三角形复习课
初中数学_三角形证明的复习教学设计学情分析教材分析课后反思
北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
数学八年级上册《三角形-复习课》教案
三角形三边关系、内角和,多边形的外角和与内角和公式是重点;
教学难点ห้องสมุดไป่ตู้
三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形是难点。
教学方法与手段
教学准备
第一课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、知识结构(师生一起梳理)(5分钟)
探索∠A与∠1+∠2有什么数量关系?并说明理由。
例3如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.
板书设计:
教学小结:
6、三角形的外角和是多少?
n边形的外角和是多少?
你能说明为什么多边形的外角和与边数无关吗?
三、例题导引(15分钟)
例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。
例2如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,
二、回顾与思考(10分钟)
1、什么是三角形?
什么是多边形?
什么是正多边形?
三角形是不是多边形?
1、什么是三角形的高、中线、角平分线?
2、什么是对角线?
三角形有对角线吗?n边形的的对角线有多少条?
4、三角形的三条高,三条中线,三条角平分线各有什么特点?
5、三角形的内角和是多少?n边形的内角和是多少?
你能用三角形的内角和说明n边形的内角和吗?
初中20-20学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
三角形复习课
课型
全等三角形复习课---公开课省公开课获奖课件说课比赛一等奖课件
B E CF
(4)若∠B=∠DEF=90°BC=EF,要以“HL” 为根据, 还缺条件_A_C=_D_F _
= =
二、挖掘“隐含条件”判全等
AD
1.如图(1),AB=DC,AC=DB,
则△ABC≌△DCB吗?说说理由
B 图(1) C
2.如图(2),点D在AB上,点E在AC B
D
上,CD与BE相交于点O,且
B
5.如图在△ ABC、 △ ADE中∠B=∠ED,
D
AC=AE, 且∠CAE=∠ 吗?为何?
解: BC=DE,理由是: ∵ ∠CAE=∠BAD ∴ ∠CAE+ ∠ EAB ∠ =∠BAD + ∠EAB ∴ ∠CAB= ∠EAD 在△ CAB与△ EAD中 ∠CAB= ∠EAD ∠B=∠D
回忆知识点:
➢1、全等图形旳定义是什么?全等三角形旳定 义是什么?
➢2、全等三角形旳性质是什么?
➢3、一般三角形全等旳鉴定有几种定理?分别 是?直角三角形全等旳鉴定有几种定理?分别是?
➢4、角平分线旳性质是什么?角平分线旳鉴定 是什么?
➢4分钟后,比谁能精确旳回答上面旳问题。
本章总结提升
本章知识框架
CAB旳角平分线AE交边CB于E点,过E点作EF⊥AB于
F,已知AB等于10㎝,求△EFB旳周长?
解:∵AE平分∠ CAB ,EF⊥AB于F ,
C
∠ACB=90°∴EC ⊥AC于C
∴CE=FE, 又∵AE=AE, ∴Rt △ACE≌ Rt
E
△AFE(HL)
∟
∴AC=AF, ∴EF+BE=CE+BE=BC=AC=AF,
AB=AC ∠BAF= ∠CAF AF=AF ∴ △ABF≌ △ACF(SAS)∴ BF=CF
初二数学《全等三角形完整复习》课件
全等三角形的对应边相等,对应 角相等。
对应边、对应角关系
对应边关系
在全等的两个三角形中,相等的边互 为对应边。
对应角关系
在全等的两个三角形中,相等的角互 为对应角。
判定方法总结
01
02
03
04
05
SSS判定
SAS判定
ASA判定
AAS判定
HL判定(直角三 角形的…
三边分别相等的两个三角 形全等。
例题
已知三角形ABC中,AB=5cm, AC=3cm,∠BAC=60°,求BC
的长度。
分析
此题考查了全等三角形中的边角 关系,可以通过作辅助线构造全 等三角形,再利用全等三角形的
性质求解。
解答
过点C作AB的垂线,交AB于点D 。在直角三角形ACD中,利用三 角函数求出CD和AD的长度,再 在直角三角形BCD中利用勾股定
1
2
由于△ABC≌△DEF,∠A和∠B的度数已知,因此可 以根据全等三角形的性质求出∠F的度数为180°40°-70°=70°。
