微积分的基本定理

合集下载

微积分三大定理

微积分三大定理

微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。

微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。

这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。

导数的基本定理是微积分中最基本的定理之一。

它告诉我们如何求函数的导数。

导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。

导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。

它是微积分中理论和实际应用的基础。

中值定理是导数的一个重要应用。

它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。

中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。

中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。

积分的基本定理是微积分的重要组成部分。

它告诉我们如何求函数的积分。

积分是求解曲线下面的面积或计算曲线的总变化量的工具。

积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。

微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。

它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。

无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。

通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。

《微积分的基本定理》课件

《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。

微积分学基本定理

微积分学基本定理
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )

F (b)

F (a)

F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a

b时, b a
f
(
x)dx

F
(b)

F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2

ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx

(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;

例1

2 0
(
2
cos
x

sin
x

1)dx
.

原式

微积分基本定理

微积分基本定理

GMmh W R( R h )
其中 G 是地球引力常数, M 是地球的质量, R 是地球的半径.
例 2:一物体从 5000m 高空落下, .其下落速度为
g -1 2 kt v(t ) (1 e ) ,其中 g=9.8m/s ,k=0.2s k 问经过大约多少秒后该物体将接触到地面?
定积分在物理中的应用
例 3:证明:把质量为 m(单位:kg)的物体从地球 表面升高 h(单位:m)所作的功为
2
例 3:计算由曲线 y x 5 ,直线 y=x
2
-7 以及 x 轴所围图形的面积 S.
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用
例 1:有一个质量非均匀分布的细棒,已知其线密度 为 ( x ) (2 x 1)( x 1) (取细棒所在直线为 x 轴, 细棒的一端为原点),棒长为 l,求细棒的质量 m.
微积分基本定理
微积分基本定理
定理: 对于被积函数 f(x), 如果 F’(x)=f(x), 则 f ( x )dx F (b) F (a ) .
a b
这里 f(x)是 F(x)的导函数,我们把 F(x) 叫做 f(x)的原函数.
例1 计算定积分
(1)

3
1
2 dx(2)Biblioteka | x|3 2
x 1 (3) e 2 dx 1 x
2
(2 x 1)(2 x 3) dx 2x 1
cos 2 x (4) 2 dx 0 cos x sin x

4 微积分基本原理

4 微积分基本原理

微积分基本定理1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃba f (x )d x =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃb a f (x )d x =S 上-S 下,若S上=S 下,则ʃb a f (x )d x =0.[情境导学]从前面的学习中可以发现,虽然被积函数f (x )=x 3非常简单,但直接用定积分的定义计算ʃ10x 3d x 的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211x d x吗?有没有更加简便、有效的方法求定积分呢?思考1如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数c,[F(x)+c]′=F′(x)+c′=f(x).不影响,因为ʃb a f(x)d x=[F(b)+c]-[F(a)+c]=F(b)-F(a)例1计算下列定积分:(1)ʃ211x d x;(2)ʃ31(2x-1x2)d x;(3)ʃ-π(cos x-e x)d x.反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .探究点三 定积分的应用 例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+22.若ʃa1(2x +1x )d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 3.ʃ20(x 2-23x )d x =________.4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .[呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =lim n→∞∑='-ni i s n ab 1)(ξ; ④它在时间段[a ,b ]内的位移是s =ʃba s ′(t )d t .A .①B .①②C .①②④D .①②③④2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)3.ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +14.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 5.π20⎰sin 2x2d x 等于( )A.π4B.π2-1 C .2D.π-246.若ʃ10(2x +k )d x =2,则k =________.二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a 03t 2d t ,x ≤0,若f [f (1)]=1,则a =________. 9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 10.计算下列定积分:(1)ʃ21(e x +1x )d x ; (2)ʃ91x (1+x )d x ;(3)ʃ200(-0.05e-0.05x +1)d x ; (4)ʃ211x (x +1)d x .11.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求ʃ30f (x )d x 的值.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.三、探究与拓展13.求定积分ʃ3-4|x +a |d x ..。

3.5_微积分学基本原理

3.5_微积分学基本原理

1.

