八年级下册数学期末复习创新题
苏科版八年级下册数学期末试题(带答案)
2021—2022学年第二学期八年级数学期末复习卷一.选择题(共10小题,每小题3分,共30分)1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x4.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.106.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.88.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中()A.两锐角都大于45°B.有一个锐角小于45°C.有一个锐角大于45°D.两锐角都小于45°9.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2000的纵坐标是()A.22000B.21999C.22000﹣1D.21999﹣110.如图,在平行四边形ABCD中,AB=5,AD=3,∠BAD的平分线AE交CD于点E,连接BE,若∠BAD=∠BEC,则平行四边形ABCD的面积为()A.B.C.D.15第9题第10题二、填空题(本大题共8小题,每小题3分,共24分)11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为.16.(3分)如图,将△ABC 的绕点A 顺时针旋转得到△AED ,点D 正好落在BC 边上.已知∠C =80°,则∠EAB = °.17.(3分)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (4,4),C (﹣2,﹣2),点B ,D 在反比例函数y =kx 的图象上,对角线BD 交AC 于点M ,交x 轴于点N ,若BN ND=53,则k 的值是 .18.(3分)如图,在矩形ABCD 中,AB =6,AD =2√3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为 .三、解答题(本大题共有9小题,共计64分)19.(6分)解方程(1)22)3(4)23(-=+x x (2)111142=+-+-x x x20.解方程:(1)x 2 - 4x + 2 = 0;(2)x (x - 1) = 2(x - 1).21.先化简,再求值:(1﹣)÷,其中x=+1.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.参考答案与试题解析1.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻【分析】利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、射击运动员只射击1次,就命中靶心,是随机事件,故选项错误;B、任意一个三角形,它的内角和等于180°,是必然事件,故选项正确;C、抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件,故选项错误;D、打开电视,正在播放新闻,是随机事件,故选项错误.故选:B.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=-3x B.y=3x C.y=13x D.y=-13x【分析】只需把已知点的坐标代入,即可求得函数解析式.【解答】解:设该反比例函数的解析式为:y=kx(k≠0).把(1,3)代入,得3=k 1,解得k=3.则该函数解析式为:y=3 x.故选:B.【点评】此题考查的是用待定系数法求反比例函数的解析式,正确的理解题意是解题的关键.4.(3分)一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到红球是随机事件,∴选项A不符合题意;∵摸到黄球是随机事件,∴选项B不符合题意;∵白球和黄球的数量相同,∴摸到白球与摸到黄球的可能性相等,∴选项C符合题意;∵红球比黄球多,∴摸到红球比摸到黄球的可能性大,∴选项D不符合题意.故选:C.【点评】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.5.一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A.4B.6C.8D.10【分析】首先计算出第5组的频数,再用总数减去前5组的频数可得第6组的频数.【解答】解:第5组的频数:40×0.1=4,则第6组的频数为:40﹣10﹣5﹣7﹣6﹣4=8,故选:C.6.若互不相等的四条线段的长a、b、c、d满足,m是任意实数,则下列各式中,一定成立的是()A.B.C.D.【分析】熟练掌握比例和分式的基本性质,进行各种演变.【解答】解:A,根据分式的基本性质,错误;B,根据比例的性质可知该等式不成立,错误.C,根据乘法交换律,交换两内项的位置,应是,错误;D,若,根据分式的合比性质,得①,②.①÷②,得.正确.故选:D.7.如图,在▱ABCD中,CE平分∠BCD交AD于点E,若AE=2,▱ABCD的周长等于24,则线段AB的长为()A.5B.6C.7D.8【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,AD=BC,∴∠DEC=∠DCE,∴DE=DC=AB,∵ABCD的周长等于24,AE=2,∴AB+AD=12,∴AB+AE+DE=12,∴AB=5.故选:A.8.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,E是AD边的中点,菱形ABCD 的周长为32,则OE的长等于()A.4B.8C.16D.18【分析】先根据菱形ABCD的周长为32,求出边长AB,然后根据E为AD边中点,可得OE=12AB,即可求解.【解答】解:∵菱形ABCD的周长为32,∴AB=8,∵E为AD边中点,O为BD的中点∴OE=12AB=4.故选:A.【点评】本题考查了菱形的性质以及三角形中位线定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.9.(3分)已知两个函数y1=k1x+b与y2=k2x的图象如图所示,其中A(﹣1,2),B(2,﹣1),则不等式k1x+b>k2x的解集为()A.x<﹣1或x>2B.x<﹣1或0<x<2 C.﹣1<x<2D.﹣1<x<0或0<x<2【分析】不等式k1x+b>k2x的解集,在图象上即为一次函数的图象在反比例函数图象的上方时的自变量的取值范围.【解答】解:∵函数y1=k1x+b与y2=k2x的图象相交于点A(﹣1,2),B(2,﹣1),∴函数y1=k1x+b与y2=k2x的图象:x<﹣1或0<x<2,故选:B.【点评】此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.10.(3分)如图,点B是反比例函数y=kx图象上的一点,矩形OABC的周长是20,正方形OCDF与正方形BCGH的面积之和为68,则k的值为()A.8B.﹣8C.16D.﹣16【分析】首先设B(a,b),再根据正方形BCGH和正方形OCDF的面积之和为68,可得a2+b2=68,由矩形OABC的周长是20,可得a+b=10,再利用完全平方公式(a+b)2=100可计算出ab的值,即可求得结论.【解答】解:设B(a,b),∵正方形BCGH和正方形OCDF的面积之和为68,∴a2+b2=68,∵矩形OABC的周长是20,∴a+b=10,∴(a+b)2=100,a2+b2+2ab=100,68+2ab=100,ab=16,设反比例函数解析式为y=kx(k≠0),∵B在反比例函数图象上,∴k=ab=16,故选:C.【点评】此题主要考查了求反比例函数解析式,以及完全平方公式,关键是根据正方形的面积与长方形的周长得到a2+b2=68,a+b=10.11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.【分析】从袋中任取一球有4+1+7=12种可能,其中摸出白球有四种可能,利用概率公式进行求解.【解答】解:随机从袋中摸出1个球是白色球的概率是.12.已知x+y=5,xy=3,则=.【分析】由已知条件得到x>0,y>0,则根据二次根式的性质化简得原式=+=+,然后通分后利用整体代入的方法计算.【解答】解:∵x+y=5>0,xy=3>0,∴x>0,y>0,∴原式=+=+=•,=×=.故答案为.13.已知点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,则m2+n2的值为5.【分析】将P(m,n)代入一次函数y=﹣x+3和反比例函数y=的关系式可得,m+n=3,mn=2,进而利用∴m2+n2=(m+n)2﹣2mn代入求值即可.【解答】解:∵点P(m,n)是一次函数y=﹣x+3的图象与反比例函数y=的图象的一个交点,∴m+n=3,mn=2,∴m2+n2=(m+n)2﹣2mn=9﹣4=5,故答案为:5.14.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的面积为24.【分析】利用因式分解法解方程得到x1=4,x2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算.【解答】解:x2﹣9x+20=0,(x﹣4)(x﹣5)=0,x﹣4=0或x﹣5=0,∴x1=4,x2=5,∵菱形一条对角线长为8,∴菱形的边长为5,∵菱形的另一条对角线长=2×=6,∴菱形的面积=×6×8=24.故答案为:24.15.如图,在平面直角坐标系xOy中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D,两边分别交函数y1=(x>0)与y2=(x >0)的图象于B、F和E、C,若四边形ABCD是矩形,则A点的坐标为(,0).【分析】设点A的坐标为(m,0)(m>0),根据矩形的性质以及反比例函数图象上的坐标特征即可找出点A、C的坐标,再根据点C在反比例函数y2=(x>0)的图象上,利用反比例函数图象上点的坐标特征即可得出关于m的分式方程,解方程求出m值,将其代入点A坐标中即可得出结论.【解答】解:设点A的坐标为(m,0)(m>0),则点B坐标为(m,),点C坐标为(m+1,),∵点C在反比例函数y2=(x>0)的图象上,∴=,解得:m=,经检验m=是分式方程=的解.∴点A的坐标为(,0).故答案为:(,0).16.(3分)如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=20°.【分析】根据旋转的性质可得AC=AD,∠BAC=∠EAD,再根据等边对等角可得∠C=∠ADC,然后求出∠CAD,∠BAE=∠CAD,从而得解.【解答】解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,熟记性质并确定出△ACD是等腰三角形是解题的关键.17.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A(4,4),C(﹣2,﹣2),点B,D在反比例函数y=kx的图象上,对角线BD交AC于点M,交x轴于点N,若BNND=53,则k的值是﹣15.【分析】求得直线BD的解析式,根据题意设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,因为B、D在直线y=﹣x+2上,即可得出B(﹣5n+2,5n),D(3n+2,﹣3n),即可得出k=(﹣5n+2)•5n=(3n+2)•(﹣3n),从而求得k=﹣15.【解答】解:∵点A(4,4),C(﹣2,﹣2),∴直线AC为y=x,M(1,1),∵菱形ABCD中AC⊥BD,∴设直线BD为y=﹣x+b,代入M(1,1),求得b=2,∴直线BD为y=﹣x+2,∴N(2,0),∴ON=2,∵BNND =53,设B点的纵横坐标为5n,则D点的纵坐标为﹣3n,∵B、D在直线y=﹣x+2上,∴B(﹣5n+2,5n),D(3n+2,﹣3n),∵点B,D在反比例函数y=kx的图象上,∴k=(﹣5n+2)•5n=(3n+2)•(﹣3n),解得n=1,∴k=﹣15,故答案为﹣15.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,表示出B、D点的坐标是解题的关键.18.(3分)如图,在矩形ABCD中,AB=6,AD=2√3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为6﹣2√7或6+2√7.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在Rt△BCE中,EC=√BC2+EB2=√(2√3)2+42=2√7,∴CF=CE=2√7,∵AB=CD=6,∴DF=CD﹣CF=6﹣2√7,当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=2√7,∴DF=CD+CF′=6+2√7故答案为6﹣2√7或6+2√7.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.19.略20.略21.先化简,再求值:(1﹣)÷,其中x=+1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=+1时,原式==.22.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次进价每千克提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,问超市销售这种干果共盈利多少元?【分析】设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,利用单价=总价÷数量,结合第二次的进价比第一次进价每千克提高了20%,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用总盈利=销售总额﹣进货成本,即可求出结论.【解答】解:设第一次购进这种干果的数量为x千克,则第二次购进这种干果的数量为(2x+300)千克,依题意得:=(1+20%)×,解得:x=600,经检验,x=600是原方程的解,且符合题意,∴9(x+2x+300)﹣3000﹣9000=9×(600+2×600+300)﹣3000﹣9000=6900(元).答:超市销售这种干果共盈利6900元.23.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树苗售价120元;若购买树苗超过60棵,则每增加1棵,每棵树苗售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵树苗售价均为100元.如果该学校向园林公司支付树苗款8800元,那么这所学校购买了多少棵树苗?【分析】设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为(150﹣0.5x)元,利用总价=单价×数量,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:∵60×120=7200(元),(120﹣100)÷0.5+60=100(棵),100×100=10000(元),7200<8800<10000,∴购买的树苗棵树超过60棵,且不足100棵.设这所学校购买了x棵树苗(60<x<100),则每棵树苗的售价为120﹣0.5(x﹣60)=(150﹣0.5x)元,依题意得:x(150﹣0.5x)=8800,整理得:x2﹣300x+17600=0,解得:x1=80,x2=220(不合题意,舍去).答:这所学校购买了80棵树苗.24.如图,把一块等腰直角三角板ABC放在平面直角坐标系的第二象限内,若∠A=90°,AB=AC,且A、B两点的坐标分别为(﹣4,0)、(0,2).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,若B、C两点的对应点E、F都在反比例函数y=的图象上,求m、k的值和直线EF的解析式;(3)在(2)的条件下,直线EF交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMF是平行四边形?若存在,求出点M和点P的坐标;若不存在,请说明理由.【分析】(1)作CH⊥x轴于H,如图,利用“AAS”证明△ABO≌△CAH,得到AH=OB =2,CH=OA=4,则OH=OA+AH=6,然后根据第二象限的坐标特征写出C点坐标;(2)根据平移的性质得D(﹣4+m),E(m,2),F(﹣6+m,4),再根据反比例函数图象上点的坐标特征得到2•m=4(﹣6+m),解得m=12,则E点坐标为(12,2),F点的坐标为(6,4),所以k=24,然后利用待定系数法确定直线EF的解析式;(3)先确定G点坐标为(0,6),再根据平行四边形的性质得G点为GF为中点,根据线段的中点坐标公式得到G点坐标为(3,5),设M点坐标为(x,0),利用G点为MP为中点得到P点坐标为(6﹣x,10),然后根据反比例函数图象上点的坐标特征得到10(6﹣x)=24,解得x=,从而得到M点和P点坐标.【解答】解:(1)作CH⊥x轴于H,如图,∵A、B两点的坐标分别为(﹣4,0)、(0,2).∴OA=4,OB=2,∵∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠CAH=∠ABO,在△ABO和△CAH中,∴△ABO≌△CAH(AAS),∴AH=OB=2,CH=OA=4,∴OH=OA+AH=6,∴C点坐标为(﹣6,4);(2)∵△ABC沿x轴的正方向平移m个单位长度至第一象限内的△DEF位置,∴D(﹣4+m),E(m,2),F(﹣6+m,4),∵点E、F都在反比例函数y=的图象上,∴2•m=4(﹣6+m),解得m=12,∴E点坐标为(12,2),F点的坐标为(6,4),∴k=12×2=24,∴反比例函数的解析式为y=,设直线EF的解析式为y=px+q,把E(12,2),F(6,4)代入得,解得,∴直线EF的解析式为y=﹣x+6;(3)如图,∵当x=0时,y=﹣x+6=6,∴G点坐标为(0,6),∵四边形PGMF为平行四边形,∴Q点为GF为中点,∴Q点坐标为(3,5),设M点坐标为(x,0),∵Q点为MP为中点,P点坐标为(6﹣x,10),∵P(6﹣x,10)在反比例函数y=图象上,∴10(6﹣x)=24,解得x=,∴M点坐标为(,0),P点坐标为(,10).25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:DF=AE;(2)当t=10时,四边形AEFD是什么四边形?请说明理由.(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.【分析】(1)由已知条件可得Rt△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形AEFD是平行四边形,可得出AD=60﹣4t =20cm,AE=2t=20cm,则AD=AE,得出四边形AEFD是菱形;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.【解答】解:(1)∵Rt△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.又∵在Rt△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∵AE=2t∴DF=AE;(2)四边形AEFD是菱形.理由:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,∵当t=10时,AD=60﹣4t=20cm,AE=2t=20cm,∴AD=AE,∴四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,则DE∥BC.∴∠ADE=∠C=30°,∴AD=2AE,∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但DF=15,DE=15,∴DF≠DE,∴四边形BEDF不可能为正方形.26.在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ=(用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.【分析】(1)由勾股定理可求BD=5,由三角形的面积公式和S△DPQ=(S△BED﹣S△BDP)可求解;(2)当t=时,可得BP==BE,由中位线定理可得MN∥BD,MN=BD=5,PQ ∥BD,PQ=BD=5,可得MN∥PQ,MN=PQ,可得结论.(3)连接BQ,由等腰三角形的性质可得∠AQD+∠BQA=90°,由直角三角形的性质可得DQ=CQ,∠DCQ=∠CDQ,由“SAS”可证△ADQ≌△BCQ,可得∠AQD=∠BQC,即可得结论.【解答】解:(1)∵四边形ABCD是矩形,AB=3,BC=4,∴BC=4,CD=3,∴BD==5,∴BD=BE=5,∵Q为DE的中点,∴S△DPQ=S△DPE,∴S△DPQ=(S△BED﹣S△BDP)==t.故答案为:t.(2)当t=时,四边形MNQP为平行四边形,理由如下:∵M、N分别为AB、AD的中点,∴MN∥BD,MN=BD=,∵t=时,∴BP==BE,且点Q是DE的中点,∴PQ∥BD,PQ=BD=,∴MN∥PQ,MN=PQ,∴四边形MNQP是平行四边形.(3)AQ⊥CQ.理由如下:如图,连接BQ,∵BD=BE,点Q是DE中点,∴BQ⊥DE,∴∠AQD+∠BQA=90°,∵在Rt△DCE中,点Q是DE中点,∴DQ=CQ,∴∠DCQ=∠CDQ,且∠ADC=∠BCD=90°,∴∠ADQ=∠BCQ,且BC=AD,DQ=CQ,∴△ADQ≌△BCQ(SAS),∴∠AQD=∠BQC,且∠AQD+∠BQA=90°,∴∠BQC+∠BQA=90°,∴∠AQC=90°,∴AQ⊥CQ.27.(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组邻边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为25.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.【分析】(1)根据四边形ABCD的面积等于正方形EBFD的面积计算即可;(2)如图乙中,延长PC至D,取CD=1,连接AD.只要证明△ABP≌△ACD(SAS),即可推出四边形ABPC的面积等于△APD的面积;(3)如图丙中,延长CD至DF=AB,连接EF、BE、CE.只要证明五边形ABCDE的面积等于四边形BCFE的面积即可;【解答】解:(1)由题可知.故答案为25.(2)如图,延长PC至D,取CD=1,连接AD.∵等边△ABC中,∠BAC=60°,∠BPC=120°,∴∠BPC+∠BAC=180°,∴四边形ABPC中,∠ABP+∠ACP=360°﹣180°=180°,∴∠ABP=∠ACD=180°﹣∠ACP,又∵AB=AC,BP=CD,∴△ABP≌△ACD(SAS),∴AP=AP,∠BAP=∠CAP.∵∠BAP+∠P AC=∠BAC=60°,∴∠CAD+∠P AC=60°,∴△APD为等边三角形且PD=PC+CD=3+1=4,∴.(3)如图,延长CD至DF=AB,连接EF、BE、CE.∵AB=DF,AE=DE,∠BAE=∠FDE=90°,∴△ABE≌△DFE(SAS),∴EB=EF.∵CD+AB=CD+DF=4,BC=4,∴CD+DF=CF=BC,∴△EBC≌△EFC(SSS),∴.。