3
在△ABC中,因为AB=AC,∠A=36°,所以∠B和 ∠C的度数相等,且它们的和为180°-36°=144°, 因此∠C的度数为144°÷2=72°。
答案解析
解答题解析
似比。
在全等三角形中,对应点之间 的距离相等,而在相似三角形 中,对应点之间的距离成比例
。
06
练习题与答案解析
选择题
下列说法中,正确的 是()
B. 两个等腰直角三角 形一定全等
A. 两个等边三角形 一定全等
选择题
C. 两个直角三角形一定全等 D. 两个全等的等腰直角三角形,它们的腰是对应边
人教版下册四年级数学《复习三角形知识》教案
人教版下册四年级数学《复习三角形知识》
教案
教学目标
- 复习三角形的定义和性质
- 认识不同类型的三角形
- 掌握判断和画出不同类型三角形的方法
教学准备
- 教材:人教版下册四年级数学教材
- 教具:直尺、量角器、彩色铅笔
教学过程
导入
1. 利用多媒体展示图片,让学生回顾三角形的定义和性质。
复习三角形的定义和性质
1. 提问学生对三角形的定义和性质进行回答,鼓励学生积极参
与讨论。
2. 引导学生总结三角形的性质,例如三条边的长度关系、角的
和等于180度等。
认识不同类型的三角形
1. 利用多媒体展示不同类型的三角形图片,如等边三角形、等
腰三角形、直角三角形等。
2. 引导学生观察并讨论不同类型的三角形的特点,例如等边三
角形三条边相等、直角三角形有一个角为直角等。
判断和画出不同类型三角形的方法
1. 引导学生通过观察三角形的边长和角度来判断三角形的类型。
2. 提示学生使用直尺和量角器来画出不同类型的三角形,帮助
他们理解三角形的构成。
拓展练习
1. 分发练习册,让学生自主完成相关练习题,巩固所学的知识。
2. 教师巡视并及时解答学生的疑惑。
总结
1. 总结本节课所学的内容,强调三角形的定义、性质以及不同类型的三角形。
2. 鼓励学生通过课后练习巩固所学知识。
课后作业
1. 完成练习册上的相关练习题。
2. 复习并总结本节课所学的知识。
直角三角形复习课件
除了基本的面积公式外,还可以通过分割法、补形法等技巧来计算 面积。
利用相似三角形进行计算
在某些情况下,可以利用相似三角形的性质来简化计算过程。
05
直角三角形在实际生活中的应用
测量中的应用
确定物体的高度
通过测量影子的长度,利用相似三角 形的性质,可以计算出物体的高度。
计算距离
在航海、航空和地形测量中,利用直 角三角形可以计算出两点之间的距离 。
THANKS
感谢观看
建筑中的应用
建筑设计
在建筑设计中,直角三角形常被用于确定建筑物的比例和稳定性。
结构分析
在建筑结构分析中,利用直角三角形可以计算出结构的承载能力和稳定性。
其他应用
机械制造
在机械制造中,直角三角形被广泛应用 于各种机构的设计和制造中,如齿轮、 链条等。
VS
物理学
在物理学中,直角三角形被广泛应用于力 的合成与分解、速度和加速度的计算等。
毕达哥拉斯定理
在直角三角形中,斜边的 平方等于两直角边的平方 和。
角平分线定理
在直角三角形中,角平分 线将直角分为两个相等的 角。
射影定理
在直角三角形中,直角边 的长度等于斜边与其上高 线的乘积。
判定依据
根据定义
根据角边角法
如果一个三角形有一个角为90度,则 它是直角三角形。
如果两个角和它们所对的边分别相等 ,则它是直角三角形。
03
直角三角形的判定
判定方法
01
02
03
定义法
根据直角三角形的定义, 一个三角形如果有一个角 为90度,则它是直角三角 形。
勾股定理法
如果一个三角形的三边满 足勾股定理,即最长边的 平方等于其他两边的平方 和,则它是直角三角形。
2024年中考数学复习+全等三角形课件
3.(2020·衡阳8分)如图,在△ABC中,∠B=∠C,过BC的中点D作 DE⊥AB,DF⊥AC,垂足分别为点E,F. (1)求证:DE=DF;
证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90° ∵D是BC的中点,∴BD=CD. 在△BED和△CFD中,
∠BED=∠CFD ∠B=∠C
BD=CD
强调:两角一边一定能判定三角形全等
方法指 ----全等常见的判定思路: 引
已知一角一边: 找角的邻边 找边的邻角 找边的对角
已知两边:
找第三边 找夹角 找直角
已知两角: 找夹边
找对边 找第三边
方法指 引
E
全等与图形的变换:
D
F
G 轴对称
直观发现全等
平移
旋转
通过图形的变换, 直观发现全等;发现相等的边、相等的角.