1
1 1
1 x2
d
x
arctan x
1 1
arctan1 arctan(1)
.
2

4 cos 2x d
0
x
1 sin 2
2x
4 0
1 (sin 2
2
4
sin 0)
1. 2
问题的关键是如何求一个 函数的原函数.
14

设f
(
x)
2x, 5,
0 x 1, 求 2 f ( x)dx. 1 x 2, 0
dx 0
dx 0
e x2 2x e x3 3 x 2
9
1 et2dt

lim
x0
cos x
x2
分析 这是 0 型不定式, 应用L’Hospital法则 0
解 d 1 et2dt d cos x et2dt
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x
11
x
C F(a),
a f (t)dt F ( x) C
bx f (t )dt F ( xb) F (a) x [a,b] a
特别, 令x b,
b
f ( x)dx F(b) F(a)
a
牛顿(Newton)—莱布尼茨(Leibniz)公式
又称为微积分基本公式,即
b f ( x)dx F ( x) b F(b) F(a)
lim
x0
1 cos x
e t 2 dt
lim
sin
x
e cos2
x
1
x2
x0
2x

微积分基本公式和基本定理

微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9

明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt

lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C

微积分基本定理

微积分基本定理

§3微积分基本定理()baf x dx ⎰=()ba f t dt ⎰. [,]x ab ∀∈.()()x aF x f t dt =⎰.在[,]a b 有定义.定理1 若[,]f R a b ∈,()()xaF x f t dt =⎰,则(1) ()F x 是[,]a b 上的连续函数.(2) 若()f x 在[,]a b 上连续,则()F x 是[,]a b 上可微,且()()F x f x '=. 证明:(1)0[,]x a b ∀∈,00()()()()()xx xaax F x F x f t dt f t dt f t dt -=-=⎰⎰⎰.[,]m M η∃∈.00()()()0F x F x x x η-=-→.(2)00()()()()F x F x f x x ξ-=-.00000()()limlim ()()x x x F x F x f f x x x ξξ→→-==-. 推论 ()()()()()(())()(())()x x F x f t dt f x x f x x ϕψϕϕψψ''''==-⎰.证明:设()()uaG u f t dt =⎰.()(())()x aG x f t dt ϕϕ=⎰.()(())()x aG x f t dt ψψ=⎰. ()()G u f u '=.((()))(())()G x G x x ϕϕϕ'''=. ()()()()()x x aaF x f t dt f t dt ϕψ=-⎰⎰.例1:232002sin 2limlim 33x x x x x x x ++→→==⎰. ()f x 的积分上限给出()f x 的一个原函数,即()()xaf x dx f t dt C =+⎰⎰()()xad f t dt f x dx =⎰ 若()()uaF u f t dt =⎰()u x ϕ=,则()(())()()[()]()x af t dt F u x f x x ϕϕϕϕ''''==⎰.同理,()()()[()]()[()]()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎰. 例:求极限2032000sin 22sin 2limlim lim 333x x x x x x x x x x +++→→→⋅===⎰. 二.微积分基本定理定理2 设()f x 在[,]a b 上连续,()F x 是()f x 在[,]a b 上的一个原函数,则成立()()()()bba af x dx F b F a F x =-⎰.证明:()()xaf t dt F x c =+⎰,()0F a c +=.()()()xaf t dt F x F a ∴=-⎰. ()()()baf t dt F b F a ∴=-⎰.例2:111lim 122n n n n →∞⎛⎫+++⎪++⎝⎭1111111lim lim 121111nn x i n i n n n n n n→∞→∞=⎛⎫⎡⎤ ⎪⎢⎥=+++=⋅ ⎪⎢⎥ ⎪⎢⎥++++ ⎪⎣⎦⎝⎭∑ 110011lim ()ln 1ln 21ni i x i f x dx x n ξ→∞==∆==+=+∑⎰. 例3:121limsin sin sinn n n n n n πππ→∞-⎛⎫+++ ⎪⎝⎭1lim ()ni i x i f x ξ→∞==∆∑1sin xdx =⎰11cos x ππ-==112πππ+=.三.定积分的计算1.