2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)
2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。
2022—2023学年广东省深圳市八年级下册数学期末专项突破模拟试卷(含解析)
2022—2023学年广东省深圳市八年级下册数学期末专项突破模拟试卷一、单选题(本部分共10小题,每小题3分,共30分)1.已知实数,若,则下列结论错误的是()A.B.C.D.2.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.若分式无意义,则的取值范围是()A.B.C.D.4.如图,在中,为BC边上的中线,,则的度数为()A.B.C.D.5.把多项式4a2-4分解因式,结果正确的是()A.(2a+2)(2a-2)B.4(a2-1)C.4(a-1)2D.4(a+1)(a-1)6.如果正多边形的每个外角等于40°,则这个正多边形的边数是A.10B.9C.8D.77.下列分式中,是最简分式的是()A.B.C.D.8.已知a,b,c是△ABC的三条边,满足下列条件的△ABC中,不是直角三角形的是()A.B.∠A:∠B:∠C=3:4:5C.∠C=∠A-∠B D.a:b:c=5:12:139.下列各组条件中,不能判断一个四边形是平行四边形的是()A.两组对边分别平行的四边形B.两组对角分别相等的四边形C.一组对边平行另一组对边相等的四边形D.两条对角线互相平分的四边形10.下列各式中,能用完全平方公式分解因式的是()A.B.C.D.二、填空题(本部分共7小题,每小题3分,共21分)11.“x 与5的差不小于x 的3倍”用不等式表示为_________.12.分解因式:_______________.13.化简:__________.14.如图,在平行四边形ABCD 中,BE 平分∠ABC,CF⊥BE,连接AE,G 是AB 的中点,连接GF,若AE=4,则GF=_____.15.若不等式组的解集是,则m 的取值范围是_________.16.如图,在平面直角坐标系xOy 中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO 在x 轴上,且AO=1.将Rt△AOB 绕原点O 顺时针旋90°转得到等腰直角三角形A 1OB 1,且A 1O=2AO,再将Rt△A 1OB 1绕原点O 顺时针旋转90°得到等腰直角三角形A 2OB 2,且A 2O=2A 1O,…,依此规律,得到等腰直角三角形A 2020OB 2020,则点B 2020的坐标为_____.17.如图,在△ABC 中,∠BAC=60°,AD 平分∠BAC,若AD=6,DE⊥AB,则DE 的长为_____________.三、解答题(18题5分,19题6分,20题7分,21题7分,22题7分,23题8分,24题9分,共49分)18.先化简,再求值:,其中.19.解不等式组:,并将其解集在数轴上表示出来.20.如图,中,,(1)利用尺规作图:作线段的垂直平分线(保留作图痕迹,不写作法)(2),设与交于点.连结,求的周长.21.如图所示,点是等边三角形内的一点,且,,,若将绕点逆时针旋转后,得到.(1)求的长;(2)的度数.22.为打造绿色生态公园,明湖公园计划购买甲、乙两种树苗.已知一棵甲种树苗比一棵乙种树苗贵4元,购买甲种树苗的费用和购买乙种树苗的费用分别是7000元和5000元.(1)若两种树苗购买的棵数一样多,求甲、乙两种树苗的单价;(2)根据(1)中两种树苗的单价,若两种树苗共购买1100棵,且购买两种树苗的总费用不超过12000元,求甲种树苗最多购买多少棵.23.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10厘米,AC=14厘米,动点E以4厘米/秒的速度从A点向F点运动,动点G以2厘米/秒的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t秒.(1)求证:AF=AM;(2)求证:在运动过程中,不管t取何值,都有;(3)当t取何值时,△DFE与△DMG全等.24.如图,在平面直角坐标系xOy中,直线y=-x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.参考答案1.D2.B3.B4.B5.D6.B7.A8.B9.C10.A 11.x-5≥3x12.13.14.215.16.(22020,22020).17.318.;19.-1<x≤220.解:(1)如图,即为所求.(2)连接∵,,∴,∵,∴AB=2,∵是垂直平分线,∴,∴=BD+CD,∴的周长=BD+CD+BC=AB+BC=1+2=3,∴的周长是.21.(1)6;(2)解:(1)连结,如图.∵为等边三角形,∴,,∵绕点逆时针能转后,得到,∵∠PAC+∠BAP=∠P′AB+∠BAP=60°,∴,,,∴为等边三角形,∴,.(2)在中,∵,,,在△BPP′中,∴,∴为直角三角形,,∴.本题主要考查勾股定理逆定理及因式分解,熟练掌握勾股定理逆定理及因式分解是解题的关键.22.解:元,则乙种树苗的单价为(x-4)元,由题意得:解得:x=14经检验x=14是原方程的解,x-4=10答:甲种树苗的单价为14元,乙种树苗的单价为10元.(2)设甲种树苗购买m棵,则乙种树苗购买了(1100-m)棵,由题意得:,整理得:解得:答:甲种树苗最多购买250棵.23.解:(1)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC∴DF=DM,在Rt△AFD和Rt△AMD中∴Rt△AFD≌Rt△AMD(HL)∴AF=AM;(2)证明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,∴DF=DM,∵S△AED=AE•DF,S△DGC=CG•DM,∴,∵点E以4cm/s的速度从A点向F点运动,动点G以2cm/s的速度从C点向A点运动,∴AE=4t(cm),CG=2t(cm),∴,即,∴在运动过程中,不管取何值,都有S△AED=2S△DGC.(3)解:∵AF=AM=10cm,AC=14cm∴CM=AC-AM=14-10=4cm当△DFE与△DMG全等时,EF=MG①当0<t≤2时,点G在线段CM上,点E在线段AF上.EF=10-4t,MG=4-2t∴10-4t=4-2t,解得t=3(不合题意,舍去)②当2<t≤2.5时,点G在线段AM上,点E在线段AF上.EF=10-4t,MG=2t-4∴10-4t=2t-4,解得t=综上:当t=时,△DFE与△DMG全等.24.(1)∵直线y=-x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=-x+与x轴交于点B,∴令y=0,得-x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(-2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,-1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(-,-),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(-,-),D(,),D(3,3)或D(,),使得△DOB是等腰三角形.。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
浙教版2021-2022学年八年级数学下册期末复习卷(5)及答案
浙教版2021-2022学年八年级数学下册期末复习卷(5)一.选择题1.下列四个生活安全警示图标,其中是中心对称图形的是()A.B.C.D.2.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5B.6C.7D.83.一组数据1,1,1,3,4,7,12,若加入一个整数a,一定不会发生变化的统计量是()A.众数B.平均数C.中位数D.方差4.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.用配方法解一元二次方程x2﹣4x﹣9=0,可变形为()A.(x﹣2)2=9B.(x﹣2)2=13C.(x+2)2=9D.(x+2)2=13 6.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣27.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2B.C.3D.48.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F,AF=4,AB=3,则CE的长为()A.B.2C.D.110.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)成反比例(如图),则下列说法正确的是()A.气球内气体的压强随气体体积增大而增大B.气球内气体的压强p关于体积V的函数表达式为p=(V>0)C.当气体体积为1m3时,它的压强为90kPaD.气体的压强大于150kPa时,气球会爆炸,则气体的体积应不小于0.8m311.如图,正方形ABCD中,对角线AC,BD相交于点O,点E为OB的中点,连结CE并延长交AB于点F.过点B作BH⊥CF,分别交CF,CA于点H,点P.若OE=1,则BP的长为()A.B.2C.D.2.512.如图,在平面直角坐标系xOy中,△AOB的顶点B在x轴正半轴上,顶点A在第一象限内,AO=AB,P,Q分别是OA,AB的中点,函数y=(k>0,x>0)的图象过点P,连接OQ,若S△OPQ=3,则k的值为()A.1.5B.2C.3D.6二.填空题13.某班在一次数学考试中,“乘风组”的平均成绩为80分,“破浪组”的平均成绩为86分.若“乘风组”人数是“破浪组”的2倍,则该班此次数学考试的平均成绩是.14.在▱ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC 的周长为.15.已知a,b都是实数,,则a b的值为.16.已知m是方程x2﹣2x﹣3=0的一个根,则2m2﹣4m﹣1=.17.如图,在平行四边形ABCD中,AB=5,AD=7,∠ABC的平分线交AD于点E,∠BCD 的平分线交AD于点F,则线段EF的长为.18.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.19.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.20.如图,以正方形ABCD的一边AB为边向外作等边三角形ABE,连结AC,CE,过点A 作AF⊥CE于点F,若AB=4,则AF=.21.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为.22.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为,则k=.三.解答题23.计算:(1)×+;(2)(﹣1)2+(+2)(﹣2).24.已知关于x的方程kx2+(k+1)x+=0有实根.(1)当k=4时,求解上述方程;(2)求k的取值范围;(3)是否存在实数k,使方程两根的倒数和为1?若存在,请求出k的值;若不存在,请说明理由.25.如图,在平行四边形ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,连结BF,DE.(1)求证:四边形BFDE是平行四边形;(2)连结BD,若BE=3,BF=5,求BD的长.26.小明和小聪最近5次数学测试的成绩如下:小聪:76 84 80 87 73小明:78 82 79 80 81(1)分别求出小明和小聪的平均成绩;(2)分别求出小明和小聪的成绩的方差,并指出哪位同学的数学成绩比较稳定.27.如图,一次函数y=kx+2的图象与反比例函数y=的图象交于A,B两点,且A(1,3).(1)分别求出一次函数和反比例函数的表达式;(2)求点B的坐标;(3)观察图象,直接写出kx+2≥时,x的取值范围.28.甲、乙两名学生参加数学素质测试(有四项),每项测试成绩(单位:分)采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩众数中位数方差甲9590a85x b9012.5乙90c8095x95d37.5(1)根据表中信息判断哪个学生数学素质测试成绩更稳定?请说明理由.(2)表格中的数据a=;b=;c=;d=;(3)若数学素质测试的四个项目的重要程度有所不同,而给予“数与代数”、“空间与图形”、“统计与概率”、“综合与实践”四个项目在综合成绩中所占的比例分别为40%,30%,10%,20%.计算得到乙的综合成绩为91.5分,请你计算甲的综合成绩,并说明谁的综合成绩更好?29.随着宁波轨道交通4号线的开通,充满魅力的千年古城﹣﹣慈城,吸引了越来越多的游客前来.说到慈城,不得不提软糯香甜的年糕,《舌尖上的中国》专门介绍了宁波的这一特色美食.慈城某商店于今年三月初以每件40元的进价购进一批水磨年糕,当年糕售价为每件60元时,三月份共销售192件.四、五月该批年糕销售量持续走高,在售价不变的基础上,五月份的销售量达到300件.(1)求四、五两个月销售量的月平均增长率;(2)从六月份起,在五月份的基础上,商店决定采用降价促销的方式回馈顾客,经市场调查发现,该年糕每件降价1元,月销售量增加20件.在顾客获得最大实惠的前提下,当年糕每件降价多少元时,商场六月仍可获利为6080元?30.如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.参考答案一.选择题1.解:A.是中心对称图形,故本选项符合题意;B.不是中心对称图形,故本选项不合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:A.2.解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选:D.3.解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.4.解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.6.解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.7.解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.8.解:由题意知:2k+1≥0,k≠0,Δ=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.9.解:连接DE,∵AE=AD,∴∠ADE=∠AED,∵四边形ABCD是矩形,AB=3,∴AD∥BC,AB=DC=3,∴∠ADE=∠DEC,∴∠AED=∠DEC,∵DF⊥AE,DC⊥BC,∴DF=DC,∵AF=4,DC=3,∴DF=3,∴AD===5,∴AE=5,∴EF=AE﹣AF=5﹣4=1,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴EF=EC,∴EC=1,故选:D.10.解:根据图象的变化趋势可知气体的压强随体积的增大而减小,故A错误;由点(0.5,180)得函数解析式为,故B错误;当v=1m3时,代入得p=90,故C正确;由可知,当p>150时,v<0.6m3,故D错误.故选:C.11.解:∵四边形ABCD是正方形,∴∠BOC=90°,OB=OC,∵OE=1,E为OB的中点,∴OE=BE=1,∴OB=OC=2,∴EC===,∵BH⊥CF,∴∠BHE=90°,∵∠BEH=∠CEO,∴∠HBE=∠EOC,∵∠POB=∠EOC=90°,∴△PBO≌△ECO(ASA),∴BP=CE=,故选:C.12.解:作AD⊥x轴于D,PE⊥x轴于E,∵AO=AB,∴OD=BD,∵P,Q分别是OA,AB的中点,∴S△AOB=2S△AOQ,S△AOQ=2S△POQ=6,∴S△AOB=12,∴S△AOD=S△AOB=6,∴S△POE=S△AOD=,∵函数y=(k>0,x>0)的图象过点P,∴S△POE=|k|,∴|k|=3,∵k>0,∴k=3,故选:C.二.填空题13.解:设“破浪组”人数是a,则“乘风组”人数是2a,根据题意可得:(2a×80+86a)÷(a+2a)=246a÷3a=82(分).故答案为:82分.14.解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=7,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+7+8=18.故答案为:18.15.解:根据题意得,解得a=,当a=时,b=﹣2,所以ab=()﹣2=4.故答案为4.16.解:根据题意,将x=m代入方程,得:m2﹣2m﹣3=0,则m2﹣2m=3,∴2m2﹣4m﹣1=2(m2﹣2m)﹣1=2×3﹣1=5,故答案是:5.17.解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=5,AD=BC=7,∴2AB﹣BC=AE+FD﹣BC=EF=3.故答案为3.18.解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,解法二:△ADE和△ECF全等即可.故答案为:5.19.解:分两种情况:(1)当∠BPC=90°时,①点P在AB边上时,∵∠B=60°,∴∠BCP=30°,∴BP=BC=2;②点P在边AD上,AP=DP=2时,如图2所示:∵四边形ABCD是平行四边形,∴CD=AB=2,∠D=∠B=60°,∴DP=CD,∴△PCD是等边三角形,PC=CD=2,∴BP===2;(2)当∠BCP=90°时,如图3所示:则CPD=90°,∵CD=AB=2,∠D=∠ABC=60°,∴∠PCD=30°,∴PD=CD=1,CP=PD=,∴BP==;综上所述:当△PBC为直角三角形时,BP的长为2或2或.故答案为:2或2或.20.解:∵ABE是等边三角形,∴∠AEB=∠ABE=60°,AE=BE=AB=BC,∴∠EBC=∠EBA+∠ABC=60°+90°=150°,∴∠BEC=∠BCE==15°,∴∠AEF=∠AEB﹣∠BEC=60°﹣15°=45°,∵AF⊥CE,∴△AEF是等腰直角三角形,∴AF=AE=AB=×4=2.故答案为:2.21.解:如图,延长GE至K,使得EG=EK,连KC,∵E、H分别是KG、BG的中点,∴EH=KB,∵KE=EC,∴∠KCE=45°,连AC,∵四边形ABCD是正方形,∴∠ACE=45°,∴K必在AC上,∴KB⊥AC时,KB取最小,过B作BK'⊥AC交AC于K',∵∠ACB=45°,∴K'B=K'C,∵BC==4,∴K'B=2,∴EH的最小值为K'B=.故答案为:.22.解:设D(t,),∵D为OB的中点,∴B(2t,),∵四边形ABCO为菱形,∴BC∥OA,∴C(t,)∴BC=2t﹣t=t,∵菱形OABC的面积为,∴t•=6,解得k=2.故答案为2.三.解答题23.解:(1)原式=+=3+=;(2)原式=5﹣2+1+5﹣4=7﹣2.24.解:(1)k=4,方程化为:4x2+5x+1=0,(4x+1)(x+1)=0,4x+1=0或x+1=0,所以x1=﹣,x2=﹣1;(2)当k=0时,方程化为x=0,方程有实数解;当k≠0时,根据题意得Δ=(k+1)2﹣4k×≥0,解得k≥﹣且k≠0,综上所述,k的取值范围为k≥﹣;(3)不存在.理由如下:设方程的两根分别为a、b,根据根与系数的关系得a+b=﹣,ab=,∵+=1,即=1,∴a+b=ab,∴﹣=,解得k=﹣,∵k≥﹣且k≠0,∴不存在实数k,使方程两根的倒数和为1.25.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,BE∥DF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BFDE是平行四边形;(2)连结BD交AC于点O,∴OE=OF,OB=OD.∴BE⊥AC,BE=3,BF=5,∴EF=4,∴OE=2.在Rt△OBE中,.∴.26.解:(1)=(76+84+80+87+73)=80(分),=×(78+82+79+80+81)=80(分).(2)s小聪2=×[(76−80)2+(84−80)2+…+(73−80)2]=26,s小明2=×[(78−80)2+(82−80)2+…+(81−80)2]=2,∵s小聪2>s小明2,∴小明成绩稳定.27.解:(1)因为A点是一次函数与反比例函数交点,分别代入到两个函数解析式中得,m=3,k+2=3,∴k=1,∴一次函数表示式为y=x+2,反比例函数表达式为;(2)联立,化简得,x2+2x﹣3=0,∴x=1或﹣3,当x=﹣3时,y=﹣1,因为A,B两点是一次函数与反比例函数交点,∴点B的坐标为(﹣3,﹣1);(3)∵A,B两点是一次函数与反比例函数交点坐标,故根据图象,如图1,当﹣3≤x<0或x≥1时,kx+2≥,即x的取值范围为:﹣3≤x<0或x≥1.28.解:(1)甲的数学素质测试成绩更稳定,因为甲成绩的方差小于乙成绩的方差;(2)由表可知,乙的众数为95,∴c=95,乙的中位数为d==92.5,乙的平均数为x=(90+95+80+95)=90,∴a=90×4﹣95﹣90﹣85=90,∴甲的众数为b=90,故答案为:90,90,95,92.5;(3)甲的平均成绩为95×40%+90×30%+90×10%+85×20%=91(分),91<91.5,所以,乙的综合成绩更好.29.解:(1)设四、五两个月销售量的月平均增长率为x,由题意,得:192(1+x)2=300,解得:x1=25%,x2=﹣2.25(不合题意,舍去),∴四、五两个月销售量的月平均增长率为25%;(2)设年糕每件降价m元时,商场六月仍可获利为6080元,由题意,得:(60﹣40﹣m)(300+20m)=6080,化简,得:m²﹣5m+4=0,解得:m=1或m=4,顾客获得最大实惠的前提下,m=4,∴在顾客获得最大实惠的前提下,当年糕每件降价4元时,商场六月仍可获利为6080元.30.(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E在BC的延长线上,点G在DC的延长线上,∴AB∥DG∥EF,∴∠B=∠E,在△ABH和△HEF中,,∴△ABH≌△HEF(SAS).(2)如图2,设FH交CG于点P,连结CF,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∵BH=CH,∴AH⊥BC,∴∠AHB=90°,由(1)得,△ABH≌△HEF,∴∠HFE=∠AHB=90°,∵DG∥EF,∴∠DPF=180°﹣∠HFE=90°,∴PF⊥CG,∵CG=FG,∠G=∠E=∠B=60°,∴△GFC是等边三角形,∴PC=PG=CG;∵BC=AB=2,∴CG=EF=BH=BC=1,∴PC=;∵CD=AB=2,∴PD=+2=,∵CF=CG=1,∴PF2=CF2﹣PC2=12﹣()2=,∴DF===.(3)如图3,作FM⊥BG于点M,则∠BMF=90°,∵EH⊥BC,即EH⊥BG,∴EH∥FM,∵∠CEF=∠ACB=60°,∴EF∥MH,∴四边形EHMF是平行四边形,∵∠EHM=90°,∴四边形EHMF是矩形,∴EH=FM;∵EF=EC,∠CEF=60°,∴△CEF是等边三角形,∴CE=CF,∵∠EHC=∠FMC=90°,∴Rt△EHC≌Rt△FMC(HL),∴CH=CM=CG;∵CG=CE=BH,∴CH=BH,∴CM=CH=BC=×2=,∴CF=CG=2CM=2×=,∴FM2=()2﹣()2=,∵BM=2+=,∴BF====.。
