2022届中考数学总复习:分式

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。

简单来说,分母中含有字母的式子叫做分式。

1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。

即BA中,0≠B 。

2. 分式值为0的条件:分式的分子为0,分母不为0。

即BA中,0=A ,0≠B 。

2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。

2022年中考数学专题练——专题三 分式、二次根式

2022年中考数学专题练——专题三 分式、二次根式

专题三分式、二次根式一、单选题1.已知y=+-3,则2xy的值为( )A. -15B. 15C. -D.2.(2019·江川模拟)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( )A. ﹣2a-bB. 2a﹣bC. ﹣b D. b3.(2022九下·重庆月考)如果2x-y= ,那么代数式的值为()A. -B. C. 2D. -24.(2019·北京模拟)如果a+b=2,那么代数式的值是()A. B. 1 C.D. 25.若x<2,化简+|3-x|的正确结果是()A. -1B. 1C. 2x-5 D. 5-2x6.乐陵市某中学八年级教师为鼓励学生合作学习设计了一个接力游戏——用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行下一步计算,再将结果传递给下一人,最后完成化简,过程如图所示:接力中,自己负责的一步出现错误的情况是()A. 只有甲出错B. 甲和乙C. 乙和丙 D. 丙和丁7.(2019·东台模拟)使有意义的x的取值范围是()A. x>B. x>-C. x≥D. x≥-8.(2022·长春模拟)若使有意义,由x的取值范围是()A. x>3B. x>-3C. x≥3.D. x≥-39.(2019·双柏模拟)下列运算正确的是()A. 4a2÷2a2=2B. ﹣a2•a3=a6 C. D.10.(2022九上·郑州期末)下列计算正确的是()A. 2007 =0B. 5 =﹣15C. a ÷a =aD. ﹣8x y ÷4xy =﹣2xy11.一个三角形的三边长分别为1,k,4,化简|2k-5|-的结果是( )A. 3k-11B. k+1 C. 1 D. 11-3k12.(2022·百色模拟)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A. 46×10﹣7B. 4.6×10﹣7C. 4.6×10﹣6 D. 0.46×10﹣513.把代数式(a-1) 的a-1移到根号内,那么这个代数式等于()A. -B. C.D. -14.下列计算错误的有()①(-)-3=8;②( -π)0=1;③39÷3-3=3-3;④9a-3·4a5=36a2;⑤5x2÷(3x)×=5x2.A. ①③④B. ②③④C. ①②③ D. ①③⑤15.(2017·大理模拟)下列运算正确的是()A. sin60°=B. a6÷a2=a3C. (﹣2)0=2 D. (2a2b)3=8a6b316.(2022·北京模拟)已知:,,,则A. B. C.D.17.下列运算正确的是()A. (2x3y)2=4x6y2B. =×C. a6÷a3=a2 D. a4+a2=a618.(2019·蒙自模拟)下列各式中,运算正确的是()A. a6÷a3=a2 B. C. D.19.(2019·上海模拟)方程的解为()A. x=4B. x=7C. x=8 D. x=10.20.已知a+=,则a-的值为()A. ±2B. 8C.D. ±二、填空题21.(2019·乌鲁木齐模拟)式子在实数范围内有意义,则x的取值范围是________.22.(2018九上·恩阳期中)最简二次根式与可以合并,则的值是________23.(2022九下·下陆月考)函数中自变量x的取值范围是________.24.(2017·莱芜)(﹣)﹣3﹣2cos45°+(3.14﹣π)0+ =________.25.(2022九上·郑州期末)要使分式有意义,则x的取值范围是________.26.(2019·五华模拟)工匠绝技,精益求精,中国船舶重工的钳工顾秋亮凭着精到丝级的手艺,为海底探索者7000米级潜水器“蛟龙号”安装观察窗玻璃,成功地将玻璃与金属窗座之间的缝隙控制在0.2丝米以下已知1丝米=0.0001,0.2丝米=0.00002米,则用科学记数表示数据0.00002为________.27.(2019·青浦模拟)方程的根是________.28.若+=+|2c-6|,则b c+a的值为________.29.(2022·北京模拟)当________时,分式的值为0.30.(2019·黄陂模拟)如果,那么代数式的值是________.三、解答题31.(2019·朝阳模拟)先化简:;再在不等式组的整数解中选取一个合适的解作为a的取值,代入求值.32.(2022九下·镇平月考)先化简,再求值:,其中整数x与2、3构成△ABC的三条边长.33.化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.34.(2019九上·新蔡期中)如图,面积为48cm2的正方形,四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的体积.35.(2022·玉林模拟)化简分式,并选取一个你认为合适的整数a代入求值.36.(2019九上·灌云月考)已知9+ 与9﹣的小数部分分别为a和b,求ab﹣3a+4b+10的值.37.(2022·郑州模拟)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+ .38.(2019九下·宁都期中)(1)计算:﹣14﹣2×(﹣3)2+ ÷(﹣)(2)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.39.(2019·红塔模拟)观察下面的变形规律:;;;….解答下面的问题:(1)若n为正整数,请你猜想=________;(2)证明你猜想的结论;(3)求和:+ + +…+ .40.(2019九上·海门期末)(1)计算:;(2)先化简,再求代数式的值:,其中.41.(2019·增城模拟)已知.(1)化简;(2)如果、是方程的两个根,求的值.42.(2019·朝阳模拟)某学生在化简求值:,其中x=时出现不符合题意,解答过程如下,原式=(第一步)=(第二步)=(第三步)当x=是,原式=(第四步)(1)该学生解答过程从第________步开始出错的,其不符合题意原因是________.(2)写出此题的符合题意解答过程.43.(2019·盘龙模拟)设M=(1)化简M;(2)当a=1时,记此时M的值为f(1)=;当a=2时,记此时M的值为f(2)=;当a=3时,记此时M的值为f(3)=……当a=n时,记此时M的值为f(n)=________;则f(1)+f(2)+…+f(n)=________;(3)解关于x的不等式组:≤f(1)+f(2)+f(3)并将解集在数轴上表示出来.44.(2019·越秀模拟)已知(1)化简T;(2)若x满足,求T的值.45.(2019·南京模拟)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是________(填序号);①;②;③;④;(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=________(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.答案解析部分一、单选题1. A【解答】解:由题意可得:,解得x=,将x=代入方程y=+-3得出y=-3,∴2xy=2×=-15.故答案为:A.【分析】根据二次根式有意义的条件列出不等式组,求解得出x的值,将x的值代入方程即可算出y的值,从而即可解决问题.2. A【解答】解:由图可知:,∴,∴.故答案为:A.【分析】观察数轴可知a<0<b,|a|>|b|,由此可得到a+b<0,然后利用二次根式的性质及绝对值的意义进行化简。

中考数学总复习《分式综合》专项测试卷(带参考答案)

中考数学总复习《分式综合》专项测试卷(带参考答案)

