四边形中的动态
动点问题(四边形动点专题)
动态几何问题--------动点问题(四边形动点专题)【动态几何问题的特点】动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。
几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。
动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的 “变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。
【动态几何问题的解决方法】解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。
动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。
解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。
解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.【动态几何问题的分类】动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。
有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。
根据其运动的特点,又可分为:(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题。
【典型例题】例1.如图,在梯形中,ABCD 动点从点出发沿线段3545AD BC AD DC AB B ====︒∥,,,,∠.M B 以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段BC C N C 以每秒1个单位长度的速度向终点运动.设运动的时间为秒.CD D t (1)求的长;BC (2)当时,求的值;MN AB ∥t (3)试探究:为何值时,t MNC △CB例2. 已知:等边三角形的边长为4厘米,长为1厘米的线段在ABC MN 的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点ABC △AB AB B 与点重合,点到达点时运动终止),过点分别作边的垂线,M A N B M N 、AB 与的其它边交于两点,线段运动的时间为秒.ABC △P Q 、MN t (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出MN t MNQP 该矩形的面积;(2)线段在运动的过程中,四边形的面积为,运动的时间MN MNQP S 为.求四边形的面积随运动时间变化的函数关系式,并写出自变量t MNQP S t 的取值范围.t 例3.如图,在等腰梯形中,∥,,AB =12 ABCD AB DC cm BC AD 5==cm,CD =6cm , 点从开始沿边向以每秒3cm 的速度移动,点从开P A AB B Q C 始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
专题训练三 平行四边形中的动态问题
专题训练(三)平行四边形中的动态问题班别姓名(教材P68习题第13题的变式与应用)【原题】(人教版八年级下册教材第68页第13题)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm.点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ =CD,分别需经过多少时间?为什么?1.如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,点E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q 也随之停止运动.求当运动时间t为多少秒时,以点P、Q、E、D为顶点的四边形是平行四边形.2.如图,A,B,C,D为矩形ABCD的四个顶点,AB=25 cm,AD=8 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,运动到点B为止,点Q以2 cm/s的速度向点D移动.(1)P,Q两点从出发开始到第几秒时,PQ∥AD?(2)试问:P,Q两点从出发开始到第几秒时,四边形PBCQ的面积为84平方厘米.3.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.4.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B 运动,当点Q到达点B时,点P也停止运动,设点P、Q运动的时间为t秒.(1)作DE⊥BC于E,则CD边的长度为10cm;(2)从运动开始,当t取何值时,四边形PQBA是矩形?(3)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.备用图5.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案【例】(人教版八年级下册教材第68页第13题)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=24 cm,BC=26 cm.