考研数学高数极限如何计算?

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限”

2020年考研高数知识点:极限中的“极限”说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,能够出选择题也能够出填空题,更能够出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极限的形式给出的。

第一,极限的定义。

理解数列极限和函数极限的定义,记住其定义。

第二,极限的性质。

性,有界性,保号性和保不等式性要理解,重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在做题目的时候能够看看什么情况下利用了极限的保号性,例如:题目中有一点的导数大于零或者小于零,或者给定义数值,能够根据这个数值大于零或小于零,像这样的情况,就能够写出这个点的导数定义,利用极限的保号性,得出相对应的结论,切记要根据题目要求来判断是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。

第三,极限的计算。

这个部分是重中之重,这也是三大计算中的第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会计算不同类型的极限计算。

首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定义求极限。

其次还要掌握每一种极限计算的注意事项及拓展,比如:四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷形式的,分别抓分子和分母的次计算结果即可),等价无穷小替换中要掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替换,并且要验证在x趋于某一变化过程中f(x)会否趋近于零,满足则能够利用推广后的等价无穷替换公式,否则不能。

极限计算方法总结

极限计算方法总结

极限计算方法总结极限是微积分的重要概念,它在数学和物理学中有着广泛的应用。

在学习极限的过程中,我们需要掌握一些常用的计算方法,以便能够准确地求解各种类型的极限问题。

下面我将对常见的极限计算方法进行总结,希望能够对大家的学习有所帮助。

1. 代入法。

代入法是求解极限最直接的方法之一。

当我们计算极限时,如果能够将极限中的变量替换为一个确定的数值,就可以直接求出极限的值。

例如,对于极限lim(x→2)(x^2+3x-2),我们可以直接将x替换为2,得到4+6-2=8。

这种方法适用于一些简单的极限计算,但对于一些复杂的极限问题并不适用。

2. 因子分解法。

当极限中存在多项式或根式时,我们可以尝试使用因子分解法来简化计算过程。

通过对多项式进行因子分解或有理化,可以将极限转化为更简单的形式,从而更容易求解。

例如,对于极限lim(x→1)((x^2-1)/(x-1)),我们可以将分子进行因子分解得到lim(x→1)((x+1)(x-1)/(x-1)),进而化简为lim(x→1)(x+1),最终得到极限的值为2。

3. 夹逼定理。

夹逼定理是一种常用的极限计算方法,它适用于求解一些复杂的极限问题。

夹逼定理的核心思想是通过构造两个函数,使得它们的极限值相等,并且夹住待求极限的函数,从而得到待求极限的值。

这种方法常用于证明极限存在或不存在的问题,也可以用来求解一些特殊的极限。

例如,对于极限lim(x→0)(sinx/x),我们可以构造两个函数f(x)=sinx和g(x)=x,然后利用夹逼定理得到lim(x→0)(sinx/x)=1。

4. 洛必达法则。

洛必达法则是一种常用的求解不定型极限的方法。

当计算极限时遇到不定型形式0/0或∞/∞时,可以尝试使用洛必达法则来简化计算过程。

该法则的核心思想是对极限中的分子和分母分别求导,然后再计算极限,从而得到原极限的值。

例如,对于极限lim(x→0)(sinx/x),我们可以对分子sinx和分母x分别求导,得到cosx和1,然后再计算极限,最终得到极限的值为1。

高等数学极限求法总结

高等数学极限求法总结

高等数学极限求法总结高等数学极限求法总结极限的判断定义是:单调递增有上界则有极限,单调递减有下界则有极限。

下面是小编整理的高等数学极限求法总结,希望对你有帮助!函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。

掌握这类证明对初学者深刻理解运用极限定义大有裨益。

限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x时的极限。

1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。

方能利用极限四则运算法则进行求之。

不满足条件者,不能直接利用极限四则运算法则求之。

但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。

而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。

例 1 求 lim( x 2 3x + 5).x→ 2解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5= (lim x) 2 3 lim x + lim 5= 2 2 3 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

一般用在求导后为零比零或无穷比无穷的类型。

利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f(x)/F(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f(x)/F(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx) = 1 / (cosx)^2(x) = 1原式 = lim 1/(cosx)^2当 x --> 0 时,cosx ---> 1原式 = 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:① 分子、分母为无穷小,即极限为 0 ;② 分子上取正弦的角必须与分母一样。

