第五章 弯曲应力1

合集下载

第五章习题答案

第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。

设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。

已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。

解:作梁的弯矩图如图所示。

梁的最大弯矩发生在固定端截面上。

22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。

若[]160MPa σ=,试求许可载荷F 。

解:(1)求支座反力。

选整个梁为研究对象,受力分析如图所示。

列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。

由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。

5.8 压板的尺寸和载荷情况如图所示。

材料为45钢,380s MPa σ=,取安全因数1.5n =。

试校核压板的强度。

解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。

材料力学第五章 弯曲应力分析

材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)

材料力学习题册答案-第5章 弯曲应力

材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

( × )2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )二、填空题1、应用公式y I Mz=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。

4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、 H Bh BH 66132- 和 Hbh BH 66132- 。

x三、选择题1、如图所示,铸铁梁有A,B,C和D四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。

2、如图所示的两铸铁梁,材料相同,承受相同的载荷F。

则当F增大时,破坏的情况是( C )。

A 同时破坏;B (a)梁先坏;C (b)梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )A B C DA BDx四、计算题1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学第5章弯曲应力

材料力学第5章弯曲应力
Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1

第五章 弯曲应力

第五章 弯曲应力

第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力*§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念*§5-6 提高梁抗弯能力的措施§5-1 梁弯曲正应力一、梁弯曲时横截面上的应力分布一般情况下,梁受外力而弯曲时,其横截面上同时有弯矩和剪力两个内力。

弯矩由分布于横截面上的法向内力元σdA所组成,剪力由切向内力元τdA组成,故横截面上同时存在正应力和剪应力。

MσdAτdA Q当梁较长时,正应力是决定梁是否破坏的主要因素,剪应力则是次要因素。

二、弯曲分类P P a aAC DB ACD +−BC D+P PPa 梁AC 、BD 段的横截面上既有剪力又有弯矩,称为剪切弯曲(横力弯曲)。

CD 段梁的横截面上只有弯矩而无剪力,称为纯弯曲。

此处仅研究纯弯曲时梁横截面上正应力与弯矩的关系。

三、纯弯曲实验1.准备A BC DE F G H 在梁侧面画上AB 、CD 、EF 、GH 四条直线,且AB ∥CD 、EF ∥GH。

在梁两端对梁施加纯弯矩M 。

A B C D E F G H M MA BC DE F G H 2.现象•变形后横向线AB 、CD 发生了相对转动,仍为直线,但二者不再平行;仍与弧线垂直。

•纵向线EF 、GH 由直线变成曲线,且EF 变短,GH 变长;•曲线EF 、GH 间的距离几乎没有变化;•横截面上部分沿厚度方向变宽,下部分变窄。

3.假定•梁的任意一个横截面,如果在变形之前是平面,在变形后仍为平面,只是绕截面的某一轴线转过了一个角度,且与变形后的轴线垂直。

——平截面假定。

•梁上部分纤维受压而下部分纤维受拉,中间一层纤维既不受拉也不受压,这一层叫中性层或中性面。

•中性层与横截面的交线叫中性轴。

梁弯曲变形时横截面绕中性轴转动。

中性层纵向对称面中性轴•梁的纵向纤维之间无挤压力作用,故梁的纵向纤维只受拉伸或压缩作用——单向受力假设。

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。

习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。

解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。

试求钢丝中的最大应力与d /D 的关系。

并分析钢丝绳为何要用许多高强度的细钢丝组成。

解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。

处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。

试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。

解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。

6—6 图示矩形截面简支梁,受均布载荷作用。

已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学教案-弯曲应力

材料力学教案-弯曲应力

(2)最大正应力发生在横截面上离中性轴最远的点处.
σmax M ymax Iz
引用记号 W Iz —抗弯截面系数 ymax
则公式改写为
σmax
M W
(Stresses in Beams)
(1)当中性轴为对称轴时
实心圆截面 W Iz πd 4 / 64 πd 3 d / 2 d / 2 32
且梁横截面的中性轴一般也不是对称轴,所以梁的
σtmax σcmax(两者有时并不发生在同一横截面上)
要求分别不超过材料的许用拉应力和许用压应力
σtmax [σt] σcmax [σc ]
(Stresses in Beams)
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板
材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允