第一类换元法:()()()(())()()u x bb aa f x x dx f u du ϕϕϕϕϕ='=⎰⎰(())()ba f x d x ϕϕ⎡⎤=⎣⎦⎰.例:cos cos cos 10sin cos ()xx x exdx e d x e e e πππ-=-=-=-⎰⎰.或cos 11111t xt te dt e e e =---=-=-=-⎰.2.第二类换元法:()()()()(())()x t baa bf x dx f t t dt ϕβαϕαϕβϕϕ==='=⎰⎰.例:2()11cos x xe x f x x-⎧≥⎪=⎨≤≤⎪+⎩ -1x 0 求:21()f x dx -⎰. 21()f x dx -⎰=2021011cos x dx xe dx x -++⎰⎰=20222101cos 1()1cos 2x x dx e d x x --+---⎰⎰ =2020111sin 2x ctgx e x --⎛⎫-+- ⎪⎝⎭=202101cos 1sin 2x x e x ----=041sin 111cos 22x e x ---++=41sin1(1)21cos1e --++. 3.分部积分法:()()()()()()bbba aau x v x dx u x v x v x u x dx ''=-⎰⎰.例:000sin (cos )cos sin x xdx x x xdx x ππππππ=-+=+=⎰⎰.4.利用函数的特殊性质计算积分: 定理3 ()[,]f x R a a ∈-, (1)若()f x 为偶函数,则有0()2()aaaf x dx f x dx -=⎰⎰;(2)若()f x 为奇函数,则有()0aaf x dx -=⎰.证明:()()()aa aaf x dx f x dx f x dx --=+⎰⎰⎰00()()[()()]a aaf t dt f x dx f x f x dx =--+=-+⎰⎰⎰.例:222202(sin )(cos )(sin )()(sin )x t f x dx f x dx f x dt f x dx πππππ=-==-=⎰⎰⎰⎰.例:222000sin cos sin cos 2sin cos sin cos sin cos 2x x x x dx dx A A dx x x x x x x ππππ+==⇒==+++⎰⎰⎰.例:2sin n n xdx I π=⎰,121sin [(1)sin cos ]n n n n xdx I n I x x n--==--⎰ 2201n n n n I II nπ--== 2n ≥. 210sin 1I xdx π==⎰, 02I π=.01131(1)!!22!!2132(1)!!23!!n n n I n n n n n n I n n n π---⎧=⋅⋅⋅=⋅⎪⎪-⎨---⎪=⋅⋅⋅=⎪-⎩ n=偶数 n=奇数例:设21()xt f x e dt -=⎰不能用初等函数表示,221111110000011()()()(1)(1)0(1)22x x f x dx xf x xf x dx f xe dx f e e --'=-=-=+=+-⎰⎰⎰.定理4 ()f x 是以T 为周期的可积函数,则a ∀有0()()a TTaf x dx f x dx +=⎰⎰.注:计算定积分应该注意的问题(1)换元时,上下限应改变.(2)第二类换元不必一一对应.(3)若积分函数积分区域不连续,应变形去掉不连续点.。

微积分学基本定理

微积分学基本定理
b a b b a a
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b

b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b

c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x

b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/

b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )

6.2微积分基本定理

6.2微积分基本定理

sin x ⋅ e = lim x→0 2x
1 = . 2e
例:求 y = ∫0
x
sin t 上的极值。 上的极值 dt 在(-1,1)上的极值。 1+ t
sin x 解: ' = y , 令 y ' = 0, 得 x = 0. 1+ x
cos x(1 + x ) − sin x y '' = , y ''(0) = 1 > 0, 2 (1 + x )
2
(∫ 2 cos t dt )' = ( ∫ cos t dt + ∫ cos t 2 dt )' x x 0
2
0 2
2
x3
x3
= ( − ∫ cos t 2 dt + ∫ cos t 2 dt )&#os x 4 + 3 x 2 cos x 6 .
注: (∫v( x) f (t )dt )' = f (u( x))u'( x) − f (v( x))v '( x).
∫ 例:求 lim
x→ 0
1 cos x
e x
− t2 2
dt .
解: 原式= 原式
0 ( 0 lim
x→0