八年级数学下册期末挑战题复习测试
(第2题图)D B 八年级数学下册期末挑战题复习测试班别:______________姓名:______________学号:_______成绩:______________1、如图,在等腰梯形ABCD 中,60BCD ∠=︒,AD //BC ,且AD=DC ,E 、F 分别在AD 、DC 的延长线上运动,且满足DE =CF . AF 、BE 交于点P .(1)求证:AF=BE . (2)请你猜测∠BPF 的度数,并证明你的结论.2、如图,将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:△ABE ≌△AD F '; (2)连接CF ,判断四边形AECF是什么特殊四边形?并证明你的结论.Bx(第3题图)3、如图,点A 是函数()20y x x=>图象上任意一点,过A 点分别作x 轴、y 轴的平行线交函数()10y x x=>图象于点B 、C ,过C 点作x 轴的平行线交函数2y x=图象于点D .(1)设A 点横坐标为a ,试用a 表示B 、C 点坐标;(2)求四边形ABCD 的面积.4、学校打算在长和宽分别为20m 和11m 的会议室内修建一个20m 2的矩形播音室ABCD .该播音室的四面墙壁中有两侧沿用大厅的旧墙壁(如图平面示意图),已知装修旧墙壁的费用为40元/m 2,新建(含装修)墙壁的费用为160元/m 2.设播音室的高为3m ,一面旧墙壁AB 的长为xm ,修建播音室墙壁的总投入为y 元.(1)求y 与x 的函数关系式;(2)当投入的资金刚好为5400元时,问利用旧墙壁的总长度为多少?5、如图,在矩形ABCD 中,AB =16cm ,AD =6cm ,动点P 、Q 分别从A 、C 同时出发,点P 以每秒3cm 的速度向B 移动,一直到达B 为止,点Q 以每秒2cm 的速度向D 移动.(1)P 、Q 两点出发多少秒时,四边形PBCQ 的面积为36cm 2? (2)是否存在某一时刻,使PBCQ 为正方形,若存在,求出该时刻,若不存在说明理由.(第5题图)(第4题图)C。
新人教版八年级数学(下册)期末复习题及答案
新人教版八年级数学(下册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或715 )A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.3x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
人教版数学八年级下册期末综合培优复习题(四)(含答案)
期末综合培优复习题(四)一.选择题(每题3分,满分36分)1.下列一定是二次根式的是()A.B.C.D.2.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣13.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.已知n是一个正整数,是整数,则n的最小值是()A.3 B.5 C.15 D.455.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.若a=1﹣,b=1+,则代数式的值为()A.2B.﹣2C.2 D.﹣27.有20个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的()A.平均数B.加权平均数C.众数D.中位数8.已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x,y的方程组的解是()A.B.C.D.9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.11.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(每题3分,满分18分)13.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 14.使二次根式有意义的x 的取值范围是 .15.某公司招聘员工一名,某应聘者进行了三项素质测试,其中创新能力为70分,综合知识为80分,语言表达为90分,如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 分.16.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .17.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 度.18.如图,过点N (0,﹣1)的直线y =kx +b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围 .三.解答题 19.(6分)计算 (1)(3﹣2+)÷2 (2)×﹣(+)(﹣)20.已知一次函数y =(2m +1)x +3﹣m(1)若y 随x 的增大而减小,求m 的取值范围; (2)若图象经过第一、二、三象限,求m 的取值范围.21.(8分)为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图所示.(1)根据图示填写图表;平均数(分)中位数(分)众数(分)小学部85初中部85 100 (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(6分)如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13.求BC的长.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.24.(6分)已知y+m与x﹣n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时,y=﹣5,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点(2,﹣1),求平移后的直线的解析式.25.(9分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.参考答案一.选择题1. A .2. D .3. A .4. B .5. C .6. A .7. D .8. B .9. D 10. B .11. A . 二.填空题 13. y 1<y 2. 14. x ≤2. 15. 77. 16. 1≤k ≤. 17. 100或40. 18. <k ≤2. 三.解答题19.解:(1)原式=(9﹣+4)÷2=12÷2=6; (2)原式=﹣(5﹣3)=3﹣2 =1.20.解:(1)由2m +1<0,可得m <﹣, ∴当m <﹣时,y 随着x 的增大而减小; (2)由,可得﹣<m <3, ∴当﹣<m <3时,函数图象经过第一、二、三象限.21.解:(1)填表:小学部平均数 85( 分),众数85(分);初中部中位数 80( 分). 故答案为85,85,80.(2)小学部成绩好些.因为两个队的平均数都相同,小学部的中位数高,所以在平均数相同的情况下中位数高的小学部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,,∴,因此,小学代表队选手成绩较为稳定.22.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=15,AD=12,AC=13,∴BD===9,CD===5,∴BC=BD+CD=9+5=14.23.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.24.解:(1)已知y+m与x﹣n成正比例,设y+m=k(x﹣n),(k≠0),y=kx﹣kn﹣m,因为k≠0,所以y是x的一次函数;(2)设函数关系式为y=kx+b,因为x=2时,y=3;x=1时,y=﹣5,所以2k+b=3,k+b=﹣5,解得k=8,b=﹣13,所以函数关系式为y=8x﹣13;(3)设平移后的直线的解析式为y=ax+c,由题意可知a=8,且经过点(2,﹣1),可有2×8+c=﹣1,c=﹣17,平移后的直线的解析式为y=8x﹣17.25.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.。
第2章《一元二次方程的应用》期末复习专题突破2020-2021学年浙教版八年级数学下册
2021年浙教版八年级数学下册第2章《一元二次方程的应用》期末复习专题突破(附答案)1.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,列出方程正确的是()A.580(1+x)2=1185B.1185(1+x)2=580C.580(1﹣x)2=1185D.1185(1﹣x)2=5802.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6003.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1104.中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为.5.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为.6.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.7.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了多少人.8.在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?9.尚依钟妈妈的“陪读面膜淘宝店”于2020年1月正式营业,该店主要销售“补水面膜”、“美白面膜”、“修复面膜”,去年上半年,“美白面膜”和“修复面膜”共销售了300盒,已知“补水面膜”每盒的售价为60元,每盒利润率为50%,且它每盒的成本比“美白面膜”每盒的成本多5元,比“修复面膜”每盒的成本少15元.去年下半年,“补水面膜”的销售量与上半年一样,“美白面膜”销量减少一半,“修复面膜”的销量是上半年的3倍,但三种面膜的总销售量下半年比上半年多100盒.“补水面膜”的成本没变,售价减少了2元,“美白面膜”售价、成本均未改变,“修复面膜”的售价增加8元、成本增加1元.发现上半年“补水面膜”的销售额占上半年三种面膜总销售额的,同时,“美白面膜”全年的总利润是“补水面膜”全年总利润的.那么,在去年上半年的销售中10盒“美白面膜”的销售额比1盒“修复面膜”的销售额多元.10.目前以5G等为代表的战略性新兴产业蓬勃发展,某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到9.68万户,求全市5G用户数年平均增长率?11.某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加a%.求a的值.12.2021年某地“枇杷节”将于4月26日到5月30举行.热情的当地人民为游客准备了枇杷酒和枇杷花酒,在每天举行的“枇杷酒会“上.游客不仅可以品尝纯正的枇杷酒和枇杷花酒.而且还能学到一手泡酒的良方.枇杷酒和枇杷花酒对外销售.已知枇杷花酒比枇杷酒每千克贵10元,预计枇杷节期间枇杷酒销量为5000kg.枇杷花酒销量为2500kg,枇杷酒和枇杷花酒销售总额为325000元.(1)求本次枇杷节预计销售枇杷酒和枇杷花酒的单价.(2)实际销售过程中,枇杷花酒在预计单价的基础上增加a%(a>0)销售.枇杷酒比预计单价降低a元销售,枇杷花酒的销量与预计销量相同.枇杷酒比预计销量增加了a%.枇杷酒和枇杷花酒的销售总额与预计销售总额相同,求a的值.13.某公司的高科技医疗设备在A省热销.公司规定:如果购买这种设备的数量不超过60台,每台售价为120万元;如果购买数量超过60台,每增加1台,所购买的这批设备每台均降价0.5万元.(1)若A省购买这种医疗设备的数量为x(x>60)台,请用含x的代数式表示优惠后的每台设备的价格;(2)该省购买这种设备的花费为8800万元,求该省购买了这种设备多少台(公司规定每台售价的最大优惠率不得超过20%)?14.端午将至,各大商家都在为端午节销售粽子做准备.重庆某知名食品公司主推两款粽子礼盒,蛋黄鲜肉粽礼盒和八宝粽礼盒.礼盒上市第一天,卖出两种礼盒共计5000盒,其中蛋黄鲜肉粽礼盒和八宝粽礼盒的售价分别为160元和120元.(1)若礼盒上市当天,蛋黄鲜肉粽礼盒销售数量是八宝粽礼盒销售数量的1.5倍,求当天八宝粽礼盒的销售量?(2)在(1)的条件下,礼盒上市第二天,蛋黄鲜肉粽礼盒销售数量增长了a%,八宝粽礼盒销售数量增长了a%,而蛋黄鲜肉粽礼盒价格下降了a%,八宝粽礼盒价格不变,最终礼盒上市第二天两种礼盒的销售总额和(1)中两种礼盒的销售总额相等,求a的值.15.某商店经销一种成本为每千克80元的水果,据市场分析,若按每千克100元销售,一个月能售出500千克.若销售价每涨5元,则月销售量减少20千克.针对这种水果的销售情况请解答以下问题:(1)当销售单价为每千克110元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过20000元的情况下,使月销售利润达到12000元,销售单价应定为多少元?16.如图,在Rt△ABC中,∠ABC=90°,AB=6cm,BC=8cm,动点P从点A出发沿AB 边以1cm/秒的速度向点B匀速移动,同时点Q从点B出发沿BC边以2cm/秒的速度向点C匀速移动,当P、Q两点中有一个点到达终点时,另一个点也停止运动,当△PBQ的面积为5cm2时,则点P、Q运动的时间为秒.17.如图,张大叔从市场上买回一块矩形铁皮,他将此铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米.现已知购买这种铁皮每平方米需10元钱,问张大叔购回这张矩形铁皮共花了元.18.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.19.重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份.为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低a%.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加a%,这两种小面的总销售额在4月的基础上增加a%.求a的值.20.列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.21.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.22.第30届菏泽国际牡丹文化旅游节于4月1日至5月10日举办,主题为“赞盛世牡丹,品魅力菏泽”.为了宣传牡丹制品,某商店欲购进A、B两种牡丹制品,若购进A种牡丹制品5件,B种牡丹制品3件,共需450元;若购进A种牡丹制品10件,B种牡丹制品8件,共需1000元.(1)购进A、B两种牡丹制品每件各需多少元?(2)该商店购进足够多的A、B两种牡丹制品,在销售中发现,A种牡丹制品售价为每件80元,每天可销售100件,现在决定对A种牡丹制品在每件80元的基础上降价销售,每件每降价1元,多售出20件,该商店对A种牡丹制品降价销售后每天销量超过200件;B种牡丹制品销售状况良好,每天可获利7000元,为使销售A、B两种牡丹制品每天总获利为10000元,A种牡丹制品每件降价多少元?23.资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中m=3n,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了x%,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B 两公司总营销区域面积的比比去年下半年增加了x个百分点.问题:(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.24.2021年春节前夕,李克强总理在山西考察,他来到某快递分拨中心,对快递员们说,过去说家书抵万金,现在是快递暖人心、保生活.春节期间快递需求旺盛,我省某地2019年的快递业务量为1.4亿件,近两年由于电子商务发展等多重因素,快递业务也迅猛发展,假设这两年快递业务量的年平均增长率相同,预计2021年该地区的快递业务量可达到2.016亿件.(1)求这两年快递业务量的年平均增长率;(2)经实践调查,快递系统会给快递员合理分配快递,已知甲、乙两个快递员送快递,乙快递员比甲快递员平均每小时多送6件,甲快递员送150件快递所用的时间与乙快递员送180件快递所用的时间相同,问甲、乙两快递员平均每小时分别送快递多少件?25.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.26.节能减排是国家“十四五”规划中的一个重要目标,规划提出要在2030年前实现“碳达峰”,到2060年实现“碳中和”发展.为响应国家号召,某省政府计划对一批工业园区的碳排放工厂进行改建和重建,该计划拟定2021年,工厂改建和重建数量共100座,且改建座数不低于重建座数的4倍.(1)按拟定计划,2021年至少要改建多少座工厂?(2)经财政实际预算,2021年改建与重建工厂的平均费用之比为1:2,且改建工厂按照拟定计划中最少的数量计算,将花费资金156亿元.为加快实现“碳达峰的目标,该省政府计划加大投入,计划指出2022年用于工厂改建和重建的费用将在2021年实际预算的基础上增加10a%,另外2022年改建与重建工厂的平均费用将比2021年分别增加a%和5a%,改建与重建工厂的座数将比2021年分别增加5a%和8a%,求a的值.参考答案1.解:设平均每次降价的百分率为x,由题意得出方程为:1185(1﹣x)2=580.故选:D.2.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.3.解:设有x个队参赛,则x(x﹣1)=110.故选:D.4.解:∵矩形的宽为x(步),且宽比长少12(步),∴矩形的长为(x+12)(步).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.5.解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(30﹣2x)(40﹣2x)=600.6.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.7.解:设每轮传染中平均一个人传染了x个人,根据题意,得x+1+(x+1)x=169x=12或x=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.8.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵1=,3=,6=,10=,15=,∴y=,当x=48时,y==1128.故答案为:y=;1128.(3)依题意,得:=190,化简,得:x2﹣x﹣380=0,解得:x1=20,x2=﹣19(不合题意,舍去).答:该班共有20名女生.9.解:上半年:设“美白”、“修复”、“补水”分别销售了a、b、c盒,由题意:“补水”的成本:60÷(1+50%)=40元,故“美白”成本35元,“修复”成本55元,a+b=300,总销价额60c÷=96c;下半年:a+3b+c=a+b+c+100,“补水”售价58元,“修复”成本55+1=56元,设“美白”、“修复”上半年售价为x、y,则“美白”、“修复”下半年售价为x、y+8.∴,∴,∴10x﹣y=420,故去年上半年销售中10盒“美白面膜”的销售额比1盒“修复面膜”的销售额多420元.故答案为:420.10.解:设全市5G用户数年平均增长率为x,依题意,得:2(1+x)2=9.68,解得:x1=1.2=120%,x2=﹣3.2(不合题意,舍去).11.解:(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元,依题意得:x+100+x=500,解得:x=200,∴x+100=300.答:A产品的销售单价为300元,B产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t件,依题意得:300(1+a%)t+200(1+3a%)(1﹣a%)t=500t(1+a%),设a%=m,则原方程可化简为5m2﹣m=0,解得:m1=,m2=0(不合题意,舍去),∴a=20.答:a的值为20.12.解:(1)设本次枇杷节预计销售枇杷酒的单价为x元,则销售枇杷花酒的单价为(x+10)元,依题意得:5000x+2500(x+10)=325000,解得:x=40,∴x+10=50.答:本次枇杷节预计销售枇杷酒的单价为40元,销售枇杷花酒的单价为50元.(2)依题意得:(40﹣a)×5000(1+a%)+50(1+a%)×2500=325000,整理得:a2﹣250a=0,解得:a1=40,a2=0(不合题意,舍去).答:a的值为40.13.解:(1)∵购买数量超过60台,每增加1台,所购买的这批设备每台均降价0.5万元,∴优惠后的每台设备的价格为120﹣0.5(x﹣60)=(﹣0.5x+150)(万元).(2)设该省购买了这种设备y台,∵120×60=7200(万元),7200<8800,∴y>60.依题意得:y(﹣0.5y+150)=8800,整理得:y2﹣300y+17600=0,解得:y1=80,y2=220.∵公司规定每台售价的最大优惠率不得超过20%,∴﹣0.5y+150≥120×(1﹣20%),∴y≤108,∴y=80;当每台售价优惠20%时,购买数量为=91(台),∵91不为整数,∴舍去.