有理数、数轴、绝对值、加减法练习卷上课讲义
有理数的相关概念讲义及作业
非负有理数集合{ 整数集合{ 自然„};
变式练习:将下列各数填入相应的圈内:-3,+ ,-1,0,2, ,2 4
3
3
1 3
„ 正数集合
„
„
整数集合 非正数集合
3
考点 5 数轴的概念 定义:用一条直线上的点表示数,这条直线叫做数轴; 要求:原点、正方向和单位长度的被称为数轴的三要素;(缺一不可) 特点:有理数从小到大依次从左到右排列在数轴上。 例 6 下列说法正确的有() ①任何一个有理数都可以用数轴上的一个点来表示; ②数轴是一条直线; ③数轴上的一个点只能表示一个数; ④数轴上的点都是表示有理数的点; ⑤数轴上找不到既不表示正数,也不表示负数的点; ⑥数轴上的一个点可以表示不同的两个数。 A.2 个 B.3 个 C.4 个 D.5 个 点拨:任何一个数都对应着数轴上唯一一个点; 反之数轴上任何一个点也对应着唯一一个数。 (一一对应)
4 1
A.2017
B.2016
C.2015
D.2014
考点 7 相反数的定义 定义:像 2 和-2,5 和-5 这样,只有符号不同的两个数叫做相反数。 注意:①相反数是成对出现,不能单独存在; ②求一个数的相反数即是在这个数前面添上一个“-”负号 +3 的相反数是-(+3)=-3(负正得负) ;-7 的相反数就是-(-7)=7(负负得正) ; ③0 的相反数是 0 本身; 例 9:化简下列各数: (1)-(-3); (2)-(+5); (3)+(-23)
第 1 次课 有理数的相关概念 直击考点: 考点 1 正数和负数的定义考点 2 相反意义的量考点 3 有理数的分类 考点 4 探索数字的规律考点 6 数轴上的整数点覆盖问题考点 7 相反数 考点 8 相反数的代数意义和几何意 考点 9 绝对值的定义 考点 10 绝对值的非负性 考点 1 正数和负数的定义 正数:大于 0 的数,如 1,+ 2,1. 3,π,„„ 负数:小于 0 的数(在正数前加“-”) ,如-2,− ,-π,„„
数轴、相反数、绝对值(讲义及作业)含答案
数轴、相反数、绝对值一、知识点睛1.有理数的分类:2.非正数;非负数;非正整数;非负整数.3.数轴的定义:.4.数轴的作用:_______________ 、_________________、___________________________.5.利用数轴比大小:_________________、_______________、__________________________.6.相反数:.7.绝对值的定义:_________________________________________________________________ __________.8.绝对值法则:_________________________________________________________________ __________.二、精讲精练1.若上升5米记作+5,则-8米表示;-10表示支出10元,那么+50表示;如果零上5摄氏度记作5℃,那么零下2摄氏度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米);比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.2.下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.我们所学习过的数中不是正数就是负数D.0既不是正数也不是负数2310-1-2-33.把下列各数填入表示它所在的集合里-2,7,32,0,2003,0.618,3.14,-1.732,-5,+3 ① 正数集合有_____________________________________. ② 负数集合有_____________________________________.③ 整数集合有_____________________________________.④ 有理数集合有___________________________________.⑤ 非正数集合有___________________________________.⑥ 非负数集合有___________________________________.4.冬天的某一天,郑州的温度是-3℃,广州的温度是+13℃,则广州的温度比郑州的温度高 ℃,用算式表示为 .5.画数轴:6.下列图为数轴的是( )A .B .C .D .7.到原点的距离等于3的数是 .8.a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,表示正确的是( )A .0<a <bB .a <0<bC .b <0<aD .a <b <09.a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列( )10.A .-b <-a <a <bB .-a <-b <a <bC .-b <a <-a <bD .-b <b <-a <a11.在数轴上大于-4.12的负整数有 .12.在数轴上,点M 表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N ,则点N 表示的是 .13.数轴上表示-2和-101的两个点分别为A 、B ,则A 、B 两点间的距离等于 .14.作数轴并观察,试找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.15.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米16.如图是正方体的展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.-3-10.517.如图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对面上的数字互为相反数.18.下列说法中,错误的是( )A .最小的正整数是1B .-1是最大的负整数C .在一个数的前面加上负号,就变成了这个数的相反数D .在一个数的前面加上负号,就变成了负数19.下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与)3(-+20.下列化简不正确的是( )A .9.4)9.4(+=--B .9.4)9.4(-=+-C .9.4)]9.4([+=-+-D .9.4)]9.4([+=+-+21.下列数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数22.下列说法中,正确的是( )A.0是最小的有理数B.0是最小的整数C .-(-1)的相反数与1的和是2 D.0是最小的非负数23.下列哪些数是正数?-2,31+,3-,0,2-+,-(-2),2--24.已知a ≠b ,a =-5,|a |=|b |,则b 等于( )A .+5B .-5C .0D .+5或-525.有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数26.若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤027.若x <0,则|-x |等于( )A .0B .xC .-xD .以上答案都不对28.若|a |+a =0,|b |=-b ,|c |-c =0,则|b |-|a |-|c |+|-a |=____.29.已知4x =,那么x =_______,若5=x ,1=y ,那么y x -的值为 .30.已知数轴上点A 与原点O 的距离为2,则点A 对应的有理数是____________,点B 与点A 之间的距离为3,则点B 对应的有理数是________________.31.化简下列各数:(1))10(+- (2))15.0(-+ (3)(3)++(4))20(-- (5)⎪⎭⎫ ⎝⎛+-21 (6)311--32.计算:(1)3.032.0+(2)2.42.4--(3))32(32---(4)53++-(5)22--+ (6)3121-⨯-【讲义答案】一、 知识点睛1. 第一种:有理数分为整数和分数,其中整数分为正整数,0和负整数,分数分为正分数和负分数;第二种:有理数分为正有理数,0和负有理数,其中正有理数分为正整数和正分数,负有理数分为负整数和负分数2. 0和负数,0和正数,0和负整数,0和正整数3. 规定了原点、正方向和单位长度的一条直线叫做数轴4. 表示数,比较大小,表示距离5. 数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0;正数大于一切负数6. 只有符号不同的两个数,称其中一个数为另一个数的相反数7. 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值8. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0二、精讲精练1. 下降8米;收入50元;-2℃;下降3米;-11034;50m ;-30m2. D3. 略4. 16,+13-(-3)5. 略6. C7. 3±8. B9. C 10. -4,-3,-2,-1 11. -2.5 12. 99 13. 略 14. B 15. 略 16. 略 17. D 18. C19. D 20. B 21. D 22. 略 23. A 24. C 25. D 26. C27. –b -c 28. ±4,4或6 29. ±2,5、1、-5、-1 30.(1)-10(2)-0.15(3)3(4)20(5)21 (6)311- 31. (1)0.62(2)0(3)34(4)8(5)0(6)61作业:数轴、相反数、绝对值1.80m表示向东走80m,那么-60m表示_____________.2.在数轴上-0.01表示A点,-0.1表示B点,则离原点较近的是__________.3.两个负数中较大的数所对应的点离原点较__________.4.在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为_______.5.在数轴上距离原点为2的点所对应的数为_____,它们互为__________.6.数轴上-1所对应的点为A,将A点向右平移4个单位再向左平移6个单位,则此时A点距原点的距离为__________.7.相反数是它本身的数为_________.8.互为相反数的两个数的绝对值_________.9.一个数的绝对值越小则该数在数轴上所对应的点离原点越__________.10.