中考数学总复习《分式综合》专项测试卷(带参考答案)(考试时间:90分钟,试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•鄞州区一模)要使分式有意义,则x的取值范围是()A.x≠﹣1B.x≠1C.x≠±1D.x≠02.(2023•济南二模)计算的结果正确的是()A.B.C.D.3.(2023•唐山一模)若÷运算的结果为整式,则“□”中的式子可能是()A.y﹣x B.y+x C.2x D.4.(2023•温州二模)化简的结果为()A.a B.a﹣1C.D.a2﹣a5.(2023•振兴区校级一模)若x,y的值均扩大到原来的3倍,则下列分式的值一定保持不变的是()A.B.C.D.6.(2023•靖宇县一模)某生产车间生产m个机械零件需要a小时完成,那么该车间生产200个同样的零件需要的时间()A.小时B.小时C.小时D.小时7.(2023•永修县三模)若a≠b,则下列分式化简正确的是()A.B.C.D.8.(2023•竞秀区二模)在复习分式的化简运算时,老师把甲、乙两位同学的解答过程分别展示如下.则()甲:=……①乙:=……=……②=……③=1……④①=……②=……③=1……④A.甲、乙都错B.甲、乙都对C.甲对,乙错D.甲错,乙对9.(2023•利辛县模拟)若2m=5,5n=2,则的值为()A.B.1C.D.210.(2023•安徽模拟)已知实数x,y,z满足++=,且=11,则x+y+z 的值为()A.12B.14C.D.9二、填空题(本题共6题,每小题2分,共12分)11.(2023•碑林区校级模拟)若分式的值为0,则x 的值为.12.(2023•惠安县模拟)计算20+3﹣1的结果等于.13.(2023•长岭县模拟)计算结果是.14.(2023•广饶县校级模拟)若+=3,则的值为.15.(2023•鹿城区校级模拟)计算:=.16.(2023•宁波模拟)对于任意两个非零实数a、b,定义新运算“*”如下:,例如:.若x*y=2,则的值为.三、解答题(本题共7题,共58分)。

2022年中考复习《列方程解应用题(分式方程)》专项练习附答案

2022年中考复习《列方程解应用题(分式方程)》专项练习附答案

列方程解应用题〔分式方程〕1、〔2021泰安〕某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也参加该电子元件的生产,假设乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,根据题意可得:+=33,应选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.2、〔2021•铁岭〕某工厂生产一种零件,方案在20天内完成,假设每天多生产4个,那么15天完成且还多生产10个.设原方案每天生产x个,根据题意可列分式方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意可得等量关系:〔原方案20天生产的零件个数+10个〕÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意得:=15,应选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3、〔2021•钦州〕甲、乙两个工程队共同承包某一城市美化工程,甲队单独完成这项工程需要30天,假设由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?假设设乙队单独完成这项工程需要x天.那么可列方程为〔〕A.+=1 B.10+8+x=30 C.+8〔+〕=1D.〔1﹣〕+x=8考点:由实际问题抽象出分式方程.分析:设乙工程队单独完成这项工程需要x 天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+〔+〕×8=1即可. 解答:解:设乙工程队单独完成这项工程需要x 天,由题意得: 10×+〔+〕×8=1.应选:C .点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.4、(2021年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。