1
cos x
e dt )'
2
−t2
( x )'
− cos 2 x
= lim
x →0
−( ∫
cos x
1
e dt )'
−t2
2x
= lim
x→0
−e
⋅ (cos x )' 2x
− cos 2 x

微积分基本定理

微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x

当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,

微积分基本公式和基本定理

微积分基本公式和基本定理
题目
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。

什么是微积分基本定理

什么是微积分基本定理

什么是微积分基本定理
微积分基本定理是数学中重要的定理,被广泛用于其他理论的建立。

它可以帮助我们找到两个量之间的关系,从而可以解决许多数学和物理问题。

首先要搞清楚的是,什么是微积分基本定理?它指的是将定积分等同于要积分函数的原函数求得的定理。

定积分,即定积减积,是指将一个定义域上的函数从一个边界的 x 值积分至另一个边界的 x 值,从而求出两个边界之间的函数量。

而要积分函数,则是指在定积减积之后,把求得的积分量与 x 值结合起来,所得到的函数。

为了更好地解释微积分基本定理,我们先来看看其应用实例。

比如有函数
y=f(x),它的解析解为 y=ax+b,那么它的反函数就是 y=f^(-1)(x)=b/a-x/a。

而反函数的积分就对应于原函数,只要把积分结果与 x 值捆绑,就可以得到原函数(即要积分函数)的值了。

以上就是微积分基本定理的应用,新兴的微分方程学中也有着广泛的应用,微积分基本定理是微分方程学中基本的定理,它可以帮助我们解决定常系统的可积存在性,将微分方程转化为定常方程,只要通过微积分基本定理,就可以将微分方程的解更为方便地求得。