绝对值最小的数是________.11.若b<0且a=|b|,则a与b的关系是______.12.一个数大于另一个数的绝对值,则这两个数的和一定___0.13.如果|a|>a,那么a是_____.14.如果-|a|=|a|,那么a=_____.15.已知|a|+|b|+|c|=0,则a=_______,b=_____,c=_____.16.下列说法正确的是()A.正数和负数统称有理数B.正整数和负整数统称为整数C.小数3.14不是分数D.整数和分数统称为有理数17.下列说法正确的是()A.绝对值等于它本身的数是正数B.相反数等于它本身的数是负数C.相反数等于它本身的数是0D.以上答案都不对18.有如下一些数:-3,3.14,-20,6.8,0.34,12-,9-,23-,其中负整数的个数为()A.1个B.2个C.3个D.4个19.下列说法正确的是()A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间20.下面给出的四条数轴中画得正确的是()21.下列表示数轴的图形中正确的是()A BC D22.如图,如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系为()A.a<c<d<bB.b<d<a<cC.b<d<c<aD.d<b<c<a23.若数轴上A、B两点所对应的有理数分别为a、b,且B在A的右边,则a-b一定()A.大于零B.小于零C.等于零D.无法判断24.关于相反数的叙述错误的是()A.两数之和为0,则这两个数为相反数B.若两数所对应的点到原点的距离相等,则这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零25.任何一个有理数的绝对值一定()A.大于0 B.小于0 C.不大于0 D.不小于0 26.下列说法正确的是()A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数DA BC27.下列结论正确的是( )A .若|x |=|y |,则x =-yB .若x =-y ,则|x |=|y |C .若|a |<|b |,则a <bD .若a <b ,则|a |<|b |28.在括号里填写适当的数:5.3-=( ); 21+=( ); -5-=(); -3+=( ); ()=1; ()=0;-()=-2【作业答案】1. 向西走60m2. A 点3. 近4. ±35. ±2,相反数6. 37. 08. 相等9. 近 10. 0 11. 互为相反数 12. >(大于) 13. 负数 14. 0 15. 0,0,0 16. D 17. C 18. C 19. C 20. B21. D 22. C 23. B 24. C 25. D 26. C 27. B 28. 3.5,21,-5,-3,±1,0,±2。
有理数-数轴-绝对值-加减法练习卷
2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。
七年级数学绝对值、有理数的大小、有理数的加法知识精讲 试题
七年级数学绝对值、有理数的大小、有理数的加法华东师大版制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日【本讲教育信息】一. 教学内容:绝对值、有理数的大小、有理数的加法[学习要求]1. 借助数轴理解绝对值的意义,并会求绝对值。
2. 明确绝对值和数轴的联络,并会利用绝对值比拟有理数的大小。
3. 纯熟掌握有理数加法法那么,并能正确利用加法运算律简化运算。
[知识内容]〔一〕绝对值绝对值是初一数学中的一个重要知识点。
教材中给出两种概念表达方法:1. 利用数轴:一个数a的绝对值就是数轴上表示数a的点与原点间隔,记作a。
例如:在数轴上表示-10的点和表示10的点与原点的间隔都是10,所以-10和10的绝对值都是10,记作-==101010,这也是绝对值的几何意义。
2. 代数意义:一个正数的绝对值是它的本身;0的绝对值是0;一个负数的绝对值是它的相反数。
用式子表示为:aa aaa a=>=-<⎧⎨⎪⎩⎪()()()00注意几个问题:〔1〕-a不一定表示负数,当a<0时,-a表示a的相反数,此时-a是一个正数。
〔2〕由定义可知一个数的绝对值是点到点的间隔,这说明了有理数的绝对值是非负数,即对任意有理数a 总有a ≥0。
〔3〕绝对值等于0的数一定是0,绝对值为正数m 的数一一共有两个,它们是m ,-m ,是互为相反数的两个数,绝对值相等的两个数,它们相等或者互为相反数,即假设m n =,那么m n =或者m n =-。
〔二〕有理数的大小在学习数轴的时候,我们都知道:在数轴上表示的两个数,右边的数总比左边的数大,而且也知道比拟有理数大小的法那么:正数都大于0,负数都小于0。
正数大于一切负数。
对于两个正数我们在小学时就知道它们的大小。
对于两个负数比拟大小,在这里学习利用绝对值比拟大小。
因为在数轴上表示两个负数的两个点中与原点间隔 较大的那个点在左边,所以根据上述法那么可得到:两个负数,绝对值大的反而小。
有理数的加减法讲义
初一数学讲义(三)有理数的混合运算姓名成绩知识要点:1、有理数加减混合运算中,减法可以根据减法法则转化成加法,统一成只含有加法运算的和式.例如:(-5)+(-3)-(-7)-(+2)可转化为:(-5)+(-3)+(+7)+(-2)2、在一个和式里,通常把各个加数的括号和它前面的加号省略不写,如上式可写成:-5-3+7-23、省略加号的和式的读法有两种如-5-3+7-2,其意义表示-5,-3,+7,-2的和,只不过加号省略未写,因此,它可读作“-5,-3,+7,-2的和”;第二种读法是按习惯读作:“负5减3加7减2”。
第一种读法有利于用加法运算律简化运算.4、在运用加法交换律和结合律时,要注意连同前面的符号一起移动,如计算-5-3+7-2时,先交换成-5-3-2+7,再进行结合为(-5-3-2)+7,无论交换加数的位置,还是进行结合,都应连同符号移动,当省略“+”号的首项移到后面时,应补上“+”,如5-7+3=-7+5+3,事实上,代数和中符号应看作数的一部分.5、有理数加减混合运算的步骤(1)把算式中的减法转化成加法;(2)省略加号与括号写成代数和的形式;(3)用加法法则计算,尽可能运用运算律简便计算.例1:把(-36)-(-28)+(+125)+(-4)-(+53)-(-40)写成省略加号的和的形式并把它读出来.例2、计算-8+(-11)-2003.12-9-(-9)-(+2)-(-2003.12).例3、已知a=13,b=-12.1,c=-10,d=25.1求a-b-(c+d)的值综合练习一、判断题1.一个数的相反数一定比原数小;()2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等;()3.|-2.7|>|-2.6|; ( )4.若a+b=0,则a,b互为相反数。
( )二.选择题1.相反数是它本身的数是()A. 1B. ﹣1C. 0D.不存在2.下列语句中,正确的是()A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是()A、-=6 B、=-6 C、-=-1D、=-3.145、在数轴上表示的数8与-2这两个点之间的距离是()A、6B、10C、-10 D-66、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数三、填空题1. |-4|-|-2.5|+|-10|=________;2. 最大的负整数是___ ___;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 数轴三要素是__________,___________,___________5. 若上升6米记作+6米,那么-8米表示。
2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
正负数,有理数,数轴,相反数,绝对值
数学试卷初中七年级(上册)教案科目数学教师___________中数组桂林市清风实验学校2019~20佃学年下学期数学试卷20010 -2019学年度下学期数学学科教学进度表教案数学试卷教案教后反思:教案「整数匹整数负整数如;…有理数I分魏正分数负分数如T-2T…19Jq-A5,3---23(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分” 来分类3•数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。
同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。
(三)变式训练,培养能力3 7」(1)把有理数 6.4,—9, 3 , + 10, 4 , -0.021,—1, 3 ,- 8.5, 25, 0, 100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合正分数集合(四)归纳小结[负整数集合[负分数集合今天我们一起学习了有理数的定义和两种分类方法•要能正确地判断一个数属于哪一类,要特别注意“ 0”不是正数,但是整数。
(五)布置作业书P17 1---2教后反思:数学试卷教后反思:教案课题数轴课型新知课教学目标1 ■掌握数轴的三要素■会用数轴上的点表示有理数■知道任一个有理数在数轴上都有惟一的点与之对应.2■会比较数轴上数的大小,初步理解有理数的有序性3.充分利用数轴使数与形结合起来教学重点 1.在理解数轴概念的基础上掌握数轴的三要素,并且会用数轴上的点表示有理数教学难点 1.数轴的画法• 2 .如何比较两个负数的大小教具准备中国地形图、温度计主要教学过程个人修改(一)新课引入我们经常见温度计,你们会读吗?[生齐声]会.[师]好■现在我们看图填空(出示投影片§ 2.2 A[生]+5 C 0 C —10 C(二)新课讲解刚才我们知道了数轴的特征,现在来根据数轴的特征画一条数轴■(师生共画,教师叙述数轴的画法)像这样规定了原点、正方向和单位长度的直线叫数轴[例1]指出数轴上A,B,C,D各点分别表示什么数?A D C0I i + # # I •*I ■I i-4 -3 -2 -1 0 1 2 3 4 5 fi分析:已知数轴上的点,指出已知点所表示的数.由图形变成数,像看温度计■(口答)解:点A表示一2;点B表示2;点C表示0;点D表示一1;[例2]画出数轴,并用数轴上的点表示下列各数:3 3,一5,0,5, —4,一2 2分析:画数轴时注意画法■(学生上黑板板书)把给定的数用数轴上的点表示,是把“数”变成“形”■注意在数轴上画点表示这些数时,点是实-5 -4 ~ 20 2 5---- *411_4—141—1—11141_> 心点.[师]大家做得挺好■画数轴时也注意了三要素■下面我们再画一数轴,在数轴上把+2和一2表示出来,并回答它们的位置关系如何?——t - 4- 1 - (J4-1*■-3 -2-10123+2表示的点在原点的右边,一2表示的点在原点的左边,并且这两个点到原点的距离都是2个单位长度.(三)练习1 ■写出三对非零的相反数,在数轴上将它们表示出来,并比较其中三个负数的大小.2■在数轴上距原点2个单位长度的点表示什么数?解:+2或—2.(四)小结本节课我们学习了数轴的三要素,三者缺一不可■互为相反数是成对出现的■不单独存在■正数的相反数是负数,负数的相反数是正数■零的相反数是零.(五)作业P13 1---2教案教后反思:教案教后反思:。