1.(2022·衡阳6分)如图,在△ABC中,AB=AC,D,E是BC边上的 点,且BD=CE.求证:AD=AE.
证明:∵AB=AC, ∴∠B=∠C.
在△ABD和△ACE中,
AB=AC
∠B=∠C
全等五行
∴△BADB=DC≌E △ACE(SAS).
∴AD=AE.
2.(2021·衡阳6分)如图,点A,B,D,E在同一条直线上,AB=DE, AC∥DF,BC∥EF.求证:△ABC≌△DEF.
4.(2018·衡阳6分)如图,线段AC,BD相交于点E,AE=DE,BE=CE. (1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.
(1)证明:在△ABE和△DCE中,
AE=DE
∠AEB=∠DEC
BE=CE
∴△ABE≌△DCE(SAS).
(2)解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
三角形的初步认识复习教案
三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。
2. 提高学生运用三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作精神。
二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。
2. 三角形的性质:三角形的内角和、三角形的边长关系。
3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
4. 三角形的画法:如何准确地画出一个三角形。
5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。
三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。
2. 教学难点:三角形内角和、边长关系的理解和运用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。
2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。
3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。
五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。
3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。
4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。
6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。
2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。
三角形全等的判定定理(复习课)
三角形全等的判定定理(复习课)教学目标全面复习全等三角形及有关性质,掌握三角形全等的判定的四个方法。
能综合运用各种判定方法来证明线段和角相等。
掌握常规的作辅助线的方法。
教学重点综合运用各种判定方法来证明线段和角相等.教学难点常规的作辅助线的方法。
教学方法观察、比较、合作、交流、探索.教学过程一、基础知识复习1、三角形三边关系定理;三角形的内角和以及三角形的外角和的性质。
2、全等三角形的性质;全等三角形对应元素的寻找方法;3、全等三角形的判定(四种方法)。
注意有边边角和角角角是不能用的。
二、讲解新课1、三角形全等的判定定理,实质上只需要三个条件,注意至少有一个条件是边,就能判定两个三角形全等;2、判定两个三角形全等在几何证时中常常不是结论,而通常是通过证明两个三角形全等,证明两条线段相等或两个角相等,这恰是判定两个三角形全等的目的所在课前练习:1、下列说法中,不正确的是()(A)有两角和其中一角的对边对应相等的两个三角形全等(B)面积相等的两个直角三角形全等(C)有一边相等的两个等边三角形全等(D)有两边和其中一边上的中线对应相等的两个三角形全等。
2、如图,在∆ABC中,AB=AC,D、E、F依次是各边的中点,AD、BE、CF相交于G,那么图中的全等三角形共有()(A)5对(B)6对(C)7对(D)8对3、已知:如图,∆ABC中,∠C=90︒,,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,且AB=6CM,则∆DEB的周长为()(A)4 (B)6 (C)10 (D)以上全不对三、巩固与提高1、例题解析例1 已知:如图,在∆ABC中,AD⊥BC于D,BE⊥AC 于E,AD与BE相交于H ,且BH=AC ,求∠HCD 的度数。