2022年中考数学考点一遍过考点03分式与二次根式含解析202222281136

2022年中考数学考点一遍过考点03分式与二次根式含解析202222281136

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则 (1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母. 6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算 (1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减. 用式子表示为:a c a cb b b±±=. ②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减. 用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=. (2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a c a cb d b d⋅⋅=⋅. (3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅. (4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质(1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除 0,0)a b =≥≥;0,0)a b≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一分式的有关概念1.分式的三要素:(1)形如AB的式子;(2),A B均为整式;(3)分母B中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B≠.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1x的取值范围是A.x≥4B.x>4 C.x≤4D.x<4 【答案】D4-x>0,解得:x<4,即x的取值范围是:x<4,故选D.【名师点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.1.若分式21xx-在实数范围内无意义,则x的取值范围是A.x≠1 B.x=1C.x=0 D.x>1考向二分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为A.扩大为原来2倍B.缩小为原来的12倍C.不变D.缩小为原来的14倍【答案】B【解析】∵若x、y的值都扩大到原来的2倍,则为()()()2234623123 12432323x yx y x y x y xy xy xy xy++++===⋅∴把分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为原来的12,故选B.【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.下列变形正确的是A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考向三分式的约分与通分1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 关于分式的约分或通分,下列哪个说法正确A.21 1x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x -1 C .22xx 约分的结果是1 D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D .【名师点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握. 3.下列分式中,是最简分式的是A .2xyxB .222x y-C .22x y x y +-D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 化简:2291(1)362m m m m -÷---.【解析】2291(1)362m m m m -÷--- 33m m+=.【名师点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.先化简,再求值:2221()211x xx x x x+÷--+-,其中x=4.考向五二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 函数yA.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠12【答案】B【解析】根据题意得,x≥010≠,∴x≥0且x≠12.故选B.【名师点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数是非负数且分母不为零.5.已知:x>4=__________.典例6 下列二次根式是最简二次根式的是A B C D【答案】C【解析】A=,故原选项不是最简二次根式;B=C是最简二次根式;D =4,故原选项不是最简二次根式, 故选C .6;.其中是最简二次根式的有 A .2个 B .3个 C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较. 典例7 下列计算正确的是A =B 6=C 5=D 4=【答案】A【解析】A 、原式-B 、原式CD 、原式,错误, 故选A .7.计算:(1(2)(–2.典例8 比较大小:__________5(填“>” “<”或“=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.故答案为:>.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a b 1,c,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1(2)a -有意义,则实数a 的取值范围是 A .1a ≥B .2a ≠C .1a ≥-且2a ≠D .a >22.若分式293x x -+的值为零,则x 值为A .x =±3B .x =0C .x =-3D .x =33.下列式子是最简二次根式的是ABCD .4.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x -有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.计算33a a a +-的结果是 A .6a a + B .6a a-C .1aD .17a 的值为 A .1 B .2C .23D .328.化简2211x ax ÷--的结果是21x +,则a 的值是A .1B .-1C .2D .-29.已知 1x <,则化简的结果是 A .1x - B .1x - C .1x --D .1x +10.下列运算中错误的是AB .+C2D 11.若分式11x x -+的值为0,则x 的值为 A .1B .−1C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y -=,则x y +的值等于A .1B .32 C .2D .5214a=,则1x x+的值为 A .22a - B .2a C .24a -D .不确定15.16最接近的整数是__________.17.比较大小:>、<、或=”)18.计算(-2)(-2)的结果是__________.19.已知a ,b 互为倒数,代数式222a ab b a b+++_____________.20.若1112a b -=,则a b abab a b--=-__________.21.计算:(10)a ≥;(2.22.先化简,再求值:22(1)a b a b a b -÷--,其中1a =,1b =. 23.先化简:22144(1)1m m m m m-+-÷--,再从-1≤m ≤2中选取合适的整数代入求值. 24.先化简,再求值:22121(1)1121m m m m m --÷-+--+,其中m 为一元二次方程230x x +-=的根. 25.先化简,再求代数式21211a aa a a -÷-+-的值,其中a =2cos30°.1.(2019•常州)若代数式13x x +-有意义,则实数x 的取值范围是A .x =-1B .x =3C .x ≠-1D .x ≠32.(2019x 的取值范围是 A .x >0 B .x ≥-1 C .x ≥1D .x ≤13.(2019•黄石)若式子2x -在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <14.(2019•山西)下列二次根式是最简二次根式的是A BCD5.(2019•贵港)若分式211x x -+的值等于0,则x 的值为A .±1B .0C .-1D .16.(2019=A .B .4CD .7.(2019•扬州)分式13x-可变形为 A .13x + B .13x -+ C .13x -D .13x --8.(2019•江西)计算1a ÷(21a-)的结果为 A .a B .-aC .31a -D .31a 9.(2019·天津)计算2211a a a +++的结果是 A .2B .22a +C .1D .41aa + 10.(2019•临沂)计算21a a --a -1的正确结果是A .11a -- B .11a - C .211a a ---D .211a a --11.(2019•北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .312.(2019•河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在 A .段①B .段②C .段③D .段④13.(2019·重庆A 卷)估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间14.(2019有意义时,x 应满足的条件是__________.15.(2019的结果是__________.16=__________.17.(2019•吉林)计算:22yx·x y =__________.18.(2019·天津)计算1)的结果等于__________.19.(2019·南充)计算:2111x x x+=--__________.20.(2019•武汉)计算221164a a a ---的结果是__________.21.(20192)2 22.(2019•益阳)化简:2244(4)2x x x x+--÷. 23.(2019•深圳)先化简(132x -+)2144x x x -÷++,再将x =-1代入求值.24.(2019•河南)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x . 25.(2019•烟台)先化简(x +373x --)2283x xx -÷-,再从0≤x ≤4中选一个适合的整数代入求值.26.(2019•安顺)先化简2221(1)369x x x x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1-x =0,即x =1, 故选B . 2.【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误,故选D . 3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y-,错误;C 、22x y x y +-=1x y-,错误;D 、22xx +是最简分式,正确. 故选D .4.【解析】2221()211x x x x x x+÷--+-=2(+1)2(111)()()x x x x x x x --÷--=2()(+1)111)(x x x x x x -⋅-+=21x x -, 当x =4时,原式=2416413=-.5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,必须101x x -≥⇒≥.故选B .6.【答案】B==,=,∴ 故选B .7.【解析】(1)原式162.(2)原式=(–4)÷2=4÷2=12. 8.【答案】D【解析】a −1),b −1,c)×−1),,∴a >b >c .故选D .1.【答案】C【解析】由题意得:a+1≥0,且a–2≠0,解得,1a≥-且2a≠.故选C.2.【答案】D【解析】∵分式293xx-+的值为零,∴x2-9=0且x+3≠0.解得:x=3.故选D.3.【答案】C【解析】A=B,不是最简二次根式,故本选项不符合题意;CD、=故选C.4.【答案】B【解析】∵正确的解题步骤是:23311xx x-+--33(1)(1)(1)(1)(1)x xx x x x-+=-+-+-333(1)(1)x xx x---=+-,∴开始出现错误的步骤是331(1)(1)x xx x--++-.去括号是漏乘了.故选B.5.【答案】1【解析】∵x>4,∴x-4>0,∴原式=44xx--=1,故答案为:1.【名师点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键. 6.【答案】D 【解析】33331a a a a a++--==,故选D . 7.【答案】D【解析】1+4a a =-,解得32a =,故选D . 8.【答案】A 【解析】22122111111x x a x x x x +=÷==--+--,∴a =1,故选A . 9.【答案】B【解析】∵x <1,∴x -1<0x -1|=1-x .故选:B . 10.【答案】B【解析】A .原式,所以A 选项的计算正确;B .和B 选项的计算错误C .原式=2,所以C 选项的计算正确;D .原式=4,所以D 选项的计算正确. 故选B . 11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A .12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 13.【答案】B【解析】()2210y -=,∴()2121022101x x y y ⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩.∴13122x y +=+=.故选B . 14.【答案】Ax +2+1x =a ²,∴x +1x=a ²−2,故选A . 15==.16.【答案】4<<,,故答案为:4. 17.【答案】<,因为12<18,所以18.【答案】-16【解析】原式=-()()=-(20-4)=-16. 故答案为:-16. 19.【答案】1【解析】对待求值的代数式进行化简,得()ab a b a b +⋅+ab =,∵a ,b 互为倒数,∴ab =1,∴原式=1.故答案为:1. 20.【答案】–32【解析】∵1112a b -=,∴a −b =−2ab .∴原式=−22ab ab ab ab --=−2+12=−32. 故答案为:−32.21.【解析】(1)原式=4a 2.(2)原式. 22.【解析】22(1)a b a b a b-÷-- a b =+,当1a =,1b =时,原式11=23.【解析】原式=2-2(1)1(2)m m m m m -⋅-- =2mm -, 根据分式有意义的条件可知:m =-1, ∴原式=13. 24.【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++ =()()11m m m m --+=()11m m + =21m m+.由m 是方程230x x +-=的根,得到23m m +=, 所以原式=13. 25.【解析】原式=2111(1)1a a a a --+÷-- =211(1)a a a a --⨯-,=1a. ∵a=2= ∴原式3=.1.【答案】D 【解析】∵代数式13x x +-有意义,∴x -3≠0,∴x ≠3.故选D . 2.【答案】C【解析】由题意,得x -1≥0,解得x ≥1,故选C . 3.【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A . 4.【答案】D 【解析】A 2=,故A 不符合题意; B 7=,故B 不符合题意; C =C 不符合题意;D D 符合题意.故选D .5.【答案】D 【解析】21(1)(1)11x x x x x -+-==++x -1=0,∴x =1,经检验:x =1是原分式方程的解,故选D . 6.【答案】B4==.故选B .7.【答案】D 【解析】分式13x -可变形为:13x --.故选D . 8.【答案】B 【解析】原式1a =·(-a 2)=-a ,故选B . 9.【答案】A【解析】原式=222(1)211a a a a ++==++,故选A . 10.【答案】B 【解析】原式()211a a a =-+-22111a a a a -=---11a =-.故选B . 11.【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()m m m n -·(m +n )(m -n )=3(m +n ), 当m +n =1时,原式=3.故选D .12.【答案】B 【解析】∵2222(2)1(2)111441(2)111x x x x x x x x x x ++-=-=-=+++++++, 又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 13.【答案】C【解析】,又因为,所以,故选C . 14.【答案】x >8有意义时,x -8>0,解得x >8.故答案为:x >8. 15.【答案】3,故答案为:3.16.【答案】【解析】原式==.故答案为:17.【答案】12x【解析】22y x ·12x y x =,故答案为:12x. 18.【答案】2【解析】原式=3-1=2.故答案为:2.19.【答案】x +1 【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 20.【答案】14a + 【解析】原式()()()()244444a a a a a a +=-+-+-()()2444a a a a --=+-()()444a a a -=+-14a =+. 故答案为:14a +. 21.【解析】原式63⨯=7.22.【解析】原式=2(2)2(2)(2)x x x x x -⋅+- =242x x -+. 23.【解析】原式21(2)21x x x x -+=⨯+-=x +2,将x =-1代入得:原式=x +2=1.24.【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x ,当x时,原式25.【解析】(x +373x --)2283x xx -÷-=(29733x x x ----)2283x xx -÷- (4)(4)3x x x +-=-·32(4)x x x -- 42x x +=,当x =1时,原式145212+==⨯.26.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+- =31x x -+,解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4, ∴其整数解为-1,0,1,2,3, ∵要使原分式有意义, ∴x 可取0,2.∴当x =0时,原式=-3, (或当x =2时,原式=13-).。

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。

【注意】A 、B 都是整式,B 中含有字母,且B ≠0。

2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。

3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。

(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。

(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。

(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。

【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。

【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。

4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nn aa-=。

5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

【注意】不论是分式的哪种运算,都要先进行因式分解。

6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

②设未知数——根据问题与等量关系直接或间接设未知数。

③列方程:根据等量关系与未知数列出分式方程。

④解方程——按照解分式方程的步骤解方程。

④答——检验方程的解是否满足实际情况,然后作答。

练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。

2024年中考数学一轮复习考点03 分式(精讲)(解析版)23

2024年中考数学一轮复习考点03 分式(精讲)(解析版)23

考点03.分式(精讲)【命题趋势】分式在各地中考中,每年考查2道题左右,分值为8分左右,其中分式的有意义(无意义)和分式值为零(负数、正数、整数等)、最简分式等概念,常以选择题、填空题为主;分式的基本性质和分式的运算(化简求值)考查常以选择题、填空题、计算题的形式命题。

【知识清单】1:分式的相关概念(☆☆)(1)分式的概念:如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 为分子,B 为分母。

(2)对于分式A B 来说:①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB=0;④当A =B ≠0时,分式的值为1;⑤若A B >0,则A 、B 同号,若AB<0,则A 、B 异号。

