平面向量的线性运算(二)(人教A版)

合集下载

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

第1节平面向量的概念及线性运算考试要求1。

了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。

掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。

规定:0与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。

[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。

中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。

错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。

人教A版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算 (2)

人教A版高考总复习一轮数学精品课件 第七章 平面向量、复数 第一节 平面向量的概念及线性运算 (2)
第七章
第一节 平面向量的概念及线性运算




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.通过力和力的分析等实例,了解向量的实
际背景,理解平面向量和相等向量的含义,
1.平面向量
理解向量的几何表示.
的有关概念
2.通过实例,掌握向量的加、减运算,并理解 2.平面向量
其几何意义.
+

4
2
4
4
A.
=
1
1
+ 2
2
=
1
1
+ 4
2
3
1

+

,所以
4
4
=
3

4
=
1
+
2
1
− 4 ,故选
方法总结平面向量的线性运算的求解策略
对点训练 2(2021 广东梅州二模)设 P 是△ABC 所在平面内的一点, +
=2,则(
)
A. + =0
B. + =0
C. + =0
D. + + =0
答案 B
解析 + =2移项得 + -2=0, − + − = +
=0.故选 B.
考向2.向量加、减运算的几何意义
典例突破
例3.设非零向量a,b满足|a+b|=|a-b|,则(
满足=3 ,CD 与 AE 交于点 M.若=x +y ,则 x+y=(
5
A.2

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算
当λ<0时,λa的方向与a的方向 相反 ; λ(a+b)=_λ_a_+__λ_b_
当λ=0时,λa=__0__
知识梳理
3.向量共线定理 向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使 b=λa .
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最 后一个向量终点的向量,即A—1→A2+A—2→A3+A—3→A4+…+—A—n-—1A→n =A—1→An,特 别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若 F 为线段 AB 的中点,O 为平面内任意一点,则O→F=12(O→A+O→B).
常用结论
3.若 A,B,C 是平面内不共线的三点,则P→A+P→B+P→C=0⇔P 为△ABC 的重心,A→P=13(A→B+A→C). 4.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ ) (2)若向量a与b同向,且|a|>|b|,则a>b.( × )
√B.A→M+M→B+B→O+O→M=A→M
C.A→B+B→C-A→C=0 D.A→B-A→D-D→C=B→C
教材改编题
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=-__13__.
由题意知存在k∈R,
使得a+λb=k[-(b-3a)],
所以λ1==-3kk,,
解得k=13, λ=-13.
知识梳理
2.向量的线性运算 向量运算 法则(或几何意义)
运算律
加法
交换律:a+b= b+a ; 结合律:(a+b)+c=_a_+__(_b_+__c)_

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案
答案A
1.(配合例2使用)已知P为△ABC所在平面内一点, + + =0,| |=| |=| |=2,则△ABC的面积等于( )
A. B.2
C.3 D.4
解析由| |=| |得,△PBC是等腰三角形,取BC的中点为D,则PD⊥BC,又 + + =0,所以 =-( + )=-2 ,所以PD= AB=1,且PD∥AB,故AB⊥BC,即△ABC是直角三角形,由| |=2,PD=1可得| |= ,则| |=2 ,所以△ABC的面积为 ×2×2 =2 。故选B。
三角形法则
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=(λμ)a;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或称模)
平面向量是自由向量
零向量
长度为零的向量,其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的单位向量为±
平行向量
方向相同或相反的非零向量
0与任一向量平行或共线
共线向量
方向相同或相反的非零向量,又叫做共线向量
相等向量
长度相等且方向相同的向量
答案(1)A(2)D
考点三共线定理及应用微点小专题
方向1:共线定理
【例3】已知e1,e2是两个不共线的向量,若a=2e1-e2与b=e1+λe2共线,则λ=( )