1M
EIz
代入
σE y
得到纯弯曲时横截面上正应力的计算公式:
σ My Iz
M为梁横截面上的弯矩;
y为梁横截面上任意一点到中性轴的距离;
Iz为梁横截面对中性轴的惯性矩.
(Stresses in Beams)
讨论
(1)应用公式时,一般将 My 以绝对值代入. 根据梁变形的情
况直接判断 的正负号. 以中性轴为界,梁变形后凸出边的应 力为拉应力( 为正号).凹入边的应力为压应力( 为负号);
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴
的距离成正比.
待解决问题
? 中性轴的位置
中性层的曲率半径
(Stresses in Beams) 四、静力关系 (Static relationship)

材料力学(刘鸿文)第五章-弯曲应力

材料力学(刘鸿文)第五章-弯曲应力

关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
σmax
M y max max
M
Iyz
max max
Iz
σ
b 但对于塑性材料,通常将梁做成矩形、圆形、工字形等
对称于中性轴的截面;
此类截面的最大拉应力与最大压应力相等。
因此:
强度条件可以表示为
σmax
M max wz
σ
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh 3 12

第五章 弯曲应力

第五章 弯曲应力


28.8 106 Pa

28.8MPa
Z
cC

M
B
y 2
Iz

2.5103 N m 52 10-3m 7.6410-6 m4
17.0 106 Pa
17.0MPa
3)计算B截面上的最大拉应力和最大压应力
cB

M
B
y 2
Iz

4 103 N m 8810-3m 7.6410-6 m4
目录
第五章 弯曲应力\梁横截面上的正应力
5.2. 2 横力弯曲时横截面上的正应力
横力弯曲时梁横截面上不仅有正应力,而且有切应力。由于切 应力的存在,梁变形后横截面不再保持为平面。按平面假设推导出 的纯弯曲梁横截面上正应力计算公式,用于计算横力弯曲梁横截面 上的正应力是有一些误差的。但是当梁的跨度和横截面的高度的比 值 l >5时,其误差甚小。因此,纯弯曲时横截面的正应力计算公
5.2.1 纯弯曲时梁横截面上的正应力
1. 横截面上正应力的计算公式
研究梁横截面上正应力的方法与 研究圆轴扭转时横截面上切应力所用 的方法相似,也须综合研究变形的几 何关系、应力与应变间的物理关系以 及静力平衡关系。
1) 变形的几何关系 取截面具有竖向对称轴(例如
矩形截面)的等直梁,在梁侧面画 上与轴线平行的纵向直线和与轴线 垂直的横向直线,如图a所示。然后 在梁的两端施加外力偶Me,使梁发生 纯弯曲(图b)。此时可观察到下列 现象:
上式是研究梁弯曲变形的基本公式。由该式可知,EIz越大,曲
率半径越大,梁弯曲变形越小。EIz表示梁抵抗弯曲变形的能力,
称为梁的弯曲刚度。
将上式代入式 σ E y ,得 My

第五章 弯曲应力1

第五章 弯曲应力1

§5–4 弯曲切应力
一、梁横截面上的切应力
1、矩形截面梁
(1)两个假设 (a)切应力与剪力平行 (b)切应力沿截面宽度均匀分布
(2)分析方法
F1 F2 m n
q(x)
z
m
n
mn
x
dx
h yo
A1
B1
x
z
y
x
A
B
A1
B1
y bm
n
dx
FN1
A
ym
B
FN2
n
z
z
m
n
y
x
A1 dFS’
B1
FN1
A
B FN2
查型钢表中,20a号工字钢,有
Iz
S
* z
max

17.2cm
d=7mm
F
AC
B
5m
FSmax
据此校核梁的切应力强度
*
F S F Smax z ,max
max
I d ( I )d z
Smax z
+
S* z ,max