答:该省购买了这种设备80台.14.解:(1)设当天八宝粽礼盒的销售量为x盒,则蛋黄鲜肉粽礼盒的销售量为1.5x盒,依题意得:x+1.5x=5000,解得:x=2000.答:当天八宝粽礼盒的销售量为2000盒.(2)依题意得:160(1﹣a%)×1.5×2000(1+a%)+120×2000(1+a%)=160×1.5×2000+120×2000,整理得:48a2﹣480a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.15.解:(1)500﹣20×=460(千克);(110﹣80)×460=13800(元).答:当销售单价为每千克110元时,月销售量为460千克,月销售利润为13800元.(2)设销售单价应定为x元,则每千克的销售利润为(x﹣80)元,月销售量为500﹣20×=(﹣4x+900)千克,依题意得:(x﹣80)(﹣4x+900)=12000,整理得:x2﹣305x+21000=0,解得:x1=105,x2=200.当x=105时,月销售成本为80×(900﹣4×105)=38400(元),38400>20000,不合题意,舍去;当x=200时,月销售成本为80×(900﹣4×200)=8000(元),8000<20000,符合题意.答:销售单价应定为200元.16.解:8÷2=4(秒).设运动时间为x秒(0<x<4),则PB=(6﹣x)cm,BQ=2xcm,依题意得:×2x×(6﹣x)=5,整理得:x2﹣6x+5=0,解得:x1=1,x2=5(不合题意,舍去).故答案为:1.17.解:设此长方体箱子的底面宽为x米,则长为(x+2)米,依题意得:1•x•(x+2)=15,整理得:x2+2x﹣15=0,解得:x1=3,x2=﹣5(不合题意,舍去),∴矩形铁皮的长为x+2+2=7(米),宽为x+2=5(米),∴购回这张矩形铁皮的费用为7×5×10=350(元).故答案为:350.18.解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答:剪去的正方形的边长为2cm.故答案为:2.19.解:(1)设每份“堂食”小面的价格为x元,每份“生食”小面的价格为y元,根据题意得:,解得:,答:每份“堂食”小面的价格为7元,每份“生食”小面的价格为5元;(2)由题意得:4500×7+2500(1+a%)×5(1﹣a%)=(4500×7+2500×5)(1+a%),设a%=m,则方程可化为:9×7+25(1+m)(1﹣m)=(9×7+25)(1+m),375m2﹣30m=0,m(25m﹣2)=0,解得:m1=0(舍),m2=,∴a=8.20.解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.21.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a1=0(不合题意舍去),a2=10,答:a的值为10.22.解:(1)设购进A种牡丹制品每件需x元,B种牡丹制品每件需y元,则由题意得:,解得:,答:购进A种牡丹制品每件需60元,B种牡丹制品每件需50元;(2)设种牡丹制品每件降价m元,则由题意得:,化简得:,∴m=10,答:A种牡丹制品每件降价10元.23.解:(1)问题:求去年下半年公共营销区域面积与B公司营销区域面积的比?3n×=n,n:n=;(2)依题意有×3n(1+x%)=[3n(1+x%)+n(1+4x%)﹣×3n(1+x%)][3n×÷(3n+n﹣n)+x%],100(x%)2+45x%﹣13=0,解得x%=20%,x%=﹣65%(舍去),设B公司每半年每平方千米产生的经济收益为a,则A公司每半年每平方千米产生的经济收益为1.5a,今年上半年两公司总经济收益为1.5a×3n×(1+20%)+an×(1+4×20%)=7.2na,去年下半年两公司总经济收益为1.5a×3n+an=5.5na,故去年下半年与今年上半年两公司总经济收益之比为(5.5na):(7.2na)=55:72.故去年下半年与今年上半年两公司总经济收益之比为55:72.24.解:(1)设该地区这两年快递业务量的年平均增长率为x.根据题意,得,1.4(1+x)2=2.016,解得x1=0.2,x2=﹣2.2(不合题意,舍去),∴x=0.2=20%,答:该地区这两年快递业务量的年平均增长率为20%;(2)设甲快递员平均每小时送y件,则乙快递员平均每小时送(y+6)件,根据题意,得,=,解得y=30,经检验y=30是原方程的解,当y=30时,y+6=36,答:甲、乙两快递员平均每小时分别送快递30件和36件.25.解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.26.解:(1)设改建x座工厂,则重建工厂为(100﹣x)座,根据题意得:x≥4(100﹣x),解得:x≥80,∴至少改建80座工厂;(2)由(1)得:改建工厂80座,则此时重建工厂20座,设改建一座工厂花费y亿元,重建一座为2y亿元,根据题意得:80y+20×2y=156,解得y=1.3,∴2y=2.6,由题意得:1.3(1+a%)×80(1+5a%)+2.6(1+5a%)×20(1+8a%)=156(1+10a%),解得:a=10.。
2022-2023学年度华师大版八年级下册数学期末复习卷(含答案)
学校 班级 姓名 考号 考试时间◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆2022-2023学年度八年级数学期末复习卷本试卷共印11个班:初二全年级, 命题人:数学组 时间:2023-06-4一、选择题(30分):1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为( )A .B .C .D .2.在平面直角坐标系中,点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平行四边形ABCD 中,若,,则平行四边形ABCD 的周长为( )A .12B .15C .20D .244.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的( )A .平均数B .众数C .中位数D .方差5.关于矩形的性质,以下说法不正确的是( )A .邻边相互垂直B .对角线相互垂直C .是中心对称图形D .对边相等6.若关于x 的方程无解,则a 的值为( )A .1B .2C .1或2D .0或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为( )A .B .C .D .8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是( )A .220,220 B .210,215 C .210,210D .220,2159.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是( )A .B .C .D .10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为二、填空题(15分):11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)15.如图为6个边长相等的正方形的组合图形,则__.三、解答题(75分):16.先化简,再求值:,其中x217.计算下列各题:(1);(2)解方程:.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.21.2023年是爱国卫生运动开展71周年,2023年4月也是第35个爱国卫生月,为了倡导文明健康绿色环保生活方式,某市决定开展“爱国卫生行动,从我开始行动”主题演讲比赛.该市某中学将参加本校选拔赛的选手的成绩(满分为100分,得分为正整数)分成六组,并绘制了如下不完整的统计图表.请根据以下信息,回答下列问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.频数分布表.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.求卫龙辣条和普通辣条每包的进价分别是多少元?该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获,若分式的值为因为,所以关于+=分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:+==的方程+=.求的值.期末模拟卷答案版一、单选题1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为()A.B.C.D.【答案】C2.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B3.在平行四边形ABCD中,若,,则平行四边形ABCD的周长为()A.12B.15C.20D.24【答案】D4.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的()A.平均数B.众数C.中位数D.方差【答案】C5.关于矩形的性质,以下说法不正确的是( )A.邻边相互垂直B.对角线相互垂直C.是中心对称图形D.对边相等【答案】B6.若关于x的方程无解,则a的值为( )A.1B.2C.1或2D.0或2【答案】C【详解】方程去分母得解得由题意,分以下两种情况:(1)当,即时,整式方程无解,分式方程无解(2)当时,当时,分母为0,分式方程无解,即解得综上,a的值为1或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为()A.B.C.D.【答案】B【详解】解:∵点在反比例函数的图像上,∴,即,∴,在中,,∴,即,,∴,,∵将沿翻折,∴,即,,如图所示,过点作轴于点,∴,在中,,,∴,,∴,,∵点在反比例函数的图像上,∴,∴,8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是()A.220,220B.210,215C.210,210D.220,215【答案】B【详解】解:数据210出现了4次,最多,故众数为210,共10辆车,排序后位于第5和第6位的数分别为210,220,故中位数为.故选:B.9.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是()A.B.C.D.【答案】D【详解】解:菱形的周长为,,,为等边三角形,为中点,是的中点,10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为【答案】B【详解】解:由函数图象可知:当物距为时,像距为,故选项A说法正确;由函数图象可知:当像距为时,物距为,放大率为,故选项B说法错误;由函数图象可知:物距越大,像距越小,故选项C说法正确;由题意可知:当透镜的放大率为1时,物距和像距均为,故选项D说法正确,二、填空题11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)【答案】甲12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)【详解】解:∵一次函数y随x的增大而减小,∴,不妨设,故答案为:(答案不唯一).13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.【详解】解:∴∴,故答案为:.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)【详解】解:如图,过点D作交延长线于点H,∵四边形为正方形,∴,∴,∴,∵,∴,∴,,∴阴影部分的面积.故答案为:3015.如图为6个边长相等的正方形的组合图形,则__.【详解】解:标注字母,如图所示,在和中,,∴(),∴,∵,∴,又∵,∴.故答案为:.三、解答题16.先化简,再求值:,其中x2【详解】解:=[],当x2时,原式.17.计算下列各题:(1);(2)解方程:.【详解】解:(1)原式==﹣.(2)方程两边同乘(x+3)(x﹣3),得x﹣3+2x+6=12,解得,x=3,当x=3时,(x+3)(x﹣3)=0,所以x=3不是原方程的解,所以原方程无解.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.【详解】证明:∵四边形ABCD为正方形,∴AB=BC=CD,∠ABE=∠BCF=90°,又∵CE=DF,∴CE+BC=DF+CD即BE=CF,在△BCF和△ABE中,∴(SAS),∴AE=BF.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【详解】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.【详解】(1)∵在上,∴.反比例函数的解析式为∵点在上,∴.∴.经过,,解得,∴一次函数的解析式为.(2)C是直线AB与x轴的交点,当时,.∴点,∴.∴.(3)反比例函数值大于一次函数值x取值范围为问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.【详解】(1)解:组人数所占的百分比为:,组的人数所占的百分比为:,∴参加学校选拔赛的总人数为:(人);故答案为:;(2)解:,,补全频数分布直方图如图.(3)不一定正确.理由:将50名选手的成绩从低到高排列,第25名与第26名的成绩都在分数段中,但它们的平均数不一定是87分.22.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.【详解】(1)设普通辣条进价为元,则卫龙辣条的进价为元,∴,解得:,经检验,是方程的解,∴普通辣条的进价为元,卫龙辣条的进价为元.(2)设购买卫龙辣条包,则普通辣条:包,∵普通辣条的数量不超过卫龙辣条数量的倍,∴,解得:,设购进的辣条全部出售后获得的总利润为,∴,,,∵,∴随的增大而减小,∴当时,最大,答:购进卫龙辣条包时,每个月的总获利最大..对于两个不等的非零实数,若分式的值为因为,所以关于+=分别为x1=a,x2=b.+=的方程+=.求的值.)应用上面的结论,x1=-2=∵∴∴∴或∴或∵∴∴。
八年级下册数学期末试卷复习练习(Word版含答案)
八年级下册数学期末试卷复习练习(Word 版含答案) 一、选择题 1.若式子4x -在实数范围内有意义,则x 的取值范围是( ) A .4x >B .4x <C .4x ≥D .4x ≤ 2.若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( ) A .4、6、8B .3、4、5C .5、12、13D .1、3、10 3.已知四边形ABCD ,以下有四个条件.能判四边形ABCD 是平行四边形的有( )A .//AB CD ,AD BC =B .AB AD =,BC CD = C .A B ∠=∠,C D ∠=∠ D .//AB CD ,//AD BC 4.甲、乙、丙、丁四人进行射击测试,记录每人10次射击成绩,得到各人的射击成绩平均数和方差如表中所示,则成绩最稳定的是( )统计量甲 乙 丙 丁 平均数9.2 9.2 9.2 9.2 方差 0.60 0.620.50 0.44 A .甲 B .乙 C .丙 D .丁5.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .2B .322C .32D .256.如图,在ABC 中,∠B+∠C =α,按图进行翻折,使////,//B D C G BC B E FG ''',则∠C 'FE 的度数是( )A .2αB .90°﹣2αC .α﹣90°D .2α﹣180°7.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若6EF =,13BC =,△的面积为()CD=,则BCD5A.60 B.48 C.30 D.158.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有()①图1中的BC长是8cm,②图2中的M点表示第4秒时y的值为24cm2,③图1中的CD长是4cm,④图2中的N点表示第12秒时y的值为18cm2.A.1个B.2个C.3个D.4个二、填空题9.在函数y=3x+中,自变量x的取值范围是_______.10.已知一个菱形有一个内角为120︒,周长为16cm,那么该菱形的面积等于________ .11.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是________cm2. 12.如图,在矩形ABCD中,点E在AD上,且EC平分BED∠,若1AB=,45∠=︒,则DE的长为__________.EBC13.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.14.如图,矩形ABCD中,对角线AC和BD交于点O,过O的直线分别交AD和BC于点E、F,已知AD=4 cm,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC长为___cm.15.在平面直角坐标系中,Q 是直线122y x =-+上的一个动点,将Q 绕点(1,0)P 顺时针旋转90︒,得到点Q '连接OQ ',则OQ '的最小值为__________.16.如图,AD 是ABC 的中线,45,ADC ∠=︒把ADC 沿AD 折叠,使点C 落在点'C 处,'BC 与BC 的长度比是_______________________.三、解答题17.计算:(1)218﹣6×31272+-; (2)(5﹣2)2﹣(13﹣2)(13+2);(3)(1+3)•(2﹣3);(4)332232---. 18.笔直的河流一侧有一旅游地C ,河边有两个漂流点A ,B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =5千米,CH =4千米,BH =3千米. (1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.19.下图各正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点都称为格点.(1)在图①中,画出一条以格点为端点,长度为8的线段AB .(2)在图②中,以格点为顶点,画出三边长分别为3,22,5的三角形. 20.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.21.阅读,并回答下列问题:公元322r a r a a+≈+2的近似值. (12211+1321212≈+=⨯2看23124⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭2≈___________≈______________;依次算法,所得2的近似值会越来越精确.(22取近似值577408时,求近似公式中的a 和r 的值. 22.某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数关系式;(2)当每千克干果降价3元时,超市获利多少元?23.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M落在BC边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线).24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y 与x的几组对应值.x…﹣3﹣2﹣10123…y…m10﹣1012…【探究】(1)m=;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是;【拓展】(4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是;(5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是,该四边形的面积为18时,则b的值是.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(Ⅰ)若设AP=x,则PC=,QC=;(用含x的代数式表示)(Ⅱ)当∠BQD=30°时,求AP的长;(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】x-≥,由题意得,40解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、42+62≠82,不符合勾股定理的逆定理,故本选项符合题意;B 、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C 、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D 、12+32=2,符合勾股定理的逆定理,故本选项符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】根据平行四边形的判定方法进行分析即可.【详解】解:.A 、//AB CD ,AD BC =,不能判断四边形为平行四边形,故不符合题意; B 、AB AD =,BC CD =,不能判断四边形为平行四边形,故不符合题意;C 、A B ∠=∠,CD ∠=∠,不能判断四边形为平行四边形,故不符合题意;D 、//AB CD ,//AD BC ,可以根据两组对边分别平行的四边形是平行四边形进行判定,故符合题意;故选:D .【点睛】本题考查了平行四边形的判定方法,解题的关键是:熟练掌握平行四边形的判定方法. 4.D解析:D【解析】【分析】根据方差的性质:方差越小,表示数据波动越小,也就是越稳定,据此进行判断即可.【详解】解:∵甲、乙、丙、丁的方差分别为0.60,0.62,0.50,0.44,又∵0.44<0.50<0.60<0.62,∴丁的方差最小即丁的成绩最稳定,故选D .【点睛】此题主要考查方差的应用,解题的关键是熟知方差的性质.5.B解析:B【分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD =6,应用两次勾股定理分别求BE 和a .【详解】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.∴AD =a ,∴12BC •DE =12AD •DE =12a •DE =a ,∴DE =2,当点F 从D 到B 6,∴BD 6,Rt △DBE 中,BE 22BD DE -2∵ABCD 是菱形,∴EC =a 2,DC =a ,Rt △DEC 中,a 2=22+(a 22,解得a =322, 故选:B .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.6.D解析:D【解析】【分析】设∠ADB′=γ,∠AGC′=β,∠CEB′=y ,∠C′FE =x ,利用平行线的性质,三角形内角和定理构建方程组即可解决问题.