2:分式的性质(☆☆)(1)分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A CC B B C÷=≠÷,其中A ,B ,C 均为整式。

(2)约分及约分法则1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。

2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分。

(3)最简分式:分子、分母没有公因式的分式叫做最简分式。

(4)通分及通分法则1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分。

2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分。

2022年中考数学试题分项版解析汇编(第02期)专题1.4 因式分解分式二次根式(含解析)

2022年中考数学试题分项版解析汇编(第02期)专题1.4 因式分解分式二次根式(含解析)

专题1.4 因式分解分式二次根式一、单项选择题1.【湖南省邵阳市 2022年中考数学试卷】将多项式x﹣x3因式分解正确的选项是〔〕A. x〔x2﹣1〕 B. x〔1﹣x2〕 C. x〔x+1〕〔x﹣1〕 D. x〔1+x〕〔1﹣x〕【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x〔1﹣x2〕=x〔1﹣x〕〔1+x〕.应选D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省 2022年中考数学试卷】某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购置假设干本笔记本.假设小锦购置笔记本的花费为36元,那么小勤购置笔记本的花费可能为以下何者?〔〕A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市 2022年中考数学试卷】以下运算正确的选项是〔〕A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.〔a+2〕〔a﹣2〕=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法那么、负指数幂的性质、二次根式的加减运算法那么、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、〔a+2〕〔a﹣2〕=a2﹣4,故D选项错误,应选C.【点睛】此题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法那么是解题关键.4.【河北省 2022年中考数学试卷】假设2n+2n+2n+2n=2,那么n=〔〕A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】此题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法那么是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n〔m,n是正整数〕.5.【湖北省孝感市 2022年中考数学试题】,,那么式子的值是〔〕A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:〔x-y+〕〔x+y-〕===〔x+y〕〔x-y〕,当x+y=4,x-y=时,原式=4×=12,应选:D.点睛:此题考查了分式的混合运算和求值,能正确根据分式的运算法那么进行化简是解此题的关键.6.【湖南省邵阳市 2022年中考数学试卷】据?经济日报? 2022年5月21日报道:目前,世界集成电路生产技术水平最高已到达7nm〔1nm=10﹣9m〕,主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为〔〕A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市 2022年中考数学试卷】:﹣=,那么的值是〔〕A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:等式左边两项通分并利用同分母分式的减法法那么计算,变形后即可得到结果.详解:∵﹣=,∴=,那么=3,应选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择适宜的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市 2022年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为〔〕A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省 2022年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规那么是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如下图:接力中,自己负责的一步出现错误的选项是〔〕A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法那么逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,应选D.【点睛】此题考查了分式的乘除法,熟练掌握分式乘除法的运算法那么是解题的关键. 10.【四川省达州市 2022年中考数学试】题二次根式中的x的取值范围是〔〕A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:此题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省 2022年中考数学试卷】算式×〔﹣1〕之值为何?〔〕A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答此题.详解:×〔﹣1〕=×﹣1=,应选:A.点睛:此题考查二次根式的混合运算,解答此题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市 2022年中考数学试卷】以下计算正确的选项是〔〕A. B.C. D.【答案】B点睛:此题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法那么. 13.【湖南省张家界市 2022年初中毕业学业考试数学试题】以下运算正确的选项是〔〕A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法那么:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a 〔a≥0〕;完全平方公式:〔a±b〕2=a2±2ab+b2;幂的乘方法那么:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、〔a+1〕2=a2+2a+1,故原选项错误;D、〔a3〕2=a6,故原选项正确.应选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法那么和计算公式.二、填空题14.【山东省东营市 2022年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x〔x+2y〕〔x﹣2y〕【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x〔x2-4y2〕=x〔x+2y〕〔x-2y〕,故答案为:x〔x+2y〕〔x-2y〕点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.15.【湖南省郴州市 2022年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a〔a﹣b〕2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.16.【湖南省怀化市 2022年中考数学试题】因式分解:ab+ac=_____.【答案】a〔b+c〕【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a〔b+c〕.故答案为:a〔b+c〕.点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省 2022年中考数学试卷】假设a,b互为相反数,那么a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=〔a+b〕〔a﹣b〕=0,故答案为:0.【点睛】此题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市 2022年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣〔a﹣2〕2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣〔a2﹣4a+4〕=﹣〔a﹣2〕2,故答案为:﹣〔a﹣2〕2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解此题的关键.19.【湖南省湘西州 2022年中考数学试卷】要使分式有意义,那么x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】此题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市 2022年中考数学试卷】计算的结果是_____.【答案】【点睛】此题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法那么是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市 2022年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法那么进行计算即可得答案.【详解】原式===,故答案为:.【点睛】此题考查分式的加减运算,熟练掌握分式加减的运算法那么是解题的关键,此题属于根底题.22.【山东省滨州市 2022年中考数学试题】假设分式的值为0,那么x的值为______.【答案】-3点睛:此题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区 2022年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市 2022年中考数学试卷】与最简二次根式5是同类二次根式,那么a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:此题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市 2022年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市 2022年中考数学试卷】阅读以下题目的解题过程:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4〔A〕∴c2〔a2﹣b2〕=〔a2+b2〕〔a2﹣b2〕〔B〕∴c2=a2+b2〔C〕∴△ABC是直角三角形问:〔1〕上述解题过程,从哪一步开始出现错误?请写出该步的代号:;〔2〕错误的原因为:;〔3〕此题正确的结论为:.【答案】〔1〕C;〔2〕没有考虑a=b的情况;〔3〕△ABC是等腰三角形或直角三角形.〔2〕错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;〔3〕此题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】此题考查因式分解的应用、勾股定理的逆定理,解答此题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市 2022年中考数学试卷】先化简,再求值:〔﹣〕÷,其中a=.【答案】原式=【点睛】此题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市 2022年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】此题考查分式的化简求值,熟练掌握分式化简求值的方法是解答此题的关键.29.【云南省昆明市 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法那么即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:此题考查分式的运算法那么,解题的关键是熟练运用分式运算法那么.30.【黑龙江省哈尔滨市 2022年中考数学试题】先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【答案】点睛:此题考查分式的运算,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.31.【广西钦州市 2022年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣〔〕﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣〔〕﹣1=4+3﹣2﹣2=+2.【点睛】此题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法那么以及实数混合运算的运算法那么是解题的关键.32.【江苏省徐州巿 2022年中考数学试卷】计算:〔﹣1〕 2022+π0﹣〔〕﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】〔﹣1〕 2022+π0﹣〔〕﹣1+=1+1﹣3+2=1.【点睛】此题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法那么、负指数幂的运算法那么以及实数混合运算的运算法那么是解题的关键.33.【湖北省荆门市 2022年中考数学试卷】先化简,再求值:〔x+2+〕÷,其中x=2.【答案】,4-2.【点睛】此题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法那么是解题的关键.34.【四川省达州市2022年中考数学试题】化简代数式:,再从不等式组的解集中取一个适宜的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法那么化简,再解不等式组,进而得出x 的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法那么是解题关键.35.【湖南省邵阳市 2022年中考数学试卷】计算:〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】〔﹣1〕2+〔π﹣3.14〕0﹣|﹣2|=1+1-〔2-〕=1+1-2+=.【点睛】此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.36.【湖北省随州市 2022年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】此题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答此题的关键.37.【山东省烟台市 2022年中考数学试卷】先化简,再求值:〔1+〕÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法那么是解此题的关键.38.【江苏省淮安市 2022年中考数学试题】先化简,再求值:〔1﹣〕÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法那么化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法那么.39.【贵州省〔黔东南,黔南,黔西南〕 2022年中考数学试题】〔1〕计算:|﹣2|﹣2cos60°+〔〕﹣1﹣〔 2022﹣〕0〔2〕先化简〔1﹣〕•,再在1、2、3中选取一个适当的数代入求值.【答案】〔1〕6;〔2〕-2〔2〕〔1﹣〕•,===,当x=2时,原式=.点睛:此题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答此题的关键是明确它们各自的计算方法.40.【湖北省黄石市 2022年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法那么化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:此题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法那么.41.【江苏省盐城市 2022年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:此题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州 2022年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法那么计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区 2022年中考数学试题】先化简,再求值:〔+1〕÷,其中x是方程x2+3x=0的根.【答案】-2点睛:此题考查分式的化简求值、一元二次方程的解,解答此题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市 2022年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市 2022年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.46.【湖南省常德市 2022年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×〔x﹣3〕2=×〔x﹣3〕2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】此题主要考查了分式的化简求值,熟练掌握分式的混合运算法那么是解题关键.47.【湖南省常德市 2022年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣〔2﹣1〕+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】此题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【 2022年湖南省湘潭市中考数学试卷】先化简,再求值:〔1+〕÷.其中x=3.【答案】x+2,5点睛:此题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市 2022年中考数学试题】〔1〕计算:π0+2cos30°﹣|2﹣|﹣〔〕﹣2;〔2〕化简:〔2﹣〕÷.【答案】〔1〕2﹣5;〔2〕【解析】分析:〔1〕先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;〔2〕根据分式的混合运算顺序和运算法那么计算可得.详解:〔1〕原式=1+2×﹣〔2﹣〕﹣4=1+﹣2+-4=2﹣5;〔2〕原式=,=,=.点睛:此题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法那么.【山东省菏泽市 2022年中考数学试题】先化简,再求值:,其中,50..【答案】7点睛:此题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法那么.。