(有理数、数轴、相反数、绝对值、有理数加减)测试卷
(有理数、数轴、相反数、绝对值、有理数加减)测试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.飞机上升了-50米,实际上是()A.上升50米B.下降-50米C.先上升50米,再下降50米D.下降50米2.某粮店出售的某品牌的面粉袋上标有质量为(25±0.1)㎏,它的质量最多相差()A.0.8㎏B.0.6㎏C.0.2㎏D.0.4㎏3.下列各数中:+3、-2.1、、9、、-(-8)、0、-|+3|,负有理数有( )A.2个B.3个C.4个D.5个4.下面是关于0的一些说法,其中正确说法的个数是()①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.35.下列说法正确的是()A.0无相反数,也无倒数B.整数的相反数是整数C.+(-1)的相反数是-1D.数轴上原点两侧的数互为相反数6.-的相反数是()A. B.- C.2 D.-27.下列各式中正确的是()A.-(-2)>-1B.|-0.2|=-0.2C.|-5|<0D.->-8.在数轴上,点P到表示2的点A之间的距离PA是3,则点P表示的数为()A.5B.6C.-5或0D.5或-19.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个10.绝对值小于5的所有整数的和为()A.0B.-8C.10D.20二、填空题(本大题共5小题,共15.0分)11.对于任意有理数a、b,定义新运算:a*b=a-b-3,则2*(-4)= ______ .12.小明存折中原有450元,取出260元,又存入150元,现在存折中还有 ______ 元.13.比-3小5的数是 ______ ,比-5小-7的数是 ______ ,比0小-5的数是 ______ .14.若|a|=1,b=3,则a+b的值为 ______ .15.计算:= ______ .三、计算题(本大题共7小题,共55分)16.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划星期一二三四五六日增减+5 -2 -4 +13 -10 +16 -9(1)根据记录的数据可知该厂前三天生产自行车 ______ 辆;(2)产量最多的一天比产量最少的一天多生产自行车 ______ 辆;(3)该厂实行每周计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?17.某食品厂从生产的食品罐头中,抽出20听检查质量,将超过标准质量的用正数表示,不足标准质量的用负数表示,结果记录如下表:偏差/克-10 -5 0 +5 +10 +15听数 4 2 4 7 2 1问这批罐头的平均质量比标准质量多还是少?相差多少?18.比较下列每对数的大小:与,与,与,与19.计算(1)(-99)+(-103)(2)(-0.25)-(+)(3)(+2)-(-2.75)(4)-+(-)(5)(-14)+(-12)+(+12)+34(6)(+23)+(-25)+(+17)+(-14)(7)3+(-1.75)+2+(+1.75)+(-)20.(-)-(-3)-(-2)-(+5)21.计算:0.47-4-(-1.53)-1.22.有理数a、b、c在数轴上的对应点如图所示,且a、b、c满足条件10|a|=5,|b|=2,|c|=10.(1)求a、b、c的值;(2)求|a-2b|+|b-2c|+|c-2a|的值.四、解答题(本大题共3小题,共20分)23.在数轴上表示下列各数,并把下列各数用“”号连接起来:-,-2,,-|-5|,-(-5)24.已知|a|=8,|b|=5,且|a+b|=a+b,求a-b的值25.若|x -1|+|y -1|+|z -1|=0,求x-y+z的值.。
《有理数,数轴,绝对值习题课》优秀教案
以博致雅:“八有效”文化课堂讲学案
10.在数轴上原点以及原点右边的点表示的数是
A.正数B.负数C.零和正数D.零和负数11.从数轴上看,0是
A.最小的整数B.最大的负数C.最小的有理数D.最小的非负数12.--2的相反数是
A.2 B.1
2
C.-1
2
D.-2
三;解答;
13.明明在超市买一食品,外包装上印有“总净含量20213g”的字洋,请问“±3g”表示什
么意义?明明拿去称了一下,发现只有198g,问食品生产厂家有没有欺诈行为?
14.如图,分别指出数轴上A、B、C、D、E各点所表示的数.
15.写出下列各数的相反数,并在数轴上表示下列各数及它们的相反数.
+2,-3,0,--1,-3
1
2
,-+4
展评有效课堂分组学习——口头展示——教师点评——学生纠错
总结有效师生同台
测试有效中考链接(结合本节知识点)
板书设计
有理数,数轴,绝对值习题课
一;填空;二;选择;三;解答;
教学反思。
七年级上册数学第一章有理数1.3讲义
第一章有理数1.3 有理数的加减法一、相关复习:1、相反数①定义:一般的,如a与-a这样的一对数,只有符号不相同,叫做互为相反数。
②特征:任何数都有且只有一个相反数,正数的相反数是负数,负数相反数是正数,0的相反数是0.③性质:若a和b互为相反数,则a+b=0;若a+b=0,则a和b互为相反数。
2、绝对值①定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
②运算:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.①如果a>0,那么|a|=a;②如果a=0,那么|a|=0;③如果a<0,那么|a|=-a.③性质:①互为相反数的两个数的绝对值相等,|a|=|-a|;②绝对值具有非负性,若几个数的绝对值的和为0,则这几个数同时为0,若|a|+|b|=0,则a=0,b=0。
二、知识解析:【知识点一】有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.互为相反数的两个数相加得0.4.一个数同0相加,仍得这个数。
例1.直接写出答案:(1) (+50)+(+40)= (2) (-50)+(-40)=(3) (+50)+(-40)= (4) (-50)+(+40)=(5) (+0.5)+(-1/2)= (6) (-2.35)+(-0)=例2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0; (2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0; (4)如果a<0,b>0,|a|>|b|,那么a+b0.1.加法交换律:a+b=b+a.2.加法结合律:(a+b )+c=a+(b+c).例3. 计算:16+(-25)+24+(-35)例4.8箱苹果,以每箱15千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:1.5,-0.7,2.3,-1.5,0.8,-0.55,1.2,0.25.问这8筐苹果总共重多少?随堂练习:1.已知||1a =,b 是2的相反数,则a b +的值为( )A .3-B .1-C .1-或3-D .1或3-2.已知||5a =,||2b =,且a b >,则a b +的值为( )A .7或3-B .7-或3C .7-或3-D .7或33.若||2x =,||3y =,则x y +的绝对值是( )A .5或5-B .1或1-C .5或1D .5,5-,1,1-4.如果||||||a b a b +<+成立,那么( )A .a 、b 为一切有理数B .a 、b 同号C .a 、b 异号或a 、b 中至少有一个为零D .a 、b 异号 5.a ,b ,c 三个数的位置如图所示,下列结论不正确的是( )A .0a b +<B .0b c +<C .0b a +>D .0a c +>6.如图,从左到右,在每个小格子中都填入一个整数,使其中任意三个相邻格中所填整数之和都相等,则c = ,第2012个格子中数为 .7.(1) (-0.6)+(-2.7)= (2) 3.7+(-8.4)=(3) 7+(-3.3)=(4) (-1.9)+(-0.11)= (5) (-9.18)+6.18= (6) 4.2+(-6.7)=减去一个数,等于加这个数的相反数。
数轴、相反数、绝对值(讲义及答案)
3. 如图,点 A 表示小明的家,动物园在小明家西边 500 米,书店在小明家东边 500 米 , 车 站 在 书 店 东 边 200 米 , 小 明 从 动 物 园 出 发 向 东 走 1 000 米 , 到 达 _________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了 500 米,可以到达_________________;动物园和车站之间的距离为__________ 米.
字母表示:
a
事实上: 绝对值是它本身的数是 _________; 绝对值是它的相反数的数是 ___________.
2
➢ 精讲精练
1. 若上升 5 m 记作+5 m,则8 m 表示__________;如果10 元表示支出 10 元,那么
பைடு நூலகம்
+50 元表示_____________;如果零上 5℃记作+5℃,那么零下 2℃记作
数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准
克数的是( )
A.+2
B.3
C.+3
D.+4
3. 某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g
的字样,从中任意拿出两袋,它们的质量最多相差( )
A.10 g
B.8 g
C.7 g
5. 在数轴上表示下列各数:0,3.5,1 1 ,1,+3, 2 2 ,并比较它们的大小.