从上面的分析中,我们可以看出,微积分基本定理是非常重要的定理,它不仅在微积分中被广泛运用,还在物理和工程等研究中发挥着重要作用。

因此,微积分基本定理为解决许多数学问题提供了重要的理论依据,为解决微分方程和定动系统提供了有效的解决方案,它在物理和工程等研究中发挥了重要作用。

1.8微积分基本定理

1.8微积分基本定理

授课主题 微积分基本定理教学目标1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.教学内容1. 微积分基本定理:如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ) .定理中的式子称为“牛顿—莱布尼茨公式”,通常称F (x )是f (x )的一个原函数.在计算定积分时,常常用记号F (x )|b a来表示F (b )-F (a ),于是牛顿—莱布尼茨公式也可写作ʃb a f (x )d x =F (x )|ba =F (b )-F (a ).2. 定积分和曲边梯形面积的关系:设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则 (1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃba f (x )d x =S 上-S 下,若S 上=S 下,则ʃb a f (x )d x =0.题型一 利用微积分基本定理求定积分 例1 (1)求定积分⎰202x d x 的值;(2)求定积分⎰1-1(2x -x 2)d x 的值;(3)求定积分⎰0-π(sin x +2e x )d x 的值. 解析:(1) ⎰202x d x =2⎰20x d x =2×⎪⎪12x 220=22-02=4.(2) ⎰1-1(2x -x 2)d x =⎰1-12x d x +⎰1-1(-x 2)d x =x 2|1-1-13x 3|1-1=-23. (3) ⎰-π(sin x +2e x )d x =⎰0-πsin x d x +2⎰-πe x d x =-cos x |0-π+2e x |0-π=-cos 0+cos(-π)+2(e 0-e -π)=-2eπ. 点评:应用微积分基本定理求定积分时,首先要求出被积函数的一个原函数,在求原函数时,通常先估计原函数的类型,然后求导数进行验证,在验证过程中要特别注意符号和系数的调整,直到原函数F (x )的导函数F ′(x )=f (x )为止(一般情况下忽略常数),然后再利用微积分基本定理求出结果. 巩 固 求下列定积分的值.(1) ⎰10(2x +3)d x ; (2) ⎰1-2(1-t 3)d t ;(3) ⎰π02sin ⎝⎛⎭⎫x +π4d x ; (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x . 分析:利用微积分基本定理,关键是求出相应被积函数的一个原函数. 解析:(1)∵(x 2+3x )′=2x +3,∴⎰10(2x +3)d x =(x 2+3x )|10=1+3=4.(2)∵⎝⎛⎭⎫t -14t 4′=1-t 3, ∴⎰1-2(1-t 3)d t =⎪⎪⎝⎛⎭⎫t -14t 41-2=1-14-⎣⎡⎦⎤-2-14(-2)4=7-14=274. (3)因为2sin ⎝⎛⎭⎫x +π4=2⎝⎛⎭⎫sin x ·22+cos x ·22=sin x +cos x , 又(-cos x +sin x )′=sin x +cos x ,所以 ⎰π02sin ⎝⎛⎭⎫x +π4d x =⎰π0( sin x +cos x ) d x =(-cos x +sin x )|π0 =(-cos π+sin π)-(-cos 0+sin 0)=2. (4) ⎰31⎣⎡⎦⎤6x ⎝⎛⎭⎫x +1x 2d x =⎰31(6x 2+6+12x ) d x =(2x 3+6x +6x 2)|31=(54+18+54)-(2+6+6)=112 题型二 求分段函数的定积分例2 若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3],求⎰30f (x )d x 的值.解析:由积分的性质,知:⎰30f (x )d x =⎰10f (x )d x +⎰21f (x )d x +⎰32f (x )d x =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 点评:分段函数在区间[a ,b ]上的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分段标准进行;带绝对值号的解析式,可先化为分段函数,然后求解. 巩 固 ⎰3-3 (|2x +3|+|3-2x |)d x .解析:设y=|2x+3|+|3-2x|=⎩⎪⎨⎪⎧-4x,x≤-32,6,-32<x<32,4x,x≥32.所以⎰3-3(|2x+3|+|3-2x|)d x=323(4)x---⎰d x+32326-⎰d x+3324x⎰d x==(-2)×⎝⎛⎭⎫322-(-2)×(-3)2+6×32-6×⎝⎛⎭⎫-32+2×32-2×⎝⎛⎭⎫322=45.题型三利用定积分求参数例3已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,⎰10f(x)d x=-2,求a,b,c的值.解析:由f(-1)=2得a-b+c=2.①因为f′(x)=2ax+b,所以f′(0)=b=0.②又⎰10f(x)d x=⎰10(ax2+bx+c)d x=⎪⎪⎝⎛⎭⎫13ax3+12bx2+cx10=13a+12b+c,所以13a+12b+c=-2③解①②③组成的方程组得a=6, b=0,c=-4.点评:利用定积分求参数,根据题设条件列出关于参数的方程(组),解方程(组)得参数的值.巩固f(x)是一次函数,且⎰10f(x)d x=5,⎰10xf(x)d x=176,求f(x)的解析式.