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程一.选择题1.(2022·广西玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在下图数轴上的范围是( )A .①B .②C .③D .①或②【答案】B【分析】先对分式进行化简,然后问题可求解. 【详解】解:22242(2)x x x x --++ =()()222224(2)2x x x x x +--++ =()2222442x x x x +-++ =()222(2)x x ++=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江绥化)有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( ) A .1212304x x += B .1515244x x += C .3030242x x += D .1212302x x+= 【答案】A【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∵粗油管的注油速度为每分钟4x 3m , ∵1212304x x+=.故选:A . 【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.3.(2022·山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a b a b a b -++÷+-∵=2a b+ ∵=()()22a a b a b a b ÷+-+ =a a b-,故选A . 【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.4.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 5.(2022·广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 【答案】D【分析】设边衬的宽度为x 米,则整幅图画宽为(1.4+2x )米, 整幅图画长为(2.4+2x )米,根据整幅图画宽与长的比是8:13,列出方程即可.【详解】解:设边衬的宽度为x 米,根据题意,得1.4282.4213x x +=+,故选:D . 【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.6.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =- 【答案】C【分析】按照解分式方程的步骤解答即可. 【详解】解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案为C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.7.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠【答案】B【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.8.(2022·贵州铜仁)下列计算错误的是( )A .|2|2-=B .231-⋅=a a aC .2111a a a -=+-D .()323a a = 【答案】D【分析】根据绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则求解即可.【详解】解:A 、|2|2-=,计算正确,不符合题意;B 、2311aa a a --=⋅=,计算正确,不符合题意; C 、()()2111111a a a a a a +--==+--,计算正确,不符合题意; D 、()326a a =,计算错误,符合题意;故选D . 【点睛】本题主要考查了绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则,熟知相关知识是解题的关键.9.(2022·广西贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm .已知91nm 10m -=,则28nm 用科学记数法表示是( )A .92810m -⨯B .92.810m -⨯C .82.810m -⨯D .102.810m -⨯【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵91nm 10m -=,∵28nm=2.8×10-8m .故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x-⨯=- 【答案】D【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x-⨯=-,故选:D . 【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.11.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =- 【答案】C 【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可. 【详解】解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.12.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+-B .1449630v v =-C .144963030v v =-+D .1449630v v=+ 【答案】A【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v=+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.13.(2022·山东临沂)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+ C .0.7550.98x ⨯= D .0.7550.985x ⨯=- 【答案】B【分析】利用酒精的总质量不变列方程即可.【详解】设需要加水kg x , 由题意得0.9850.755x⨯=+, 故选:B .【点睛】本题考查了分式方程的实际应用,准确理解题意,找到等量关系是解题的关键.14.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.15.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x = 【答案】A【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.16.(2022·山东青岛)我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .7310-⨯B .60.310-⨯C .6310-⨯D .7310⨯【答案】A 【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.17.(2022·黑龙江牡丹江)函数y x 的取值范围是【 】 A .x≥1且x≠3B .x≥1C .x≠3D .x >1且x≠3 【答案】A【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A .考点:函数自变量的取值范围,二次根式和分式有意义的条件.二.填空题18.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =__. 【答案】201182【分析】通过探索数字变化的规律进行分析计算. 【详解】解:13111311123222212a ===⨯+-⨯⨯⨯+; 2551113123424222222a ===⨯+-⨯⨯⨯+; 3771113134560232232a ===⨯+-⨯⨯⨯+; ⋯,()()2111131122122n n a n n n n n n +==⨯+-⨯++++,当12n =时, 原式11111113111122312231323414⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++++⋅⋅⋅-⨯++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭201182=, 故答案为:201182. 【点睛】本题考查分式的运算,探索数字变化的规律是解题关键.19.(2022·黑龙江牡丹江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务 .设乙车间每天生产x 个,可列方程为___________ . 【答案】40050010x x =+ 【分析】设乙车间每天生产x 个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x 个,则40050010x x =+. 故答案为:40050010x x =+. 【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程.20.(2022·湖南长沙)分式方程253x x =+的解是_____________ . 【答案】x =2【详解】解:两边同乘x (x +3),得2(x +3)=5x ,解得x =2,经检验x =2是原方程的根;故答案为:x =2.【点睛】考点:解分式方程.21.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________. 【答案】35x ≠- 【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∵53x ≠- ∵35x ≠- 故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.22.(2022·四川广元)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为_____.【答案】3.4×10-10【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂.【详解】100.00000000034 3.410-=⨯故答案为:103.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为a ×10-n ,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的 0的个数决定.23.(2022·湖南郴州)若23a b b -=,则a b=________. 【答案】53 【分析】由分式的运算法则进行计算,即可得到答案. 【详解】解:23a b b -= ()32a b b ∴-=,332,a b b ∴-= 35,a b ∴=53a b ∴=; 故答案为:53. 【点睛】本题考查了分式的运算法则,解题的关键是掌握运算法则进行计算.24.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________.【答案】300030003(125%)x x-=+ 【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x 米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分, ∵比赛时小亮平均速度为(1+25%)x 米/分, 根据题意可得300030003(125%)x x -=+, 故答案为:300030003(125%)x x-=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 25.(2022·北京)方程215x x=+的解为___________. 【答案】x =5【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解. 【详解】解:215x x =+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,26.(2022·内蒙古包头)计算:222a b ab a b a b-+=--___________. 【答案】-a b ##b a -+【分析】分母相同,分子直接相加,根据完全平方公式的逆用即可得.【详解】解:原式=2222()a b ab a b a b a b a b+--==---, 故答案为:-a b .【点睛】本题考查了分式的加法,解题的关键是掌握完全平方公式.27.(2022·山东威海)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∵上一步计算为121x=+或221x =- 解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程,理解题意是解题的关键.28.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.【答案】m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,∵分式方程的解大于1,∵11m +>,解得:0m >,又分式方程的分母不为0,∵12m 且12m ,解得:1m ≠且3m ≠-, ∵m 的取值范围是m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 29.(2022·广西)当x =______时,分式22x x +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【分析】根据解分式方程的方法中确定公分母的方法求解即可. 【详解】解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x (x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2022·湖南岳阳)分式方程321x x =+的解为x =______. 【答案】2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =,经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.32.(2022·四川内江)对于非零实数a ,b ,规定a ∵b =11a b-,若(2x ﹣1)∵2=1,则x 的值为 _____. 【答案】56【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1, 等式两边同时乘以2(21)x -得,2212(21)x x -+=-, 解得:56x =, 经检验,x =56是原方程的根, ∵x =56, 故答案为:56. 【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.三.解答题33.(2022·黑龙江牡丹江)先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+ =()()()()()242222x x x x x x x +-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.34.