2
3
3
6. a,b 为有理数,在数轴上的位置如图所示,则下列关于 a,b,0 三者之间的大小 关系,正确的是( )
a0
b
A.0<a<b
有理数的加减法讲义.doc
专题四 有理数的加法1、 相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法; (14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、 教材知识详解【知识点1】有理数加法法则(1) 同号两数相加;取相同的符号,并把绝对值相加。
数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2) 异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。
数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3) 一个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2) (2)(-8)+(-2) (3)(-8)+(+2) (4)(+8)+(-2) (5)(-8)+(+8) (6)(-8)+ 0【知识点2】有理数加法的运算律 加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c ) 【例2】计算 4.1+(+12)+(-12)+(-10.1)+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)= ②三月份先存人25元,后取出10元,两次合计存人 元,就是(+25)+(-10)= 2.计算: (1)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121;(2)(—2.2)+3.8; (3)314+(—561); (4)(—561)+0; (5)(+251)+(—2.2); (6)(—152)+(+0.8);(7)(—6)+8+(—4)+12;(8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64; (10)9+(—7)+ 10 +(—3)+(—9);3.用简便方法计算下列各题: (1)(2)(3))539()518()23()52()21(++++-+- (4))4.2()6.0()2.1()8(-+-+-+-(5))37(75.0)27()43()34()5.3(-++++-+-+-3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为16075.9)219()29()5.0(+-++-)127()65()411()310(-++-+请算出星期五该病人的血压【基础提高】 1.计算:(1)3-8; (2)-4+7; (3)-6-9; (4)8-12;(5)-15+7; (6)0-2; (7)-5+9+3; (8)10+(-17)+8;2.计算:(1)-4.2+5.7+(-8.4)+10; (2)6.1-3.7-4.9+1.8;4.计算:(1)12+(-18)+(-7)+15; (2)-40+28+(-19)+(-24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+4.7)+(-8.9)+(+7.5)+(-6); (4))31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、相关知识链接减法是加法的逆运算。
有理数、数轴、相反数、绝对值练习卷
有理数【2 】.数轴.相反数.绝对值检测卷班级:___________姓名:____________一.填空题1.假如向南走5 km记为-5 km,那么向北走10 km记为____2.大于-5.1的所有负整数为__________________.3.珠穆朗玛峰凌驾海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.4.原点表示的数是_______,原点右边的数是________,左边的数是________.5.绝对值是2的数有_____个,它们是_________,绝对值是110的数有_____个,它们是________,0的绝对值记作:_____=_____,-100的绝对值是_____,记作:_____=_____.6.一个数与它的相反数之和等于_____.7._______的倒数是它本身,_______的绝对值是它本身.8.-|-67|=_______,-(-110)=_______,-|+13|=_______,-(+25)=_______,+|-12|=_______,9.若|-x|=|12|,则x=_______.10.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.11.比较大小:(1)-35___|-12| (2)|-15|___0(3)|-65|___|-43| (4)-97___-6512.距原点3个单位长度的数是___________二.断定题1.-13的相反数是3. ()2.划定了正偏向的直线叫数轴. ()3.数轴上表示数0的点叫做原点.()4.假如A.B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()5.若两个数的绝对值相等,则这两个数也相等. ()6.一个有理数的绝对值不小于它自身7.-a的绝对值等于a8.一个数的绝对值是它的相反数,则这个数必定是负数. ( )9.若-a是负数,则a是正数. ()10.正整数聚集与负整数集归并在一路是整数聚集.()三.选择题1.|x|=2,则这个数是()A.2B.2和-2C.-2D.以上都错2.|12a|=-12a,则a必定是()A.负数B.正数C.非正数D.非负数3.假如一个数的绝对值等于这个数的相反数,那么这个数是()A.正数B.负数C.正数.零D.负数.零4.每个有理数都可以用数轴上的以下哪项来表示()A.一个点B.线C.单位D.长度5.下列图形中不是数轴的是()6.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分离是-213与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来7.下列各数中,大于-12小于12的负数是()A.-23B.-13 C.13 D.08.负数是指()A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数9.关于零的论述错误的是()A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数10.下面是关于0的一些说法,个中准确说法的个数是()①0既不是正数也不是负数;②0是最小的天然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.311.下面准确的是()A.数轴是一条划定了原点,正偏向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴上的点可以表示随意率性有理数D.原点在数轴的正中央12.关于相反数的论述错误的是()A.两数之和为0,则这两个数为相反数B.假如两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,必定互为相反数D.零的相反数为零13.若数轴上A.B两点所对应的有理数分离为a.b,且b在a的右边,则a-b的成果必定()A.大于零B.小于零C.等于零D.无法肯定14.假如点A .B .C .D 所对应的数为a .b .c .d ,则a .b .c .d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a15.0,12,-15,-8,+10,+19,+3,-3.4中整数的个数是()A.6B.5C.4D.3四.解答题1.某气象预告显示,我国五个地区的最高气温第二天比第一世界降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温. 2.在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,52,-43.下图是一个长方体纸盒的睁开图,请把-5,3,5,-1,-3,1分离填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.4.出租车司机李师傅一世界午的营运满是在器械走向的萧绍路长进行的,假如划定向东行驶为正,他这世界午行车的里程(单位:千米)是: +8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)若把李师傅下昼动身地记为0,他将最后一名乘客送抵目标地时,李师傅距下昼动身地有多远?(2)假如汽车耗油量为0.41升/千米,那么这世界午汽车共耗油若干升?5.(1)已知ab>0,试求ab ab b b aa ||||||++的值. (2)若|x -2|+|y +3|+|z -5|=0,盘算:①x ,y ,z 的值.②求|x |+|y |+|z |的值.。
专题训练1数轴、相反数、绝对值、有理数的概念及综合应用(24张PPT)数学
解析
3.在数轴上表示-2,0,6.3,15的点中,在原点右边的点有( )A.0个 B.1个 C.2个 D.3个
C
解析 在数轴上表示-2,0,6.3,15的点中,在原点右边的点有6.3,15,共2个,故选C.
答案
解析
例2 数轴上的点A对应的数是-2,与A相距1个单位长度的点B对应的数是__________.
解 由于表示相反数的两个点到原点的距离相等,而点D,B之间的距离为9,可知点D,B表示的数分别为-4.5和4.5,则点D,E,A表示负数,故图中5个点所表示的数中有3个负数;点C表示的数的绝对值最小.
解
类型4
绝对值的应用
例4 某家企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002 1升的误差,现抽查6瓶食用调和油.超过规定净含量的部分记作正数,不足规定净含量的部分记作负数,结果如下(单位:升):+0.001 9,-0.002 2,+0.002 1,-0.001 5,+0.002 4,-0.000 9.请问这6瓶食用调和油中有几瓶符合要求?请用绝对值的知识说明理由.
解 如果|a|>|b|,那么结果为b的质量最符合标准.如果|a|<|b|,那么结果为a的质量最符合标准.如果|a|=|b|,那么两个篮球的质量最符合标准.
解
本课结束
ห้องสมุดไป่ตู้ 同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
变式训练10.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )
答案
C
11.有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫向右,“-”表示此昆虫向左,总共爬行了10次,其数据统计如下(单位:厘米):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4厘米,那么在此爬行过程中,它用了几分钟?
有理数、数轴、绝对值、有理数四则运算知识点及练习
1(0,0)a a b b=-≠≠则313-=-有理数、数轴、绝对值复习1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.相反数的两个特点:(1)互为相反数的两个数的和等于0.如,2+(-2)=0用公式表示:若a 和b 互为相反数,则a+b=0. (2)互为相反数的两个非零数的商等于-1. 如, 用公式表示:若非零数a 和b 互为相反数, 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.例题:(1)若两个非零数a 、b 互为相反数,c 、d 互为倒数。
专题 有理数的分类、数轴、相反数及绝对值(知识大串讲)(原卷版)
专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
考点2 有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
有理数、数轴、绝对值、加减法练习卷讲课教案
2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A •20°B • - 20C C •44CD • - 44 C2. 2的相反数是()A . - 2B • 4 C.- 2 D • 22 23. 如图,数轴上有 A , B, C, D四个点,其中到原点距离相等的两个点是()A B£.D2-10 L 2A .点B与点D B.点A与点C C.点A与点D D .点B与点C4. 如图,数轴上有M, N , P, Q四个点,其中点P 所表示的数为a,则数-3a所对应的点可能是()M N P”厂A. MB. NC. PD. Q5 . a, b在数轴上的位置如图,化简|a+b|的结果是()A . - a- bB . a+bC . a- bD . b - a 6.如图,数轴上有四个点 M, P, N , Q,若点M , N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A .点MB .点NC .点PD .点Q7 . |- 2|=x,则x的值为()A . 2 B. - 2 C .戈 D ..:&下列说法错误的是( )A .绝对值最小的数是 0B .最小的自然数是1 C.最大的负整数是-1D .绝对值小于2的整数是:1, 0,- 19. a 、b 是有理数,如果|a- b|=a+b,那么对于结论:(1) a 一定不是负数; (2) b 可能是负数,其中()A •只有(1)正确B •只有(2)正确C. (1), ( 2)都正确D . (1), (2)都不正确10. 若 |a|=8, |b|=5, a+b>0,那么 a- b 的值是( )A . 3 或 13B . 13 或-13 C. 3 或-3 D . - 3 或 1311. 若a 切,则|a|+a+2等于( )A . 2a+2B . 2 C. 2 - 2a D . 2a- 2 12 .下列式子中,正确的是()A . |- 5|=- 5B . - |- 5|=5C . -(- 5) = - 5D . -(- 5) =5 13 .下列说法正确的是( )A .最小的正整数是 1B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 一个数的绝对值一定比 0大A . |b|>a>- a> bB . |b> b> a>- aC . a> |b|> b>- aD . a> |b|> a> b 15 .对于实数a, b ,如果a> 0, b v 0且|a|v |b|,那么下列等式成立的是 ()A . a+b=|a|+|b|B . a+b= -(|a|+|b|)C . a+b=-( |a- |b|)D . a+b= -(|b|-|a|) 二•解答题(共15小题)14 . (2015秋?