点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以3 cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ =CD ,分别需经过多少时间?为什么?【解答】①设经过t s 时,四边形PQCD 是平行四边形,∵AP =t ,CQ =3t ,DP =24-t ,∴DP =CQ.∴24-t =3t.∴t =6,即经过6s 时,四边形PQCD 是平行四边形,此时PQ∥CD,且PQ =CD.②设经过t s 时,PQ =CD ,即四边形PQCD 是等腰梯形,∵AP =t ,BQ =26-3t ,∴t =26-3t +2,t =7.综上所述当t =6 s 或7 s 时,PQ =CD.【方法归纳】 根据动点运动过程中构造的特殊四边形的性质列方程求解.1.如图,在四边形ABCD 中,AD ∥BC ,AD =6,BC =16,点E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.求当运动时间t 为多少秒时,以点P 、Q 、E 、D 为顶点的四边形是平行四边形.解:由题意可知,AP =t ,CQ =2t ,CE =12BC =8.∵AD ∥BC ,∴当PD =EQ 时,以点P 、Q 、E 、D 为顶点的四边形是平行四边形.当2t <8,即t <4时,点Q 在C 、E 之间,如图甲.此时,PD =AD -AP =6-t ,EQ =CE -CQ =8-2t ,由6-t =8-2t 得t =2.当8<2t<16,且t<6,即4<t<6时,点Q 在B 、E 之间,如图乙.此时,PD =AD -AP =6-t ,EQ =CQ -CE =2t -8,由6-t =2t -8得t =143. ∴当运动时间为2s 或143s 时,以点P 、Q 、E 、D 为顶点的四边形是平行四边形. 图甲 图乙2.如图,A ,B ,C ,D 为矩形ABCD 的四个顶点,AB =25 cm ,AD =8 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,运动到点B 为止,点Q 以2 cm /s 的速度向点D 移动.(1)P ,Q 两点从出发开始到第几秒时,PQ ∥AD?(2)试问:P ,Q 两点从出发开始到第几秒时,四边形PBCQ 的面积为84平方厘米. 解:(1)设P ,Q 两点从出发开始到第x 秒时,PQ ∥AD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,即AP∥DQ.∵PQ ∥AD ,∴四边形APQD 是平行四边形.∴AP =DQ.∴3x =25-2x.解得x =5.答:P ,Q 两点从出发开始到第5秒时,PQ ∥AD.(2)设P ,Q 两点从出发开始到第a 秒时,四边形PBCQ 的面积为84平方厘米,∵BP =25-3a ,CQ =2a ,∴根据梯形面积公式得:1(25-3a+2a)·8=84.解得a=4.2答:P,Q两点从出发开始到第4秒时,四边形PBCQ的面积为84平方厘米.3.如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.解:(1)当t=7秒时,四边形BPDQ为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1.∴PQ=BD=8.∵四边形ABCD为平行四边形,BD=8,AC=6,∴AO=CO=3.∴BO=DO=4.∴OQ=OP=4.∴四边形BPDQ为平形四边形.∵PQ=BD=8,∴四边形BPDQ为矩形.(2)由(1)得BO=4,CQ=7,∵BC⊥AC,∴∠BCA=90°.∴BC2+CQ2=BQ2.∴BQ=56=214.4.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC=18 cm,点P从点A出发以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s的速度向点B 运动,当点Q到达点B时,点P也停止运动,设点P、Q运动的时间为t秒.(1)作DE⊥BC于E,则CD边的长度为10cm;(2)从运动开始,当t取何值时,四边形PQRA是矩形?(3)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.备用图解:(2)如图1,由题意得:AP=t,DP=12-t,CQ=2t,BQ=18-2t.要使四边形PQBA是矩形,已有∠B=90°,AD∥BC即AP∥BP,只需满足AP=BQ即t=18-2t,解得t=6,因此,当t=6秒时,四边形PQBA是矩形.(3)不存在,理由:如图2,要使四边形PQCD是平行四边形,已有AD∥BC即DP∥CQ,只需满足DP=CQ即12-t=2t,∴t=4时,四边形PQCD是平行四边形,但DP=12-t=8≠10,即DP≠DC,∴按已经速度运动,四边形PQCD只能是平行四边形,但不可能是菱形.5.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP 为何值时,四边形PMEN 是菱形;(3)四边形PMEN 有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.解:(1)∵M、N 、E 分别是PD 、PC 、CD 的中点, ∴ME 是PC 的中位线,NE 是PD 的中位线. ∴ME ∥PC ,EN ∥PD.∴四边形PMEN 是平行四边形.(2)当AP =5时,在Rt △PAD 和Rt △PBC 中,⎩⎨⎧AP =BP ,∠A =∠B,AD =BC ,∴△PAD ≌△PBC(SAS ).∴PD =PC.∵M 、N 、E 分别是PD 、PC 、CD 的中点,∴NE =PM =12PD ,ME =PN =12PC. ∴PM =ME =EN =PN.∴四边形PMEN 是菱形.(3)四边形PMEN 可能是矩形.若四边形PMEN 是矩形,则∠DPC=90°.设PA =x ,PB =10-x ,则DP =42+x 2,CP =42+(10-x )2.∵DP 2+CP 2=DC 2,即16+x 2+16+(10-x)2=102,∴x 2-10x +16=0.解得x =2或x =8.故当AP =2或AP =8时,四边形PMEN 是矩形.。