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。

通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。

求函数极限的方法有很多种,以下是几种常见的方法。

对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。

例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。

当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。

例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。

洛必达法则是求未定式极限的重要方法。

如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。

例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。

对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。

通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。

例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。

夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。

如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。

例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。

[整理]考研数学:求数列极限的方法总结

[整理]考研数学:求数列极限的方法总结

2016考研数学:求数列极限的方法总结
极限是考研数学高数第一章的内容,在考研数学中占有一定的比例,一般有几分到二十分左右的分值。

极限一般有数列极限和函数极限,求数列极限和函数极限的方法很多,有些方法也可以使二者联系起来。

下面中公考研的数学教研老师总结了几种求数列极限的方法,后续会给出求函数极限的方法总结,希望能帮助同学们掌握求极限的方法。

1、定义法
2、利用奇子列和偶子列的极限
一般在选择题中出现,不常考。

3.夹逼准则(两面夹法则)
4、单调有界定理
单调递增有上界,数列极限存在;单调递减有下界,数列极限存在。

5.海涅定理(归结原则)
6、定积分的定义
7、利用级数收敛的必要条件
以上就是几种常用的求数列极限的方法,希望同学们务必重点掌握,在做题的过程中能熟练运用。

考研高数总复习函数的极限(讲义)PPT课件

考研高数总复习函数的极限(讲义)PPT课件
无穷小是函数极限的必要条件,即如果函数在某点的极限存在,那么函数在该点的值必定是无穷小。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。

极限计算方法总结

极限计算方法总结

千里之行,始于足下。

极限计算方法总结极限计算是微积分中的基本概念之一,通过求极限可以揭示函数的性质和趋势,进而在数学和其他学科中发挥重要作用。

本文将总结一些常见的极限计算方法,包括取极限法、洛必达法则、泰勒开放、夹逼定理、变量替换等。

1. 取极限法取极限法是最基本的极限计算方法之一。

通过取自变量趋于某个特定值,可以得到极限的值。

常见的取极限法包括代入法、分解法、分子有理化法、乘法结合法等。

例如,要求函数f(x) = (x^2 - 1) / (x - 1)在x趋于1时的极限,可以通过代入法得到f(1)的值,即1。

因此,f(x)在x趋于1时的极限为1。

2. 洛必达法则洛必达法则是一种常用的求极限法则,适用于形如0/0或无穷小/无穷小的极限。

依据洛必达法则,只需对分子和分母同时求导,然后再取极限即可。

假如得到的极限仍旧是0/0或无穷小/无穷小的形式,则可以重复应用洛必达法则。

例如,要求极限lim(x->0) (sin x / x),可以对分子和分母同时求导,得到lim(x->0) (cos x / 1) = cos 0 = 1。

3. 泰勒开放泰勒开放是一种将函数在某个点四周开放的方法,用来将简单的函数近似为简洁的多项式。

依据泰勒开放定理,可以将函数f(x)在点x=a处开放为无穷级数。

通过截取这个级数的前几项,可以近似计算函数在该点四周的值和极限。

例如,要求极限lim(x->0) (sin x / x),可以用泰勒开放公式sin x = x -第1页/共2页锲而不舍,金石可镂。

x^3/3! + x^5/5! + O(x^6)近似,得到lim(x->0) (x - x^3/3! + x^5/5! +O(x^6)) / x = 1 - x^2/3! + x^4/5! + O(x^5),当x趋近于0时,高阶无穷小项O(x^5)可以忽视,得到极限为1。

4. 夹逼定理夹逼定理是一种通过夹逼的方法来计算极限的方法。

极限计算方法

极限计算方法

极限计算方法极限计算方法是微积分中的重要内容,它在求解函数的极限、导数和积分等方面起着至关重要的作用。

在实际应用中,我们经常需要利用极限计算方法来解决各种问题,因此对极限计算方法的掌握至关重要。

本文将对极限计算方法进行介绍和讨论,希望能够帮助读者更好地理解和应用这一重要的数学工具。

首先,我们来介绍一下极限的概念。

在数学中,极限是指当自变量趋于某个数值时,函数的取值趋于某个确定的数。

通俗地讲,就是函数在某一点附近的取值情况。

极限的计算方法有很多种,比如利用代数运算、夹逼定理、洛必达法则等。

在实际应用中,我们需要根据具体的情况选择合适的方法来计算极限,以便更准确地求解问题。

接下来,我们来讨论一下极限的计算技巧。

在计算极限时,我们需要注意以下几点,首先,要注意分式的化简,有时候可以通过分子有理化或者通分等方法来简化计算;其次,要注意利用夹逼定理,这是一种非常重要的极限计算方法,特别适用于求解一些复杂的极限;最后,要注意灵活运用洛必达法则,这是求解不定型极限时常用的方法,可以大大简化计算过程。