2019-2020学年新人教A版必修二 平面向量的概念 知识点经典练习

2019-2020学年新人教A版必修二  平面向量的概念    知识点经典练习

名称定义向量既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或称模) 零向量长度为零的向量叫作零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行向量表示两个向量的有向线段所在的直线平行或重合,则这两个向量叫作平行向量,平行向量又叫共线向量.规定:0与任一向量平行相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量易误提醒1.对于平行向量易忽视两点:(1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件.2.单位向量的定义中只规定了长度没有方向限制.[自测练习]1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:若a与b都是零向量,则a=b,故选项C正确.答案:C2.若m∥n,n∥k,则向量m与向量k( )A.共线B.不共线C.共线且同向D.不一定共线解析:可举特例,当n=0时,满足m∥n,n∥k,故A,B,C选项都不正确,故D 正确.答案:D向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律: (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb易误提醒1.作两个向量的差时,要注意向量的方向是指向被减向量的终点. 2.数乘向量仍为向量只是模与方向发生变化,易认为数乘向量为实数.[自测练习]3.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( ) A.AB →+AC →=BC →B.AB →=12BC →+DA →C.AD →-DC →=AC → D .2CD →+BA →=CA →解析:本题考查向量的线性运算.A 错,应为AB →+AC →=2AD →;B 错,应为12BC →+DA →=BD →+DA →=BA →;C 错,应为AC →=AD →+DC →;D 正确,2CD →+BA →=CB →+BA →=CA →,故选D.答案:D知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 易误提醒1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 2.要注意向量共线与三点共线的区别与联系. 必记结论 三点共线等价关系:A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[自测练习]4.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13考点一 向量的基本概念|1.已知a ,b ,c 是任意向量,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ∥b ,则a ,b 方向相同或相反; ③若a =-b ,则|a |=|b |;④若a ,b 不共线,则a ,b 中至少有一个为零向量,其中正确命题的个数是( ) A .4 B .3 C .2D .1解析:按照平面向量的概念逐一判断.若b =0,则①②都错误;若a =-b ,则|a |=|b |,③正确;若a ,b 不共线,则a ,b 中一定没有零向量,④错误,所以正确命题只有1个.答案:D2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a ,b 共线且方向相反,因此当向量a ,b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A中向量a ,b 的方向相同,选项B 中向量a ,b 共线,方向相同或相反,选项C 中向量a ,b 的方向相反,选项D 中向量a ,b 互相垂直,故选C.答案:C解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.考点二 平面向量的线性运算|(1)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →[解析] 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.[答案] A(2)(2015·东北三校联考(二))已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________. [解析] 因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB→-CA →)=13CA →+23CB →,所以λ=23.[答案]3平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.1.设O 为△ABC 内部的一点,且OA →+OB →+2OC →=0,则△AOC 的面积与△BOC 的面积之比为( )A.32 B.53 C .2D .1解析:取AB 的中点E ,连接OE ,则有OA →+OB →+2OC →=2(OE →+OC →)=0,OE →+OC →=0,所以E ,O ,C 三点共线,所以有△AEO 与△BEO 面积相等,因此△AOC 的面积与△BOC 的面积之比为1,故选D.答案:D考点三 共线向量定理的应用|设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [解析] 由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.[答案]21.共线向量定理的应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB→=λAC→,则A、B、C三点共线.2.设两个非零向量e1和e2不共线.(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A,C,D三点共线;(2)如果AB→=e1+e2,BC→=2e1-3e2,AF→=3e1-k e2,且A,C,F三点共线,求k的值.解:(1)证明:AB→=e1-e2,BC→=3e1+2e2,∴AC→=AB→+BC→=4e1+e2,又CD→=-8e1-2e2,∴CD→=-2AC→,∴AC→与CD→共线.又∵AC→与CD→有公共点C,∴A,C,D三点共线.(2)∵AB→=e1+e2,BC→=2e1-3e2,∴AC→=AB→+BC→=3e1-2e2.∵A,C,F三点共线.∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.13.方程思想在平面向量呈线性运算中的应用【典例】 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.[思路点拨] (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然OM →能用a ,b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. [解] 设OM →=m a +n b ,则AM →=OM →-OA →=m a +m b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A ,M ,D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C ,M ,B 三点共线, ∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .[方法点评] (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是,找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A ,M ,D 三点共线和B ,M ,C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[跟踪练习] 如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG→=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.答案:6课时跟踪检测 A 组 考点能力演练1.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.答案:C2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( ) A.23OA →-13OB → B .-13OA →+23OB →C .2OA →-OB →D .-OA →+2OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA →+OB →=0,所以OC →=2OA →-OB →,故选C.答案:C3.已知在△ABC 中,M 是BC 的中点,设CB →=a ,CA →=b ,则AM →=( ) A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a .答案:A4.(2015·海淀期中)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =( )A .2B .-2C .1D .-1解析:AC →=AB →+BC →=AB →+32BD →=AB →+32(AD →-AB →)=-12AB →+32AD →,则m =-12,n=32,所以m -n =-2. 答案:B5.若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a +b )三个向量的终点在同一条直线上,则t =( )A.12 B .-12C .2D .-2 解析:设OA →=a ,OB →=t b ,OC →=13(a +b ),则AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t a -a .要使A ,B ,C 三点共线,只需AC →=λAB →,即-23a +13b =λt b -λa 即可,又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧ -23=-λ,13=λt ,解得⎩⎪⎨⎪⎧λ=23,t =12,∴当三个向量的终点在同一条直线上时,t =12.答案:A6.(2016·长沙一模)在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC→+BC →)=12(5e 1+3e 2).答案:12(5e 1+3e 2)7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________.解析:因为a 与b 共线,所以a =x b ,⎩⎪⎨⎪⎧x =2,λx =-1,故λ=-12.答案:-128.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则|OA →|的最大值为________.解析:因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.答案:29.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.10.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心. 解:如图,记AM →=AB→|AB→|,AN →=AC→|AC→|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.B 组 高考题型专练1.)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD →C.AD →D.12BC → 解析:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选C. 答案:C2.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥||a |-|b ||,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B.答案:B3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:124.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析:∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =BC →,又△ABC 是边长为2的等边三角形,∴|a |=1,|b |=2,故①正确,②错误,③错误;由b =BC →,知b ∥BC →,故④正确;∵4a +b =2AB →+BC →=AB →+AC →,∴(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故⑤正确.答案为①④⑤.答案:①④⑤。

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修

一级达标重点名校中学课件
2.本例(1)中,若点F为边AB的中点,设a=D→E,b=D→F,用a,b表示D→B. [解] 由题意ab==A12→A→BB--12AA→→DD,, 解得 AA→→BD==4323aa--2343bb,, 所以D→B=A→B-A→D=23a+23b.
一级达标重点名校中学课件
A,B,D三点共线.
(2)先用共线向量定理引入参数λ得
→ AP
=λ
→ AB
,再用向量减法的几何意义向
O→P=xO→A+yO→B变形,最后对比求x+y.
一级达标重点名校中学课件
(1)A,B,D
[(1)∵
→ AB
=e1+2e2,
B→D=
B→C+
→ CD
=-5e1+6e2+7e1-2e2=
2(e1+2e2)=2A→B.
A [对于①,b=-a,有a∥b; 对于②,b=-2a,有a∥b; 对于③,a=4b,有a∥b; 对于④,a与b不共线.]
一级达标重点名校中学课件
4.若|a|=5,b与a方向相反,且|b|=7,则a=________b. 【导学号:84352202】
-57 [由题意知a=-57b.]
一级达标重点名校中学课件
一级达标重点名校中学课件
2.点C是线段AB靠近点B的三等分点,下列正确的是( )
A.A→B=3B→C
B.A→C=2B→C
C.A→C=12B→C
D.A→C=2C→B
D [由题意可知:A→B=-3B→C;A→C=-2B→C=2C→B.故只有D正确.]
一级达标重点名校中学课件
3.如图2-2-27,在平行四边形ABCD中,对角线AC 与BD交于点O,A→B+A→D=λA→O,则λFra bibliotek________.