《四边形》教案15篇
《四边形》教案《四边形》教案15篇作为一名无私奉献的老师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。
那要怎么写好教案呢?以下是小编收集整理的《四边形》教案,仅供参考,希望能够帮助到大家。
《四边形》教案1教学目标1、知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。
2、过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。
3、情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。
教学重难点1、教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。
2、教学难点:理解平行与垂直概念的本质特征。
教学工具多媒体设备教学过程一、情境导入,画图感知1.学生想象在无限大的平面上两条直线的位置关系。
教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。
(2)像这样很平的面,我们就称它为平面。
(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。
这时平面上又出现了另一条直线,这两条直线的位置关系是怎样的呢?会有哪几种不同的情况?2.学生画出同一平面内两条直线的各种位置关系。
把你想象的情况画在白纸上。
注意一张纸上只画一种情况,想到几种就画几种,相同类型的不画。
二、观察分类,感受特征1.展示作品。
教师:同学们想象力真丰富!相互看一看,你们的想法一样吗?老师选择了几幅有代表性的作品,我们一起来欣赏一下。
如果你画的和这几种情况不一样,可以补充到黑板上。
不管哪种情况,我们所画的两条直线都在同一张白纸上。
因为我们把白纸的面看作了一个平面,所以可以这样说,我们所画的两条直线都在同一平面。
(板书:同一平面)2.分类讨论。
教师:同学们的想象力可真丰富,画出来这么多种情况。
平行四边形动态问题-初二期末复习
平行四边形中的动态问题一.动点问题1.如图,已知平行四边形ABCD 中,7=AB ,4=BC ,︒=∠30A ,点P 从点A 沿AB 边向点B 运动,若运动时间为)(s t ,连接PC ,(1)当t 为何值时,PBC ∆为等腰三角形?(2)若点P 从点A 沿AB 射线运动,速度仍是s cm /1。
当t 为何值时,PBC ∆为等腰三角形?2.如图1在正方形ABCD 中,点P 是CD 上一动点,连接PA ,分别过点B 、D 作PA BE ⊥、PA DF ⊥,垂足分别为E 、F .(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系.如图2,若点P 在DC 的延长线上,那么这三条线段的长度之间又具有怎样的数量关系,.若点P 在CD 的延长线上呢?请分别直接写出结论.(2)请在(1)中的三个结论中选择一个加以证明。
3.如图,在ABC R ∆t 中,︒=∠90B ,cm AC 60=,︒=∠30C .点D 从点C 出发沿CA 方向以每秒4个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒2个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(150≤<t ).过点D 作BC DF ⊥于点F ,连接DE 、EF .(1)求证:DF AE =;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,DEF ∆为直角三角形?请说明理由.4.如图,矩形ABCD 中,cm AB 4=,cm BC 8=,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动.(1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,cm 2=BE ,动点M 、N 同时出发且相遇时均停止运动,那么点M 运动到第几秒钟时,与点A 、E 、M 、N 恰好能组成平行四边形?二.翻折问题5.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B '的位置,B A '与CD 交于点E .(1)试找出一个与AED ∆全等的三角形,并加以证明;(2)若8=AB ,3=DE ,P 为线段AC 上的任意一点,AE PG ⊥于G ,AC PH ⊥于H ,试求PH PG +的值,并说明理由.6.如图1,是我国三国时期的数学家赵爽在为《周髀算经》作注时给出的“弦图”。
浅析力学中的动态平衡问题