除了上述方法外,还有一些其他的极限计算技巧,比如利用无穷小量、泰勒展开等方法来计算极限。

这些方法在不同的情况下都能发挥重要的作用,我们需要根据具体的问题选择合适的方法来计算极限,以便更准确地求解问题。

在实际应用中,极限计算方法经常与导数和积分等概念联系在一起。

导数和积分是微积分中的两个重要内容,它们与极限有着密切的联系。

通过极限计算方法,我们可以求解函数的导数和不定积分,从而更好地理解函数的性质和变化规律。

因此,对极限计算方法的掌握对于学习导数和积分等内容至关重要。

总之,极限计算方法是微积分中的重要内容,它在数学理论和实际应用中都具有重要的作用。

通过对极限计算方法的学习和掌握,我们可以更好地理解和应用微积分的相关知识,从而更好地解决实际问题。

希望本文对读者能够有所帮助,让大家能够更好地理解和应用极限计算方法。

极限的概念和计算方法

极限的概念和计算方法

极限的概念和计算方法极限是微积分中的核心概念之一,它可以描述一个函数在某一点附近的行为特征。

本文将介绍极限的基本概念,并探讨一些常见的计算方法。

一、极限的概念在数学中,极限可以理解为一个函数在某一点趋于某个值(通常为无穷大或无穷小)。

为了准确定义极限,我们引入以下定义:设函数f(x)在x=a的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋于a时的极限为L,记作:lim(x→a) f(x) = L这个定义可以形象地理解为:当自变量x足够靠近a时,函数f(x)的取值趋近于L。

二、极限的计算方法1. 代入法最简单的计算极限的方法就是利用代入法。

当函数在某一点a的确有定义时,我们可以直接将a带入表达式中计算函数的值。

例如,要计算函数f(x)=2x^2+3x-1在x=2处的极限,我们可以代入x=2,得到:f(2) = 2(2)^2 +3(2)-1 = 15因此,lim(x→2) f(x) = 15。

2. 分解因式法有时候我们可以通过分解因式的方法来简化极限的计算。

例如,要计算函数f(x)=(x^2-4)/(x-2),我们可以将分子因式分解得到:f(x) = (x+2)(x-2)/(x-2)若x≠2,则可以化简为:f(x) = (x+2)因此,lim(x→2) f(x) = 4。

3. 极限的性质极限满足一些基本的性质,利用这些性质可以简化计算过程。

以下是一些常见的性质:a) 常数性质:lim(x→a) c = c,其中c为常数。

b) 乘法性质:lim(x→a) cf(x) = c·lim(x→a) f(x),其中c为常数。

c) 和差性质:lim(x→a) [f(x)±g(x)] = lim(x→a) f(x) ± lim(x→a)g(x)。

d) 乘积性质:lim(x→a) [f(x)·g(x)] = lim(x→a) f(x) · lim(x→a)g(x)。

考研 高数 极限运算法则

考研 高数 极限运算法则
( x →∞ )
0
( x →∞ )
0
那末 lim f ( x )存在, 且等于 A.
x → x0 ( x→∞ )
准则Ⅰ和准则Ⅰ`称为两边夹原理.
杨 树 文
*利用两边夹关键在于构造不等关系式
网 络 高 等 数 学 教 程

求 lim (
n→ ∞
1 n +1
2
+
1 n +2
2
+L+
1 n +n
2
).
1 1 n n < +L+ < , 解 Q 2 2 2 2 n +n n +1 n +n n +1
则 lim f ( g ( x)) = lim f (lim g ( x)) = A
x →a u →b x→a x →a u →b
例: limsin(sin x)) = limsin x = 0
x →0 x →0
幂指函数的极限运算
f ( x) → A > 0, g ( x) → B, 则f ( x) g ( x ) → AB
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小,然后再求极限.
杨 树 文
网 络 高 等 数 学 教 程
例5 解
1 2 n 求 lim ( 2 + 2 + L + 2 ). n→ ∞ n n n
n → ∞时, 是无穷小之和. 先变形再求极限.
1 2 n 1+ 2 +L+ n lim ( 2 + 2 + L + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n