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义同步优化训练新人教A版必修4

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义同步优化训练新人教A版必修4

2.2.1向量加法运算及其几何意义5分钟训练(预习类训练,可用于课前)1.如图2-2-1所示,在圆O中,向量OB、OC、AO是( )图2-2-1A.有相同起点的向量B.单位向量C.模相等的向量D.相等的向量解析:指定大小和方向后就可以确定一个向量,不能说某些向量是有相同起点的,A错;本题中没有给定向量的长度是1,所以不能说它们是单位向量,B错;这三个向量的方向是不同的,所以不是相等的向量,D错;这三个向量的模都是圆的半径,所以它们的模相等.答案:C2.(1)把平面上所有单位向量的起点平行移动到同一点P,则这些向量的终点构成的几何图形为_____________________.(2)把平行于直线l的所有单位向量的起点平行移动到直线l上的点P,这些向量的终点构成的几何图形为___________________.(3)把平行于直线l的所有向量的起点平行移动到直线l上的点P,这些向量的终点构成的几何图形为___________________.解析:向量是自由向量,根据向量相等,可以把向量的起点平移到同一点.(1)因为单位向量的模都是单位长度,所以同起点时,终点构成单位圆.应填:一个圆.(2)因为平行于直线l的所有单位向量只有两个方向,故这样的单位向量只有两个,起点为P,则终点应为:直线l上与P的距离相等的两个点.(3)因为平行于直线l的向量只有两个方向,但长度不同,任何长度都有,所以终点应为:直线l上的任意一点.答案:(1)一个圆.(2)直线l上与点P的距离相等的两个点.(3)直线l上的任意一点.3.如图2-2-2,试作出向量a与b的和a+b.图2-2-2解析:如图,首先作=a,再作=b,则=a+b.4.若a =“向北走8 km”,b =“向东走8 km”,则|a +b |=__________;a +b 的方向是___________. 解析:如图所示.答案:28 东北方向10分钟训练(强化类训练,可用于课中)1.如图2-2-3,正方形ABCD 的边长为1,则|+++|等于( )图2-2-3A.1B.2C.3D.22解析:|AD DC BC AB +++|=|AC 2|=2|AC |=22.答案:D2.如图2-2-4,四边形ABCD 为菱形,则下列等式中成立的是( )图2-2-4 A.=+ B.=+ C.=+ D.=+解析:由三角形法则和平行四边形法,可知AC BC AB =+,A 错;BC AC BA =+,B 错;DC AD CA =+,D 错.只有C 是正确的.答案:C3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ).A.与向量a 方向相同B.与向量a 方向相反C.与向量b 方向相同D.与向量b 方向相反解析:已知a 平行于b ,如果a 和b 方向相同,则它们的和的方向应该与a 的方向相同;如果它们的方向相反,因为a 的模大于b 的模,所以它们的和仍然与a 的方向相同. 答案:A4.如图2-2-5所示,已知向量a ,b ,c ,d ,求向量a +b +c +d .图2-2-5解:在空间中任取一点O,作=a,=b,=c,=d,则=a+b+c+d.5.如图2-2-6所示,已知向量a、b、c,求作向量a+b+c.图2-2-6解:如图,首先作=b,再作=a,=c则=a+b+c.30分钟训练(巩固类训练,可用于课后)1.已知平行四边形ABCD,设(+)+(+)=a,而b是一非零向量,则下列结论正确的有( )①a∥b ②a+b=a ③a+b=b ④|a+b|<|a|+|b|A.①③B.②③C.②④D.①②解析:在平行四边形ABCD中,+=0,+=0,所以a为零向量,零向量和任何向量都平行,零向量和任意向量的和等于这个向量本身,所以①③正确.答案:A2.向量a、b都是非零向量,下列说法不正确的是( )A.向量a与b同向,则向量a+b与a的方向相同B.向量a与b同向,则向量a+b与b的方向相同C.向量a与b反向,且|a|<|b|,则向量a+b与a的方向相同D.向量a与b反向,且|a|>|b|,则向量a+b与a的方向相同解析:向量a与b反向,且|a|<|b|,则向量a+b的方向应该和模较大的向量相同,即和b 的方向相同,所以C错.答案:C3.a、b为非零向量,且|a+b|=|a|+|b|,则下列说法正确的是( )A.a∥b,且a与b方向相同B.a、b是共线向量C.a =-bD.a 、b 无论什么关系均可解析:当两个非零向量a 与b 不共线时,a +b 的方向与a 、b 的方向都不相同,且|a +b |<|a |+|b |;向量a 与b 同向时,a +b 的方向与a 、b 的方向都相同,且|a +b |=|a |+|b |;向量a 与b 反向且|a |<|b |时,a +b 的方向与b 的方向相同(与a 方向相反),且|a +b |=|b |-|a |.答案:A4.在平行四边形ABCD 中,下列式子: ①+=;②CD AC AD +=;③AC AB AD =+;④AC BC AB =+;⑤CD BC AB AD ++=;⑥CA DC AD +=.其中不正确的个数是( )A.1B.2C.4D.6 解析:=+,所以⑥错,其他各项都是正确的.答案:A5.下列命题①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 、b 之一的方向相同; ②△ABC 中,必有++=0; ③若++=0,则A 、B 、C 为一个三角形的三个顶点;④若a 、b 均为非零向量,则|a +b |与|a |+|b |一定相等.其中真命题的个数为( )A.0B.1C.2D.3解析:①假命题.当a +b =0时,命题不成立;②真命题;③假命题.当A 、B 、C 三点共线时也可以有++=0;④假命题.只有当a 与b 同向时,相等,其他情况均为|a +b | >|a |+|b |. 答案:B6.如图2-2-7所示,在平行四边形ABCD 中,O 是对角线的交点.下列结论正确的是( )图2-2-7 A.=,= B.=+ C.CD AC OD AO +=+ D.DA CD BC AB =++解析:因为AD OD AO =+,AD CD AC =+,所以CD AC OD AO +=+.答案:C7.已知向量a 、b ,比较|a +b |与|a |+|b |的大小.解:(1)当a 、b 至少有一个为零向量时,有|a +b |=|a |+|b |;(2)当a 、b 为非零向量且a 、b 不共线时,有|a +b |<|a |+|b |;(3)当a 、b 为非零向量且a 、b 同向共线时,有|a +b |=|a |+|b |;(4)当a 、b 为非零向量且a 、b 异向共线时,有|a +b |<|a |+|b |.8.已知四边形ABCD ,对角线AC 与BD 交于点O ,且AO=OC ,DO=OB.求证:四边形ABCD 是平行四边形.证明:由已知得=,=.∵=+=+=,且A 、D 、B 、C 不在同一直线上.故四边形ABCD 是平行四边形.9.轮船从A 港沿东偏北30°方向行驶了40 n mile(海里)到达B 处,再由B 处沿正北方向行驶40 n mile 到达C 处.求此时轮船与A 港的相对位置.解:设、分别表示轮船的两次位移,则表示轮船的合位移,+=. 在Rt △ADB 中,∠ADB=90°,∠DAB=30°,||=40 n mile ,所以|DB |=20 n mile ,|AD |=320n mile.在Rt △ADC 中,∠ADC=90°,||=60 n mile ,所以|34060)320(22=+ n mile.因为|AC |=2||,所以∠CAD=60°.答:轮船此时位于A 港东偏北60 °,且距A 港340 n mile 的C 处.。