浅析力学中的动态平衡问题关键词:图解法;解析法;相似三角形法物体受到几个共点力的作用,其中某部分力是变力,即为动态力,在所有力共同作用下物体的状态发生缓慢变化,变化过程中的每一个状态均可视为平衡状态,这就是所谓的动态平衡问题。
该类问题是高考中的高频考点,也是教与学中的重点、难点,本人结合教学实际,对动态平衡问题进行归类剖析,希望对该部分的教与学有所帮助。
1.图解法(一)平行四边形雏形法或三角形雏形法该种方法分析物体动态平衡问题时,一般物体只受三个力作用,且其中一个力大小、方向均不变为恒力,另一个力的方向不变,第三个力大小、方向均变化。
由三力平衡的规律可知,两变力的合力与恒力等大方向,这就说明在两变力合成合力的矢量图中,对角线的大小方向是确定的,其中一个分力的方向不变,则表示该分力方向所在的直线与大小方向确定的对角线可组一个成平行四边形雏形或三角形雏形,当第三个力的方向确定一次,就组成一个点完整的平行四边形或三角形,依据第三个力的方向变化范围,就可对应做出平行四边形或三角形动态变化过程,从而可以确定各力的变化情景。
【例1】如图所示,小球用细绳系住,绳的另一端固定于O点,现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F以及绳N的变化情况是怎样的?对小球的拉力FT[解析] 小球受的重力不变,支持力的方向不变,绳的拉力的大小、方向都改变。
以小球为研究对象,受力分析如图所示。
在小球上升到接近斜面顶端的过程中,mg的大小和方向都不变,即FN 与FT的合力F=mg不变。
FN的方向不变,用表示FN方向所在的直线与表示F的有向线段组成一个平行四边形雏形或三角形雏形,FT与水平方向的夹角由大于斜面倾角α的某一值逐渐减小至趋于零,由此做出平行四边形或三角形的动态变化过程图,由图可知,FT 先减小,当FT与FN垂直(即绳与斜面平行)时达到最小,然后开始增大,FT先减小后增大;由图还可判定FN不断增大。
四边形的几何变换-练习与解答
走进四边形的几何变换在近几年的各地中考中,几何变换作为一种数学思想与方法,不断地被命题者青睐与关注,在现行的初中数学课本中,主要存在平移、旋转和轴对称(即翻折)三种几何变换. 它们最大的特征都是不改变图形的形状和大小,只改变图形位置的变换。
而四边形作为初中阶段最核心最重要的内容,越来越被作为呈现知识和能力的载体。
为此,让我们结合年各地中考试题,一同走进四边形中的变换世界,感受它的魅力与亮点。
一、在平移中构造与发现例:(年咸宁市)如图,将矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△.()证明A AD CC B '''△≌△;()若30ACB ∠=°,试问当点C '在线段AC 上的什么位置时,四边形ABC D ''是菱形,并请说明理由.思路点拨:在平移过程中对应的边与角的大小不变,仅仅是位置发生改变,借助边角边可证出两个三角形全等;同时与′′始终平行且相等,可知四边形′′平行四边形,要使其为菱形,需满足′,而∠°,∠°,可得21,即点′是线段的中点。
解析:()矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△ 得A D '',A D ''∥∥,′′,∴∠′′′∠,∴⊿′′≌⊿′。
()当点′是线段的中点时,四边形′′是菱形,理由如下:∵四边形是矩形, A C D '''△由ACD △平移得到,′′,由()知′′,∴四边形是平行四边形。
在⊿中,点′是线段的中点,∴′21,而∠°,∴21,∴′,∴四边形′′是菱形。
点评:决定平移后图形位置的两个基本因素是平移的方向和距离,本题通过“平移不改变图形的形状和大小”的性质,再结合平移前后图形的相应位置进行分析、综合、探究与解答。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
动态规划加速原理之四边形不等式
mk ( i, j ) + m k ′ ( i, j + 1) ≤ mk ( i, j + 1) + mk ′ ( i, j ) ,即: mk ( i, j ) − mk ′ ( i, j ) ≤ mk ( i, j + 1) − m k ′ ( i, j + 1)
通过(1.4)式我们可以发现, (1.4)
由于 m ( i, j ) 满足四边形不等式,因此对于任意的 k ≤ k ′ ≤ j ,有:
m ( k , j ) + m ( k ′, j + 1) ≤ m ( k ′, j ) + m ( k , j + 1)
我们将等式两边同时加上 w ( i, j ) + m ( i, k − 1) + w ( i, j + 1) + m ( i, k ′ − 1) ,就可以得出
综上所述,由数学归纳法可知,函数 m ( i, j ) 也满足四边形不等式。证毕。 我们定义 s ( i, j ) 为函数 m ( i, j ) 对应的决策变量的最大值,即:
m ( i, j ) + m ( i′, j ′ )
s ( i, j ) = max {m ( i, j ) = w ( i, j ) + m ( i, k − 1) + m ( k , j )}
{
}
k ≤ j 。那么,有:
≤ m ( i, k − 1) + w ( i, k − 1) + m ( k + 1, j ′ ) + w ( k + 1, j ′ ) = m ( i, j ′ )
≤ m ( i, k − 1) + w ( i, k − 1) + m ( k + 1, j ) + w ( k + 1, j ) + m ( j , j ′ )