解析:设f(x)=ax+b(a≠0),则⎰10(ax+b)d x=⎰10ax d x+⎰10b d x=12ax2⎰10+bx⎰10=12a+b,⎰10x(ax+b)d x=⎰10(ax2+bx)d x=13ax3⎰10+12bx2⎰10=13a+12b,由⎩⎨⎧12a+b=5,13a+12b=176,解得a=4,b=3,故f(x)=4x+3.A组1.下列各定积分等于1的是()A.⎰10x d xB.⎰10(x+1)d xC.⎰101d xD.⎰1012d x解析:⎰10x d x =12x 2⎰10=12; ⎰10(x +1)d x =⎝⎛⎭⎫12x 2+x ⎰10=32;⎰101d x =x |10=1; ⎰1012d x =12x ⎰10=12. 答案:C 2. ⎰421xd x 等于( ) A .-2ln 2 B .2ln 2 C .-ln 2 D .ln 2 解析:⎰421xd x =ln x |42=ln 4-ln 2=ln 2. 答案:D3.函数y =⎰x 0cos x d x 的导数是( )A .cos xB .-sin xC .cos x -1D .sin x 答案:AB 组一、选择题1. ⎰10(e x+2x )d x =( )A .1B .e -1C .eD .e +1 答案:C2.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎰1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案:B3.由曲线y =x 2-1,直线x =0,x =2和x 轴围成的封闭图形的面积(如图阴影部分)是( )A. ⎰20(x 2-1)d xB. |⎰20(x 2-1)d x |C. ⎰20|x 2-1|d xD. ⎰20(x 2-1)d x +⎰21(x 2-1)d x答案:C4.下列定积分计算正确的是( )A. ⎰π-πsin x d x =4 B. ⎰102xd x =1C. ⎰21⎝⎛⎭⎫1-1x d x =ln e 2D. ⎰1-13x 2d x =3解析:⎰π-πsin x d x =-cos x|π-π=0; ⎰102xd x =12ln 2x=log 2e ; ⎰21⎝⎛⎭⎫1-1x d x = |(x -ln x )21=1-ln 2=ln e 2; ⎰1-13x 2d x =x 3|1-1=2.故选C.答案:C5.若⎰a 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则正数a 的值为( ) A .1 B .2 C .3 D .5解析:⎰a 1⎝⎛⎭⎫2x +1x d x = |(x 2+ln x )a 1=a 2+ln a -1=3+ln 2,所以a 2-1=3,所以a =-2(舍去),a =2.故选B. 答案:B 二、填空题6.定积分⎰21x d x =__________. 答案:23(22-1)7.若⎰T 0x 2d x =9,则常数T 的值为________.解析:因为⎝⎛⎭⎫x 33′=x 2,所以⎰T 0x 2d x =⎝⎛⎭⎫x 33|T 0=9,所以T =3. 答案:38.计算定积分⎰1-1(x 2+sin x )d x =________. 答案:23三、解答题9.计算下列定积分:(1) ⎰30|2-x |d x ;解析: ⎰30|2-x |d x =⎰20(2-x )d x +⎰32(x -2)d x = ⎪⎪⎝⎛⎭⎫2x -12x 220+⎪⎪⎝⎛⎭⎫12x 2-2x 32=2+12=52. (2)⎰π2-π2cos 2x d x .解析:10.若函数f (x )=ax +b (a ≠0),且⎰10f (x )d x =1,求证:⎰10[f (x )]2d x >1.证明:由于⎰10f (x )d x =⎰10(ax +b )d x =⎪⎪⎝⎛⎭⎫12ax 2+bx 10=12a +b , 所以12a +b =1,所以⎰10[f (x )]2d x =⎰10(ax +b )2d x =⎰10(a 2x 2+2abx +b 2)d x =⎪⎪⎝⎛⎭⎫13a 2x 3+abx 2+b 2x 10=13a 2+ab +b 2=⎝⎛⎭⎫12a +b 2+112a 2=1+112a 2>1(a ≠0),故原不等式成立.1. 设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则ʃ21f (-x )d x 的值等于 ( )A.56 B.12 C.23 D.16答案 A解析 由于f (x )=x m +ax 的导函数为f ′(x )=2x +1, 所以f (x )=x 2+x ,于是ʃ21f (-x )d x =ʃ21(x 2-x )d x =⎝⎛⎭⎫13x 3-12x 2|21=56. 2.(sin x -a cos x )d x =2,则实数a 等于( )A .-1B .1C .- 3 D. 3 答案 A 解析=-a +1=2,a =-1.3. 由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( )A.12 B .1 C.32D. 3答案 D 解析4. 设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈[1,e](其中e 为自然对数的底数),则ʃe 0f (x )d x 的值为( )A.43B.54C.65D.76答案 A解析 根据定积分的运算法则,由题意,可知ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11x d x =13x 3|10+ln x |e 1=13+1=43. 5. ʃ30(x 2+1)d x =________.答案 12解析 ʃ30(x 2+1)d x =⎝⎛⎭⎫13x 3+x |30=13×33+3=12. 6. 如图所示,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.答案 43解析 由⎩⎪⎨⎪⎧y =-x 2+2x +1y =1,得x 1=0,x 2=2.∴S =ʃ20(-x 2+2x +1-1)d x =ʃ20(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2|20=-83+4=43.。