高中数学第六章平面向量及其应用章末复习提升课学案新人教A版必修第二册

高中数学第六章平面向量及其应用章末复习提升课学案新人教A版必修第二册

章末复习提升课平面向量的线性运算(1)(2018·高考全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →(2)如图所示,在正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( ) A.43 B.53 C.158D.2【解析】 (1)法一:如图所示,EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →,故选A .法二:EB →=AB →-AE →=AB →-12AD →=AB →-12×12(AB →+AC →)=34AB →-14AC →,故选A .(2)因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ(AB →+12AD →)+μ(-AB →+AD →)=(λ-μ)错误!未定义书签。

+⎝ ⎛⎭⎪⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1得⎩⎪⎨⎪⎧λ=43,μ=13,所以λ+μ=53,故选B .【答案】 (1)A (2)B向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算,向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.已知平面向量a =(2,-1),b =(1,1),c =(-5,1).若(a +k b )∥c ,则实数k 的值为( )A .2B .12C .114D .-114解析:选B.由题意知,a +k b =(2,-1)+k (1,1)=(k +2,k -1),由(a +k b )∥c ,得-5(k -1)=k +2,解得k =12,故选B.平面向量数量积的运算如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为( )A.2116B.32C.2516D.3【解析】 以A 为坐标原点,AB 所在直线为x 轴,建立如图的平面直角坐标系, 因为在平面四边形ABCD 中,AB =AD =1,∠BAD =120°,所以A (0,0),B (1,0),D ⎝ ⎛⎭⎪⎫-12,32,设C (1,m ),E (x ,y ),所以DC →=⎝ ⎛⎭⎪⎫32,m -32,AD →=⎝ ⎛⎭⎪⎫-12,32,因为AD ⊥CD ,所以⎝ ⎛⎭⎪⎫32,m -32·⎝ ⎛⎭⎪⎫-12,32=0,即32×⎝ ⎛⎭⎪⎫-12+32⎝ ⎛⎭⎪⎫m -32=0,解得m =3,即C (1,3),因为E 在CD 上,所以32≤y ≤3,由CE →∥DC →,得(x -1)⎝⎛⎭⎪⎫3-32=32(y -3),即x =3y -2,因为AE →=(x ,y ),BE →=(x -1,y ),所以AE →·BE →=(x ,y )·(x -1,y )=x 2-x +y 2=(3y -2)2-3y +2+y 2=4y 2-53y +6,令f (y )=4y 2-53y +6,y ∈⎣⎢⎡⎦⎥⎤32,3.因为函数f (y )=4y 2-53y +6在⎣⎢⎡⎦⎥⎤32,538上单调递减,在⎝ ⎛⎦⎥⎤538,3上单调递增,所以f (y )min =4×⎝ ⎛⎭⎪⎫5382-53×538+6=2116.所以AE →·BE →的最小值为2116,故选A.【答案】 A向量数量积的两种计算方法(1)当已知向量的模和夹角θ时,可利用定义法求解,即a·b =|a ||b |cos θ. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.1.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a ·(a -2b )=________.解析:a ·(a -2b )=a 2-2a ·b =2-2×2×2×⎝ ⎛⎭⎪⎫-22=6. 答案:62.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于________.解析:AM →=AB →+BM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,所以AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9.答案:9向量的夹角及垂直问题(1)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3 C .-2D .-1(2)已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .以上都不对【解析】 (1)因为m +n =(2λ+3,3),m -n =(-1,-1),(m +n )⊥(m -n ), 所以(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3. (2)设向量a 与b 的夹角为θ,因为a +b +c =0, 所以c =-(a +b ),所以c 2=(a +b )2, 即|c |2=|a |2+|b |2+2|a ||b |cos θ, 所以19=4+9+12cos θ,所以cos θ=12,又0°≤θ≤180°,所以a 与b 的夹角为60°.【答案】 (1)B (2)C解决两个向量垂直问题,其关键在于将问题转化为它们的数量积为零,与求夹角一样.若向量能用坐标表示(或能建立适当的直角坐标系),将它转化为“x 1x 2+y 1y 2=0”较为简单.1.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________. 解析:因为a =(1,0),b =(-1,m ),所以m a -b =(m +1,-m ). 由a ⊥(m a -b )得a ·(m a -b )=0, 即m +1=0,得m =-1.答案:-12.(2019·东北三省三校检测)已知非零向量a ,b 满足|a -b |=|a |,a ·(a -b )=0,则a -b 与b 夹角的大小为________.解析:因为非零向量a ,b 满足a ·(a -b )=0,所以a 2=a ·b ,由|a -b |=|a |可得a 2-2a ·b +b 2=a 2,解得|b |=2|a |,设a -b 与b 的夹角为θ,则cos θ=(a -b )·b |a -b ||b |=a ·b -|b |2|a ||b |=|a |2-2|a |22|a |2=-22,又0°≤θ≤180°,所以θ=135°. 答案:135°向量的长度(模)与距离的问题已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD →|等于( )A .2B .4C .6D .8【解析】 因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b·a +b 2)=4×⎝ ⎛⎭⎪⎫3-2×2×3×cos π6+4=4,则|AD →|=2.【答案】 A解决向量模的问题常用的策略(1)应用公式:|a |=x 2+y 2(其中a =(x ,y )). (2)应用三角形法则或平行四边形法则.(3)应用向量不等式||a |-|b ||≤|a ±b |≤|a |+|b |. (4)研究模的平方|a ±b |2=(a ±b )2.(2019·河南八市重点高中质检)已知平面向量a ,b 的夹角为2π3,且a ·(a -b )=8,|a |=2,则|b |等于( )A . 3B .2 3C .3D .4解析:选D.因为a ·(a -b )=8,所以a·a -a·b =8,即|a |2-|a ||b |cos 〈a ,b 〉=8,所以4+2|b |×12=8,解得|b |=4.利用正、余弦定理解三角形已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB .(1)求角B 的大小;(2)若A =75°,b =2,求a ,c .【解】 (1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,所以B =45°. (2)因为sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°·sin 45°=2+64. 故a =b sin Asin B=1+ 3. 又C =180°-45°-75°=60°, 所以c =b sin C sin B =2×sin 60°sin 45°= 6.解三角形的一般方法(1)已知两角和一边,如已知A ,B 和c ,由A +B +C =π求C ,由正弦定理求a ,b . (2)已知两边和这两边的夹角,如已知a ,b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况.(4)已知三边a ,b ,c ,可应用余弦定理求A ,B ,C .1.(2018·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3 C.π4D.π6解析:选C.根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c22ab =cos C ,所以在△ABC 中,C =π4.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sinB sinC .(1)求A ;(2)若2a +b =2c ,求sin C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 因为0°<C <120°, 所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24.