初二数学《平行四边形中的动点问题》(附练习及答案)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)
一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。
人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题
难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE=90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EF =3 3.在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP =90°.∵AC为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP=10,∴PM =12AP =5.由勾股定理得AM =P A 2-PM 2=5 3.在△ANP 和△AMP 中,⎩⎪⎨⎪⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3.∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF =10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°. 3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎪⎨⎪⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
人教版八年级数学下册 第18章 《四边形》利用特殊四边形的性质巧解折叠问题 (含答案)
《四边形》利用特殊四边形的性质巧解折叠问题名师点金:四边形的折叠问题是指将四边形按照某种方式折叠,然后在平面图形内按照要求完成相应的计算和证明.折叠的本质是图形的轴对称变换,折叠后的图形与原图形全等.平行四边形的折叠问题1.如图,将平行四边形纸片ABCD沿AC折叠,点D落在点E处,AE恰好经过BC边的中点.若AB=3,BC=6,求∠B的度数.(第1题)矩形的折叠问题2.(中考·衢州)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图②.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.(第2题)菱形的折叠问题3.如图,在菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的F点,连结CF,那么∠BFC的度数是( ) A.60° B.70° C.75° D.80°(第3题)(第4题)正方形的折叠问题4.如图,正方形纸片ABCD的边长AB=12,E是DC上一点,CE=5,折叠正方形纸片使点B和点E重合,折痕为FG,则FG的长为________.5.(中考·德州)如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A,点D重合).将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连结BP,BH.(1)求证:∠APB=∠BPH.【导学号:71412046】(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.(第5题)专训2 利用特殊四边形的性质巧解动点问题名师点金:利用特殊四边形的性质解动点问题,一般将动点看成特殊点,再运用从特殊...到一般的思想......,将特殊点转化为一般点(动点)来解答.平行四边形中的动点问题1.如图,在▱ABCD中,E,F两点在对角线BD上运动(E,F两点不重合),且保持BE=DF,连结AE,CF.请你猜想AE与CF有怎样的数量关系和位置关系,并对你的猜想加以证明.(第1题)矩形中的动点问题2.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.连结AF,CE.(1)试说明四边形AFCE为菱形,并求AF的长;(2)动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.(第2题)菱形中的动点问题3.如图,在菱形ABCD中,∠B=60°,动点E在边BC上,动点F在边CD 上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.(第3题)正方形中的动点问题4.如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由.(第4题)专训3 全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查与矩形、菱形、正方形有关的计算和证明等问题.近几年又出现了许多与特殊平行四边形有关的开放探索题、操作题以及与全等、相似、函数知识相结合的综合题.其主要考点可概括为:三个图形,三个技巧.三个图形图形1矩形1.如图,在▱ABCD中,E,F分别是AB,CD的中点,连结AF,CE.(1)求证:△BEC≌△DFA;(2)连结AC,当CA=CB时,判断四边形AECF是什么特殊四边形,并说明理由.(第1题)图形2菱形2.如图,△ABC是边长为1的等边三角形,将△ABC绕点C顺时针旋转120°,得到△EDC,连结BD,交AC于F.