30 103
24.9MPa [ ] 以上两方面的强度条件都满
D
z
4
1
1
22
a1
Wz3

bh2 6

4a13 6

1.67Wz1
合理放置截面
bh2 WZ 左 6
WZ 右

hb2 6
三、采用等强度梁
梁各横截面上的最大正应力都相等,并均达到材料的许用应力,
则称为等强度梁. 例如,宽度b保持不变而高度可变化的矩形截面简支梁,若设

第五章 弯曲应力知识讲解

第五章  弯曲应力知识讲解

第五章弯曲应力第五章 弯曲应力内容提要一、梁的正应力Ⅰ、纯弯曲和横力弯曲纯弯曲:梁横截面上的剪力为零,弯矩为常量,这种弯曲称为纯弯曲。

横力弯曲:梁横截面上同时有剪力和弯矩,且弯矩为横截面位置x 的函数,这种弯曲称为横力弯曲。

Ⅱ、纯弯曲梁正应力的分析方法:1. 观察表面变形情况,作出平面假设,由此导出变形的几何方程;2. 在线弹性范围内,利用胡克定律,得到正应力的分布规律;3. 由静力学关系得出正应力公式。

Ⅲ、中性层和中性轴中性层:梁变形时,其中间有一层纵向线段的长度不变,这一层称为中性层。

中性轴:中性层和横截面的交线称为中性轴,梁发生弯曲变形时横截面就是绕中性轴转动的,在线弹性范围内,中性轴通过横截面的形心。

中性层的曲率,平面弯曲时中性层的曲率为()()1zM x x EI ρ=(5-1) 式中:()x ρ为变形后中性层的曲率半径,()M x 为弯矩,z EI 为梁的弯曲刚度。

(5-1)式表示梁弯曲变形的程度。

Ⅳ、梁的正应力公式1. 横截面上任一点的正应力为zMyI σ=(5-2)正应力的大小与该点到中性轴z 的距离y 成正比,试中M 和y 均取其绝对值,可根据梁的变形情况判断σ是拉应力或压应力。

2. 横截面上的最大正应力,为maxmax z My I σ=(5-3) maxzz I W y =(5-4) z W 为弯曲截面系数,对于矩形、圆形和弯环截面等,z W 的公式应熟记。

3. 弯曲正应力公式的适用范围:1)在线弹性范围内()p σσ≤,在小变形条件下的平面弯曲弯。

2)纯弯曲时,平面假设成立,公式为精确公式。

横力弯曲时,平面假设不成立,公式为近似公式,当梁的跨高比5lh≥时,误差2%≤。

Ⅴ、梁的正应力强度条件 拉、压强度相等的等截面梁[]maxmax zM W σσ=≤ (5-5) 式中,[]σ为料的许用正应力。

当梁内,max ,max t c σσ≠,且材料的[][]t c σσ≠时,强度条件应为[],max t t σσ≤,[],max c σσ≤Ⅵ、提高梁正应力强度的措施1)设法降低最大弯矩值,而提高横截面的弯曲截面系数。

第五章 弯曲应力

第五章  弯曲应力

三类条件
物理关系
静力关系
1.变形几何关系
m a
n
a
m a o b m
n a o dx
b m
dx
b n
b n
假设oo层为中性层 变形前:aa = bb = oo = dx
m M a
o b m
n a M M
d M
dx
o b n
m o
b′
n o
b′
m
n
变形后:假设中性层oo层变形后的曲率半径为,则
max
M [ ] Wz max
(2) 设计截面尺寸
(3) 计算许用载荷
M Wz [ ]
M max Wz [ ]
例2. T形截面铸铁梁,已知[σt]=30MPa,[σc]=60MPa, 试 80 校核梁的强度。
9kN
A 1m
4kN
B D 1m
20
CLeabharlann 1m120讨论: 1.横截面是绕中性轴转动。 (中性层不伸长也不缩短,中性轴是中性层与横截
面的交线 。) 上部受压
当M > 0时 下部受拉 上部受拉 下部受压
当M < 0时
讨论: 2.纵向纤维的伸长或者缩短与它到中性层的
距离成正比。
m
n′
n a
y
a
y
b m
b
中性层 n′
中性轴 横截面
n
定量分析
与圆轴扭转问题相似,弯曲问题的理论分析也 必须包含三类条件。 变形几何关系
结论: 1.横截面上只存在正应力。
(纵向线与横向线保持直角。)
2.正应力分布不是均匀的。
(纵向线中既有伸长也有缩短的。)