判断三角形的形状在△ABC 中,若已知b 2sin 2C +c 2sin 2B =2bc cos B cosC ,试判断三角形的形状. 【解】 由正弦定理的推论,得a sin A =b sin B =csin C =2R ,则已知条件转化为4R 2sin 2B sin 2C +4R 2sin 2C sin 2B =8R 2sin B sin C cos B cos C . 因为sin B sin C ≠0,所以sin B sin C =cos B cos C , 所以cos(B +C )=0.因为0°<B +C <180°,所以B +C =90°, 所以A =90°,所以△ABC 为直角三角形.判定三角形形状的两种途径(1)通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等.(2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(2019·福建省闽侯二中五校教学联合体高二上学期期中)在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则该三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形解析:选A.因为lg sin A -lg cos B -lg sin C =lg 2,所以sin Acos B ·sin C=2,由正弦定理可得a sin A =c sin C ,所以sin A sin C =ac ,所以cos B =a 2c ,所以cos B =a 2+c 2-b 22ac =a2c,整理得c 2=b 2,c =b ,所以△ABC 的形状是等腰三角形,故选A.正、余弦定理的实际应用已知海岛A 周围8海里内有暗礁,有一货轮由西向东航行,望见岛A 在北偏东75°,航行202海里后,见此岛在北偏东30°,若货轮不改变航向继续前进,有无触礁危险?【解】 如图所示,在△ABC 中,依题意得BC =202海里, ∠ABC =90°-75°=15°, ∠BAC =60°-∠ABC =45°. 由正弦定理,得AC sin 15°=BCsin 45°, 所以AC =202sin 15°sin 45°=10(6-2)(海里).过点A 作AD ⊥BC .故A到航线的距离为AD=AC sin 60°=10(6-2)×32=(152-56)(海里).因为152-56>8,所以货轮无触礁危险.正、余弦定理在实际应用中应注意的问题(1)分析题意,弄清已知元素和未知元素,根据题意画出示意图.(2)明确题目中的一些名词、术语的意义,如仰角、俯角、方向角、方位角等.(3)将实际问题中的数量关系归结为数学问题,利用学过的几何知识,作出辅助线,将已知与未知元素归结到同一个三角形中,然后解此三角形.(4)在选择关系时,一是力求简便,二是要尽可能使用题目中的原有数据,尽量减少计算中误差的积累.(5)按照题目中已有的精确度计算,并根据题目要求的精确度确定答案并注明单位.1.某运动会上举行升旗仪式,在坡角为15°的看台上,同一列上的第一排B处和最后一排C处测得旗杆顶部P处的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),则旗杆的高度为( )A.10 m B.30 mC.10 3 m D.10 6 m解析:选 B.依题意可知∠PCB=45°,∠PBC=180°-60°-15°=105°,所以∠CPB=180°-45°-105°=30°.在△PBC中,由正弦定理可得BP=CBsin∠CPB·sin∠PCB=203(m),所以在Rt△BOP中,OP=PB·sin∠PBO=203×32=30(m),即旗杆的高度为30 m.2.如图,A,C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处,然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C岛.(1)求A,C两岛之间的直线距离;(2)求∠BAC的正弦值.解:(1)在△ABC中,由已知,AB=10×5=50,BC=10×3=30,∠ABC=180°-75°+15°=120°.根据余弦定理,得AC 2=502+302-2×50×30cos 120°=4 900, 所以AC =70.故A ,C 两岛之间的直线距离是70海里. (2)在△ABC 中,由正弦定理, 得BC sin ∠BAC =ACsin ∠ABC ,所以sin ∠BAC =BC sin ∠ABCAC=30sin 120°70=3314.故∠BAC 的正弦值是3314.1.(2019·高考全国卷Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →=( ) A .-3 B .-2 C .2D .3解析:选C.因为BC →=AC →-AB →=(3,t )-(2,3)=(1,t -3),|BC →|=1,所以12+(t -3)2=1,所以t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.已知e 1,e 2是单位向量,m =e 1+2e 2,n =5e 1-4e 2,若m ⊥n ,则e 1与e 2的夹角为( ) A.π4 B.π3 C.2π3D.3π4解析:选B.因为m ⊥n ,|e 1|=|e 2|=1,所以m·n =(e 1+2e 2)·(5e 1-4e 2)=5e 21+6e 1·e 2-8e 22=-3+6e 1·e 2=0.所以e 1·e 2=12.设e 1与e 2的夹角为θ,则cos θ=e 1·e 2|e 1||e 2|=12.因为θ∈[0,π],所以θ=π3.3.在△ABC 中,A =π3,BC =6,AB =26,则C =( )A.π4或3π4B.π6或5π6C.π4D.3π4解析:选C. 由正弦定理BC sin A =AB sin C ,得sin C =AB sin A BC =26×sinπ36=22.又BC =6>AB =26,所以A >C ,所以C =π4,故选C.4.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3 PD →,AP →·BP →=2,则AB →·AD →的值是________.解析:由CP →=3 PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB→=AD →-34AB →.因为AP →·BP →=2,所以⎝⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫AD →-34AB →=2,即AD →2-12AD →·AB →-316AB →2=2.又AD →2=25,AB →2=64,所以AB →·AD →=22. 答案:225.在△ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =26,B =2A ,所以在△ABC 中, 由正弦定理得3sin A =26sin 2A.所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知cos A =63, 所以sin A =1-cos 2A =33. 又因为B =2A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B ) =sin A cos B +cos A sin B =539.所以c =a sin Csin A=5. 6.(2019·江西省赣州教育发展联盟联考)已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意,及正弦定理,得AB +BC +AC =2+1,BC +AC =2AB , 两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理,得cos C =AC 2+BC 2-AB 22AC ·BC=(AC +BC )2-2AC ·BC -AB 22AC ·BC =12,所以C =60°.[A 基础达标]1.将3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫23a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a )化成最简式为( ) A .-43a +53bB .-4a +5b C.43a -53b D .4a -5b解析:选B.原式=3[⎝ ⎛⎭⎪⎫23-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b ]=3⎝ ⎛⎭⎪⎫-43a +53b =-4a +5b . 2.设x ,y ∈R ,向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10解析:选B.由题意可知⎩⎪⎨⎪⎧2x -4=0,-4-2y =0,解得⎩⎪⎨⎪⎧x =2,y =-2,故a +b =(3,-1),|a +b |=10. 3.在△ABC 中,B =45°,C =60°,c =1,则最短边长为( ) A.62B.63C.12D.32解析:选B.A =180°-(60°+45°)=75°, 故最短边为b ,由正弦定理可得b sin B =csin C ,即b =c sin B sin C =1×sin 45°sin 60°=63,故选B. 4.在锐角△ABC 中,角A ,B 所对的边分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π12B.π6C.π4D.π3解析:选D.由已知及正弦定理得2sin A sin B =3sin B ,因为sin B >0,所以sin A =32.