(2022·湖南)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值. 【答案】31a -,32【分析】先根据分式的混合运算的法则进行化简后,再根据分式有意义的条件确定a 的值,代入计算即可.【详解】解:原式()2221121a a a a a --=⋅+---2111a a =+-- 31a =-; 因为1a =,2时分式无意义,所以3a =,当3a =时,原式32=. 【点睛】本题考查分式的化简与求值,掌握分式有意义的条件以及分式混合运算的方法是正确解答的关键.35.(2022·辽宁营口)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.【答案】22a a -+,15. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值. 【详解】解:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭ 22(1)52(2)11a a a a a +--+=÷++ 22411(2)a a a a -+=⋅++ 2(2)(2)11(2)a a a a a +-+=⋅++ =22a a -+,当11|2|23223a -⎛⎫-- =+⎪-⎭=⎝时, 原式=3232-+=15. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.36.(2022·黑龙江哈尔滨)先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos451x =︒+.【答案】11x -,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得. 【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =-∵211x ==∵原式===.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.37.(2022·内蒙古赤峰)先化简,再求值:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭,其中114cos 452a -⎛⎫= ⎪⎝⎭︒. 【答案】33a -;3【分析】由分式的加减乘除运算法则进行化简,然后求出a 的值,再代入计算,即可得到答案. 【详解】解:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭ =1211(1)(1)a a a a a a ++-÷+-+ =3(1)(1)1a a a aa -+⨯+ =33a -;∵114cos 452422a -︒=-⎛⎫= ⎪⎭=⎝, 把2a =代入,得原式=3233⨯-=.【点睛】本题考查了分式的加减乘除混合运算,二次根式的性质,负整数指数幂,特殊角的三角函数值等知识,解题的关键是熟练掌握运算法则,正确的进行解题.38.(2022·黑龙江大庆)先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 【答案】a a b +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题. 【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭ =222a ab a b b b--÷ =()()()a a b b b a b a b -+- =a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法.39.(2022·四川雅安)(1)计算:2+|﹣4|﹣(12)﹣1;(2)化简:(1+2a a -)÷22444a a a --+,并在﹣2,0,2中选择一个合适的a 值代入求值. 【答案】(1)5;(2)2,2a 当0a =时,分式的值为1.【分析】(1)先计算二次根式的乘方运算,求解绝对值,负整数指数幂的运算,再合并即可;(2)先计算括号内的分式的加法运算,同步把除法转化为乘法运算,再约分可得化简后的结果,再结合分式有意义的条件可得0,a = 从而可得分式的值.【详解】解(1)2+|﹣4|﹣(12)﹣1 3425=(2)(1+2a a -)÷22444a a a --+ 222222a a aaa a2222a a a 22a =+ 2a ≠且2,a ≠-当0a =时,原式2 1.2 【点睛】本题考查的是实数的混合运算,二次根式的乘法运算,分式的化简求值,负整数指数幂的含义,掌握以上基础运算是解本题的关键.40.(2022·湖北鄂州)先化简,再求值:21a a +﹣11a +,其中a =3. 【答案】1a -,2 【分析】先根据同分母分式的减法计算法则化简,然后代值计算即可.【详解】解:2111a a a -++ 2=11a a -+ ()()11=1a a a +-+ 1a =-,当3a =时,原式312=-=.【点睛】本题主要考查了分式的化简求值,熟知同分母分式的减法计算法则是解题的关键.41.(2022·福建)先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -,2. 【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案. 【详解】解:原式()()111a a a aa+-+=÷ ()()111a a a a a +=⋅+- 11a =-.当1a 时,原式2=. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.42.(2022·贵州黔东南)(1)计算:()03π12 1.572-⎛⎫-- ⎪⎝⎭; (2)先化简,再求值:2221111202220221x x x x x x ++-⎛⎫÷-+ ⎪---⎝⎭,其中cos60x =︒.【答案】(1)(2)2-【分析】(1)先每项化简,再加减算出最终结果即可;(2)先因式分解,化除为乘,通分,化简;再带入数值计算即可.【详解】(1)30(1)|2( 1.57)2π--+-31221(1)=++--1221=-++-=;(2)222111(1)202220221x x x x x x ++-÷-+--- 2(1)2022112022(1)(1)1x x x x x x x +-+-=⋅--+-- 111x x x x +=--- 11x =-∵1cos 602x ︒==, ∵原式=12112==--.【点睛】本题考查了实数的混合运算,分式的化简求值,二次根式的性质,特殊角的三角函数值,零指数幂和负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.43.(2022·湖南永州)先化简,再求值:2121x x x xx -+⎛⎫÷- ⎪⎝⎭,其中1x =. 【答案】1x -【分析】先将括号内的分式进行合并,将分式的分子分母进行因式分解,并约分即可,再代入求值即可. 【详解】解:原式2121x x x x-+-=÷ ()()111x x x x x +-=⋅+ 1x =-当1x =时,原式11=-【点睛】本题考查分式的混合运算,因式分解,能够熟练掌握运算顺序是解决本题的关键.44.(2022·广西梧州)解方程:24133x x -=-- 【答案】5x =【分析】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∵分式方程的解为:5x =.【点睛】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.45.(2022·广西玉林)解方程:1122x x x x -=--. 【答案】1x =-【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解. 【详解】1122x x x x -=--,()112x x =-, 解得1x =-,经检验1x =-是原方程的解,故原方程的解为:1x =-【点睛】本题考查解分式方程,注意分式方程要检验.46.(2022·广东)先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式的化简求值,掌握平方差公式是解题关键.47.(2022·内蒙古通辽)先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值.【答案】22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案. 【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭ 2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式①得:1a >-解不等式②得:2a ≤,∵12a -<≤,∵a 为整数,∵a 取0,1,2,∵0,20a a ≠-≠,∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.48.(2022·山东聊城)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.【答案】2a a -1 【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答. 【详解】解:()()()222244422222a a a a a a a a a a a a +---⎛⎫÷--=⨯- ⎪--⎝⎭- 22222a a a a a +=-=---,∵112sin 452222a -⎛⎫=︒+== ⎪⎝⎭,代入得:原式1=;故答案为:2a a -1. 【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.49.(2022·山东潍坊)(12103时,小亮的计算过程如下:解:2103= 41627316+-+=- 2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①224-=;②10(1)1-=-;③66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根. 【答案】(1)⑤(-2)-2=14,⑥(-2)0=1;28;(2)13x +,12. 【分析】(1)根据乘方、绝对值、特殊角的三角函数值、立方根、负整数指数幂、零指数幂的法则计算即可;(2)先把括号内通分,接着约分得到原式=13x +,然后利用因式分解法解方程x 2-2x -3=0得到x 1=3,x 2=-1,则利用分式有意义的条件把x =-1代入计算即可.【详解】(1)其他错误,有:⑤(-2)-2=14,⑥(-2)0=1, 正确的计算过程:2103= 41627111--++=-+ =28;(2)22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭ 223(3)(3)(3)x x x x x x x -+-=⋅-+ 23(3)(3)(3)x x x x x x +-=⋅-+ =13x +, ∵x 2-2x -3=0,∵(x -3)(x +1)=0,x -3=0或x +1=0,∵x 1=3,x 2=-1,∵x =3分式没有意义,∵x 的值为-1,当x =-1时,原式=113-+=12. 【点睛】本题考查了实数的运算,解一元二次方程---因式分解法,分式的化简求值.也考查了特殊角的三角函数值、立方根、负整数指数幂、零指数幂.50.(2022·辽宁锦州)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.【答案】11x -,2 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是他本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【详解】解:原式=2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭=23(1)11()(1)(1)311x x x x x x x x -+-⨯-++---- =111x x x x +--- =11x -|1x =+1∴原式【点睛】此题考查了分式的混合运算,熟练地掌握分式的混合运算法则和用公式法进行因式分解是解题的关键.注意最后求值的结果要分母有理化.51.(2022·四川广安)先化简:2242(2)244x x x x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值. 【答案】x ;1或者3【分析】根据分式的混合运算法则即可进行化简,再根据分式有意义的条件确定x 可以选定的值,代入化简后的式子即可求解. 【详解】2242(2)244x x x x x x -++÷--+ 224(2)(2)44222[]x x x x x x x x+--+⨯=+--- 2244(2)2(2)x x x x x +--=-⨯-222x x x x=-⨯- x =根据题意有:0x ≠,20x -≠,故0x ≠,2x ≠,即在0、1、2、3中,当x =1时,原式=x =1;当x =3时,原式=x =3.【点睛】本题主要考查了运用分式的混合运算法则将分式的化简并求值、分式有意义的条件等知识,熟练掌握分式的混合运算法则是解题的关键.52.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?【答案】(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,∵2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =∵330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键. 53.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A 、B 两款物理实验套装,其中A 款套装单价是B 款套装单价的1.2倍,用9900元购买的A 款套装数量比用7500元购买的B 款套装数量多5套.求A 、B 两款套装的单价分别是多少元.【答案】A 款套装的单价是180元、B 款套装的单价是150元.【分析】设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元, 由题意得:9900750051.2x x=+, 解得:x =150,经检验,x =150是原方程的解,且符合题意,∵1.2x =180.答:A 款套装的单价是180元、B 款套装的单价是150元.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.54.(2022·贵州贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设小货车货运量x 吨,则大货车货运量()4x +,根据题意,列出分式方程,解方程即可求解.【详解】解:设小货车货运量x 吨,则大货车货运量()4x +,根据题意,得,80604x x=+, 解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.。