(1)猜想AC与BD的位置关系,并给予证明;(2)求线段BD的长.(第2题)图形3正方形3.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.(1)求证:AF-BF=EF;(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形ABCD的边长为3,求点F′与旋转前图形中的点E之间的距离.(第3题)4.如图①,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.(第4题)三个技巧技巧1解与四边形有关的折叠问题的技巧(轴对称变换法)5.如图所示,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,求阴影部分的周长.(第5题)技巧2解与四边形有关的旋转问题的技巧(特殊位置法)6.如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都等于1,那么正方形A′B′C′O 绕顶点O 转动,两个正方形重叠部分的面积大小有什么规律?请说明理由.(第6题)技巧3 解与四边形有关的动态问题的技巧(固定位置法)7.如图,在Rt △ABC 中,∠B=90°,AC =60 cm ,点D 从点C 出发沿CA 方向以4 cm /s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2 cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是t s (0≤t≤15).过点D 作DF⊥BC 于点F ,且DF =12DC ,连结EF.若四边形AEFD 为菱形,则t 的值为( )(第7题)A.5B.10C.15D.208.如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系,并说明理由.(第8题)答案专训1(第1题)1.解:设AE与BC相交于点F,如图.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠1=∠3.∵平行四边形纸片ABCD沿AC折叠,点D落在点E处,∴∠2=∠3,∴∠1=∠2.∴FC=FA.∵F为BC边的中点,BC=6,∴AF=CF=BF=12×6=3.又∵AB=3,∴△ABF是等边三角形.∴∠B=60°.(第2题)2.(1)证明:由折叠知A′E=AE=EG,BC=CH.∵四边形ABCD是矩形,∴AD=BC.易得四边形AEA′D是正方形,∴A′E=AD.∴EG=CH.(2)解:∵∠ADE=45°,∠FGE=∠A=90°,AF=2,∴DG=FG=AF= 2.由勾股定理得DF=2.∴A D=2+ 2.如图,由折叠知,∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∠1+∠3=90°.∵∠1+∠AFE=90°,∴∠AFE=∠3.由(1)知,AE=BC.又∵∠A=∠B=90°,∴△EFA≌△CEB.∴AF=BE.∴AB=AE+BE=AD+AF=2+2+2=2+2 2.3.C点拨:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC.∵∠A=120°,∴∠ABC=60°,∴∠FB C=30°.根据折叠可得AB=BF,∴BF=BC.∴∠BFC=∠BCF=(180°-30°)÷2=75°.故选C.4.13 点拨:如图,过点F作FM⊥BC,垂足为M,连结BE,FE,设BE交FG于点N,由折叠的性质知FG⊥BE,∴∠C=∠BNG=90°,∴∠1=∠BEC.易知FM=BC,∠FMG=∠C,∴△FMG≌△BCE,∴MG=CE=5,由勾股定理得FG=FM2+MG2=13.(第4题)5.(1)证明:由折叠知PE=BE,∠EPH=∠EBC=90°,∴∠EBP=∠EPB.∴∠EPH-∠EPB=∠EBC-∠EBP,即∠BPH=∠PBC.又∵AD∥BC,∴∠APB=∠PBC,∴∠APB=∠BPH.(2)解:△PDH的周长不发生变化.证明如下:过B作BQ⊥PH,垂足为Q.如图.由(1)知∠APB=∠QPB,又∵∠A=∠BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴Rt△BCH≌Rt△BQH,∴CH=QH.∴△PDH的周长为:PD+DH+PH=AP+PD+DH+CH=AD+CD=8(定值).(第5题)专训21.解:AE=CF,AE∥CF.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,∵AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDF.∴AE=CF,∠AEB=∠CFD.∵∠AEB+∠AED=∠CFD+∠CFB=180°,∴∠AED=∠CFB.∴AE∥CF.2.解:(1)∵四边形ABCD是矩形,∴AD∥BC.∴∠OAE=∠OCF,∠AEO=∠C FO.∵EF垂直平分AC,垂足为O,∴OA=OC.∴△AOE≌△COF.∴OE=OF.∴四边形AFCE为平行四边形.又∵EF⊥AC,∴四边形AFCE为菱形.设AF=CF=x cm,则BF=(8-x)cm,(第2题)在Rt△ABF中,AB=4 cm,由勾股定理得42+(8-x)2=x2,解得x=5.∴AF=5 cm.(2)显然当P点在AF上,Q点在CD上时,A,C,P,Q四点不可能构成平行四边形;同理P点在AB上,Q点在DE或CE上时,也不可能构成平行四边形.