又A ∈⎝⎛⎭⎪⎫0,π2,所以A =π3.5.在△ABC 中,已知sin 2A =sin 2B +sin 2C ,且sin A =2sin B cos C ,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形解析:选D.由sin 2A =sin 2B +sin 2C 及正弦定理可知a 2=b 2+c 2⇒A 为直角;而由sin A =2sin B cos C ,可得sin(B +C )=2sin B cos C, 整理得sin B cos C =cos B sin C ,即sin(B -C )=0,故B =C .综合上述,B =C =π4,A =π2.即△ABC 为等腰直角三角形.6.已知非零向量a =(t ,0),b =(-1,3),若a +2b 与a 的夹角等于a +2b 与b 的夹角,则t =________.解析:由题设得(a +2b )·a |a +2b |·|a |=(a +2b )·b |a +2b |·|b |,所以|b |(|a |2+2b ·a )=|a |(a ·b +2|b |2),将a =(t ,0),b =(-1,3)代入整理得2t 2+t ·|t |=8|t |+4t ,当t >0时,3t 2=12t ,所以t =4;当t <0时,t 2=-4t ,所以t =-4.综上,t 的值为4或-4.答案:4或-47.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边.若2a sin B =3b ,b +c =5,bc =6,则a =________.解析:因为2a sin B =3b ,所以2sin A sin B =3sin B . 所以sin A =32,因为△ABC 为锐角三角形, 所以cos A =12,因为bc =6,b +c =5,所以b =2,c =3或b =3,c =2.所以a 2=b 2+c 2-2bc cos A =22+32-2×6×12=7,所以a =7. 答案:78.(2019·湖南株洲市检测)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AD →·EB →=2,则AB →的模为________.解析:因为在平行四边形ABCD 中,EB →=EC →+CB →=12DC →-BC →,又DC →=AB →,BC →=AD →,所以EB →=12AB →-AD →,所以AD →·EB →=AD →·⎝ ⎛⎭⎪⎫12AB →-AD →=12AB →·AD →-AD →2=12|AB →||AD →|cos 60°-|AD →|2=14|AB →|-1=2,所以|AB →|=12.答案:129.已知向量e 1,e 2,且|e 1|=|e 2|=1,〈e 1,e 2〉=π3.(1)求证:(2e 1-e 2)⊥e 2;(2)若m =λe 1+e 2,n =3e 1-2e 2,且|m |=|n |,求λ的值. 解:(1)证明:因为|e 1|=|e 2|=1,〈e 1,e 2〉=π3,所以(2e 1-e 2)·e 2=2e 1·e 2-e 22=2|e 1||e 2|cos π3-|e 2|2=2×1×1×12-12=0,所以(2e 1-e 2)⊥e 2.(2)由|m |=|n |得(λe 1+e 2)2=(3e 1-2e 2)2, 即(λ2-9)e 21+(2λ+12)e 1·e 2-3e 22=0. 因为|e 1|=|e 2|=1,〈e 1,e 2〉=π3,所以e 21=e 22=1,e 1·e 2=1×1×cos π3=12,所以(λ2-9)×1+(2λ+12)×12-3×1=0,即λ2+λ-6=0.所以λ=2或λ=-3.10.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c .若B =π3,且(a -b +c )(a +b-c )=37bc .(1)求cos C 的值;(2)若a =5,求△ABC 的面积. 解:(1)由(a -b +c )(a +b -c )=37bc ,得a 2-(b -c )2=37bc ,即a 2=b 2+c 2-117bc ,由余弦定理,得cos A =b 2+c 2-a 22bc =1114,所以sin A =514 3.又因为B =π3,所以cos C =-cos(A +B )=-cos A cos B +sin A sin B =17.(2)由(1)得sin C =47 3.在△ABC 中,由正弦定理,得csin C =b sin B =asin A.所以c =a sin C sin A =8,所以S =12ac sin B =12×5×8×sin π3=10 3. [B 能力提升]11.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10 000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标C 的距离为( )A .5 000米B .5 0002米C .4 000米D .4 0002米解析:选B.如图,在△ABC 中,AB =10 000米,A =30°,C =75°-30°=45°.根据正弦定理得,BC =AB ·sin Asin C =10 000×1222=5 0002(米).12.在△ABC 中,点D 满足BD =34BC ,当E 点在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是( )A.31010 B.824 C.910D.418解析:选C.如图所示,存在实数m 使得AE →=mAD →(0≤m ≤1),AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →,所以AE →=m ⎝ ⎛⎭⎪⎫14AB →+34AC →=m 4AB →+3m 4AC →,所以⎩⎪⎨⎪⎧λ=m 4,μ=3m4,所以t =(λ-1)2+μ2=⎝ ⎛⎭⎪⎫m 4-12+⎝ ⎛⎭⎪⎫3m 42=58m 2-m 2+1=58⎝ ⎛⎭⎪⎫m -252+910,所以当m =25时,t =(λ-1)2+μ2取得最小值910.13.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两个根,且2cos(A +B )=1.则C =________,AB =________.解析:因为cos C =cos[π-(A +B )]=-cos(A +B )=-12,所以C =120°.由题设,得⎩⎨⎧a +b =23,ab =2,所以AB 2=AC 2+BC 2-2AC ·BC cos C =a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10.所以AB =10. 答案:120°1014.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -b )cos C =c cos B ,△ABC 的面积S =103,c =7.(1)求角C ; (2)求a ,b 的值.解:(1)因为(2a -b )cos C =c cos B , 所以(2sin A -sin B )cos C =sin C cos B , 2sin A cos C -sin B cos C =sin C cos B , 即2sin A cos C =sin(B +C ). 所以2sin A cos C =sin A . 因为A ∈(0,π), 所以sin A ≠0. 所以cos C =12.所以C =π3.(2)由S =12ab sin C =103,C =π3,得ab =40.①由余弦定理得c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab ⎝⎛⎭⎪⎫1+cos π3,所以72=(a +b )2-2×40×⎝ ⎛⎭⎪⎫1+12.所以a +b =13.②由①②得a =8,b =5或a =5,b =8.[C 拓展探究]15.某单位有A ,B ,C 三个工作点,需要建立一个公共无线网络发射点O ,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为AB =80 m ,BC =70 m ,CA =50 m .假定A ,B ,C ,O 四点在同一平面内.(1)求∠BAC 的大小; (2)求点O 到直线BC 的距离.解:(1)在△ABC 中,因为AB =80 m ,BC =70 m ,CA =50 m ,由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22×AB ×AC =802+502-7022×80×50=12.因为∠BAC 为△ABC 的内角,所以∠BAC =π3.(2)法一:因为发射点O 到A ,B ,C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.设外接圆的半径为R ,则在△ABC 中,BCsin A =2R .由(1)知A =π3,所以sin A =32.所以2R =7032=14033.即R =7033.如图,连接OB ,OC ,过点O 作边BC 的垂线,垂足为D .在△OBD 中,OB =R =7033,BD =BC 2=702=35,所以OD =OB 2-BD 2=(7033)2-352=3533. 即点O 到直线BC 的距离为3533m.法二:因为发射点O 到A ,B ,C 三个工作点的距离相等,所以点O 为△ABC 外接圆的圆心.连接OB ,OC ,过点O 作边BC 的垂线,垂足为D .由(1)知∠BAC =π3,所以∠BOC =2π3,所以∠BOD =π3.在Rt △BOD 中,BD =BC 2=702=35 ,所以OD =BDtan ∠BOD =35tan 60°=3533.即点O 到直线BC 的距离为3533 m.。