【详解】解:设∠ADB′=γ,∠AGC′=β,∠CEB′=y ,∠C′FE =x ,∵////''B D C G BC ,∴B γ=∠,C β=∠,∴γ+β=∠B+∠C =α,∵EB′∥FG ,∴∠CFG =∠CEB′=y ,∴x+2y =180°①,根据平行线的性质和翻折的性质可得:B γ=∠,//'BD B E ,∴y B =∠,∵γ+y =2∠B ,同理可得出:β+x =2∠C ,∴γ+y+β+x =2α,∴x+y =α②,②×2﹣①可得x =2α﹣180°,∴∠C′FE =2α﹣180°.故选:D .【点睛】本题考查三角形内角和定理,平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.C解析:C【解析】【分析】连接BD ,根据三角形中位线定理求出BD ,根据勾股定理的逆定理得到∠BDC =90°,然后求得面积即可.【详解】解:连接BD ,∵E 、F 分别是A B 、AD 中点,∴BD =2EF =12,∵CD 2+BD 2=25+144=169,BC 2=169,∴CD 2+BD 2=BC 2,∴∠BDC =90°,∴S △DBC =12BD •CD =12×12×5=30,故选:C .【点睛】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.D解析:D【分析】①根据题意得:动点P在GC上运动的时间是2秒,又由动点的速度,可得GC和BC的长;②由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得y的值;③动点P在DC上运动的时间是2秒,又由动点的速度,可得CD的长;④根据图2中的N点表示第12秒时,表示点P到达H点,即可得出△ABP的面积;【详解】解:①根据函数图象可以知:从0到2,y随x的增大而增大,经过了2秒,P运动了4cm,因而CG=4cm,BC=8cm;②第4秒时P到达D点.P在CD段时,底边AB不变,高不变,因而面积不变,面积y=12×6×8=24cm2;③第4秒时P到达D点.由图象可知CD=2⨯2=4cm④图2中的N点表示第12秒时,表示点P到达H点.AF=BC+DE=8+2⨯3=14,所以AH=AF-FH=14-2⨯4=6.△ABP的面积=12⨯6⨯6=18cm2.则四个结论正确;故选D【点睛】此题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题9.x≥﹣3【解析】【分析】根据二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.【点睛】本题考查了函数自变量的确定,熟练掌握二次根式有意义的条件是解题的关键.10.E解析:2【解析】【分析】作AE BC⊥于E,由三角函数求出菱形的高AE,再运菱形面积公式=底×高计算即可;【详解】作AE BC ⊥于E ,如图所示,∵四边形ABCD 是菱形,周长为16cm ,120BCD ∠=︒,∴4AB BC cm ==,60B ∠=︒, ∴()3sin 4sin 60423AE AB B cm ==⨯︒=⨯=, ∴菱形的面积()242383BC AE cm ==⨯=. 故答案为283cm .【点睛】本题主要考查了菱形的性质,结合三角函数的计算是解题的关键.11.48【解析】【分析】先根据勾股定理求出长方形的另一条边,然后根据面积公式计算即可.【详解】解:∵长方形的一条对角线的长为10cm ,一边长为6cm ,由勾股定理可知:长方形的另一条边221068-=cm∴长方形的面积为:6×8=48 cm 2.故答案为:48.【点睛】此题考查的是勾股定理和长方形的面积,掌握用勾股定理解直角三角形是解决此题的关键. 12.D 21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC=∠ECB,∴BE=BC,∵四边形ABCD是矩形,=∴∠A=90°,AD BC∵∠ABE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=1,由勾股定理得:BE==,∴BC=AD=BE,∴=-,DE AD AE11.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.13.A解析:y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).14.A解析:5【解析】∵阴影部分的面积总和为6 cm 2,∴矩形面积为12 cm 2;∴AB×AD=12,∴AB=12÷4=3cm.∴5AC cm15.【分析】利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题.【详解】解:作轴于点,轴于,,,,在和△中,,△, 解析:5【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q '的坐标,进而可得点Q '所在直线的函数关系式,然后根据勾股定理求解即可解决问题.【详解】 解:作QM x ⊥轴于点M ,Q N x '⊥轴于N ,90PMQ PNQ QPQ ∠=∠'=∠'=︒,90QPM NPQ PQ N NPQ ∴∠+∠'=∠'+∠'=︒,QPM PQ N ∴∠=∠',在PQM 和△Q PN '中,90PMQ PNQ QPM PQ NPQ PQ ∠=∠'=︒⎧⎪∠=∠'⎨⎪='⎩, PQM ∴△≌△()Q PN AAS ',PN QM ∴=,Q N PM '=,设1(,2)2Q m m -+,|1|Q N PM m ∴'==-,1|2|2QM m =-+, 1|3|2ON m ∴=-, 1(32Q m ∴'-,1)m -, 设点(Q x ',)y ',则1321x m y m⎧=-⎪⎨⎪=-⎩', 整理,得:25y x '=-,则点(Q x ',)y '在直线25y x '=-上,设直线25y x '=-与x 轴,y 轴的交点分别为E 、F ,如图,当OQ EF '⊥时,OQ '取得最小值,令0y '=,则250x -=, 解得52x =, ∴25OE =, 令0x =,则5y '=-,∴5OF =,在Rt OEF 中,222255()5522EF OE OF ++, 当OQ EF '⊥时,则1122OEF S EF OQ OE OF =⋅'=⋅△, ∴5525552OE OF OQ EF ⨯⋅'== OQ ∴'5 5【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换-旋转,勾股定理,表示出点Q '的坐标以及点Q '所在直线的函数关系式是解题的关键.16.【分析】设BD=CD=x ,由题意可知∠ADC=45°,且将ADC 沿AD 折叠,故,则可运用勾股定理,将用x 进行表示,即可得出的值.【详解】解:∵点D 是BC 的中点,设BD=CD=x ,则BC=2x 22【分析】设BD=CD=x ,由题意可知∠ADC=45°,且将ADC 沿AD 折叠,故ADC'=45∠︒,则Rt C'DB △可运用勾股定理,将BC'用x 进行表示,即可得出BC':BC 的值.【详解】解:∵点D是BC的中点,设BD=CD=x,则BC=2x,∠︒,C'D=x,又∵∠ADC=45°,将ADC沿AD折叠,故ADC'=45∴C'DC=C'DB=90∠∠︒,C'DB△是直角三角形,根据勾股定理可得:,∴:,2.【点睛】本题主要考察了折叠问题与勾股定理,解题的关键在于通过折叠的性质,得出直角三角形,并运用勾股定理.三、解答题17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣【分析】(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;(2)直接利用乘法公式化简,再合并得出答案;(3)直接利用解析:(1)3;(2)﹣3)﹣4【分析】(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;(2)直接利用乘法公式化简,再合并得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用二次根式的性质化简,进而得出答案.【详解】解:(1)633=3;(22)22)(3)(•(23(4)11-11【点睛】本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键.18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为256千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=256,答:原来的路线AC的长为256千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)见解析;(2)见解析【解析】【分析】(1)根据实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2)实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直解析:(1)见解析;(2)见解析【解析】【分析】(1)根据8实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2)22实际上是直角边长为2和2的直角三角形的斜边长,5实际上是直角边长为2和1的直角三角形的斜边长,即可解答.【详解】(18实际上直角边长为2和2的直角三角形的斜边长,如图①线段AB即为所求线段;(2)本题中22实际上是直角边长为2和25长为2和1的直角三角形的斜边长,据此可找出如图②中的三角形即为所求.【点睛】本题主要考查了勾股定理,解题的关键是确定直角三角形的直角边长后根据边长画出所求的线段和三角形.20.(1)见解析;(2)AF=5【分析】(1)根据EF是AC的垂直平分线可以得到AF=CF,AE=CE,再只需证明△AFO≌△CEO即可得到答案;(2)根据四边形AECF是菱形可以得到AE=EC解析:(1)见解析;(2)AF=5【分析】(1)根据EF是AC的垂直平分线可以得到AF=CF,AE=CE,再只需证明△AFO≌△CEO即可得到答案;(2)根据四边形AECF是菱形可以得到AE=EC=x,则BE=8-x,然后利用勾股定理求解即可.【详解】解:(1)∵EF是AC的垂直平分线,∴AF =CF ,AE =CE ,AO =CO∵四边形ABCD 是矩形,∴AF ∥EC∴∠FAO =∠ECO ,∠AFO =∠CEO ,在△AFO 和△CEO 中,AFO CEO AO COFAO ECO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△CEO (AAS ),∴AF =EC ,∴AF =FC =AE =EC ,∴四边形AECF 是菱形;(2)由(1)得AE =CE =AF ,设AE =CE =AF =x ,则BE =8-x ,∵四边形ABCD 是矩形,∴∠B =90°,在直角三角形ABE 中222AB BE AE +=,∴()22248x x +-=, 解得x =5,∴AF =5,21.(1);(2)或 ;或【解析】【分析】根据近似公式计算出近似值的过程和方法计算的近似值和确定a 和r 的值.【详解】(1)根据近似公式可知:≈故答案为;(2)∵∴∴∴整理,解析:(1)1343222-+⨯;1712(2)1712a =或2417;1144r =-或2289 【解析】【分析】的近似值和确定a 和r 的值.【详解】(1≈1343222-+⨯≈1712故答案为1343222-+⨯;1712(2)∵2r a a≈≈+ ∴225772408a r r a a ⎧+=⎪⎨+=⎪⎩∴5772()408r a a =⨯- ∴25772()2408a a a +⨯-= 整理,22045774080a a -+= 解得:1712a =或2417a = ∴1144r =-或2289r = 故答案为1712a =或2417 ;1144r =-或2289 【点睛】本题考查二次根式的估算,审清题意,根据题目所给的近似公式计算是解题关键. 22.(1)y=10x+100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据解析:(1)y =10x +100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据每千克利润×销售量=总利润列式求解即可.【详解】解:(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140k bk b+=⎧⎨+=⎩,解得:10100kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100(0<x<20);(2)根据题意得,销售量y=10×3+100=130,(60-3-40)×130=2210(元),答:当每千克干果降价3元时,超市获利2210元.【点睛】本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H是AB的中点时,;②当点Q与点E重合时,;③当时,三种情况,分别求解即可得.【详解】(1)由题意得:,点Q为AP的中点,,四边形ABCD是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∵y=|x|﹣1,y2=﹣|x|+b(b>0),∴y与y2的图象围成的正方形的对角线长为b+1,∵该四边形的面积为18,∴1(b+1)2=18,2解得:b=5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(Ⅰ)6﹣x,6+x;(Ⅱ)2;(Ⅲ)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形解析:(Ⅰ)6﹣x,6+x;(Ⅱ)2;(Ⅲ)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可. (3) 作QF⊥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明△APE≌△BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(Ⅰ)∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,故答案为6﹣x,6+x;(Ⅱ)∵在Rt △QCP 中,∠BQD =30°,∴PC =12QC ,即6﹣x =12(6+x ),解得x =2,∴AP =2;(Ⅲ)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ⊥AB ,交直线AB 的延长线于点F ,连接QE ,PF ,又∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =90°,∵点P 、Q 速度相同,∴AP =BQ ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°,在△APE 和△BQF 中,∵∠AEP =∠BFQ =90°,∴∠APE =∠BQF ,∴在△APE 和△BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△APE ≌△BQF (AAS ),∴AE =BF ,PE =QF 且PE ∥QF ,∴四边形PEQF 是平行四边形,∴DE =12EF ,∵EB +AE =BE +BF =AB ,∴DE =12AB ,又∵等边△ABC 的边长为6,∴DE =3,∴当点P 、Q 运动时,线段DE 的长度不会改变.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、平行四边形的判定和性质,其中灵活运用等边三角形的性质和全等三角形的判定是解答本题的关键.。
2022-2023学年鲁教五四新版八年级下册数学期末复习试卷(含答案)
2022-2023学年鲁教五四新版八年级下册数学期末复习试卷一.选择题(共12小题,满分48分,每小题4分)1.菱形具有而矩形也具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.邻边相等2.以下等式成立的是( )A.()2=5B.=+C.=﹣3D.×=6 3.如图,直线l5,l6被彼此平行的直线l1,l2,l3,l4所截,AB:BC:CD=1:2:3,若FG =3,则EF+GH是( )A.5B.6C.7D.84.若与最简二次根式5可以合并,则a=( )A.5B.6C.7D.85.用配方法解一元二次方程2x2﹣4x﹣3=0,此方程可变形为( )A.(2x﹣1)2=0B.(2x﹣1)2=4C.2(x﹣1)2=1D.2(x﹣1)2=5 6.如图,矩形ABCD的两条对角线相交于点O,AB=4,∠ACB=30°,则矩形的面积为( )A.16B.4C.8D.47.已知关于x的方程x2﹣2x+a=0有两个相等的实数根,则a的值为( )A.﹣1B.0C.2D.18.如图,F是平行四边形ABCD的边AD上一点,CF交BA的延长线于点E,若=,AB=6,则AE的长为( )A.4B.8/3C.8/5D.89.关于x的一元二次方程ax2+2x﹣3=0的一根为x=1,则a的值为( )A.1B.﹣1C.2D.﹣210.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是( )A.B.C.10D.11.某商品房7月份的售价是每套100万元,9月份的售价是每套81万元,则平均每月降价的百分率是( )A.5%B.10%C.15%D.20%12.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上一点,且CD=DE,连结BE,分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②由点A、B、D、E构成的四边形是菱形;③S四边形ODGF=S△ABF;④S△ACD=4S△BOG.其中正确的结论是( )A.①②B.①②③C.①②④D.①②③④二.填空题(共6小题,满分24分,每小题4分)13.计算: .14.若关于x的一元二次方程(1﹣2k)x2﹣•x﹣1=0有两个不相等的实数根,k的取值范围为 .15.如图,正方形ABCD的面积等于36cm2,正方形DEFG的面积等于16cm2,则阴影部分的面积S= cm2.16.最简二次根式和是同类二次根式,则x的值为 .17.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则= .18.如图,已知AB=2,C为线段AB上的一个动点,分别以AC,CB为边在AB的同侧作菱形ACED和菱形CBGF,点C,E,F在一条直线上,∠D=120°.P、Q分别是对角线AE,BF的中点,当点C在线段AB上移动时,点P,Q之间的距离最短为 (结果保留根号).三.解答题(共7小题,满分78分)19.计算:(1)+﹣;(2)﹣(+1)2+(+1)(﹣1).20.解方程:(1)x2+6x+1=0;(2)(x﹣3)2=2(x﹣3).21.学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF =1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.22.如图,矩形ABCD中,点E.F分别在边CD.AB上,且DE=BF.∠ECA=∠FCA.(1)求证:四边形AFCE是菱形;(2)若AD=6,AB=8,求菱形AFCE的面积.23.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?24.如图,D、E、F分别是△ABC的三边BC,CA,AB的中点.(1)求证:△DEF∽△ABC;(2)图中还有哪几对三角形相似?25.已知A=2a2﹣a+,B=2a+1(1)当a为何值时,A=2B?(2)对于任意实数a,试比较A与B的大小.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:菱形的性质有:四边相等,对边平行,对角相等,对角线互相平分,垂直且平分每组对角;矩形的性质有:对边平行且相等,四角相等,对角线互相平分且相等;∴菱形具有而矩形也具有的性质是对角线互相平分,故选:C.2.解:A、原式=5,所以A选项正确;B、原式=,所以B选项错误;C、原式=|﹣3|=3,所以C选项错误;D、原式=2,所以D选项错误.故选:A.3.解:∵l1∥l2∥l3,∴=,即=,解得EF=,∵l2∥l3∥l4,∴=,即=,解得GH=,∴EF+GH==6,故选:B.4.解:=2,∵若与最简二次根式5可以合并,∴a﹣1=6,∴a=7,故选:C.5.解:2x2﹣4x=3,x2﹣2x=,则x2﹣2x+1=+1,(x﹣1)2=,即2(x﹣1)2=5,故选:D.6.解:∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,且OA=OC=AC,OB=OD=BD,∴OA=OB,∵∠ACB=30°,∴∠BAC=90°﹣∠ACB=60°,∴△AOB是等边三角形,∵OA=AB=4,∴AC=2OA=2×4=8,∴BC===4,∴S矩形ABCD=BC•AB=4×4=16,故选:A.7.解:根据题意得Δ=(﹣2)2﹣4×1×a=0,解得a=1.故选:D.8.解:∵四边形ABCD是平行四边形,AB=6,∴BE∥CD,CD=AB=6,∴∠EAF=∠D,∠E=∠FCD,∴△AEF∽△DFC,∴,∵=,∴,∴,∴AE=4,故选:A.9.解:∵关于x的一元二次方程ax2+2x﹣3=0的一根为x=1,∴a+2﹣3=0,∴a=1,故选:A.10.解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.11.解:设平均每月降价的百分率是x,依题意,得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).故选:B.12.解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ABD的中位线,∴OG=AB,故①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴平行四边形ABDE是菱形,故②正确;∵OA=OC,AG=DG,∴OG是△ACD的中位线,∴OG∥CD∥AB,OG=CD,∴S△ACD=4S△AOG,∵S△AOG=S△BOG,∴S△ACD=4S△BOG,故④正确;连接FD,如图:∵△ABD是等边三角形,AO平分∠BAD,BG平分∠ABD,∴F到△ABD三边的距离相等,∴S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,∴S四边形ODGF=S△ABF,故③正确;正确的是①②③④,故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:根据题意,知:x﹣3≥0且3﹣x≥0.