材料力学-弯曲应力

材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图

材料力学第5章弯曲应力

材料力学第5章弯曲应力
材料力学第5章弯曲应力
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。

材料力学第五章__弯曲应力

材料力学第五章__弯曲应力

矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q
+
Qmax 1.5 5400 – x max 1.5 A 0.12 0.18 qL 0.375MPa 0.9MPa [ ] 2
应力之比
max M max 2 A L 16.7 max Wz 3Q h
4
例 T 字形截面的铸铁梁受力如图, 铸铁的[t]=30MPa,[c]=60 MPa,
2bh F2 10KN 3
F3 I Z b 胶 SZ
*
3.83KN
F F1 , F2 , F3 min 3.75KN

考:
§5-4 梁的正应力和剪应力强度条件 • 梁的合理截面
一、梁的正应力和剪应力强度条件 1、危险面与危险点分析: 一般截面,最大正应力发生在弯矩绝对值最大的截面的上 下边缘上;最大剪应力发生在剪力绝对值最大的截面的中
1
2 z
180 30
120 y
M1 y 1 2 Iz 60 60 105 61.7MPa 5.832
Wz I z / y max I z / 0.09 6.48 104 m 3
M1 Mmax
(2)此截面上的最大正应力;
1max
M1 60 104 92.6MPa Wz 6.48
(3)全梁的最大正应力;12来自120180 30
max
M max 67.5 104 104.2MPa Wz 6.48
(4)求1—1截面的曲率半径。
EI z 200 5.832 1 10 194.4m M1 60
M1 Mmax
§5–3
梁横截面上的剪应力
矩形截面梁
画危面应力分布图,找危险点
A 2 t
MC y2 2.5 88 28.2MPa 8 Iz 76310
A3t
MB y1 4 52 27.2MPa 8 Iz 76310
A1 G
A4c
y1
y2
MB y2 4 88 46.2MPa 8 Iz 76310
性轴处。
M Q





带翼缘的薄壁截面,最大正应力与最大剪应力的情况与上
述相同;还有一个可能危险的点,在Q和M均很大的截面 的腹、翼相交处。 M Q


* Qmax S z max b Iz

2、正应力和剪应力强度条件:
max
M max Wz
max
Wz 5 4.57Wz1
max 2.3 m (= Q A ) f
工字形截面与框形截面类似。
选用合理的截面形状
在截面积A相同的条件下,抗弯截面系数W愈大,则梁 的承载能力就愈高材料远离中性轴的截面(如圆环形、 工字形等)比较经济合理。这是因为弯曲正应力沿截面 高度线性分布,中性轴附近的应力较小,该处的材料不
需要考虑弯曲剪应力的情况
(1)短梁,载荷靠近 支座,剪力较大.
(2)工字型截面梁, 腹板上切应力较大.
(3)焊接梁的焊缝 ,铆接梁的铆接面或 胶结梁的胶接面.
已知
Q=F
Mmax Fl
max
M max 6Fl 2 WZ bh
F1 3.75KN
y = 0
处切应力最大
其截面形心位于C点,y1=52mm,
y2=88mm,Iz=763cm4 ,试校核 此梁的强度。并说明T字梁怎样放 置更合理? A1 G y1 解:画弯矩图并求危面内力
RA 2.5kN ; RB 10.5kN
MC 2.5kNm 下拉、上压 ( )
y2
A2
M B 4kNm (上拉、下压)
qL 2
L=3m
qL 2
Q
+

Qmax
M max
qL 3600 3 5400N 2 2
qL2 3600 32 4050Nm 8 8
求最大应力并校核强度
max
qL 2
M max 6 M max 6 4050 2 Wz bh 0.12 0.182 6.25MPa 7MPa [ ]
D 3 Wz 3 (1- 0.84 ) 2.75Wz1 32
max 2 m