AB C D EH例 2、已知:如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,且∠B+∠D=180︒,求证:AE=AD+BD例3、如图,在∆ABC 中∠ACB=90︒,∠BAC=30︒,AD 、CE 分别为∆ABC 的角平分线,AD 、CE 交于点F ,求证:EF=DF A B DCE 1 22、课堂小结3、布置作业 P84 第6题课后反思:。
人教版八年级数学上册第十二章全等三角形复习市公开课获奖课件省名师示范课获奖课件
P27
P27
P27
练习
7:如图,已知,EG∥AF,请你从下面三个条件中,再选出两 个作为已知条件,另一种作为结论,推出一种正确旳命题。 (只写出一种情况)①AB=AC ②DE=DF ③BE=CF
已知: EG∥AF 求证:
A
E
B
G
D
C F
高
拓展题
8.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF. 求证:BC∥EF
▪例5:如图,在△ABC 中,AD⊥ BC,CE⊥ AB,垂足分别为D、E, AD、CE交于点H,请你添加一种合 适旳条件: BE=EH ,使 △AEH≌△CEB。
▪ 例6:求证:三角形一边上旳中线不大于其他两边之和旳二
分已之知一:。如图,AD是△ABC
旳中线,求证:AD
1 2
(
AB
AC)
证明: 延长AD到E,使DE=AD,连结BE
2.点A、F、E、C在同一直线上,AF=CE, BE = DF,BE∥DF,求证:AB∥CD。
证明: AF CE
AE CF
又 BE ∥DF 1 2
又 BE DF
AEB ≌ CFD
A C
AB ∥CD
3、如图:在△ABC中,∠C =900,AD 平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。
知识点
1.全等三角形旳性质: 相应边、相应角、相应线段相等,周长、面积也相等。
2.全等三角形旳鉴定: ①一般三角形全等旳鉴定:
SAS、ASA、AAS、SSS
②直角三角形全等旳鉴定:
SAS、ASA、AAS、SSS、HL
知识点
3.三角形全等旳证题思绪:
《三角形复习课》教案
举例:若两个三角形的三组对应边分别相等,则这两个三角形全等。
2.教学难点
(1)三角形内角和定理的应用:如何运用内角和定理解决实际问题,如求三角形未知角度等。
举例:已知三角形的两个内角,求第三个内角。
1.教学重点
(1)三角形的性质:熟练掌握三角形的定义、分类及性质,特别是三角形的内角和定理、三边关系。
举例:三角形内角和形与等边三角形的判定与性质:区分等腰三角形与等边三角形,了解它们的性质及应用。
举例:等腰三角形两腰相等,等边三角形三边相等,且对应角相等。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《三角形复习课》教案
一、教学内容
《三角形复习课》教案
本节课我们将复习人教版八年级数学下册第七章《三角形》的相关内容。主要包括以下知识点:
1.三角形的定义、分类及性质;
2.三角形的内角和定理;
3.三角形的三边关系;
4.等腰三角形的性质与判定;
5.等边三角形的性质与判定;
6.三角形全等的条件与性质;
7.直角三角形的性质与判定。
4.培养学生的数学建模素养,通过等腰三角形、等边三角形和全等三角形的性质学习,使学生能够构建数学模型,解决相关问题。
解直角三角形(复习课)课件
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B E C
14.△ABC中 14.△ABC中,∠ABC的平分线BD和 ABC的平分线BD和 的平分线BD ABC的外角平分线CD交于 的外角平分线CD交于D △ABC的外角平分线CD交于D, 求证: 求证:∠A=2∠BDC
A D
B
C
E
15.如图, 15.如图,D、E为△ABC内的两点 如图 ABC内的两点 求证:AB+AC﹥BD+DE+ 求证:AB+AC﹥BD+DE+EC A
练习: 练习: 1.直角三角形的两锐角的关系 直角三角形的两锐角的关系_______ 1.直角三角形的两锐角的关系_______ 2.直角三角形的两个锐角的平分线的 2.直角三角形的两个锐角的平分线的 夹角是 . 3.三角形ABC中 三角形ABC B=∠C=2∠A, 3.三角形ABC中,∠B=∠C=2∠A, 则∠B= ,∠A=_______ 4.在 ABC中 已知: ∠A: 4.在△ABC中 已知: ∠A:∠B:∠C =1: 3,则三角形是____三角形 则三角形是____三角形; =1:2:3,则三角形是____三角形; 若 A+∠B=∠C,则此三角形是________ ∠A+∠B=∠C,则此三角形是________ 三角形