所以x=3,所以0+7﹣3=4.故答案为:4.14.解:∵关于x的一元二次方程(1﹣2k)x2﹣•x﹣1=0有两个不相等的实数根,∴,解得:﹣1≤k<1且k≠.故答案为:﹣1≤k<1且k≠.15.解:∵正方形ABCD的面积等于36cm2,正方形DEFG的面积等于16cm2,∴AB=BC=CD=6cm,EF=ED=4cm,∴S△EFC=EF•CE=×4×(4+6)=20(cm2),S△ABC=AB•BC=×6×6=18(cm2),∴阴影部分的面积S=S正方形ABCD+S正方形DEFG﹣S△EFC﹣S△ABC=36+16﹣20﹣18=14(cm2),故答案为:14.16.解:==2,∵最简二次根式和是同类二次根式,∴x﹣1=3,x=4.故答案为:4.17.解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设BC=4a,由==得,DM=3a,∴AB=2a,DN=a,AN=a,∴NB=AB+AN=2a+a=a,∴===.故答案为:.18.解:连接PC、CQ.∵四边形ACED,四边形CBGF是菱形,∠D=120°,∴∠ACE=120°,∠FCB=60°,∵P,Q分别是对角线AE,BF的中点,∴∠ECP=∠ACE,∠FCQ=∠BCF,∴∠PCQ=90°,设AC=2a,则BC=2﹣2a,PC=a,CQ=BC=().∴PQ===.∴当a=时,点P,Q之间的距离最短,最短距离是.解法二:连接CD、CG、DG,构造中位线解决,当DG与AD或BG垂直时,取最值.故答案为:.三.解答题(共7小题,满分78分)19.解:(1)原式=2+4﹣=5;(2)原式=3﹣(2+2+1)+(3﹣1)=3﹣3﹣2+2=﹣1.20.解:(1)∵x2+6x=﹣1,∴x2+6x+9=﹣1+9,即(x+3)2=8,∴x+3=±2,则x1=﹣3+2,x2=﹣3﹣2;(2)∵(x﹣3)2=2(x﹣3),∴(x﹣3)2﹣2(x﹣3)=0,∴(x﹣3(x﹣5)=0,则x﹣3=0或x﹣5=0,解得x1=3,x2=5.21.解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH 都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.22.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∵DE=BF,∴EC=AF,而EC∥AF,∴四边形AFCE是平行四边形,由DC∥AB可得∠ECA=∠FAC,∵∠ECA=∠FCA,∴∠FAC=∠FCA,∴FA=FC,∴平行四边形AFCE是菱形;(2)解:设DE=x,则AE=EC=8﹣x,在Rt△ADE中,由勾股定理得62+x2=(8﹣x)2,解得x=,∴菱形的边长EC=8﹣=,∴菱形AFCE的面积为:6×=.23.解:(1)(45﹣30)×[80﹣(45﹣40)×2]=1050(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x元,则每天的销售量是[80﹣2(x﹣40)]件,依题意,得:(x﹣30)[80﹣2(x﹣40)]=1200,整理,得:x2﹣110x+3000=0,解得:x1=50,x2=60(不符合题意,舍去).答:每件工艺品售价应为50元.24.(1)证明:∵D、E、F分别是△ABC的三边BC,CA,AB的中点,∴DF=AC,同理EF=BC,DE=AB,则==,∴△DEF∽△ABC;(2)解:∵E、F分别是△ABC的边,AC,AB的中点,∴EF∥BC,∴△AEF∽△ACB.同理,△FBD∽△ABC,△EDC∽△ABC,△DEF∽△ABC,∴图中还有的相似三角形是:△AFE∽△ABC,△FBD∽△ABC,△EDC∽△ABC.25.解:(1)∵A=2a2﹣a+,B=2a+1,A=2B,∴2a2﹣a+=2(2a+1)整理得2a2﹣5a+=0解得a=,或a=.(2)A﹣B=2a2﹣a+﹣(2a+1)=2a2﹣3a+=2(a﹣)2+,∵(a﹣)2≥0,∴2(a﹣)2+>0,∴A>B.。
浙教版2021-2022学年八年级数学下册期末复习卷(4)及答案
浙教版2021-2022学年八年级数学下册期末复习卷(4)一.选择题1.九年级某班30位同学的体育素质测试成绩统计如表所示,其中两个数据被遮盖,下列关于成绩的统计量中,与被遮盖的数据无关的是()成绩24252627282930人数▄▄23679 A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数2.用反证法证明“四边形至少有一个角是钝角或直角”时,应先假设()A.四边形中每个角都是锐角B.四边形中每个角都是钝角或直角C.四边形中有三个角是锐角D.四边形中有三个角是钝角或直角3.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是4.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为2的等边三角形,则正方形的边长是()A.B.+1C.+D.5.如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB 合并(A与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.256.如图,点A,B分别是反比例函数y=﹣(x<0)和y=﹣(x<0)图象上的点,且AB∥x轴,点C在x轴上,则△ABC的面积是()A.4B.5C.6D.87.如图,点A(5a﹣1,2)、B(8,a)都在反比例函数y=(k≠0)的图象上,点P是直线y=x上的一个动点,当P A+PB最小时,点P坐标是()A.(,)B.(,)C.(3,3)D.(4,4)8.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax0+b)2.其中正确的()A.①②④B.①②③C.①③④D.②③④9.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH,设AB=a,BC=b,若AH=1,则()A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+110.如图,在▱ABCD中,AB=6,AD=8,将△ACD沿对角线AC折叠得到△ACE,AE与BC交于点F,则下列说法正确的是()A.当∠B=90°时,则EF=2B.当F恰好为BC的中点时,则▱ABCD的面积为12C.在折叠的过程中,△ABF的周长有可能是△CEF的2倍D.当AE⊥BC时,连接BE,四边形ABEC是菱形二.填空题11.若点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系是.12.如图,▱ABCD的面积为32,E,F分别为AB、AD的中点,则△CEF的面积为.13.已知矩形的周长为10,面积为6,则它的对角线长为.14.如图,在△ABC中,已知AB=8,BC=5,点D,E分别为BC,AC的中点,BF平分∠ABC交DE于点F,则EF的长为.15.如图,反比例函数y1=和一次函数y2=ax+b的图象交于点A(﹣1,2),B(2,﹣1)两点,则当﹣2<y1<y2<时,x的取值范围为.16.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,且点A(0,﹣2),点B (m,m+1),点C(6,2).(1)线段AC的中点E的坐标为;(2)对角线BD长的最小值为.三.解答题17.用适当的方法求解下列方程:(1)x2﹣2x﹣1=0;(2)(x+4)2=5(x+4).18.解答下列各题.(1)计算:÷﹣+;(2)已知:y=﹣﹣2020,求x+y的平方根.19.开学后,某区针对各校在线教学进行评比,A校通过初评决定从甲、乙两个班中推荐一个作为在线教学先进班级,如表是这两个班的四项指标的考评得分表(单位:分):班级课程质量在线答疑作业情况课堂参与甲班105107乙班8897请根据统计表中的信息解答下列问题:(1)请确定如下的“四项指标的考评得分分析表”中的a=,b=;班级平均分众数中位数甲班810a乙班8b8(2)如果A校把“课程质量”、“在线答疑”、“作业情况”、“课堂参与”这四项指标得分按照2:3:2:3的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?(3)通过最终考评,A校总共36个班级里有3个班级获得在线教学先进班级,若该区所有学校总共有1200个班级数,估计该区总共有多少班级可获得在线教学先进班级?20.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,解答以下问题.(1)当销售单价定为每千克35元时,销售量是千克、月销售利润是元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?21.某一农家计划利用已有的一堵长为8m的墙,用篱笆圈成一个面积为12m2的矩形ABCD 花园,现在可用的篱笆总长为11m.(1)若设AB=x,BC=y.请写出y关于x的函数表达式;(2)若要使11m的篱笆全部用完,能否围成面积为15m2的花园?若能,请求出长和宽;若不能,请说明理由;(3)若要使11m的篱笆全部用完,请写出y关于x的第二种函数解析式.请在坐标系中画出两个函数的图象,观察图象,满足条件的围法有几种?请说明理由.22.如图,在菱形ABCD中,∠ABC=60°,AB=8,点P在对角线BD上(不与点B,D 重合),PE∥BC,PF∥DC.(1)若P是线段BD中点.则四边形PECF的周长为,四边形PECF的面积为;(2)点P在线段BD上运动时,四边形PECF的周长是否为定值,请说明理由.(3)设PE=x,求四边形PECF的面积(用含x的代数式表示),并说明x为何值时,四边形PECF面积有最大值.23.如图,已知在矩形ABCD中,点E在AB边上,F在CE边上,且∠ACD=∠DAF.(1)当∠CAF=30°时,求矩形的长宽之比;(2)若∠CAF=∠ECB,请回答下列问题;①设∠ACE=x,∠CAF=y,求y关于x的表达式;②若EB=1,求CF的长.参考答案一.选择题1.解:这组数据中成绩为24、25的人数和为30﹣(2+3+6+7+9)=3,则这组数据中出现次数最多的数30,即众数30,第15、16个数据都是29,则中位数为29,故选:C.2.解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中每个角都是锐角.故选:A.3.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.4.解:∵△AEF是边长为2的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴4=BE2+(2+)2×BE2,∴BE=(﹣1)=,∴AB=(2+)BE=,故选:D.5.解:如图,连接PQ,则可得对角线PQ⊥MN,且PQ与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴MN=AD=20,,∴PQ=6,又MN=20,∴MN+PQ=26,故选:B.6.解:连接AO,BO,延长AB交y轴于点D,∵AB∥x轴,∴S△ABO=S△ABC,S△ABO=S△ADO﹣S△BDO=﹣=4.∴S△ABC=4.故选:A.7.解:∵A(5a﹣1,2)、B(8,a)都在反比例函数y=(k≠0)的图象上,∴(5a﹣1)×2=8a,∴a=1,∴A(4,2),B(8,1),∴A关于直线y=x的对称点A'(2,4),设直线A'B的函数关系式为:y=kx+b,∴,∴k=,b=5,∴y=﹣,∵P为A'B与直线y=x的交点,∴,∴,∴,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:Δ=b2﹣4ac≥0,故①正确;②方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,∴2ax0+b=,∴b2﹣4ac=(2ax0+b)2,故④正确.故正确的有①②④,故选:A.9.法一、解:∵∠HEJ=∠AEH,∠BEF=∠FEJ,∴∠HEF=∠HEJ+∠FEJ=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴EH=FG,∵四边形ABCD是矩形,∴∠A=∠B=∠D=∠C=90°,∴∠AEH+∠AHE=∠AHE+∠DHG=∠DHG+∠DGH=∠DGH+∠CGF=90°,∴∠AEH=∠CGF,∴△AEH≌△CGF(AAS),∴CF=AH=1,由折叠的性质的,AE=EJ=BE=AB=a,∴=,∴a2=4b﹣4,故选:A.法二、解:根据题意可得:△AEH≌△JEH≌△CGF≌△KGF,△BEF≌△JEF≌△DGH ≌△KGH.∵AH=1,∴HJ=FK=CF=1,∵BF=b﹣1,∴AE=JE=EB,∴EB=AB=a,∵JF=BF,∴HF=HJ+JF=b,∵HE2=AH2+AE2,EF2=EB2+BF2,∴HE2=1+,EF2=+(b﹣1)2,∵HF2=HE2+EF2,∴b2=1+++(b﹣1)2,即a2=4b﹣4.故选:A.10.解:A、如图1中,∵∠B=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB,∵∠DAC=∠CAE,∴∠ACF=∠CAF,∴AF=CF,设AF=CF=x,在Rt△ABF中,则有x2=62+(8﹣x)2,解得x=,∴EF=8﹣=,故选项A不符合题意.B、如图2中,当BF=CF时,∵AF=CF=BF,∴∠BAC=90°,∴AC===2,∴S平行四边形ABCD=AB•AC=6×2=12,故选项B符合题意.C、在折叠过程中,△ABF与△EFC的周长相等,选项C不符合题意.D、如图3中,当AE⊥BC时,四边形ABEC是等腰梯形,选项D不符合题意.故选:B.二.填空题11.解:∵m2+1>0,∴在图象的每一支上y随x的增大而减小,∵(﹣2,y1),(﹣1,y2)都在反比例函数y=的图象上的第三象限,∴y2<y1<0,∵(1,y3)在反比例函数y=的图象上的第一象限,∴y3>0,∴y2<y1<y3,故答案为:y2<y1<y3.12.解:连接AC、DE、BD,如图:∵E为AB中点,∴S△BCE=S△ABC=S平行四边形ABCD=8,同理可得:S△CDF=8,∵F为AD中点,∴S AEF=S△AED=S△ABD=S平行四边形ABCD=4,∴S△CEF=S平行四边形ABCD﹣S△AEF﹣S△BCE﹣S△CDF=32﹣8﹣8﹣4=12;故答案为:12.13.解:设矩形的一边长为x,则另一边长(﹣x),依题意有x(﹣x)=6,解得:x1=2,x2=3,则﹣x=3或2,则它的对角线长为=.故答案为:.14.解:∵在△ABC中,D、E分别是BC、AC的中点,AB=8,∴DE∥AB,DE=AB=4.∴∠ABF=∠DFB.∵BF平分∠ABC,∴∠ABF=∠DBF.∴∠DBF=∠DFB∴FD=BD=BC=×5=.∴FE=DE﹣DF=4﹣=1.5.故答案为:1.5.15.解:∵反比例函数y1=和一次函数y2=ax+b的图象交于点A(﹣1,2),B(2,﹣1)两点,∴k=﹣1×2=﹣2,,∴,∴反比例函数为y1=﹣,一次函数y2=﹣x+1,把y=代入y2=﹣x+1求得x=;把y=﹣2代入y1=﹣,求得x=1;∴由图可得,当﹣2<y1<y2<1时,x的取值范围是1<x<2,故答案为1<x<2.16.解:(1)∵点A(0,﹣2),点C(6,2),∴线段AC中点E的坐标为(3,0),故答案为:(3,0);(2)∵点B(m,m+1),∴点B在直线y=x+1上运动,则直线y=x+1与x轴交于点F(﹣1,0),∠BFO=45°,如图,当BE⊥直线y=x+1时,BE有最小值,即BD有最小值,此时,EF=3﹣(﹣1)=4,∵∠BFE=45°,∠EBF=90°,∴∠BFE=∠BEF,∴BE=BF,EF=BE,∴BE=2,∴BD的最小值=4,故答案为4.三.解答题17.解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,则x2﹣2x+1=1+1,即(x﹣1)2=2,∴x﹣1=±,∴,;(2)∵(x+4)2=5(x+4),∴(x+4)2﹣5(x+4)=0,则(x+4)(x﹣1)=0,∴x+4=0或x﹣1=0,解得x1=﹣4,x2=1.18.解:(1)原式=﹣+=4﹣+=4﹣.(2)由二次根式有意义可得:,解得x=2021.∴y==﹣2020.∴x+y=2021﹣2020=1.故x+y的平方根为±1.19.解:(1)甲班四项指标得分从小到大排列后,处在中间位置的两个数的平均数为=8.5,即a=8.5;乙班四项指标得分出现次数最多的是8,因此众数是8,即b=8;故答案为:8.5,8;(2)甲==7.6,==7.9,乙∵7.6<7.9,∴推荐乙班为先进班级;(3)1200×=100(个),答:该区总共有100个班级可获得在线教学先进班级.20.解:(1)500﹣10×(35﹣30)=450(千克),(35﹣20)×450=6750(元).故答案为:450;6750.(2)设销售单价应为x元/千克,则每千克的利润为(x﹣20)元,月销售量为500﹣10(x﹣30)=(800﹣10x)千克,依题意得:(x﹣20)(800﹣10x)=8000,整理得:x2﹣100x+2400=0,解得:x1=40,x2=60.当x=40时,20(800﹣10x)=8000>6000,不合题意,舍去;当x=60时,20(800﹣10x)=4000<6000,符合题意.答:销售单价应为60元/千克.21.解:(1)由题意得:xy=12,即y=,故y关于x的函数表达式为y=(0<x<5.5);(2)能,理由:设AB=x,则BC=11﹣2x,由题意得:x(11﹣2x)=15,解得x=2.5或3;即长为6m宽为2.5m或长为5m宽为3m.(3)设AB=x,BC=y,则y=11﹣2x(1.5≤x<5.5),画出2个函数的图象如下:从图象看,两个函数的交点的横坐标为x=1.5和4,即同时满足题干条件,故满足条件的围法有2种.22.解:(1)∵如图,连接AC,交BD于点O,∵四边形ABCD是菱形,∴AB=BC=8=AD=CD,∠CBD=∠ABD,∠ADB=∠CDB,AC⊥BD,∴∠CBD=∠ABD=∠ADB=∠CDB=30°,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=8,∴BO=DO=4,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∠BPF=∠BDC,∠DPE=∠DBC,∴PE=FC,PF=CE,∠FBP=∠FPB,∠DPE=∠CDB,∴BF=PF,DE=PE,∴四边形PECF的周长=PE+FP+CF+CE=BF+CF+DE+CE=BC+CD=16,∵P是线段BD中点,∴点P与点O重合,∴∠FPC=∠FCP=60°,∴PF=FC=BF,∴S△PFC=S△BPC,∴四边形PECF的面积=S△BPC=×4×4=8,故答案为:16,8;(2)四边形PECF的周长是定值,理由如下,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∠BPF=∠BDC,∠DPE=∠DBC,∴PE=FC,PF=CE,∠FBP=∠FPB,∠DPE=∠CDB,∴BF=PF,DE=PE,∴四边形PECF的周长=PE+FP+CF+CE=BF+CF+DE+CE=BC+CD=16;(3)如图2,过点P作PH⊥BC于H,∵PE=x=FC,∴BF=8﹣x=PF,∵∠PFH=∠DBC+∠BPF=60°,PH⊥BC,∴FH=PF=,PH=×,∴四边形PECF面积=CF×PH=x•(8﹣x)=﹣(x﹣4)2+8,∴当x=4时,四边形PECF面积的最大值为8.23.解:(1)∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠ACD=∠BAC,∵∠ACD=∠DAF,∴∠BAC=∠DAF,∴∠BAC﹣∠CAF=∠DAF﹣∠CAF,∴∠BAF=∠CAD,∵∠CAF=30°,∴∠BAF=∠CAD=,∴△ACD是含30°的直角三角形,∴AD:DC=,即矩形的长宽之比为;(2)①设∠ACE=x,∠CAF=y,∴∠BCE=∠CAF=y,∵四边形ABCD是矩形,∴AD∥BC,∠BCD=90°,∴∠CAD=∠ACB=∠BCF+∠ACE=x+y,∵∠ACD=∠DAF=∠CAF+∠CAD=y+x+y=x+2y,∴∠BCD=∠ACD+∠ACE+∠BCE=90°,∴x+2y+x+y=90°,∴y=30°﹣x,②延长EB至G,使BG=BE,连接CG,如图所示:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∵∠DCA=∠DAF,∴∠BAC=∠DAF,∴∠EAF=∠DAC,∵∠AFE=∠F AC+∠ACE,∠ACB=∠ECB+∠ACE,∠F AC=∠ECB,∴∠AFE=∠ACB,∵AD∥BC,∴∠ACB=∠DAC,∴∠EAF=∠EF A,∴AE=EF,∵AB⊥BC,BG=BE,∴CG=CE,∴∠ECB=∠GCB,∵∠ACG=∠ACB+∠BCG,∠ACB=∠CAD,∴∠ACG=∠DAF=∠BAC,∴AG=CG,又∵CE=CG,∴CE=AG,∴CF+EF=AE+2EB,∴CF=2EB=2.。
人教版 八年级数学下册 期末综合复习(含答案)
人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。
八年级下册数学期末试卷复习练习(Word版含答案)