2022考研数学讲解之求极限的11种方法

2022考研数学讲解之求极限的11种方法

例 13
求极限
ax ax 2
lim
,
x0
x2
(a 0).
【解】 a x e x ln a 1 x ln a x 2 ln 2 a ( x 2 ) , 2
a x 1 x ln a x 2 ln 2 a ( x2 ) ; 2
a x a x 2 x 2 ln 2 a ( x 2 ).
(Ⅰ)证明
lim
n
xn
存在,并求该极限;
1
(Ⅱ)计算
lim
n
xn1 xn
xn2
.
【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列
极限的存在.
【详解】 (Ⅰ)因为 0 x1 ,则 0 x2 sin x1 1 .
可推得 0 xn1 sin xn 1 , n 1, 2,,则数列xn 有界.
2
例 8:求极限 lim sin x x x0 tan3 x
【解】 lim sin x x
lim sin x x
lim
cos x 1 lim
1 2
x2
1
x0 tan3 x x0
x3
x0 3x 2
x0 3x 2
6
6.用罗必塔法则求极限
例 9:求极限 lim ln cos 2x ln(1 sin 2 x)
1 cosx ~ 1 x2 , 1 axb 1 ~ abx ;
2 (2) 等价无穷小量代换,只能代换极限式中的因.式.;
(3)此方法在各种求极限的方法中应.作.为.首.选.。
例 7:求极限 lim x ln(1 x) x0 1 cos x
【解】
lim x ln(1 x) lim x x 2 . x0 1 cos x x0 1 x2

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件。

是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。

首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。

另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞∙0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

2021考研高数大纲要求之求数列极限的方法总结

2021考研高数大纲要求之求数列极限的方法总结

2021考研高数大纲要求之求数列极限的方法总结策划:2021年考研大纲及解析专题极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键.极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数. 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下.极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法.四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限.与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.下面我们重点讲一下数列极限的典型方法.重要题型及点拨1.求数列极限求数列极限可以归纳为以下三种形式.★抽象数列求极限这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证.★求具体数列的极限,可以参考以下几种方法:a.利用单调有界必收敛准则求数列极限.首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值.b.利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.★求n项和或n项积数列的极限,主要有以下几种方法:a.利用特殊级数求和法如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.b.利用幂级数求和法若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.c.利用定积分定义求极限若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限.d.利用夹逼定理求极限若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.。

极限—计算的技巧

极限—计算的技巧

极限—计算的技巧极限是数学中的重要概念,它描述了一个函数在一些点附近的行为。

计算极限时,我们常常需要运用一些技巧和方法来简化问题,使计算过程更加简洁和有效。

本文将介绍一些常用的计算极限的技巧。

1.代入法代入法是计算极限时最常用的方法之一、它的基本思想是将极限中的变量替换为一个接近极限值的数,然后计算函数在该数附近的取值。

这样可以有效地简化问题,尤其是当函数在该点处连续时,代入法特别有效。

例如,计算极限lim(x→1) (x^2 - 1) / (x - 1)。

由于分子分母都包含了x - 1,所以我们可以将(x^2 - 1) / (x - 1)简化为x + 1、代入x = 1,我们得到lim(x→1) (x^2 - 1) / (x - 1) = 22.分子分母因式分解当极限的分子和分母存在公因式时,可以使用因式分解来简化问题。

这样可以消去公因式,进一步简化计算过程。

例如,计算极限lim(x→3) (x^2 - 9) / (x - 3)。

我们可以将分子因式分解为(x + 3)(x - 3),然后可以消去(x - 3)这个公因式。

最终得到lim(x→3) (x^2 - 9) / (x - 3) = lim(x→3) (x + 3) = 63.合并同类项合并同类项是用于处理多项式极限的常用技巧。

当极限中的多项式存在同类项时,我们可以将它们合并为一个单独的项,从而简化计算过程。

例如,计算极限lim(x→2) (x^3 - 8x^2 + 16x - 32) / (x - 2)。

我们可以将分子合并为(x - 2)^3,并得到lim(x→2) (x^3 - 8x^2 +16x - 32) / (x - 2) = lim(x→2) (x - 2)^2 = 0。

