已知f (x )+3f (-x )=2x +1,则f (x )的解析式是________. 考点 求函数的解析式 题点 方程组法求函数解析式 答案 f (x )=-x +14解析 因为f (x )+3f (-x )=2x +1,①所以把①中的x 换成-x ,得f (-x )+3f (x )=-2x +1.② 由①②解得f (x )=-x +14.16.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为y =ax +bx .且当x =2时,y=100;当x =7时,y =35.且此产品生产件数不超过20件. (1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解 (1)将⎩⎪⎨⎪⎧ x =2,y =100与⎩⎪⎨⎪⎧x =7,y =35代入y =ax +bx 中,得⎩⎨⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧ 4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x (x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 12345678910 y 19710068.35344.238.73532.530.829.6x 11121314151617181920 y 28.828.328.12828.128.2528.528.929.329.8。

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析1.一高为H、满缸水量为V的鱼缸的轴截面如图所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为V,则函数的大致图象可能是( )【答案】B【解析】根据题目所给鱼缸图形可以分析出:水深的变换是开始快,中间慢,最后快,所以答案是B.【考点】函数图像问题.2.关于的方程:有两个实数根,则实数的取值范围()A.B.C.D.【答案】D【解析】方程可化为,进而整理得,令,,则原方程有两个实数根,即函数与的图象有两个公共点.由图象可以看出,要满足条件,只需,即即可.【考点】1.函数的图象;2.简单不等式的求解.3.偶函数与奇函数的定义域均为,在,在上的图象如图,则不等式的解集为()A.B.C.D.【答案】C【解析】是偶函数,偶函数的图像关于轴对称,结合图像知的解集,的解集;是奇函数,奇函数的图像关于原点对称,结合图像知的解集,的解集;等价于或,所以解集为,故选C.【考点】1.函数的图像;2.函数的奇偶性.4.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】画出四个函数的图像,由图像可知①②错,共有三个交点,当时,乙走在最前面,当时,甲走在最前面;由图像知③④⑤正确;【考点】函数图像的应用5.函数(且)的图象必经过定点P,则点P的坐标为 .【答案】(2,0)【解析】求函数过定点问题可有两个思路,一是几何方法,从函数图像出发,找出定点,因为对数函数过定点,所以过定点(2,0),这是因为函数向右平移一个单位就得到,二是代数方法,从函数解析式出发,研究什么点的取值与无关,由知当取1,即取2时,恒等于0,即点(2,0)恒在函数上.【考点】函数过定点问题,函数图像变换.6.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.【答案】(1);(2)老师在时段内安排核心内容,能使得学生学习效果最佳.【解析】(1)这是分段函数的解析式的求解问题,采用分段求解的方法:在时,该图像是二次函数的图像,设这个二次函数的顶点式方程即,由点,可求出的值;在时,由点可求出直线的方程,最后写出函数的解析式即可;(2)求解不等式即或即可得到老师安排核心内容的时间段.试题解析:(1)当时,设 1分因为这时图像过点,代入得所以 3分当时,设,过点得,即 6分故所求函数的关系式为 7分(2)由题意得或 9分得或,即 11分则老师就在时段内安排核心内容,能使得学生学习效果最佳 12分.【考点】1.函数的实际应用问题;2.分段函数解析式的求解问题;3一次函数与二次函数的图像与性质;4.一次不等式与二次不等式.7.已知函数,不等式对任意实数恒成立,则的最小值是 .【答案】【解析】由分析可知要想恒成立,只能,因为,所以最小值为【考点】函数图像绝,对值不等式8.函数的图象与函数图象交点的个数是()A.1B.2C.3D.4【答案】C【解析】在同一直角坐标系中分别作出两个函数的图像由上图可知可知有3个交点,故选C.【考点】函数图象的交点.9.对于函数,下列结论中正确的是:()A.当上单调递减B.当上单调递减C.当上单调递增D.上单调递增【答案】A【解析】因为,所以当时,则,又,所以在区间上单调递减.【考点】分段函数的性质和图象.10.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.11.已知函数若函数有三个零点,则实数的取值范围是.【答案】【解析】画出函数f(x)图像如上图所示,而函数有三个零点,即有三个根,所以有三个根,也就是说函数与函数的图像有三个交点,利用数形结合的方法可知:,解得.【考点】数形结合的思想方法.12.下列四个图像中,不可能是函数图像的是 ( )【答案】B【解析】根据题意,对于选项A,对于任意的x ,有唯一确定的y与其对应,故成立,对于B,由于一个x,有两个y对应,不成立,对于C,由于满足对于任意的x ,有唯一确定的y与其对应,因此是函数图像,对于D,也是做一条垂直x轴的直线,交点至多一个即可,故选B.【考点】函数图像点评:本题主要考查函数的定义,函数的图象特征,属于基础题.13.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极大值()A.1个B.4个C.3个D.2个【答案】D【解析】画出函数的图像如下:由图像知,函数在开区间内有2个极大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:确定函数图象,通常研究不同背景下两变量之间的函数关系,以函数图象的形式进行描述.常考查_________________________.
处理思路:
①____________________;
②____________________;
③结合表达式进行验证.
函数图象的分析与作图(一)
一、单选题(共6道,每道16分)
1.如图,在边长为4的正方形ABCD中,动点P从点A出发,以每秒1个单位长度的速度沿线段AB向点B运动,同时动点Q从点B出发,以每秒2个单位长度的速度沿折线BC-CD运动,当点P运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t,△APQ的面积为S(记初始时刻的面积为0),则S关于t的函数图象为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:确定函数图象
2.如图,已知等边三角形ABC的边长为2,动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→A的方向运动,到达点A时停止.设运动的时间为x秒,,则y关于x的函数图象为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:确定函数图象
3.如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上.将正方形ABCD沿FH向右平移,当点B与点H 重合时停止.设点D,F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间的函数关系的图象是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
4.如图,半圆O的直径AB=2,AP是半圆O的切线,C是射线AP上一动点(不与点A重合),连接BC,交半圆O于点M,过点M作MN⊥AB于点N.设AN的长为x,图中阴影部分的面积之和为y,则关于的函数图象大致为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点
同时出发,以1cm/s的速度沿BC,CD向终点C,D运动.设运动的时间为t(s),△OEF的面积为,则与t(s)之间的函数关系可用图象表示为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:确定函数图象
6.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,塑料桶和玻璃杯都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:确定函数图象。

相关文档
最新文档