统编人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿

统编人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿

(新)人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿今天我说课的内容是新人教高中数学A版必修二的第六章第1节《平面向量的概念》。

向量理论具有深刻的数学内涵、丰富的物理背景。

向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁.向量是描述直线、曲线,平面、曲面以及高维空间数学同题的基本工具,是进一步学习和研究其他数学领域问题的基础,在解决实际问题中发挥着重要作用。

本章的学习可以帮助学生理解平面向量的几何意义和代数意义;掌握平面向量的概念、运算、平面向量基本定理;用向量语言、方法表述和解决现实生活、数学和物理中的问题:提升数学运算、直观想象和逻辑推理素养.第2节主要讲平面向量的运算。

本节教学承载着实现上述目标的任务,为了更好地教学,下面我从课程标准、教材分析、核心素养、教学重难点、教学方法、教学过程等方面进行说课。

一、说课程标准普通高中数学课程标准(2017年版2020年修订)【内容要求】1.平面向量及其应用。

内容包括:向量运算①借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义。

②通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义。

理解两个平面向量共线的含义。

③了解平面向量的线性运算性质及其几何意义。

④通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积。

⑤通过几何直观,了解平面向量投影的概念以及投影向量的意义。

⑥会用数量积判断两个平面向量的垂直关系。

二、教材分析。

对于“运算"学生并不陌生,他们已经学习了数的运算、代数式的运算、集合的运算等,针对每一种代数运算无外乎要研究运算的背景、意义、法则、性质、应用等,从而建立相应的运算体系,平面向量运算内容关注了以下两个方面: 一是引导学生从物理、几何、代数三个角度理解向量运算;二是引导学生类比数的运算研究向量的运算.本节在学生已经学习了平面向量概念的基础上,对平面向量这个新获得的数学研究对象,从运算的角度进一步展开研究。