因此只有当P点在BF上,Q点在ED上时,才能构成平行四边形,如图,连结AP,CQ,则以A,C,P,Q四点为顶点的四边形是平行四边形,此时PC=QA.∵点P 的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,∴PC=5t cm,QA=(12-4t)cm.∴5t=12-4t,解得t=4 3 .∴当以A,C,P,Q四点为顶点的四边形是平行四边形时,t=43 .3.证明:(1)如图①,连结AC.∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠BCD=180°-∠B=120°.∴△ABC是等边三角形.又∵E是BC的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°.∴∠CFE=180°-∠FEC-∠BCD=180°-30°-120°=30°.∴∠FEC=∠CFE.∴EC=CF.∴BE=DF.(第3题)(2)如图②,连结AC.由(1)知△ABC是等边三角形,∴AB=AC,∠ACB=∠BAC=60°.又∵∠EAF=60°,∴∠BAE=∠CAF.由(1)知∠BCD=120°.又∵∠ACB=60°,∴∠ACF=60°,∴∠B=∠ACF.∴△ABE≌△ACF.∴AE=AF.∴△AEF是等边三角形.(第4题)4.(1)证明:如图,∵四边形ABCD为正方形,∴∠A=∠EBF=∠C=∠GDH=90°,AB=BC=CD=AD.∵AE=BF=CG=DH,∴AH=BE=CF=DG.∴△AEH≌△BFE≌△CGF≌△DHG.∴∠1=∠2,EH=EF=FG=GH.∴四边形EFGH为菱形.∵∠1+∠3=90°,∠1=∠2,∴∠2+∠3=90°.∴∠HEF=90°.∴四边形EFGH是正方形.(2)解:直线EG经过一个定点.理由如下:如图,连结BD,DE,BG.设EG 与BD交于O点.∵BE瘙綊DG,∴四边形BGDE为平行四边形.∴BD与EG互相平分.∴BO=OD.∴点O为正方形的中心.∴直线EG必过正方形的中心.专训31.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,∠B=∠D,BC=DA.∵E,F分别是AB,CD的中点,∴BE=DF.∴△BEC≌△DFA(S.A.S.).(2)解:四边形AECF是矩形,理由:∵AE=12AB,CF=12CD,AB=CD,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∵CA=CB,E为AB的中点,∴CE⊥AB,∴∠AEC=90°.∴四边形AECF是矩形.2.解:(1)AC⊥BD.证明:连结AD,由题意知,△ABC≌△EDC,∠ACE=120°.∵△ABC是等边三角形,∴AC=DC,∠DCE=60°,∴∠ACD=60°,∴△ACD是等边三角形,∴CD=AD=AC=AB=BC,∴四边形ABCD为菱形,∴AC⊥BD.(2)由(1)知,四边形ABCD为菱形,∴∠DBC=12∠ABC=30°.∵BC=CD,∴∠BDC=∠DBC=30°,∴∠BDE=30°+60°=90°. ∵∠ACE+∠ACB=180°, ∴B,C ,E 三点在一条直线上, ∴BE=2.∴BD=BE 2-DE 2=22-12= 3. 3.(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAD=∠BAF+∠EAD=90°. ∵DE⊥AG,∴∠AED=∠DEG=90°. ∴∠EAD+∠ADE=90°. ∴∠ADE=∠BAF. 又∵BF∥DE,∴∠BFA=∠DEG=90°. ∴∠AED=∠BFA. 在△AED 和△BFA 中,∵⎩⎨⎧∠AED=∠BFA,∠ADE=∠BAF,AD =BA ,∴△AED≌△BFA(A .A .S .). ∴BF=AE. ∵AF-AE =EF , ∴AF-BF =EF.(2)解:如图,由题意知将△ABF 绕A 点旋转得到△ADF′,B 与D 重合,连结F′E,由(1)易得DE =AF.(第3题)根据题意知:∠F′AE=90°,DE=AF=AF′,∴∠F′AE=∠AED=90°.即∠F′AE+∠AED=180°.∴AF′∥DE.∴四边形AE DF′为平行四边形.又∠AED=90°,∴四边形AEDF′是矩形.∵AD=3,∴EF′=AD=3.4.(1)证明:∵四边形ABCD是正方形,∴AD=BA,∠D=∠BAE=90°,∴∠DAF+∠BAF=90°.∵AF⊥BE,∴∠ABE+∠BAF=90°.∴∠DAF=∠ABE.∴△DAF≌△ABE.∴AF=BE.(2)解:MP与NQ相等.理由如下:过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵MP⊥NQ,∴AF⊥BE,由(1)知AF=BE.易证四边形AMPF,四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,∴MP=NQ.5.解:∵在矩形ABCD中,AB=10,BC=5,∴CD=AB=10,AD=BC=5.又∵将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,根据轴对称的性质可得,A 1E =AE ,A 1D 1=AD ,D 1F =DF.