微积分学基本定理及基本积分公式

微积分学基本定理及基本积分公式
§2 微积分学基本定理及基本积分公式
1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C

结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)

( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式

微积分基本公式与基本定理

微积分基本公式与基本定理

12微积分基本公式微积分基本定理13不定积分主要内容12微积分基本公式微积分基本定理13不定积分主要内容12微积分基本公式微积分基本定理13不定积分主要内容2 微积分基本定理],[b a C f ∈)())((x f dt t f xa ='⎰定理2(微积分学第一基本定理)设,则],,[b a C f ∈f ],[b a 推论1设则在上必有原函数.⎰-=Φ220)(x t dt e x )(x Φ',sin )(023dt t x F x e ⎰=).(x F '例2 1)设,求2)设求⎰-=Φ220)(x t dte x 解1)dt e u g u t ⎰-=02)(2)(x x u ==ϕ与的复合=Φ')(x )()(x u g ϕ'')2(2x e u -=42x xe -=dt t x F x e ⎰=023sin )(2)=')(x F ⎰-=x e dtt 302sin )3(sin 36x x e e -x x e e 63sin 3-=)sin (22'⎰dt t x e x )sin sin (02022'+=⎰⎰dt t dt t x e x xx e e x x 24sin sin 2-=12微积分基本公式微积分基本定理13不定积分主要内容)(x f I Cx F +)(3 不定积分在区间上所有原函数的定义2(不定积分)一般表达式⎰='))((dx x f ⎰=dx x f d )(⎰='dx x f )(⎰=)(x df 性质1性质2=±⎰dx x g x f )]()([)(x f dxx f )(C x f +)(C x f +)(⎰⎰±dxx g dx x f )()(=⎰dx x f )(=⎰dx x kf )(⎰dxx f k )(。

微积分的基本定理

微积分的基本定理

dx a
由 F(x)
x
f (t)dt

F(x)
f (x) 你会想到什么?
a
F(x)是f(x)的一个原函数。
这说明,连续函数必有原函数。
定理
若 f (x) C([a,b]), 则 F(x)
x
f (t)dt, x [a,b]
a
为 f (x) 在[a,b] 上的一个原函数.
推论1 若 f (x) C( I ) , 则 f (x) 在 I 上原函数存在.
2x x2 sint 2dt 2x3 sin x4 . 0
例 6.3.2 设f ( x)为连续函数,证明:
x
xt
0 ( x t) f (t)dt 0 (0 f (u)du)dt.

设F( x)
x
( x t) f (t)dt, G( x)
xt
( f (u)du)dt.
0
0

2 0 | cos x | d x
去绝对 值符号(如果 是分段函数, 则利用积分 的性质将积 分分成几个 部分的和的 形式.)



2 2 cos x d x 0
2 (cos x)d x
2


2sin
x
2 0

2sin x

2
2.
2
例6.3.6 设
x2, 1 x 0
f
(
x)

e

x
,
0 x1
求 1 f ( x)dx. 1

1 f ( x)dx
0
f ( x)dx
1

微积分七个基本定理

微积分七个基本定理

微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。

2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。

3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。

4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。

5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。

6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。

7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个微积分是数学的一门重要分支,它主要研究函数的极限、导数、积分等概念和性质。