东明县期末)有理数 则a 、b 、- a 、|b|的大小关系正确的是a ( )0 1------ -na 在数轴上的对应点的位置如图所示,16.某自行车厂计划一周生产自行车1400辆,平均每天生产 200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5 - 2 - 4 +13 - 10 +16 - 9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3 )产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖 15元;少生产一辆扣 20元,那么该厂工人这一周的工资总额是多少?17•先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:6 3 4 2解:原式=(—L —也)+ (— 5 —丄)+ (24+-)+ (- 3 —丄)6 3 4 2[(-1) + (-5) +24+ ( - 3) -劭中=13二;(2)计算+40畤(-囲)+ (-1寺18. 计算:31+ (- 102) + (+39) + ( +102) + (- 31)19. 口算:(-13) + (+19)=(-4.7) + (- 5.3)=(-2009) + (+2010)= (+125) + (- 128)=(+0.1 ) + (- 0.01)=(-1.375) + (- 1.125)=(-0.25) + ( + 丄)=412(-1.125) + (+丄)=O(-15.8) + ( +3.6)=+0=20. 已知凶=2003, |y|=2002,且 x> 0, y v 0,求 x+y 的值.21. 计算题(-「+(-(1)(2)(3)(4)(5)(6) 5.6+4.4+ (- 8.1)(-7) + (- 4) + (+9) + (- 5)+15x-才 - 一(-18 二)+ (+5+ (- 53.6) + (+18二))+ (- 100)5骨「畤)十爭(它)24.观察算式:(U3) X2(14E) X311+3=-------- 1+3+5= , 1+3+5+7=22仃+9)1+3+5+7+9=2按规律计算:(1) 1+3+5+ -+99(2) 1+3+5+7+ ••+ (2n- 1)25. 已知:|m|=3, |n|=2,且 m v n,求 m+n 的值.22. 计算下列各式:(1)(2)(3)(5)(-1.25) + (+5.25)(-7) + (- 2)'■- - :- 80.36+ (- 7.4) +0.5+0.24+ (- 0.6)23•在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为□□r□□(6) 1 1 . - -26. 计算题(1) 5.6+ (- 0.9) +4.4+ (- 8.1) + (- 0.1)0.8) +1.2+ (- 0.7) + (- 2.1) +0.8+3.51 上)+ (- 6-) + (- 2.25) +27. 已知 |a|=5, |b|=3,且 |a- b|=b - a,求 a+b 的值.28. 若 |a|=5, |b|=3, (1) 求 a+b 的值;(2)若 |a+b|=a+b ,求 a- b 的值.29. 已知 |a|=2, |b|=3, |c|=4, a> b>c,求 a- b- c 的值.30. 若 a, b, c 是有理数,|a|=3, |b|=10, |c|=5, 且 a, b 异号,b, c 同号, 求a-(2) -0.5+ (-+ (- 2.75) + (+(3)峙+(-即-1) + (-(-马 + (-』)+ (-(5)(6)b -( - c)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1. (2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下 32度, 此时山脚下的温度为零上 12度,则山顶的温度比山脚下的温度低()A . 20°B . - 20C C . 44CD . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C .故选C.2 . ( 2016?德州)2的相反数是()2 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C .3. ( 2016?亭湖区一模)如图,数轴上有 A , B, C, D四个点,其中到原点距离相等的两个点是()A B£.D-2-10 L 2A .点B与点D B.点A与点C C.点A与点D D .点B与点C【分析】根据数轴上表示数 a的点与表示数-a的点到原点的距离相等,即可解答. 【解答】解:由数轴可得:点 A表示的数为-2,点D表示的数为2, 根据数轴上表示数 a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. ( 2016?海淀区二模)如图,数轴上有M , N , P, Q四个点,其中点 P所表示的数为a,则数-3a所对应的点可能是()M N PA. MB. NC. PD. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点 P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,••• - 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是 M,故选:A.5. (20 16?花都区一模)a,b在数轴上的位置如图,化简|a+b|的结果是()A . - a- bB . a+bC . a- bD . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可.【解答】解:由图形可知,a v 0, b v 0,所以a+b v 0,所以 |a+b|=- a- b .故选:A .6. (2016?石景山区二模)如图,数轴上有四个点 M , P, N , Q,若点M , N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()I ~ ・>M P N OA .点MB .点NC .点PD .点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点 Q到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M, N表示的数互为相反数,•原点为线段MQ的中点,•••点Q到原点的距离最大,•••点Q表示的数的绝对值最大.故选D .7. ( 2016?鄂城区一模)|-2|=x,则x的值为()A . 2 B. - 2 C .戈 D . . ■:【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:•/ |- 2|=2,/• x=2 ,故选: A .8.( 2016 春?上海校级月考)下列说法错误的是()A .绝对值最小的数是 0B .最小的自然数是 1C.最大的负整数是-1D .绝对值小于2的整数是:1, 0,- 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A .有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是 0,所以此选项正确;B •最小的自然数是 0,所以此选项错误;C.最大的负整数是 1,所以此选项正确;D •可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1,0,所以绝对值小于 2 的整数是:- 1, 0, 1,所以此选项正确.故选 B .9. ( 2015秋?苏州期末)a、b是有理数,如果|a- b|=a+b,那么对于结论:(1) a 一定不是负数;(2) b可能是负数,其中()A •只有(1)正确B •只有(2)正确 C. (1), ( 2)都正确 D.(1)(2)都不正确【分析】分两种情况讨论:(1)当a- b为时,由|a- b|=a+b得a- b=a+b, 所以b=0 (2)当 a- b v 0 时,由|a- b|=a+b 得-(a- b) =a+b,所以 a=0.从而选出答案. 【解答】解:因为|a- b|%,而a- b有两种可能性.(1 )当 a- b为时,由 |a- b|=a+b 得 a- b=a+b,所以 b=0, 因为a+b为,所以a^0;(2)当 a- b v 0 时,由 |a- b|=a+b 得-(a- b)=a+b,所以 a=0, 因为a- b v0,所以b>0.根据上述分析,知( 2)错误. 故选 A .10. (2015秋?内江期末)若|a|=8, |b|=5, a+b>0,那么a-b的值是()A. 3或 13B. 13或- 13C. 3或- 3D.- 3或 13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数, 0 的绝对值是 0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:•••|a|=8, |b|=5,••• a= ±, b=±5,又;a+b> 0, • a=8, b=±5.• a- b=3 或 13.故选 A .11. (2015秋?青岛校级期末)若 a切,则|a|+a+2等于( )A.2a+2 B.2 C.2- 2a D .2a- 2【分析】由a切可知|a|=- a,然后合并同类项即可.【解答】解:•/ a切,• |a|=- a.原式 =- a+a+2=2.故选: B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A.|- 5|=- 5 B .- |- 5|=5 C.-(- 5) =- 5 D.-(- 5) =5【分析】根据绝对值的意义对 A、B 进行判断;根据相反数的定义对 D 进C、行判断.【解答】解: A、|- 5|=5,所以 A 选项错误;B、- |- 5|=- 5,所以 B 选项错误;C、-(- 5) =5,所以 C 选项错误;D、-(- 5) =5,所以 D 选项正确.故选 D .13.( 2015 秋?高邮市期末)下列说法正确的是( )A .最小的正整数是 1B .一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D .一个数的绝对值一定比 0 大【分析】A :根据整数的特征,可得最小的正整数是1,据此判断即可B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0,据此判断即可.D :一个非零数的绝对值比 0大,0的绝对值等于0,据此判断即可. 【解答】解:•••最小的正整数是1,•选项 A 正确;•••负数的相反数一定比它本身大,0的相反数等于它本身,•选项 B 不正确;•/绝对值等于它本身的数是正数或0,•••选项C不正确;•••一个非零数的绝对值比 0大,0的绝对值等于0, •选项D不正确.故选:A.14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是() ' 6""1 ~' 弓A. |b|> a>-a> b B . |b|> b> a>-aC. a> |b|> b>- aD. a> |b|>-a> b【分析】观察数轴,则a是大于1的数,b是负数,且|b|> |a|,再进一步分析判断. 【解答】解:•/ a是大于1的数,b是负数,且|b|> |a|,• |b|> a>- a> b.故选A .15 . (2007?天水)对于实数 a, b,如果a> 0, b v 0且|a|v |b|,那么下列等式成立的是( )A . a+b=|a|+|b|B . a+b= -(|a|+|b)C . a+b=-( |a|- |b|)D . a+b= -(|b|-|a|) 【分析】题中给出了 a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值v负数的绝对值.• a+b= -( |b|- |a|).故选D .二.解答题(共15小题)16 . (2015秋?民勤县校级期末) 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负) :星期一二三四五六日增减+5 - 2 - 4 +13 - 10 +16 - 9(1) 根据记录的数据可知该厂星期四生产自行车多少辆;(2) 根据记录的数据可知该厂本周实际生产自行车多少辆;(3 )产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖 15元;少生产一辆扣 20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车( 5 - 2 -4+13 - 10+16 - 9) +200 々=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是 200X7>60+ ( 5 - 2 - 4+13 - 10+16 - 9) (60+15) =84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车 200+13 辆,故该厂星期四生产自行车 213辆;(2 )根据题意 5 - 2 - 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3) 根据图示产量最多的一天是216辆,产量最少的一天是 190辆,216 - 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4) 根据图示本周工人工资总额=7 X200X30+9X75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1) 计算:=13上—6 3 4 2 4解:原式=(—L J) +(-5-|) + (244)+ (-5-i)= '-1 二 f 1 二[(-1) + (-5) +24+ (-3) ]+[(-£) + (-■!)4+〔-£)16 3 4 2=15+4=13匚;(2)计算(- 205)刊00專(-204丄)+ ( - 1丄).4 3 2【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.I解答】解:原式=(—205)+4°°」+(—204)=(400 - 205 - 204 - 1)5=-10—.1218. (2015秋?克拉玛依校级期中)计算:31+ (- 102) + (+39) + (+102)+ (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可.【解答】解:原式=[31+ (- 31) ]+[ (- 102) + (+102) ]+39=0+0+39=39.19. (2015秋?