八年级下册数学期末试卷复习练习(Word 版含答案) 一、选择题 1.式子1x -在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥0C .x >1D .x ≥1 2.下列条件中,不能判断ABC (a 、b 、c 为三边,A ∠、B 、C ∠为三内角)为直角三角形的是( )A .2221,2,3a b c ===B .::3:4:5a b c =C .A B C ∠+∠=∠D .::3:4:5A B C ∠∠∠= 3.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .44.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( )A .36.1℃B .36.6℃C .36.5℃D .36.9℃ 5.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O .CE ⊥AD 于点E ,AB =23,AC =4,BD =8,则CE =( )A .72B .2217C .4217D .76.如图,在平行四边形纸片ABCD 中,对角线AC 与BD 相交于点E ,∠AEB =45°,BD =4,将纸片沿对角线AC 对折,使得点B 落在点B ′的位置,连接DB ',则DB '的长为( )A .22B .23C .42D .15 7.△ABC 中,AB =6,BC =5,AC =7,点D 、E 、F 分别是三边的中点,则△DEF 的周长为( )A .5B .9C .10D .188.一个容器内有进水管和出水管,开始4min 内只进水不出水,在随后的8min 内既进水又出水,第12min 后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象有下列说法:①进水管每分钟的进水量为5L ;②412x ≤≤时,5154y x =+;③当12x =时,30y =;④当15y =时,3x =,或17x =.其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题9.若二次根式1x -在实数范围内有意义,则x 的取值范围是______________. 10.如图,菱形ABCD 的边长为5cm ,正方形AECF 的面积为18cm 2,则菱形的面积为 ___cm 2.11.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠AOD =60°,AD =4,则AB =___.12.如图,已知矩形ABCD 的对角线AC 的长为10cm ,顺次连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为______cm .13.定义:对于一次函数y kx b =+,我们把点(),b k 称为这个一次函数的伴随点.已知一次函数4y x m =+-的伴随点在它的图象上,则=m __________.14.在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =___________.(结果保留根号)15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上),折叠后顶点D 恰好落在边BC 上的点F 处,若AD =5,AB =4,则EC 的长是_____.三、解答题17.计算:(1)1632(2)2055+;(3)2214524-;(4)11 12333-⎛⎫+-- ⎪⎝⎭.18.湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得30BC=米,50AC=米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A固定在格点上.(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a=,b=;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD,你画出的菱形面积为;20.已知:如图,在ABC中,AD是BAC∠的平分线,//,//DE AC DF AB.求证:四边形AEDF是菱形.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.24.已知:直线364y x=+与x轴、y轴分别相交于点A和点B,点C在线段AO上.将BCO∆沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出点A、点B的坐标:(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:①符合要求的P点有几个?②写出一个符合要求的P点坐标.25.某数学活动小组在一次活动中,对一个数学问题作如下研究:(1)如图1,△ABC中分别以AB,AC为边向外作等腰△ABE和等腰△ACD使AE=AB,AD =AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.(2)如图2,△ABC中分别以AB,AC为边向外作等腰Rt△ABE和等腰Rt△ACD,∠EAB=∠CAD=90°,连接BD,CE,若AB=4,BC=2,∠ABC=45゜,求BD的长.(3)如图3,四边形ABCD中,连接AC,CD=BC,∠BCD=60°,∠BAD=30°,AB=15,AC=25,求AD的长.【参考答案】一、选择题1.D解析:D【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可得出结果.【详解】10x ∴-≥.解得1≥x .故选D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 2.D解析:D【分析】综合勾股定理以及直角三角形的性质逐项分析即可.【详解】A 、∵2221,2,3a b c ===,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意;B 、∵::3:4:5a b c =,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意;C 、∵A B C ∠+∠=∠,180A B C ∠+∠+∠=︒,∴90C ∠=︒,ABC 是以C ∠为直角的直角三角形,不符合题意;D 、∵::3:4:5A B C ∠∠∠=,180A B C ∠+∠+∠=︒,∴45A ∠=︒,60B ∠=︒,75C ∠=︒,ABC 不是直角三角形,符合题意;故选:D .【点睛】本题考查直角三角形的性质,熟练掌握勾股定理以及直角三角形的基本性质是解题关键. 3.C解析:C【解析】【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.4.C解析:C【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据,进行求解即可.【详解】解:∵36.5℃出现了两次,出现的次数最多,∴这组数据的众数为36.5℃,故选C .【点睛】本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义.5.C解析:C【分析】先根据平行四边形的性质可得2,4CD AB OC OD ====,再根据勾股定理的逆定理可得AC CD ⊥,然后利用勾股定理可得AD 的长,最后利用三角形的面积公式即可得.【详解】解:四边形ABCD 是平行四边形,4,8AB AC BD ===,112,422CD AB OC AC OD BD ====∴==, 22241216OC CD OD ∴+=+==,COD ∴是直角三角形,AC CD ⊥,在Rt ACD △中,AD ==1122Rt ACD S AD CE AC CD =⋅=⋅, 11422∴⨯=⨯⨯解得CE = 故选:C .【点睛】本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.6.A解析:A【解析】【分析】 先利用平行四边形的性质得到122BE DE BD ===,再由折叠的性质得到45BEA B EA '==∠∠,2B E BE '==,由此可得到90B ED '=∠,再利用勾股定理求解即可.【详解】解:∵四边形ABCD 是平行四边形, ∴122BE DE BD ===, 由折叠的性质可知:45BEA B EA '==∠∠,2B E BE '==,∴90B EB BEA B EA ''∠=∠+∠=, ∴18090B ED B EB ''==∠-∠,∴在直角三角形B ED '中2222B D B E ED ''=+=,故选A .【点睛】本题主要考查了平行四边形的性质,折叠的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.7.B解析:B【解析】【分析】根据三角形中位线定理求得,,DE DF EF ,进而求得三角形的周长.【详解】解:∵点D ,E 分别AB 、BC 的中点,AC =7,∴DE =12AC =3.5,同理,DF =12BC =2.5,EF =12AB =3,∴△DEF 的周长=DE +EF +DF =9,故选:B .【点睛】本题考查了三角形中位线定理,理解三角形中位线定理是解题的关键.8.C解析:C【分析】根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4≤x≤12时,y与x之间的函数关系式,再对各个选项逐一判断即可.【详解】解:由图象可知,进水的速度为:20÷4=5(L/min),故①说法正确;出水的速度为:5−(27.5−20)÷(10−4)=3.75(L/min),第12min时容器内水量为:20+(12−4)×(5−3.75)=30(L),故③说法正确;15÷3=3(min),12+(30−15)÷3.75=16(min),故当y=15时,x=3或x=16,故说法④错误;设4≤x≤12时,y与x之间的函数关系式为y=kx+b,根据题意,得420 1027.5k bk b+=⎧⎨+=⎩,解得5415kb⎧=⎪⎨⎪=⎩,所以4≤x≤12时,y=54x+15,故说法②正确.所以正确说法的个数是3个.故选:C.【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.二、填空题9.1≥x【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式1x -在实数范围内有意义,∴1x -≥0,解得:1≥x .故答案为1≥x .【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键. 10.A解析:24【解析】【分析】由正方形的性质可求AC 的长,由勾股定理可求BO 的值,可求BD 的值,即可求菱形ABCD 的面积.【详解】解:如图,连接AC ,BD 交于O ,∵正方形AECF 的面积为18cm 2,∴正方形AECF 的边长为32,∴AC 2=6(cm ),∴AO =3(cm ),∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =DO ,∴BO 22AB AO -(cm ),∴BD =2BO =8(cm ),∴菱形ABCD 的面积=12AC ×BD =24(cm 2),故答案为:24.【点睛】本题考查正方形的性质,菱形的性质,勾股定理,熟练运用正方形的性质是本题的关键. 11.B解析:43【解析】【分析】由矩形对角线的性质得到AO DO =,结合题意证明ADO △是等边三角形,解得BD 的长,在Rt ABD △中,理由勾股定理解题即可.【详解】解:矩形ABCD 中,AC=BD 且AO=OC ,BO=DOAO DO ∴=ADO ∴△是等腰三角形∠AOD =60°ADO ∴△是等边三角形AD DO AO ∴==AD =44DO ∴=28BD DO ∴==Rt ABD △中 22228443AB BD AD =-=-=故答案为:43.【点睛】本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键. 12.B解析:20【分析】首先根据矩形的性质得出10cm BD AC ==,然后利用三角形中位线的性质求解即可.【详解】连接BD ,∵四边形ABCD 是矩形,∴10cm BD AC ==.∵E 、F 、G 、H 分别是矩形四条边的中点,∴115cm,5cm 22EH FG BD EF GH AC ======, ∴四边形EFGH 的周长为5420cm ⨯=,故答案为:20.【点睛】本题主要考查矩形的性质和三角形中位线的性质,掌握矩形的性质是关键.13.43【分析】先写出4y x m =+-的伴随点,再根据伴随点在它的图象上代入一次函数解析式,计算即可求得m .【详解】解:4y x m =+-的伴随点为(),4m -,因为4y x m =+-伴随点在它的图象上,则有44m m -=+- 解得43m =. 故答案为:43. 【点睛】本题考查一次函数图象上点的坐标特征. 一次函数图象上任意一点的坐标都满足函数关系式y=kx+b .14.E 解析:3【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系,并根据BG=BC+CG 进行计算即可.【详解】延长EF 和BC ,交于点G .∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE 中,又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG=∠DEF .∵AD ∥BC ,∴∠G=∠DEF ,∴∠BEG=∠G ,∴.由∠G=∠DEF ,∠EFD=∠GFC ,可得△EFD ∽△GFC , ∴122CG CF CF DE DF CF ===. 设CG=x ,DE=2x ,则AD=9+2x=BC .∵BG=BC+CG ,∴,解得,∴BC=9+2(32-3)=62+3.故答案为62+3.考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC是矩形,∴OC=BD=3,点C的坐标为()0,3,∵D为AB边的中点,∴AD=32,∵OA=4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】由折叠可得,.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设,则,在中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知,,∵四边形ABCD 是矩形解析:5【分析】由折叠可得5AD AF ==,DE EF =.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设EC x =,则4DE EF x ==-,在Rt CEF 中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知5AD AF ==,DE EF =,∵四边形ABCD 是矩形,∴在Rt ABF 中,3BF ==,∴532CF BC BF =-=-=.设EC x =,则4DE EF x ==-,∴在Rt CEF 中,222+=CF CE EF ,即2222(4)x x +=-,解得: 1.5x =.故EC 的长为1.5.故答案为1.5.【点睛】本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.三、解答题17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(4【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1)2==,(21535==,(31311143=⨯=,(4113333-⎛⎫-= ⎪⎝⎭【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键. 18.(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为是直角三角形,所以由勾股定解析:(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D . 因为1122ABC S AB BC AC BD =⋅=⋅△, 所以AB BC AC BD ⋅=⋅. 所以30402450AB BC BD AC ⋅⨯===(米), 即点B 到直线AC 的距离是24米.【点睛】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD ,,然后求出面积即可.【详解】解:如图,(1)∵a 是图解析:(12)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2ABCD ,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22112a=+=,∵b是图中能用网格线段表示的最大无理数,224225b=+=;(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC1D1的面积为12442⨯⨯=;菱形ABC2D2223110+=,故菱形ABC2D2的面积为1101052;5ABCD的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键.20.见解析.【分析】根据四边形是平行四边形,再证明有一组邻边相等即可.【详解】解:∵,∴四边形是平行四边形,∵平分,∴,∵,∴,∴,∴,∴平行四边形是菱形.【点睛】本题考查了解析:见解析.【分析】根据//,//DE AC DF AB 四边形AEDF 是平行四边形,再证明有一组邻边相等即可.【详解】解:∵//,//DE AC DF AB ,∴四边形AEDF 是平行四边形,∵AD 平分BAC ∠,∴12∠=∠,∵//DE AC ,∴23∠∠=,∴13∠=∠,∴AE DE =,∴平行四边形AEDF 是菱形.【点睛】本题考查了平行线的性质,菱形的判定,等腰三角形的判定,解题关键是熟练运用相关性质,准确进行推理证明.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i ,1,20221i i i--; (2)(1+i )×(3﹣4i )﹣(﹣2+3i )(﹣2﹣3i )=3﹣4i +3i ﹣4i 2﹣(4﹣9i 2)=3﹣i +4﹣4﹣9=﹣i ﹣6;(3)a +bi =2543i -=25(43)(43)(43)i i i +-+=10075169i ++=4+3i , ∴a =4,b =3,x ,0)到点A (0,4),B (24,3)的最小距离,∵点A (0,4)关于x 轴对称的点为A '(0,﹣4),连接A 'B 即为最短距离,∴A 'B 25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)80元/人;(2)y1=48x ,y2=;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2解析:(1)80元/人;(2)y 1=48x ,y 2=80(010)64160(10)x x x x ≤≤⎧⎨+>⎩;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2)利用待定系数法求正比例函数解析式求出1y ,分010x 与10x >,利用待定系数法求2y 与x 的函数关系式即可;(3)设A 团有x 人,表示出B 团的人数为(50)x -,然后分010x 与10x >两种情况,根据(2)的函数关系式列出方程求解即可.【详解】解:(1)8001080÷=(元/人),答:不打折的门票价格是80元/人;(2)设110y k =,解得:48k =,148y x ∴=,当010x 时,设280y x =,当10x >时,设2y mx b =+,则10800201440m b m b +=⎧⎨+=⎩, 解得:64m =,160b =,264160y x ∴=+,280(010)64160(10)x x y x x ⎧∴=⎨+>⎩; (3)设A 旅游团x 人,则B 旅游团(50)x -人,若010x ,则8048(50)3040x x +-=,解得:20x ,与10x 不相符,若10x >,则6416048(50)3040x x ++-=,解得:30x =,与10x >相符,503020-=(人),答:A 旅游团30人,B 旅游团20人.【点睛】本题考查了一次函数的应用,利用了待定系数法求一次函数解析式,准确识图获取必要的信息是解题的关键,(3)要注意分情况讨论.23.(1)等边三角形;(2)成立,理由见解析;(3)或.【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.解析:(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.即证明为等边三角形.(2)先判断出PF ,PG 是△ABC 和△CDE 的中位线,再判断出∠FPG =∠FCH ,进而证明△FPG ≌△FCH ,得出结论FG =FH ,∠PFG =∠CFH ,最后证明出∠GFH=,即证明△FGH 为等边三角形.(3)①当点E 在AE 上时,先求出CM ,进而求出AM ,即可求出AD ,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN 、EN ,进而求出BD ,最后即可求出FH ,即可得出结果;②当点D 在AE 的延长线上时同①的方法即可得出结果.【详解】(1)∵ABC 和都为等边三角形,且边长不相等.∴,.∴四边形ABCE和四边形ACDE都是梯形.又∵F、G、H分别是BC、AE、CD中点,∴FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.∴,.∴,.∴为等边三角形.故答案为:等边三角形.(2)取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°.又F,G,H分别是BC,AE,CD的中点,∴FP=12AB,FC=12BC,CH=12CD,PG=12CE,PG∥CE,PF∥AB.∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°.∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE.∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC.∴∠FPG=∠FCH.∴△FPG≌△FCH(SAS).∴FG=FH,∠PFG=∠CFH.∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°.∴△FGH为等边三角形.所以成立.(3)①当点D在AE上时,如图,∵ABC是等边三角形,∴,.∵是等边三角形,∴,,过点C作于M,∴,在中,根据勾股定理得,,在中,根据勾股定理得,, ∴,∵,∴,∴,连接BE,在和中,,∴(SAS),∴BE=AD=2, ,∵,∴,∴,过点B作于N,∴,在中,,∴,∴,DN=DE-EN=3,连接BD,根据勾股定理得:,∵点H是CD中点,点F是BC中点,∴FH是的中位线,∴,由(2)可知,△FGH为等边三角形.∴△FGH的周长.②当点D在AE的延长线上时,如图,同理可求,所以△FGH的周长.即满足条件的△FGH的周长位或.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含30角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难.24.(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).【解析】【分析】(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD解析:(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).【解析】【分析】(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.(3)①根据平行四边形的定义画出图形即可判断.②利用平行四边形的性质求解即可解决问题.