2023年安徽中考数学总复习专题:分式

2023年安徽中考数学总复习专题:分式
1.分式通分时,要给分母与分子同时乘最简公分母;
2.当括号前是“-”号,去括号时要注意括号内各项均要改变符号;
3.不要把分式的化简与解分式方程的变形相混淆,随意将分母去掉.
考点小练
1.(2022眉山)化简 的结果是 ( )
A. B. C. D.
2.(2022威海)试卷上一个正确的式子 被小颖同学不小心滴上墨汁,被墨汁遮住部分的代数式为 ( )
续表
(3)乘方:把分子、分母分别乘方. <m></m> ③___( <m></m> 是整数).
②取各分母所有因式的最高次幂的积(数字因式取它们的最小公倍数)作为公分母.
续表
2.分式化简求值的一般步骤 先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.计算结果要化为最简分式或整式.
【易错点】分式化简中的误区
3.将 <m></m> 化为最简分式为______.


考点2 分式的运算及化简求值(10年2考)
1.分式的化简及求值
乘除运算
加减运算
(1)乘法: <m></m> ①___;(分子、分母分别相乘)(2)除法: <m></m> ·②__ <m></m> .
(1)同分母: <m></m> ④____;(分母不变,只把分子相加减)
分式的基本性质
通分 ; 约分 .
最简分式:分子与分母没有公因式的分式.
续表
考点小练
1.(2022凉山州)分式 有意义的条件是 ( )
A. B. C. D.
2.(2022怀化)代数式 , , , , , 中,属于分式的有 ( )

2022年中考数学真题分类汇编:分式方程(含答案)

2022年中考数学真题分类汇编:分式方程(含答案)