南江县校级月考)口算:(-13) + (+19)=(-4.7) + (- 5.3)=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01)=(-1.375) + (- 1.125)=(-0.25) + ( + 上)=4+(y + (-1) + (-(-8一)+ (- 4丄)=3 2 丄+(-—) + (-—) 3412 (-1.125) + (+ 丄)= 8(-15.8) + ( +3.6)= (-5_) +0=6【分析】根据有理数的加法,即可解答. 【解答】解:(-13) + (+19) =6; (-4.7) + (- 5.3) =- 10; (-2009) + (+2010) =1 ; (+125) + (- 128) =- 3; (+0.1 ) + (- 0.01) =0.09; (-1.375) + (- 1.125) = - 2.5;(-0.25) + ( +(-15.8) + ( +3.6) =- 12.2;+0= - 5丄.620. (2015 秋?德州校级月考)已知 |x|=2003, |y|=2002,且 x >0, y v 0,求 x+y 的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据 异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对 值,可得答案. 【解答】 解:由 |x|=2003, |y|=2002,且 x > 0, y v 0,得 x=2003 , y= - 2002. x+y=2003 - 2002=1 .―1.=84(-1.125) + (+(-10 」+(——)+ 3 ( 4丿 1 %(-’)=-12二;(-=)=0 ;(-21.(1)(2)(3)(5)(2015秋?盐津县校级月考)计算题5.6+4.4+ (- 8.1)(-7) + (- 4) + (+9) +丄+ (-』4 F5占〔-5(-9^-)12(-5))+6 4 3+15_-4 4 12 (6) + (+ + (- 53.6) + (+18二)(-18-【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;半)+ (- 100)(3) (4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1)=10 - 8.1=1.9;(2) (- 7) + (- 4) + (+9) + (- 5)=-7 - 4+9 - 5=-16+9=0 - 1 +=10- 6=4;=0+0 - 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25) + (+5.25) (2) (- 7) + (- 2) (3)( 一耳)+ (+壮)-8(5) 0.36+ (- 7.4) +0.5+0.24+ (- 0.6) (6) 一十 I I .「-〔二 +r-.【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5 )禾9用加法的结合律和交换律,即可解答. 【解答】解;(1) (- 1.25) + ( +5.25) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)( -耳)十(十冷)-8(5) (- 9-L) +15— 12 4 4 12 -15 ) +[ (15 — - 124=(-9 -22.5] =-25+[12.5 - 22.5] =-25 - 10 =-35; (6) (- 18.+ (- 53.6) + (+18卫)+ (- 100) 5 (-18 13(+53T53.6) + (- 100)=8.7 - 3.7 =5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数,【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于-1 - 2=-3的相反数,是3;同样,第三排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式:(R3) X2(14G) X3(R7)咒41+3=-, 1+3+5=「, 1+3+5+7=-〔1+9) X51+3+5+7+9= 「 ,…,按规律计算:(1) 1+3+5+ -+99(2) 1+3+5+7+ ••+ (2n- 1)【分析】(1)根据公式,可得出结果;(5) 0.36+ (- 7.4) +0.5+0.24+ (- 0.6) 使得横、竖、对角线上的所有□ □ n □ r U【解答】-1-2 3 斗-4 -3 I 213个数之和为0.(2)再根据题意,可得出公式(R2n-1) Xn2(l+gql KJI 解答】解:("由题意得:1+3+5+ 5=;' =2500;(2) 1+3+5+7+ ••+ (2n- 1)=(L+2n - 1) X n : 2=n 2.25. (2014秋?滕州市校级月考)已知:|m|=3, |n|=2,且m v n,求m+n 的 值. 【分析】利用绝对值求出 m, n 的值,再代入求值. 【解答】解:•/ |m|=3, |n|=2, /• m= ±3, n= ± ■/ m v n , /• m= - 3, n= ±2,/• m+n= - 3±2= — 1 或—5.26. (2014秋?长沙校级月考)计算题 (1)根据有理数的加法,逐一解答即可.解:(1) 5.6+ (- 0.9) +4.4+ (- 8.1) + (- 0.1) =5.6+4.4+ (- 0.9 - 8.1 - 0.1) =10+ (- 9.1) =0.9.=6+ (- 6)5.6+(- 0.9) +4.4+ (- 8.1) + (-0.1) (2) -0.5+ (- + (- 2.75) + (+ (3)1丄+ (-4+丄(-1) + (- (5) (6)_+ 2(-+ (-|3 50.8) +1.2+ (- 0.7) + (-(-_) + (- _)2 3+ (- 2.1) +0.8+3.5+ (- 2.25) +」.【分析】 (2)- 0.5+ (- + (- 2.75) + (+=(-0.5) + ( + +[ (- 3丄)+ (- 2.75)]=0.(3) 1卫+ (- ) + 里+ (- 1)3 5 3=3+ (- 6)=-3.(4) _+ (2t+ (-t +(V +(马谆(诗 2 4 1田(-自+(违+(月]=0+ (- 1—)=-1(5) (- 0.8) +1.2+ (- 0.7) + (- 2.1) +0.8+3.5 =[(-0.8) +0.8]+[ (- 0.7) + (- 2.1) ]+ (1.2+3.5)=0+ (- 2.8) +4.7=1.9.1 1Q2.25) +[ (- 6:) + 二]=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知 |a|=5, |b|=3,且 |a- b|=b - a,求 a+b 的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:•/ |a|=5, |b|=3,••• a= ±, b=±3,■/ |a- b|=b - a,• a= - 5 时,b=3 或-3, • a+b= - 5+3= - 2,或 a+b= - 5+ (- 3) =- 8, 所以,a+b的值是-2或-&28. (2013秋?滨湖区校级期末)若|a|=5, |b|=3, (1 )求a+b的值;(2)若|a+b|=a+b,求 a - b 的值.(6)(- + (- + (- 2.25) +=(-1(1 (-【分析】(1)由|a|=5, |b|=3可得,a=±), b= ±3,可分为4种情况求解;( 2)由 |a+b|=a+b 可得, a=5, b=3 或 a=5, b=- 3,代入计算即可.【解答】解:(1) •/ |a|=5, |b|=3,••• a= ±, b=±3,当 a=5, b=3 时, a+b=8;当 a=5, b=- 3 时, a+b=2;当 a=- 5, b=3 时, a+b=- 2;当 a=- 5, b=- 3 时, a+b=- 8.( 2)由 |a+b|=a+b 可得, a=5, b=3 或 a=5, b=- 3.当 a=5, b=3 时, a- b=2,当 a=5, b=- 3 时, a- b=8.29. 已知 |a|=2, |b|=3, |c|=4, a> b>c,求 a- b- c 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、c的值,然后代入代数式进行计算即可得解.【解答】解:•/ |a|=2, |b|=3, |c|=4,•a=±2, b=±3, c=±4,■/ a> b> c,•a=±2, b=- 3, c=- 4,•a- b- c=2-(- 3)-(- 4) =2+3+4=9 ,或 a- b- c=(- 2)-(- 3)-(- 4) =- 2+3+4=5 , 综上所述, a+b- c 的值为 9 或 5.30. 若 a, b, c 是有理数,|a|=3, |b|=10, |c|=5, 且 a, b 异号,b, c 同号,求a- b -( - c)的值.【分析】根据题意,利用绝对值的代数意义求出a, b, c的值,即可确定出原式的值.【解答】解:••• a, b, c是有理数,|a|=3, |b|=10, |c|=5, 且 a, b 异号,b, c 同号,•a=3, b=- 10, c=- 5; a=- 3, b=10, c=5, 则原式 =a- b+c=8 或- 8.。
有理数、数轴、绝对值、加减法练习卷讲课教案
2016.6有理数、数轴、绝对值、加减法练习卷一.选择题(共15小题)1.六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20°B.﹣20℃C.44℃ D.﹣44℃2.2的相反数是()A. B.C.﹣2 D.23.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C4.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q5.a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a6.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q7.|﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.8.下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣19.a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确10.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1311.若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣212.下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=513.下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a>|b|>﹣a>b15.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)二.解答题(共15小题)16.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=====15+=13;(2)计算.18.计算:31+(﹣102)+(+39)+(+102)+(﹣31)19.口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=20.已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.21.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)22.计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).23.在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)25.已知:|m|=3,|n|=2,且m<n,求m+n的值.26.计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.27.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.28.若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a﹣b﹣(﹣c)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一.选择题(共15小题)1.(2014•南岗区校级一模)六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20°B.﹣20℃C.44℃ D.﹣44℃【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12﹣(﹣32)=12+32=44℃.故选C.2.(2016•德州)2的相反数是()A. B.C.﹣2 D.2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.3.(2016•亭湖区一模)如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C 【分析】根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为﹣2,点D表示的数为2,根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,∴点A与点D到原点的距离相等,故选:C.4.(2016•海淀区二模)如图,数轴上有M,N,P,Q四个点,其中点P 所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q【分析】根据数轴可知﹣3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:∵点P所表示的数为a,点P在数轴的右边,∴﹣3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数﹣3a所对应的点可能是M,故选:A.5.(2016•花都区一模)a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可.【解答】解:由图形可知,a<0,b<0,所以a+b<0,所以|a+b|=﹣a﹣b.故选:A.6.