D12
4
2 2a1 时, a1
2 D1
Wz 4
bh 4a 1.67Wz1 6 6
2
3 1
max 1.5 m
2a1
z
a1

D12
4
2 2 2a2 0.8 1.6a2 时, a2 1.05D1
max
3F 2bh
2bh F2 10KN 3
( y)
QSZ 胶 bIZ
*
SZ
*
h b yc 25 104 mm3 3
F3
I Z b 胶 SZ
*
3.83KN
F1 3.75KN
铆接或焊接的组合截面,其腹板的厚度与高度比小于型钢的
相应比值时,要校核剪应力。
各向异性材料(如木材)的抗剪能力较差,要校核剪应力。
例 矩形(bh=0.12m0.18m)截
A B 面木梁如图,[]=7MPa,[]=0. 9 M Pa,试求最大正应力和最大剪 应力之比,并校核梁的强度。 解:画内力图求危面内力 x
指出:矩形木梁的合理高宽比为
h h 2 时, 强 度 最 大 ; 3 时, 刚 度 最 大 。 b b
其它材料与其它截面形状梁的合理截面
M 强度:正应力: Wz
剪应力:
* QSz bIz
1、在面积相等的情况下,选择抗弯模量大的截面 z
Wz1
D 3
Bending
Stresses
第五章
弯曲应力
§5–1 引言
§5–2 平面弯曲时梁横截面上的正应力 §5–3 梁横截面上的剪应力 §5–4 梁的正应力和剪应力强度条件 梁的合理截面
§5-1 引言
1、弯曲构件横截面上的(内力)应力 剪力Q 内力 弯矩M 正应力 剪应力
简化为外伸梁如图:
AC BD

dA
E

A
y dA
2

M
M z (dA) y
A
Ey2
A

dA
E

A
y 2dA
EI z

M
EIz
杆的抗弯刚度。
1


M EI z
Ey
My IZ


(四)最大正应力:
My IZ
凹入一侧的受压应力
凸出的一侧受拉应力
max
My max M Iz Wz
Physics relation

Ey
E
Ey


3. 静力学关系
statics relation
S z 0 Z (中性)轴过形心
M
M
z
y
(dA) z
A
Eyz
A

dA
E

A
yzdA
EI yz

EI z
0
(dA) y
A
Ey2
A
开始发生纯弯曲变形, 注意观察纵向线和横向 线的变形情况. 3、变形后,纵向线弯 曲成为弧线,横向线仍 保持为直线,且垂直与 弯曲了的弧线
a A
P
P
B
a
纯弯曲(Pure Bending): 某段梁的内力只有弯矩 没有剪力时,该段梁的变形 称为纯弯曲。如AB段。 x
Q
x M
§5-2 平面弯曲时梁横截面上的正应力 纵向对称面 中性层 一、 纯弯曲时梁横截面 上的正应力 中性轴 (一)变形几何规律:
{
Q M
横力弯曲 CD
{
M
Q图
纯弯曲
M图
2、研究方法 平面弯曲时横截面 纯弯曲梁(横截面上只有M而无Q的情况)
平面弯曲时横截面
例如: P1
剪切弯曲(横截面上既有Q又有M的情况)
P2
纵向对称面
1、变形前在矩形梁表面
画相互垂直的纵向线和 横向线,mm和nn为横 截面,间距为dx.
2、在M的作用下,梁
B截面处M值为负,所以中性轴以上受拉,以下受压.
C截面处M值为正,所以中性轴以上受压,以下受拉.
例2 受均布载荷作用的简支梁如
图所示,试求:
(1)1——1截面上1、2两点的 正应力; 180 30 (2)此截面上的最大正应力; (3)全梁的最大正应力;
1
2 z
120 y
(4)已知E=200GPa,求1—1
方向:与横截面上剪
力方向相同; 大小:沿截面宽度均 匀分布,沿高度h分布 为抛物线。 最大剪应力为平均剪 应力的1.5倍。
max
3Q 1.5 2A
min max
铅垂剪应力主 要腹板承受
(95~97%)
max
Q Af
max min
; Af —腹板的面积。
截面的曲率半径。
解:画M图求截面弯矩
qLx qx2 M1 ( ) 2 2
M1 Mmax
x 1
60kNm
Mmax qL2 / 8 60 32 / 8 67.5kNm
(1)1——1截面上1、2两点的正应力;
bh3 120 1803 Iz 1012 5.832 10 5 m 4 12 12
1.梁的纯弯曲实验 a b M a b c c 横向线(a b、c d)变形 d M
相关文档
最新文档