4.分数的化简当极限中存在分数时,我们可以尝试将分数进行化简,从而使计算更加简洁。

例如,计算极限lim(x→∞) (2x - 3) / (3x + 1)。

我们可以将分数进行化简,得到lim(x→∞) 2/3 = 2/35.利用极限性质极限具有一些性质,我们可以利用这些性质来简化计算。

考研数学高数求极限的复习方法及常考题型

考研数学高数求极限的复习方法及常考题型

考研数学高数求极限的复习方法及常考题型考研数学高数求极限的复习方法及常考题型极限可以说是高数的重点,是每年都必考的一个知识点,复习高数的时候,求极限大家一定要多理解多做题。

店铺为大家精心准备了考研数学高数求极限的复习参考资料,欢迎大家前来阅读。

考研数学高数求极限的16个方法及常考题型解决极限的方法如下:1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与函数相乘的时候,一定要注意这个方法。

关于极限的若干种计算方法

关于极限的若干种计算方法

关于极限的若干种计算方法本文将极限的几种计算方法介绍如下: 一 代入求值法:这种方法只适用于在0x 点连续的函数求极限。

例1、计算3121lim 1x x x x →-+-解:321()11x x F x x x -+==+ 在处有定义且连续, 331212111lim 1111x x x x →-+⨯-+∴==++ 例2、计算:22ln lim sin x x x x → 2222l n 2l n 24l n:l i ms i n s i n 2s i n 2x x x x →==解 二 倒数法:这种方法是利用无穷小量与无穷大量的关系来处理的。

例3、2232lim 531n n n n n →∞-++-解:因为分子分母的极限均不存在,故不能运用商的极限运算法则,可先将分子分母分别除以2n ,然后取极限。

于是2222123323lim lim 3153155n n n n n n n n n n→∞→∞-+-+==+-+- 例4、求2143lim 54x x x x →--+解:因为分母极限为零,分子极限不为零,故先考虑1()f x 的极限。

因为 21540l i m 0431x x x x →-+==-所以 2143lim54x x x x →-=∞-+(无穷小量的倒数是无穷大量。

)例5、计算111lim[]1335(21)(21)n n n →∞+++⋅⋅-+解:由于极限的运算法则不适用于无限和的情形,故本题宜先求和,再求极限。

因为1111()(21)(21)22121k k k k =--+-+所以 111lim[]1335(21)(21)n n n →∞+++⋅⋅-+111111111lim[()()()]21323522121111lim[]22(21)2n n n n n →∞→∞=-+-++--+=-=+利用倒数法可得如下结论:111001011()lim 0()(,,00)()m m m n n x n n a m n b a x a x a x a m n m n a b b x b x b x b m n ---→∞-⎧=⎪⎪+++⎪=<≠≠⎨++++⎪∞>⎪⎪⎩m 0为自然数 三 化积约分法:有些函数()f x 在0x x =处无定义,这时不能用代入求值法求极限,但当0x x =时,()f x 的极限存在与否与()f x 在点0x 处是否有定义无关,所以常将()f x 先作适当变形,如分解因式约去极限为零的分母等,转化为在0x x =处有定义的新函数()g x ,再用代入求值法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限是考研数学每年必考的内容,分值在10分左右。

极限的计算是考研数学的重难点,现中公考研数学老师分别从涉及的知识点、考查方式、计算常规方法、求解步骤、2015年真题链接等六个方面进行分析。

一、涉及的知识点及考查形式
可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。

其中,二重极限难度较大。

极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。

如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。

二、计算方法
函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。

数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。

其中前三者用于求数列极限,最后一个是用于证明数列极限存在。

其中,四则运算、两个重要极限作为最基本的知识,不列入常规方法中。

三、求解步骤及历年真题解析
极限中有7种未定型,有了这7种未定型,极限的求解步骤就变得极为简单。

第一步,定型,确定极限是7种未定型中哪一类型。

第二步,化简,主要方法是根式有理化、非零因子提前算出、加减部分的极限存在要提前算出、等价无穷小替换等。

第三步,定法,主要是应用函数极限和数列极限的常规方法进行求解。

其中第一步与第二步的顺序是相对的,可以先化简再定型。

四、小结
极限相关的基本概念和基本理论是极限复习的重点,而计算方法是极限复习也是得分的关键。

基本概念和基本理论理解透了,才能正确使求极限的方法进行求解。

在求极限的过程中,需要注意计算方法、理论所使用的条件,尤其是等价无穷小替换的条件。

相关文档
最新文档