微积分的基本公式是我们学习和应用微积分的基础,下面将介绍微积分的16个基本公式。

1.1+1=2这是微积分的最基本的公式,表示两个数相加得到另一个数。

2.a*b=b*a这是乘法交换律,表示两个数相乘的结果与顺序无关。

3.a+(b+c)=(a+b)+c这是加法结合律,表示三个数相加的结果与加法的顺序无关。

4.a*(b+c)=a*b+a*c这是乘法分配律,表示一个数与两个数相加的结果等于这个数与每个数相加的结果之和。

5.a-b=-(b-a)这是减法的性质,表示两个数相减的结果与减法的顺序无关。

6.a/b=b/a这是除法的性质,表示两个数相除的结果与除法的顺序无关。

7. (a+b)^2=a^2+2ab+b^2这是二次方的展开公式,表示两个数的和的平方等于它们的平方和加上两倍的乘积。

8. (a-b)^2=a^2-2ab+b^2这是二次方差的公式,表示两个数的差的平方等于它们的平方差减去两倍的乘积。

9.(a+b)*(a-b)=a^2-b^2这是差的平方公式,表示两个数的和与差的乘积等于它们的平方差。

10. (a+b)^3=a^3+3a^2b+3ab^2+b^3这是立方和的展开公式,表示两个数的和的立方等于它们的立方和加上三倍的乘积加上三倍的乘积再加上立方。

11. (a-b)^3=a^3-3a^2b+3ab^2-b^3这是立方差的公式,表示两个数的差的立方等于它们的立方差减去三倍的乘积加上三倍的乘积再减去立方。

12. (a+b)*(a^2-ab+b^2)=a^3+b^3这是立方和的因式分解公式,表示两个数的和与和的平方差的乘积等于它们的立方和。

13. (a-b)*(a^2+ab+b^2)=a^3-b^3这是立方差的因式分解公式,表示两个数的差与差的平方和的乘积等于它们的立方差。

14. (a+b)^n=a^n+na^(n-1)b+(n(n-1)/2)a^(n-2)b^2+...+nb^(n-1)+b^n这是二项式定理,表示两个数的和的n次方等于它们的各种组合的乘积之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题
微积分的基本定理
课型 新授课 课时 1
学习目标
1.通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式 求简单的定积分
2.通过实例体会用微积分基本定理求定积分的方法
3.通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系, 培养学生辩证唯物主义观点,提高理性思维能力。

重难点
会用牛顿-莱布尼兹公式求简单的定积分
教学过程与内容
课堂设计
学生随堂手记
一、知识导入
微积分在几何上有两个基本问题
1. 如何确定曲线上一点处切线的斜率;
2.如何求曲线下方“曲线梯形”的面积。

引例:直线x =0、x =1、y =0及曲线y =x 2
所围成的图形(曲边三角形)面积S 是多少?
思考1、:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且()()F x f x ¢=那么()b
a
f x dx ò
等于
什么?
牛顿-莱布尼兹公式:
思考2、:对给定的函数f (x ),满足()()F x f x ¢=的函数F(x )是不惟一的,不同的F(x )有什么差别?对定积分
()b
a
f x dx ò
的值是否有影响?为什么?
例1 计算下列定积分: (1)2
1
1
dx x
ò
;(2) 3
21
1
(2)x dx x
-
ò
2:例计算下列定积分
1、
sin ,xdx π

2、2sin ,xdx ππ
⎰ 3、20
sin xdx π

结论:
思考3:若f (x )为奇函数,则()a
a f x dx -=ò
思考4:若f (x )为偶函数,则()a
a
f x dx -=ò
(其中a >0为常数. )
练习: 计算下列定积分: 1、
22
11
x dx x

2、941(1)x dx x +ò
3、4
441
2x x
dx -+ò 作业:
课后达标练习 1.下列不等式成立的是( ) (A )
⎰⎰<1
2
10
dx x xdx (B )⎰⎰
>4
2
24
2
dx x xdx
(C )
⎰-0
2
sin πxdx = ⎰
20
sin πxdx (D )⎰-0
2
sin πxdx 〈⎰20
sin πxdx
2.
⎰-+1
)(dx e e x x =( )
(A )e +e 1 (B )2e (C )e 2 (D )e -e
1 3.

+2
2)3(dx k x =10,则k=____________
4.计算定积分: (1)
⎰--2
02
)4)(24(dx x
x (2)⎰
--2
1
23
2dx x
x x (3)dx x x )1(4
1

- (4)⎰+
3
2
2)1(dx x
x
5、已知f (x )是一次函数,其图象过点(3,4)且⎰
=1
1)(dx x f 求f (x )的解析式。

相关文档
最新文档