【详解】解:(1)对于直线364y x=+,令x=0,得到y=6,∴B(0,6),令y=0,得到x=8-,∴A(8-,0);(2)∵A(8-,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴228610AB+=,由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,∴AD=AB-BD=4,设CD=OC=x,在Rt △ADC 中,∵∠ADC=90°,∴AD 2+CD 2=AC 2,∴42+x 2=(8-x )2,解得:x=3,∴OC=3,AC=OA -OC=8-3=5.(3)①符合条件的点P 有3个,如图所示:②∵A (-8,0),C (-3,0),B (0,6),当AB 为对角线时,1//BP AC ,由平行四边形的性质,得15BP AC ==,∴P 1(-5,6);当AB 为边时,//AB CP ,点P 在第三象限时,有点B 向下平移6个单位,向左平移3个单位得到点C ,∴点A 向下平移6个单位,向左平移3个单位得到点P 2,∴P 2(-11,-6);点P 在第二象限时,有35BP AC ==,∴P 3(5,6);∴点P 的坐标为:(-5,6)或(-11,-6)或(5,6).【点睛】本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.25.(1)CE=BD ,见解析;(2)6;(3)20【分析】(1)证△EAC ≌△BAD 即可;(2)证△EAC ≌△BAD ,得BD=CE ,易得∠EBC=90゜,从而在Rt △EBC 中运用勾股定理即可求得结解析:(1)CE =BD ,见解析;(2)6;(3)20(1)证△EAC ≌△BAD 即可;(2)证△EAC ≌△BAD ,得BD =CE ,易得∠EBC =90゜,从而在Rt △EBC 中运用勾股定理即可求得结果;(3)连接BD ,把△ACD 绕点D 顺时针旋转60゜得到△EBD ,连接AE ,则可得BE =AC ,△ADE 是等边三角形,从而易得AB ⊥AE ,在Rt △BAE 中由勾股定理可求得AE ,也即AD 的长.【详解】(1)∵∠EAB =∠CAD∴∠BAC +∠EAB =∠BAC +∠CAD即∠EAC =∠BAD在△EAC 和△BAD 中AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△BAD (SAS )∴CE =BD(2)∵∠EAB =∠CAD =90゜∴∠BAC +∠EAB =∠BAC +∠CAD即∠EAC =∠BAD∵△EAB 、△CAD 都是等腰直角三角形,且∠EAB =∠CAD =90゜∴AE =AB =4,∠EBA =45゜,AC =AD∴由勾股定理得:BE ==在△EAC 和△BAD 中AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△BAD (SAS )∴CE =BD∵∠EBC =∠EBA +∠ABC =45゜+45゜=90゜∴在Rt △EBC中,由勾股定理得:6CE∴BD =6(3)如图,连接BD∵CD =BC ,∠BCD =60゜∴△BCD 是等边三角形把△ACD 绕点D 顺时针旋转60゜得到△EBD ,点E 与点A 对应,连接AE则BE =AC =25,△ADE 是等边三角形∴∠DAE =60゜,AD =AE∴∠BAE =∠BAD +∠DAE =30゜+60゜=90゜在Rt△BAE中,由勾股定理得:2222=-=-=251520AE BE AB∴AD=20【点睛】本题是三角形的综合题,考查了三角形全等的判定与性质,等腰三角形的性质,等边三角形的判定与性质,勾股定理,旋转变换,第三问作旋转变换是关键,也是难点.本质上来说,前两问也可看成把△EAC绕A点逆时针旋转的角度一定角度而得到△BAD.。
沪科版数学八年级下册 —期末复习刷题卷(含部分答案)
初二数学复习八年级(下)—期末复习卷数学复习试卷一、选择题1.一支长为cm 13的金属筷子(粗细忽略不计),放入一个长、宽、高分别是cm 4、cm 3、cm 16的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子.A .cm 13B .cm 104C .cm 12D .cm 1532.已知a ,b ,c 为△ABC 三边,且满足442222b a c b c a -=-,则它的形状为( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形3.一根木桩在地上影长等于木桩实际长a ,这木桩顶端到影子顶端的距离为( )A .a 2B .a 2C .2aD .a 224.如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A .14B .15C .23D .325.有四个三角形,分别满足下列条件:①一个内角等于另外两个内角之和;②三个内角之比为3;4:5;③三边长分别为9,40,41;④三边之比为8:15:17.其中,能构成直角三角形的个数有( )A .1个B .2个C .3个D .4个6.在三角形ABC 中,D 是边BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC 的面积是( )A .30B .36C .72D .1257.已知一个直角三角形的两边长分别为3和5,则第三边长为( )A .4B .4或34C .16或34D .4或34 8.如图,四边形ABCD 中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC +CD 等于( )A .36B .35C .34D .339.下列各组数中,不能构成直角三角形的一组是( )A .3,4,5B .3,6,7C .13,12,5D .8,10,610.在△ABC 中,∠A 、∠B 、∠C 所对边的边长分别为a 、b 、c ,已知222c b a +=,则直角为( )A .∠AB .∠BC .∠CD .以上都不是11.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 扩充为等腰三角形ABD ,且扩充部分是以AC 为直角边的直角三角形,则CD 的长为( )A .67,2或3B .3或67C .2或67 D .2或3 12.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A .2mB .2.5mC .2.25mD .3m13.在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是( )A .222b a c +=B .222c b a +=C .222b a c -=D .222c a b -=14.下列各式中与2是同类二次根式的是( )A .3B .4C .8D .12 15.已知251-=a ,251+=b ,则722++b a 的值为( ) A .3 B .4 C .5 D .616.以下二次根式:①12;②22;③32;④27中,与3是同类二次根式的是( )A .①和②B .②和③C .①和④D .③和④17.要使xx 2+有意义,则x 的取值范围是( ) A .x >﹣2 B .x ≠0C .x ≥﹣2且x ≠0D .x >﹣2且x ≠018.某校研究性学习小组在学习二次根式a a =2之后,研究了如下四个问题,其中错误的是( )A .在a >1的条件下化简代数式a +122+-a a 的结果为2a ﹣1B .当a +122+-a a 的值恒为定值时,字母a 的取值范围是a ≤1C .a +122+-a a 的值随a 变化而变化,当a 取某个数值时,上述代数式的值可以为21 D .若122+-a a =()21-a ,则字母a 必须满足a ≥1 19.当1<x <2时,化简124422+-++-x x x x 得( )A .2x ﹣3B .1C .3﹣2xD .﹣120.有下列各式(1)()b a b a 222+=+;(2)2242-⋅+=-x x x ;(3)ab bb a 313=,其中一定成立的有( ) A .0个 B .1个 C .2个 D .3个21.当25-+a a 有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2D .a ≠﹣2 22.若1<x <3,则|x ﹣3|+()21-x 的值为( )A .2x ﹣4B .﹣2C .4﹣2xD .223.下列说法错误的是( )A .x x -2一定是非负数B .当x <2时,()x x -=-112C .当x <0时,x2-在实数范围内有意义 D .2﹣1的倒数是2+124.若()()2332-⋅-=--x x x x 成立,则x 的取值范围是( )A .x ≥2B .x ≤3C .2≤x ≤3D .2<x <325.已知:a 、b 、c 是△ABC 的三边,化简()()22c b a c b a --++-=() A .2a ﹣2b B .2b ﹣2a C .2cD .﹣2c 26.已知321+=a ,则122+-a a 的值为( ) A .3﹣1 B .1﹣3 C .311+ D .311- 27.已知3是关于x 的方程()0212=++-m x m x 的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或1128.三角形两边的长是3和4,第三边的长是方程x 2﹣12x +35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对29.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A .5个B .6个C .7个D .8个30.若a 是方程2x 2﹣x ﹣3=0的一个解,则6a 2﹣3a 的值为( )A .3B .﹣3C .9D .﹣931.设1x ,2x 是关于x 的一元二次方程x 2+x +n ﹣2=m x 的两个实数根,且1x <0,2x ﹣31x <0,则( )A .⎩⎨⎧>>21n mB .⎩⎨⎧<>21n mC .⎩⎨⎧><21n mD .⎩⎨⎧<<21n m 32.已知实数x 满足41122=-++x x x x ,则xx 1-的值是( ) A .﹣2 B .1C .﹣1或2D .﹣2或1 二、填空题(共23小题)33.在△ABC 中,AB=10,BC=16,BC 边上的中线AD=6,则AC= .34.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 秒.35.在等腰直角△ABC 中,AB=BC=5,P 是△ABC 内一点,且PA=5,PC=5,则PB= .36.如图,等腰△ABC 中,AD ⊥BC ,垂足为D 点,且AD=8,△ABC 的周长是32,则△ABC 的面积 .37.Rt △ABC 中,∠BAC=90°,AB=AC=2.以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为 .38.已知:如图,在直角△ABC 中,AD=DE=EB ,且CD 2+CE 2=1,则斜边AB 的长为 .39.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于E ,若AB=10cm ,则△DEB 的周长是 .40.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积= .41.一个直角三角形的两条直角边的和为6cm ,面积为227cm ,则这个三角形的斜边的长为 cm .42.已知直角三角形的两条直角边长分别为6cm 和8cm ,则斜边上的高为 cm .43.一艘轮船以20千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港口以15千米/时的速度向东南方向航行,它们离开港口2小时后,求它们相距 千米.44.若x 、y 都是实数,且833+-+-=x x y ,x =+y .45.当x=2+3时,x 2﹣4x +2016= .46.若实数m 满足|4﹣m |+7-m =m ,则m= .47.已知x 、y 都是实数,且422+-+-=x x y ,则x y 的平方根为 .48.已知:322322=;833833=;15441544=;24552455=…如果n 是大于1的正整数,那么请用含n 的式子表示你发现的规律 .49.定义x ⊗y =xy y x ++22,则下列说法中正确的 (填写所有正确的序号,多填、漏填、错填均不得分)①3⊗4=37;②x ⊗y =y ⊗x ;③若x ⊗(1﹣y )=y ⊗(1﹣x ),则x =y ; ④x ⊗(﹣1)≥23. 50.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x +8=0的解,则此三角形周长是 .51.若关于x 的一元二次方程kx 2﹣x 2+1=0有实数根,则k 的取值范围是 .52.已知关于k 的方程x 2﹣()x b a ++ab ﹣1=0,1x 、2x 是此方程的两个实数根,现给出三个结论:①1x ≠2x ;②1x 2x <ab ;③1x 2+2x 2<22b a +.则正确结论的序号是 .(填上你认为正确结论的所有序号)53.若关于x 的一元二次方程2kx +2(k +1)x +k ﹣1=0有两个实数根,则k 的取值范围是 .54.关于x 的一元二次方程(m ﹣1)x 2﹣m x +1=0有两个不相等的实数根,则m 的取值范围是 .55.定义新运算“*”,规则:a *b =()()⎩⎨⎧<≤b a b b a a ,如1*2=2,22*5=-.若x 2+x ﹣1=0的两根为1x ,2x ,则1x *2x = .三、解答题(共5小题)56.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数: ;(2)若第一个数用字母n (n 为奇数,且n ≥3)表示,那么后两个数用含n 的代数式分别表示为 和 ,请用所学知识说明它们是一组勾股数.57.当x =4,y =9时,求()231441y x y y x y x x-+---的值.58.已知8-=+b a ,12=ab ,求ab b b a a+的值.59.关于x 的一元二次方程x 2+2x +k +1=0的实数解是1x 和2x .(1)求k 的取值范围;(2)如果1x +2x -1x 2x <﹣1且k 为整数,求k 的值.60.先阅读下列一段文字,在回答后面的问题.已知在平面内两点()111y x P ,、()222y x P ,,其两点间的距离公式()()21221221y y x x P P -+-=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为12x x -或12y y -.(1)已知A (2,4)、B (﹣3,﹣8),试求A 、B 两点间的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为﹣1,试求A 、B 两点间的距离.(3)已知一个三角形各顶点坐标为A (0,6)、B (﹣3,2)、C (3,2),你能 判定此三角形的形状吗?说明理由.选择题参考答案一.选择题(共32小题)1-5:CDABC6-10:BDBBA11-15:AAACC16-20:CCCBA21-25:BDBCC26-30:ADBCC31-32:CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.(08年四川乐山中考题)如图,在直角梯形A B C D 中,A D B C ∥,点E 是边C D 的中点,若52A B A D B C B E =+=,,则梯形A B C D 的面积为( )A .254B .252C .258D .258.(2004年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行, 则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A.b b a +倍 B.b a b+倍 C.ab ab -+倍 D.ab a b +-倍13.已知a1-b1=5,则bab a bab a ---+2232的值是17.(08年宁夏中考题)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)10 15 3050 60 人数 3 6 11 13 638元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?19.已知:CD 为ABC Rt ∆的斜边上的高,且a BC =,b AC =,c AB =,h CD =(如图)求证:222111hba=+3. A 8.C 13.1 17.解:(1) 被污染处的人数为11人设被污染处的捐款数为x 元,则 11x +1460=50×38 解得 x =40答:(1)被污染处的人数为11人,被污染处的捐款数为40元. (2)捐款金额的中位数是40元,捐款金额的众数是50元. 19.证明:左边2211ba+=2222ba b a +=∵ 在直角三角形中,222c b a =+ 又∵ch ab 2121=即ch ab =A D E CB∴===+222222221hhc cba b a 右边即证明出:222111hba=+4、下列运算中,正确的是( ) A 、ba b a =++11 B 、a bb a =⨯÷1 C 、b a a b-=-11 D 、01111=-----x xx x 19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。
27、 如图(10)所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm 。
求CE 的长?4 D 19、__①③⑤__; 27、(8分)CE=321、已知:24111A B x x x =+--+是一个恒等式,则A =______,B=________。
24、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______。
图(7)l321S 4S 3S 2S 127、(6分)作图题:如图,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。
(保留作图痕迹,不要求写作法和证明)21、A =2,B =-2 24、427、1°可以作BC 边的垂直平分线,交AB 于点D ,则线段CD 将△ABC 分成两个等腰三角形2°可以先找到AB 边的中点D ,则线段CD 将△ABC 分成两个等腰三角形3°可以以B 为圆心,BC 长为半径,交BA 于点BA 与点D ,则△BCD 就是等腰三角形。
2、不改变分式的值,将分式20.020.23x xa b-+中各项系数均化为整数,结果为 ( )A 、2223x xa b-+ B 、25010150x xa b-+ C 、2502103x xa b-+ D 、2210150x xa b-+3、如果一定值电阻R 两端所加电压5 V 时,通过它的电流为1A ,那么通过这一电阻的电流I 随它两端电压U 变化的大致图像是 (提示:U I R=) ( )A B C D5、如图,有一块直角三角形纸片,两直角边6,8AC cm BC cm ==,现将直角边A C 沿直线A D 折叠,使它落在斜边A B 上,且与A E 重合。
则C D 等于 ( ) A 、2cm B 、3cm C 、4cm D 、5cmCC8、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是( ). (A )一组对边平行而另一组对边不平行 (B )对角线相等(C )对角线互相垂直 (D )对角线互相平分12、如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( )A 、2B 、4C 、8D 、1027、如图,一次函数y=kx+b 的图像与反比例函数y= ax 的图像交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA= 5 ,点B 的坐标为(12 ,m),过点A 作AH ⊥x 轴,垂足为H ,AH= 12HO(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积。
28、如图,四边形ABCD 中,AC=6,BD=8且AC ⊥BD 顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……如此进行下去得到四边形A n B n C n D n .(1)证明:四边形A 1B 1C 1D 1是矩形;(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积; (3)写出四边形A n B n C n D n 的面积; (4)求四边形A 5B 5C 5D 5的周长.DC B AHGFEABCDEF剪2、B3、D 5、B 8、C 12、B 27、解:()222211,2A H H O A O A HH O ===+ 而()()2254,1,2,2,12AH AH AH HO A ∴=+∴==∴-分 ∵点A 在反比例函数k y x=的图像上1,2;2k k∴=∴=-∴-反比例函解析式为2y x=-将12,42B m y m x ⎛⎫=-=-⎪⎝⎭代入中得,,142B ⎛⎫∴- ⎪⎝⎭,()1214212,2,314,2A B y ax b a b a b a b ⎛⎫--=+ ⎪⎝⎭=-+⎧⎪=-=-⎨-=+⎪⎩把,和,代入中得解得∴一次函数解析式为23y x =--()2b 3OD==()11111153238222224AOBA O DBO D A BS S S b xbx ∆∆∆∴=+=+=⨯⨯+⨯⨯=分28(1)证明∵点A 1,D 1分别是AB 、AD 的中点,∴A 1D 1是△ABD 的中位线∴A 1D 1∥BD ,1112A DB D =,同理:B 1C 1∥BD ,1112B C B D =∴11A D ∥11B C ,11A D =11B C , ∴四边形1111A B C D 是平行四边形 ∵AC ⊥BD ,AC ∥A 1B 1,BD ∥11A D ,∴A 1B 1⊥11A D 即∠B 1A 1D 1=90° ∴四边形1111A B C D 是矩形(2)四边形1111A B C D 的面积为12;四边形2222A B C D 的面积为6; (3)四边形n n n n A B C D 的面积为1242n⨯;(4)方法一:由(1)得矩形1111A B C D 的长为4,宽为3;∵矩形5555A B C D ∽矩形1111A B C D ;∴可设矩形5555A B C D 的长为4x ,宽为3x ,则514324,2x x =⨯解得14x =;∴341,34x x ==;∴矩形5555A B C D 的周长=372(1)42+=.方法二:矩形5555A B C D 的面积/矩形1111A B C D 的面积=(矩形5555A B C D 的周长)2/(矩形1111A B C D 的周长)2即34∶12 =(矩形5555A B C D 的周长)2∶142∴矩形5555A B C D 的周长72=。