(2016•石景山区二模)如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:∵点M,N表示的数互为相反数,∴原点为线段MQ的中点,∴点Q到原点的距离最大,∴点Q表示的数的绝对值最大.故选D.7.(2016•鄂城区一模)|﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:∵|﹣2|=2,∴x=2,故选:A.8.(2016春•上海校级月考)下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B.最小的自然数是0,所以此选项错误;C.最大的负整数是1,所以此选项正确;D.可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0,所以绝对值小于2的整数是:﹣1,0,1,所以此选项正确.故选B.9.(2015秋•苏州期末)a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确【分析】分两种情况讨论:(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a﹣b|≥0,而a﹣b有两种可能性.(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,因为a+b≥0,所以a≥0;(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0,因为a﹣b<0,所以b>0.根据上述分析,知(2)错误.故选A.10.(2015秋•内江期末)若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.11.(2015秋•青岛校级期末)若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣2【分析】由a≤0可知|a|=﹣a,然后合并同类项即可.【解答】解:∵a≤0,∴|a|=﹣a.原式=﹣a+a+2=2.故选:B.12.(2015秋•南京校级期末)下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的意义对A、B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、|﹣5|=5,所以A选项错误;B、﹣|﹣5|=﹣5,所以B选项错误;C、﹣(﹣5)=5,所以C选项错误;D、﹣(﹣5)=5,所以D选项正确.故选D.13.(2015秋•高邮市期末)下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大【分析】A:根据整数的特征,可得最小的正整数是1,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0,据此判断即可.D:一个非零数的绝对值比0大,0的绝对值等于0,据此判断即可.【解答】解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a>|b|>﹣a>b【分析】观察数轴,则a是大于1的数,b是负数,且|b|>|a|,再进一步分析判断.【解答】解:∵a是大于1的数,b是负数,且|b|>|a|,∴|b|>a>﹣a>b.故选A.15.(2007•天水)对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)【分析】题中给出了a,b的范围,根据“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.【解答】解:由已知可知:a,b异号,且正数的绝对值<负数的绝对值.∴a+b=﹣(|b|﹣|a|).故选D.二.解答题(共15小题)16.(2015秋•民勤县校级期末)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.17.(2015秋•简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:=13解:原式=====15+=13;(2)计算.【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】解:原式=(﹣205)+400++(﹣204)+(﹣)+(﹣1)+(﹣)=(400﹣205﹣204﹣1)+(﹣﹣)=﹣10.18.(2015秋•克拉玛依校级期中)计算:31+(﹣102)+(+39)+(+102)+(﹣31)【分析】先将互为相反数的两数相加,然后再进行计算即可.【解答】解:原式=[31+(﹣31)]+[(﹣102)+(+102)]+39=0+0+39=39.19.(2015秋•南江县校级月考)口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=【分析】根据有理数的加法,即可解答.【解答】解:(﹣13)+(+19)=6;(﹣4.7)+(﹣5.3)=﹣10;(﹣2009)+(+2010)=1;(+125)+(﹣128)=﹣3;(+0.1)+(﹣0.01)=0.09;(﹣1.375)+(﹣1.125)=﹣2.5;(﹣0.25)+(+)=;(﹣8)+(﹣4)=﹣12;+(﹣)+(﹣)=0;(﹣1.125)+(+)=﹣;(﹣15.8)+(+3.6)=﹣12.2;(﹣5)+0=﹣5.20.(2015秋•德州校级月考)已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案.【解答】解:由|x|=2003,|y|=2002,且x>0,y<0,得x=2003,y=﹣2002.x+y=2003﹣2002=1.21.(2015秋•盐津县校级月考)计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1)5.6+4.4+(﹣8.1)=10﹣8.1=1.9;(2)(﹣7)+(﹣4)+(+9)+(﹣5)=﹣7﹣4+9﹣5=﹣16+9=﹣7;(3)+(﹣)+=(﹣)+(﹣﹣)+=0﹣1+=﹣;(4)5=(5+4)+(﹣5﹣)=10﹣6=4;(5)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.22.(2015秋•克什克腾旗校级月考)计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).【分析】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加法法则计算,即可解答;(3)根据有理数的加法法则计算,即可解答;(4)利用加法的结合律和交换律,即可解答;(5)利用加法的结合律和交换律,即可解答.【解答】解;(1)(﹣1.25)+(+5.25)=5.25﹣1.25=4;(2)(﹣7)+(﹣2)=﹣(7+2)=﹣7;(3)﹣8=﹣3+7﹣8=11;(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)=1.1+(﹣8)=﹣6.9;(6)=8.7﹣3.7=5.23.(2014秋•巩留县校级期中)在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.【分析】由于竖线上的所有3个数之和为0,所以第一排第二个数(即﹣1右边的数)等于0+2=2的相反数,是﹣2;由于横线上的所有3个数之和为0,所以第一排第三个数等于﹣1﹣2=﹣3的相反数,是3;同样,第三排第一个数等于2+1=3的相反数,是﹣3;同理,求出第二行的两个数.【解答】解:.24.(2014秋•文登市校级期中)观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式.【解答】解:(1)由题意得:1+3+5+…+99==2500;(2)1+3+5+7+…+(2n﹣1)==n2.25.(2014秋•滕州市校级月考)已知:|m|=3,|n|=2,且m<n,求m+n的值.【分析】利用绝对值求出m,n的值,再代入求值.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2∵m<n,∴m=﹣3,n=±2,∴m+n=﹣3±2=﹣1或﹣5.26.(2014秋•长沙校级月考)计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.【分析】根据有理数的加法,逐一解答即可.【解答】解:(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)=5.6+4.4+(﹣0.9﹣8.1﹣0.1)=10+(﹣9.1)=0.9.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=(﹣0.5)+(+7)+[(﹣3)+(﹣2.75)]=6+(﹣6)=0.(3)1+(﹣1)++(﹣1)+(﹣3)=(1+)+(﹣1﹣1﹣3)=3+(﹣6)=﹣3.(4)+(﹣)+(﹣)+(﹣)+(﹣)=[+(﹣)]+[(﹣)+(﹣)+(﹣)]=0+(﹣1)=﹣1.(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=[(﹣0.8)+0.8]+[(﹣0.7)+(﹣2.1)]+(1.2+3.5)=0+(﹣2.8)+4.7=1.9.(6)(﹣1)+(﹣6)+(﹣2.25)+=(﹣1﹣2.25)+[(﹣6)+]=﹣4+(﹣3)=﹣7.27.(2015秋•自贡期末)已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.28.(2013秋•滨湖区校级期末)若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.【分析】(1)由|a|=5,|b|=3可得,a=±5,b=±3,可分为4种情况求解;(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3,代入计算即可.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、c的值,然后代入代数式进行计算即可得解.【解答】解:∵|a|=2,|b|=3,|c|=4,∴a=±2,b=±3,c=±4,∵a>b>c,∴a=±2,b=﹣3,c=﹣4,∴a﹣b﹣c=2﹣(﹣3)﹣(﹣4)=2+3+4=9,或a﹣b﹣c=(﹣2)﹣(﹣3)﹣(﹣4)=﹣2+3+4=5,综上所述,a+b﹣c的值为9或5.30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a﹣b﹣(﹣c)的值.【分析】根据题意,利用绝对值的代数意义求出a,b,c的值,即可确定出原式的值.【解答】解:∵a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,∴a=3,b=﹣10,c=﹣5;a=﹣3,b=10,c=5,则原式=a﹣b+c=8或﹣8.。
七年级上第02讲 有理数、数轴、相反数、绝对值 讲义+练习
3.绝对值的性质(1)任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即:
⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
3.掌握绝对值的概念,有理数大小比较法则;学会绝对值的计算,会比较两个或多个有理数的大小;体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学重点
1.让理解数轴.相反数.绝对值的概念;
2.着重理解绝对值的几何意义,并能利用其解决相关问题;
教学难点
让学生体会数轴的价值,初步理解数形结合,有助于学生完成从小学学习方式向中学学习方式的过渡
1.绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0。
可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=﹣a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)
【教学建议】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数、数轴、绝对值、加减法练习卷2016.6有理数、数轴、绝对值、加减法练习卷一.选择题(共15小题)1.六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20° B.﹣20℃C.44℃D.﹣44℃2. 2的相反数是()A.B.C.﹣2 D.23.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C4.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q5. a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a6.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q7. |﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.收集于网络,如有侵权请联系管理员删除8.下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣19. a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确10.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1311.若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣212.下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=513.下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a>|b|>﹣a>b15.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()收集于网络,如有侵权请联系管理员删除A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)二.解答题(共15小题)16.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=====15+=13;(2)计算.收集于网络,如有侵权请联系管理员删除18.计算:31+(﹣102)+(+39)+(+102)+(﹣31)19.口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=20.已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.21.