设线段D 1F 与线段AB 交于点M ,则阴影部分的周长为 (A 1E +EM +MD 1+A 1D 1)+(MB +MF +FC +CB) =AE +EM +MD 1+AD +MB +MF +FC +CB =(AE +EM +MB)+(MD 1+MF +FC)+AD +CB =AB +(FD 1+FC)+10 =AB +(FD +FC)+10 =10+10+10=30.点拨:要求阴影部分的周长,我们可以把两块阴影部分的周长相加,找到它们的周长和与原矩形边长的关系,从而得到问题的答案.6.解:两个正方形重叠部分的面积保持不变,始终是14.理由如下:∵四边形ABCD 是正方形, ∴OB=OC ,∠OBE=∠OCF=45°, ∠BOC=90°.∵四边形A′B′C′O 是正方形, ∴∠EOF=90°,∴∠EOF=∠BOC. ∴∠EOF-∠BOF=∠BOC-∠BOF, 即∠BOE=∠COF.∴△BOE≌△COF.∴S △BOE =S △COF .∴两个正方形重叠部分的面积等于S △BOC . ∵S 正方形ABCD =1×1=1. ∴S △BOC =14S 正方形ABCD =14.∴两个正方形重叠部分的面积保持不变,始终是14.7.B 点拨:因为DF =12DC ,DC =4t cm ,所以DF =2t cm .又因为AE =2t cm ,所以AE =DF.因为AE∥DF,所以可推出四边形AEFD 为平行四边形.令AE =AD ,则60-4t =2t.解得t =10.所以当t =10时,四边形AEFD 为菱形.8.解:(1)在菱形ABCD 中,AC⊥BD,BG =12BD =12×16=8,由勾股定理得AG=AB2-BG2=102-82=6,∴AC=2AG=2×6=12.∴菱形ABCD的面积=12AC·BD=12×12×16=96.(第8题)(2)OE+OF的值不发生变化.理由:如图①,连结AO,则S△ABD =S△ABO+S△AOD,所以12BD·AG=12AB·OE+12AD·OF,即12×16×6=12×10·OE+12×10·OF,解得OE+OF=9.6,是定值,不变.(3)OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.理由:如图②,连结AO,则S△ABD =S△ABO-S△AOD,所以12BD·AG=12AB·OE-12AD·OF,即12×16×6=12×10·OE-12×10·OF,解得OE-OF=9.6.。
2020年中考数学专题复习卷:几何图形的动态问题精编(含解析)
几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。
2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质
题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图1,⊙O中AB是直径,C是⊙O上一点, ∠ABC=45°,等腰直角三角形DCE中∠DCE是直角, 点D在线段AC上. (1)证明:B、C、E三点共线; (2)若M是线段BE的中点,N是线段AD的中点,证 明:MN= OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记 为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1 的中点,M1N1= OM1是否成立?若是,请证明;若不是, 说明理由.
如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8, ∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的 速度向终点B运动,当点E不与点A重合时,过点E作 EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD (或AD的延长线)于点H,得到矩形EFHG,设点E运动的 时间为t秒 (1)求线段EF的长(用含t的代数式表示); (2)求点H与点D重合时t的值; (3)设矩形EFHG与菱形ABCD重叠部分图形的面积是S, 求S与t之间的函数关系式; (4)矩形EFHG的对角线EH与FG相交于点O′,当 OO′∥AD时,t的值为__;当OO′⊥AD时,t的值为__.
如图,正方形ABCD的边长为3cm,P,Q分别从B, A出发沿BC,AD方向运动,P点的运动速度是 1cm/秒,Q点的运动速度是2cm/秒,连接A,P 并过Q作QE⊥AP垂足为E. (1)求证:△ABP∽△QEA; (2)当运动时间t为何值时,△ABP≌△QEA; (3)设△QEA的面积为y,用运动时刻t表示 △QEA的面积相等的直角三角板Rt△ABC与 Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在 AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°, AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm); (2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发, 且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点 运动了x秒时,点N到AD的距离(用含x的式子表示); (3)在(2)的条件下,取DC中点P,连结MP,NP,设 △PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y 存在最大值,请求出这个最大值.