2022年年年年年年年年年年年年年一、选择题1.(2022·江苏省无锡市)分式方程2x−3=1x的解是( )A. x=1B. x=−1C. x=3D. x=−32.(2022·海南省)分式方程2x−1−1=0的解是( )A. x=1B. x=−2C. x=3D. x=−33.(2022·黑龙江省哈尔滨市)方程2x−3=3x的解为( )A. x=3B. x=−9C. x=9D. x=−34.(2022·贵州省毕节市)小明解分式方程1x+1=2x3x+3−1的过程如下.5.解:去分母,得3=2x−(3x+3).①6.去括号,得3=2x−3x+3.②7.移项、合并同类项,得−x=6.③8.化系数为1,得x=−6.④9.以上步骤中,开始出错的一步是( )A. ①B. ②C. ③D. ④10.(2022·四川省德阳市)如果关于x的方程2x+mx−1=1的解是正数,那么m的取值范围是( )A. m>−1B. m>−1且m≠0C. m<−1D. m<−1且m≠−211.(2022·重庆市)关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A. 13B. 15C. 18D. 2012.(2022·黑龙江省鹤岗市)已知关于x的分式方程2x−mx−1−31−x=1的解是正数,则m的取值范围是( )A. m>4B. m<4C. m>4且m≠5D. m<4且m≠113.(2022·浙江省丽水市)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x =4000x−30,则方程中x表示( )A. 足球的单价B. 篮球的单价C. 足球的数量D. 篮球的数量14.(2022·重庆市)若关于x的一元一次不等式组{x−1≥4x−1 3,5x−1<a的解集为x≤−2,且关于y的分式方程y−1y+1=ay+1−2的解是负整数,则所有满足条件的整数a的值之和是( )A. −26B. −24C. −15D. −1315.(2022·辽宁省铁岭市)小明和小强两人在公路上匀速骑行,小强骑行28km所用时间与小明骑行24km所用时间相等,已知小强每小时比小明多骑行2km,小强每小时骑行多少千米?设小强每小时骑行xkm,所列方程正确的是( )A. 28x =24x+2B. 28x+2=24xC. 28x−2=24xD. 28x=24x−216.(2022·云南省)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是( )A. 400x−50=300xB. 300x−50=400xC. 400x+50=300xD. 300x+50=400x17.(2022·湖北省恩施土家族苗族自治州)一艘轮船在静水中的速度为30km/ℎ,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/ℎ,则符合题意的方程是( )A. 14430+v =9630−vB. 14430−v=96vC. 14430−v =9630+vD. 144v=9630+v18.(2022·四川省宜宾市)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B. 540x+2−540x=3B.C. 540x −540x+2=3 D. 540x−540x−2=319.(2022·四川省广元市)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是( )A. 9600x−10=1600xB. 9600x+10=1600xC. 9600x =1600x−10D. 9600x=1600x+1020.(2022·黑龙江省绥化市)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A. 12x +124x=30 B. 15x+154x=24 C. 30x+302x=24 D. 12x+122x=30二、填空题21.(2022·湖南省永州市)解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是______.22.(2022·湖南省常德市)方程2x +1x(x−2)=52x的解为______.23.(2022·湖南省岳阳市)分式方程3xx+1=2的解为x=______.24.(2022·浙江省宁波市)定义一种新运算:对于任意的非零实数a,b,a⊗b=1a +1b.若(x+1)⊗x=2x+1x,则x的值为______.25.(2022·四川省内江市)对于非零实数a,b,规定a⊕b=1a −1b.若(2x−1)⊕2=1,则x的值为______.26.(2022·浙江省金华市)若分式2x−3的值为2,则x的值是______.27.(2022·四川省成都市)分式方程3−xx−4+14−x=1的解为______.28.(2022·江西省)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为______.三、解答题29.(2022·湖北省随州市)解分式方程:1x =4x+3.30.(2022·江苏省苏州市)解方程:xx+1+3x=1.31.(2022·广西壮族自治区梧州市)解方程:1−23−x =4x−3.32.(2022·广西壮族自治区柳州市)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.33.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?34.(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?35.(2022·吉林省长春市)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?36.(2022·山东省烟台市)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?37.(2022·山东省聊城市)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.38.(1)求实际施工时,每天改造管网的长度;39.(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?40.(2022·贵州省贵阳市)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?41.(2022·贵州省铜仁市)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?42.(2022·吉林省)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.43.(2022·黑龙江省大庆市)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?44.(2022·内蒙古自治区呼和浩特市)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.45.(1)问去年每吨土豆的平均价格是多少元?46.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的2,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?3参考答案1.D2.C3.C4.B5.D6.D7.C8.D9.D10.D11.B12.A13.C14.B15.A16.x(x+1)17.x=418.219.−1220.5621.422.x=323.160x =140x−1024.解:1x =4x+3左右两边同时乘以(x+3)x得x+3=4x,3=3x,x=1.检验:把x=1代入原方程得11=41+3,等式成立,所以x=1是原方程的解.故答案为:x=1.25.解:方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−32,经检验,x=−32是原方程的解,∴原方程的解为x=−32.26.解:去分母得:x−3+2=4,解得:x=5,当x=5时,x−3≠0,∴x=5是分式方程的根.27.解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:15x+1=10x,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20−m)件乙种农机具,依题意得:3m+2(20−m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.28.解:设乙班平均每小时挖x千克土豆,根据题意,得1500x+100=1200x,解得x=400,经检验,x=400是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.29.解:设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x−400)元,依题意得:96000x =1680002x−400,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x −400=2×1600−400=2800.答:每个A 型扫地机器人的进价为1600元,每个B 型扫地机器人的进价为2800元.30.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x 米,由题意得:3600x−3600(1+20%)x =10,解得:x =60,经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m 米,由题意得:(40−20)(72+m)≥3600−72×20, 解得:m ≥36.答:以后每天改造管网至少还要增加36米.31.解:设每辆小货车的货运量是x 吨,则每辆大货车的货运量是(x +4)吨,依题意得:80x+4=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.32.解:设该厂家更换设备前每天生产口罩x 万个,则该厂家更换设备后每天生产口罩(1+40%)x 万个, 依题意得:280x−280(1+40%)x =2,解得:x =40,经检验,x =40是原方程的解,且符合题意, ∴(1+40%)x =(1+40%)×40=56.答:该厂家更换设备前每天生产口罩40万个,更换设备后每天生产口罩56万个.33.解:设李婷每分钟跳绳x 个,则刘芳每分钟跳绳x +20个,根据题意列方程,得135x+20=120x,即135x =120(x +20), 解得x =160,经检验x =160是原方程的解,答:李婷每分钟跳绳160个.34.解:设现在平均每天生产x 个零件,根据题意得:800x=600x−20,解得x =80,经检验,x =80是原方程的解,且符合题意, ∴x =80,答:现在平均每天生产80个零件.35.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意, 答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨), 设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉, 由题意得:{m ≥23(375−m)m 5+375−m 8≤60,解得:150≤m ≤175, 设总利润为y 元,则y =700m +400(375−m)=300m +150000, ∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.解:原式= ÷
= · = .
∵m是方程x2+2x-3=0的根,∴m=-3或m=1.
当m=-3时,原式无意义;
当m=1时,原式= = = .
23.[解析]先进行分式的混合运算,求出最简结果;再解不等式组,从解集中确定出整数解,最后在整数解中选取一个使各个分式都有意义的x的值代入求值.
解:原式= · = · = .
12.化简: ÷( -a-2)=.
13.化简:(1+ )÷ .
14.计算: ÷( -1).
15.计算:(a-1- )÷ .
16.先化简 · ,再从0,1,2中选取一个合适的x的值代入求值.
17.先化简,再求值:(xy2+x2y)· ÷ ,其中x=π0-( )-1,y=2sin45°- .
拓展提升
18.若a2-ab=0(b≠0),则 =()
解不等式2-x≤3,得x≥-1;
解不等式2x-4<1,得x< ,
∴不等式组的解集为-1≤x< ,它的整数解为-1,0,1,2.
∵x≠-1,0,1,∴x=2.
当x=2时,原式= =0.
又∵x≠0,∴两边同时除以2x可得x+ =3,③对.
21.解:原式= · +
= +
=
= .
∵a与2,3构成△ABC的三边,
∴3-2<a<3+2,即1<a<5.
∵a为整数,∴a=2,3,4.
当a=2时,分母2-a=0,舍去;当a=3时,分母a2-3a=0,舍去,故a的值只能为4.
∴当a=4时,原式= =1.
22.先化简,再求值: ÷(m+2- ),其中m是方程x2+2x-3=0的根.
23.先化简,再求值:(x-1+ )÷ ,其中x的值从不等式组 的整数解中选取.
参考答案
1.A2.C3.A4.A5.B6.B
7.C[解析]∵ - = = ,∴ =3.故选择C.
8.x-1
9.1
10.
11.
12.-
13.解:原式= · = .
原式=-1-(- )= -1.
18.C[解析]∵a2-ab=0(b≠0),∴a(a-b)=0,∴a=0或a-b=0,即a=0或a=b,∴ =0或 = .
19.D
20.C[解析]∵x+ =3,∴x2+ = -2=9-2=7,①对;∵ = -4=9-4=5,∴x- =± ,②错;∵2x2-6x=-2,∴2x2+2=6x.
2022届中考数学总复习:分式
1.若分式 的值为0,则x的值是()
A.2或-2B.2
C.-2D.0
2.如果把分式 中的x,y都扩大到原来的2倍,则分式的值()
A.扩大到原来的4倍
B.扩大到原来的2倍
C.不变
D.缩小到原来的
3.下列分式中,最简分式是()
A. B.
C. D.
4.化简(a-1)÷( -1)·a的结果是()
A.-a2B.1C.a2D.-1
5.化简 - 的结果为()
A. B.a-1C.aD.1
6.计算(1+ )÷ 的结果是()
A.x+1B.
C. D.
7.已知 - = ,则 的值是()
A. B.- C.3D.-3
8.计算: - =.
9.化简:( + )· =.
10.化简 ÷ 的结果是.
11.化简: ÷ =.
14.解:原式= ÷ -
= ÷
= ÷
= ·
= .
15.解:原式= · = · = .
解: ·
= ·
= ·
=
= .
由于x≠0且x≠2,因此只能取x=1.
当x=1时,原式= = .
17.解:(xy2+x2y)· ÷
=xy(x+y)· ·
=x-y.
当x=π0-( )-1=1-2=-1,y=2sin45°- =2× -2 =- 时,
A.0B. C.0或 D.1或2
19.已知 - =3,则代数式 的值是()
A.- B.-
C. D.
20.已知x+ =3,则下列三个等式:①x2+ =7,②x- = ,③2x2-6x=-2,其中正确的个数为()
A.0B.1C.2D.3
21.化简 · - ,并求值,其中a与2,3构成△ABC的三边,且a为整数.
相关文档
最新文档