8.已知:三角形ABC中,∠C=∠ABC 8.已知:三角形ABC中 已知 ABC =2∠A,BD是AC边上的高 边上的高, =2∠A,BD是AC边上的高,则∠DBC=
_______
9.叙述并证明三角形的内角和定理。 叙述并证明三角形的内角和定理。 叙述并证明三角形的内角和定理
10.如图,已知DE分别交△ABC的边AB、 10.如图,已知DE分别交△ABC的边AB、 如图 DE分别交 的边AB O AC于 BC的延长线于 的延长线于F AC于D、E,交BC的延长线于F,∠B=67 , 0 0 ∠ACB=74 ,∠AED=48 ,则 ∠BDF=________
5.( 5.(1)在直角三角形中,一个锐角是 在直角三角形中, 30° 则另一个锐角的外角是______ 30°,则另一个锐角的外角是______ (2)直角三角形的一个锐角是另一个锐 角的3 这两个锐角分别是______ 角的3倍,这两个锐角分别是______ (3 三角形的一个外角等于与相邻内角的4 )三角形的一个外角等于与相邻内角的4 等于与它不相邻的一个内角的2 倍,等于与它不相邻的一个内角的2倍, 则三角形的各角的度数是___ 则三角形的各角的度数是___
6.在△ABC中,最大角A是最小角C的3倍,且 6.在 ABC中 最大角A是最小角C 的差等于∠ 的差, ∠A 与∠B的差等于∠B与∠C 的差,则 ∠A= ,∠B= ,∠C=_____; 7.在 ABC中 已知:3∠A=∠C,3∠B=2∠C, 7.在△ABC中,已知:3∠A=∠C,3∠B=2∠C, ABC是 三角形; 则 △ABC是 三角形;
A D B E C F
11. 已知:P是三角形 已知: 是三角形 是三角形ABC内 内 任意一点 求证: 求证:∠BPC>∠A >
A P
B
12.如图:求证: 12.如图:求证:∠A+∠B+∠C=∠ADC 如图
A D B C
C
13.如图: 13.如图:D是△ACB的外角平分线 如图 ACB的外角平分线 CD与BA的延长线的交点 的延长线的交点, CD与BA的延长线的交点, 求证: BAC> 求证:∠BAC>∠B
D B E C
16.已知:三角形ABC的 16.已知:三角形ABC的∠B、∠C的 已知 ABC 平分线交与点O 平分线交与点O。 1 求证: BOC=90° 求证:∠BOC=90°+ ∠A
2
三角形复习课
回顾一: 回顾一: 1.三角形的定义 三角形的定义 2. 三角形的三条重要线段: 三角形的三条重要线段: 三角形的角平分线、中线、高线 三角形的角平分线、中线、 3. 三角形按边的分类 4.三角形三边关系定理及推论 三角形三边关系定理及推论
练习: 练习: 1.已知等腰三角形的两边长分别为10 1.已知等腰三角形的两边长分别为10 已知等腰三角形的两边长分别为 则三角形的周长为________ 和6,则三角形的周长为________ 2.等腰三角形的两边和与差分别为 等腰三角形的两边和与差分别为16 2.等腰三角形的两边和与差分别为16 8,则此三角形的周长为 则此三角形的周长为______ 和8,则此三角形的周长为______ 3.以线段 以线段3 为边组成三角形, 3.以线段3、4、x-5为边组成三角形, 那么x的取值范围是_________ 那么x的取值范围是_________ 4.若三角形的两边长分别为 若三角形的两边长分别为4 4.若三角形的两边长分别为4、a a>0),则第三边的取值范围是____ (a>0),则第三边的取值范围是____
5.两根木棒长分别为5 5.两根木棒长分别为5和7,要选择第三 两根木棒长分别为 根木棒,将它们钉成一个三角形, 根木棒,将它们钉成一个三角形,如 果第三根木棒长为偶数, 果第三根木棒长为偶数,则第三根木 棒的取值情况有___种 棒的取值情况有___种 ___ 6.等腰三角形的周长为 18 厘米 , 若腰长 等腰三角形的周长为18 厘米, 等腰三角形的周长为 18厘米 是底边的2倍,则三边的长分别 是 、 、 若已知其中一 边的长为4厘米,则其它两边的长 为 、____
7.如图: 7.如图:0为△ABC内一点,求证: 如图 ABC内一点,求证: 内一点 1 OC﹥ +BC) (1)OB +OA +OC﹥ 2 (AB +AC +BC) OB+OC< (2)OB+OC<AB+AC OA+OB+OC< (3)OA+OB+OC<AB+BC+AC
A
0 B C
回顾二: 回顾二: 1.锐角三角形 钝角三角形、 锐角三角形、 1.锐角三角形、钝角三角形、直角三 角形定义 2.三角形的外角的定义 2.三角形的外角的定义 3.三角形内角和定理及推论 三角形内角和定理及推论1 3.三角形内角和定理及推论1、2、3 4.三角形按角的分类 4.三角形按角的分类