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15收集于网络,如有侵权请联系管理员删除(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)22.计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).23.在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)收集于网络,如有侵权请联系管理员删除25.已知:|m|=3,|n|=2,且m<n,求m+n的值.26.计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.27.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.28.若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.收集于网络,如有侵权请联系管理员删除30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a﹣b﹣(﹣c)的值.收集于网络,如有侵权请联系管理员删除2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一.选择题(共15小题)1.(2014•南岗区校级一模)六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20° B.﹣20℃C.44℃D.﹣44℃【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12﹣(﹣32)=12+32=44℃.故选C.2.(2016•德州)2的相反数是()A.B.C.﹣2 D.2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.3.(2016•亭湖区一模)如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C【分析】根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为﹣2,点D表示的数为2,根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,∴点A与点D到原点的距离相等,故选:C.收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除 4.(2016•海淀区二模)如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数﹣3a 所对应的点可能是( )A .MB .NC .PD .Q【分析】根据数轴可知﹣3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,即可解答.【解答】解:∵点P 所表示的数为a ,点P 在数轴的右边,∴﹣3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,∴数﹣3a 所对应的点可能是M ,故选:A .5.(2016•花都区一模)a ,b 在数轴上的位置如图,化简|a+b|的结果是( )A .﹣a ﹣bB .a+bC .a ﹣bD .b ﹣a【分析】根据数轴判断出a 、b 的正负情况,然后根据绝对值的性质解答即可.【解答】解:由图形可知,a <0,b <0,所以a+b <0,所以|a+b|=﹣a ﹣b.故选:A .6.(2016•石景山区二模)如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是( )A .点MB .点NC .点PD .点Q【分析】先利用相反数的定义确定原点为线段MQ 的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q 表示的数的绝对值最大.【解答】解:∵点M ,N 表示的数互为相反数,∴原点为线段MQ 的中点,∴点Q 到原点的距离最大,∴点Q 表示的数的绝对值最大.故选D.7.(2016•鄂城区一模)|﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:∵|﹣2|=2,∴x=2,故选:A.8.(2016春•上海校级月考)下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B.最小的自然数是0,所以此选项错误;C.最大的负整数是1,所以此选项正确;D.可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0,所以绝对值小于2的整数是:﹣1,0,1,所以此选项正确.故选B.9.(2015秋•苏州期末)a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确【分析】分两种情况讨论:(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a﹣b|≥0,而a﹣b有两种可能性.(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,因为a+b≥0,所以a≥0;(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0,因为a﹣b<0,所以b>0.根据上述分析,知(2)错误.故选A.10.(2015秋•内江期末)若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.11.(2015秋•青岛校级期末)若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣2【分析】由a≤0可知|a|=﹣a,然后合并同类项即可.【解答】解:∵a≤0,∴|a|=﹣a.原式=﹣a+a+2=2.故选:B.12.(2015秋•南京校级期末)下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=5 【分析】根据绝对值的意义对A、B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、|﹣5|=5,所以A选项错误;B、﹣|﹣5|=﹣5,所以B选项错误;C、﹣(﹣5)=5,所以C选项错误;D、﹣(﹣5)=5,所以D选项正确.故选D.13.(2015秋•高邮市期末)下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大【分析】A:根据整数的特征,可得最小的正整数是1,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0,据此判断即可.D:一个非零数的绝对值比0大,0的绝对值等于0,据此判断即可.【解答】解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a>|b|>﹣a>b【分析】观察数轴,则a是大于1的数,b是负数,且|b|>|a|,再进一步分析判断.【解答】解:∵a是大于1的数,b是负数,且|b|>|a|,∴|b|>a>﹣a>b.故选A.15.(2007•天水)对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)【分析】题中给出了a,b的范围,根据“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.【解答】解:由已知可知:a,b异号,且正数的绝对值<负数的绝对值.∴a+b=﹣(|b|﹣|a|).故选D.二.解答题(共15小题)16.(2015秋•民勤县校级期末)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.17.(2015秋•简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:=13解:原式=====15+=13;(2)计算.【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】解:原式=(﹣205)+400++(﹣204)+(﹣)+(﹣1)+(﹣)=(400﹣205﹣204﹣1)+(﹣﹣)=﹣10.18.(2015秋•克拉玛依校级期中)计算:31+(﹣102)+(+39)+(+102)+(﹣31)【分析】先将互为相反数的两数相加,然后再进行计算即可.【解答】解:原式=[31+(﹣31)]+[(﹣102)+(+102)]+39=0+0+39=39.19.(2015秋•南江县校级月考)口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=【分析】根据有理数的加法,即可解答.【解答】解:(﹣13)+(+19)=6;(﹣4.7)+(﹣5.3)=﹣10;(﹣2009)+(+2010)=1;(+125)+(﹣128)=﹣3;(+0.1)+(﹣0.01)=0.09;(﹣1.375)+(﹣1.125)=﹣2.5;(﹣0.25)+(+)=;(﹣8)+(﹣4)=﹣12;+(﹣)+(﹣)=0;(﹣1.125)+(+)=﹣;(﹣15.8)+(+3.6)=﹣12.2;(﹣5)+0=﹣5.20.(2015秋•德州校级月考)已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案.【解答】解:由|x|=2003,|y|=2002,且x>0,y<0,得x=2003,y=﹣2002.x+y=2003﹣2002=1.21.(2015秋•盐津县校级月考)计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1)5.6+4.4+(﹣8.1)=10﹣8.1=1.9;(2)(﹣7)+(﹣4)+(+9)+(﹣5)=﹣7﹣4+9﹣5=﹣16+9=﹣7;(3)+(﹣)+=(﹣)+(﹣﹣)+=0﹣1+=﹣;(4)5=(5+4)+(﹣5﹣)=10﹣6=4;(5)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.22.(2015秋•克什克腾旗校级月考)计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).【分析】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加法法则计算,即可解答;(3)根据有理数的加法法则计算,即可解答;(4)利用加法的结合律和交换律,即可解答;(5)利用加法的结合律和交换律,即可解答.【解答】解;(1)(﹣1.25)+(+5.25)=5.25﹣1.25=4;(2)(﹣7)+(﹣2)=﹣(7+2)=﹣7;(3)﹣8=﹣3+7﹣8=11;(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)=1.1+(﹣8)=﹣6.9;(6)=8.7﹣3.7=5.23.(2014秋•巩留县校级期中)在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.【分析】由于竖线上的所有3个数之和为0,所以第一排第二个数(即﹣1右边的数)等于0+2=2的相反数,是﹣2;由于横线上的所有3个数之和为0,所以第一排第三个数等于﹣1﹣2=﹣3的相反数,是3;同样,第三排第一个数等于2+1=3的相反数,是﹣3;同理,求出第二行的两个数.【解答】解:.24.(2014秋•文登市校级期中)观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式.【解答】解:(1)由题意得:1+3+5+…+99==2500;(2)1+3+5+7+…+(2n﹣1)==n2.25.(2014秋•滕州市校级月考)已知:|m|=3,|n|=2,且m<n,求m+n 的值.【分析】利用绝对值求出m,n的值,再代入求值.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2∵m<n,∴m=﹣3,n=±2,∴m+n=﹣3±2=﹣1或﹣5.26.(2014秋•长沙校级月考)计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.【分析】根据有理数的加法,逐一解答即可.【解答】解:(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)=5.6+4.4+(﹣0.9﹣8.1﹣0.1)=10+(﹣9.1)=0.9.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=(﹣0.5)+(+7)+[(﹣3)+(﹣2.75)]=6+(﹣6)=0.(3)1+(﹣1)++(﹣1)+(﹣3)=(1+)+(﹣1﹣1﹣3)=3+(﹣6)=﹣3.(4)+(﹣)+(﹣)+(﹣)+(﹣)=[+(﹣)]+[(﹣)+(﹣)+(﹣)]=0+(﹣1)=﹣1.(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=[(﹣0.8)+0.8]+[(﹣0.7)+(﹣2.1)]+(1.2+3.5)=0+(﹣2.8)+4.7=1.9.(6)(﹣1)+(﹣6)+(﹣2.25)+=(﹣1﹣2.25)+[(﹣6)+]=﹣4+(﹣3)=﹣7.27.(2015秋•自贡期末)已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.28.(2013秋•滨湖区校级期末)若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.【分析】(1)由|a|=5,|b|=3可得,a=±5,b=±3,可分为4种情况求解;(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3,代入计算即可.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、c的值,然后代入代数式进行计算即可得解.【解答】解:∵|a|=2,|b|=3,|c|=4,∴a=±2,b=±3,c=±4,∵a>b>c,∴a=±2,b=﹣3,c=﹣4,∴a﹣b﹣c=2﹣(﹣3)﹣(﹣4)=2+3+4=9,或a﹣b﹣c=(﹣2)﹣(﹣3)﹣(﹣4)=﹣2+3+4=5,综上所述,a+b﹣c的值为9或5.30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a﹣b﹣(﹣c)的值.【分析】根据题意,利用绝对值的代数意义求出a,b,c的值,即可确定出原式的值.【解答】解:∵a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,∴a=3,b=﹣10,c=﹣5;a=﹣3,b=10,c=5,则原式=a﹣b+c=8或﹣8.。