人教A版高中数学必修二课件 《平面向量基本定理及坐标表示》平面向量及其应用(平面向量基本定理)

人教A版高中数学必修二课件 《平面向量基本定理及坐标表示》平面向量及其应用(平面向量基本定理)

线,C→A与D→C不共线;而D→A∥B→C,O→D∥O→B,故①③可作为基底.
2.点 O 为正六边形 ABCDEF 的中心,则可作为基底的一对向量是 ()
A.O→A,B→C
B.O→A,C→D
C.A→B,C→F
D.A→B,D→E
解析:选 B.由题图可知,O→A与B→C,A→B与C→F,A→B与D→E共线,不能
B.12(a+b)
C.12(b-a)
D.12b+a
解析:选 B.如图,AD 是△ABC 的中线,则 D 为线段
BC 的中点,从而B→D=D→C,即A→D-A→B=A→C-A→D,
从而A→D=12(A→B+A→C)=12(a+b).
平面向量基本定理的理解 设 e1,e2 是不共线的两个向量,给出下列四组向量: ①e1 与 e1+e2;②e1-2e2 与 e2-2e1;③e1-2e2 与 4e2-2e1; ④e1+e2 与 e1-e2. 其中,不能作为平面内所有向量的一组基底的是________(写出 满足条件的序号).
B.23a+13b
C.35a+45b
Hale Waihona Puke D.45a+35b解析:选 B.因为B→D=12D→A,C→B=a,C→A=b,所以C→D=a+B→D
=a+13B→A=a+13(b-a)=23a+13b.
2.如图,已知在梯形 ABCD 中,AD∥BC,E,F 分别是 AD, BC 边上的中点,且 BC=3AD,B→A=a,B→C=b.试以{a,b}为 基底表示E→F,D→F.
法二:设A→B=x,B→C=y,则A→D=B→C=y, 又AA→ →BD+-BA→→CB==AB→→CD,, 所以yx-+xy==ba,,解得 x=12a-12b,y=12a+12b, 即A→B=12a-12b,B→C=12a+12b.

高考数学一轮总复习 第26讲 平面向量的概念及线性运算课件 理 新人教A版

高考数学一轮总复习 第26讲 平面向量的概念及线性运算课件 理 新人教A版
(5)因为O→A+O→B+O→C=0,
第二十五页,共45页。
所以O→A=-(O→B+O→C),即O→B+O→C是与O→A方向相反且 长度相等的向量.
如图所示,以 OB、OC 为相邻的两边作平行四边形 BOCD,
则O→D=O→B+O→C,所以O→D=-O→A, 在平行四边形 BOCD 中,设 BC 与 OD 相交于 E,B→E=E→C, 则O→E=E→D. 所以 AE 是△ABC 的边 BC 的中线,且|O→A|=2|O→E|. 所以 O 是△ABC 的重心,故正确.
第二十二页,共45页。
(4)O 是平面内一定点,A、B、C 是平面内不共线的三个 点,动点 P 满足O→P=O→A+λ(|AA→→BB|+|AA→→CC|),λ∈[0,+∞),则点 P 的轨迹一定通过△ABC 的内心;
(5)已知 A、B、C 是不共线的三点,O 是△ABC 内的一点, 若O→A+O→B+O→C=0,则 O 是△ABC 的重心.
第三十四页,共45页。
三 平面向量 (xiàngliàng)共线问题
【例 3】设 a,b,c 为非零向量,其中任意两向量不共 线,已知 a+b 与 c 共线,且 b+c 与 a 共线,试问 b 与 a +c 是否共线?并证明你的结论.
第三十五页,共45页。
【解析】 b 与 a+c 共线,证明如下: 因为 a+b 与 c 共线,所以存在唯一实数 λ, 使得 a+b=λc,① 又因为 b+c 与 a 共线,所以存在唯一实数 μ, 使 b+c=μa,② ①-②,得 a-c=λc-μa,即(1+μ)a+(-1-λ)c=0. 因为 a 与 c 不共线,由平面向量基本定理,得
素材 (sùcái )3
已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a -3b 平行,且平行时它们是同向还是反向?

平面向量基本定理(课件)高一数学(人教A版2019必修第二册)

平面向量基本定理(课件)高一数学(人教A版2019必修第二册)
3.课堂检测
2.(多选)如图,设是平行四边形两对角线的交点,有下列向量组,可作为该平面内的其他向量基底的是( ).A.与 B.与 C.与 D.与
答案:AC.解:结合图形可知,与不共线,与不共线,∴A、C可以作为基底.B、D两组向量分别共线,故不可以作为基底.
3、在△ABC中,点D,E,F依次是边AB的四等分点,试以
高一数学(人教A版2019必修第二册)
6.3.1平面向量基本定理
【单元目标】(1)理解平面向量基本定理及其意义。(2)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示。(3)会用坐标表示平面向量的加、减运算与数乘运算。(4)能用坐标表示平面向量的数量积,会表示两个向量的平面夹角。(5)能用坐标示平面向量共线、垂直的条件。
5、课后作业1.习题6.3 1、11(1)2.6.3.1平面向量基本定理(分层作业)(必做题+选做题)
THANKS


方法规律 平面向量基本定理的作用以及注意点(1) 根据平面向量基本定理,任何一个基底都可以表示任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算(2) 基底的选取要灵活,必要时可Байду номын сангаас建立方程或方程组,通过方程求出要表示的向量
1、如果{e1,e2}是平面α内所有向量的一个基底,那么下列说法正确的是( A )A.若存在实数λ1,λ2使λ1e1+λ2e2=0,则λ1=λ2=0B.对空间任意向量a都可以表示为a=λ1e1+λ2e2,其中λ1,λ2∈RC.λ1e1+λ2e2(λ1,λ2∈R)不一定在平面α内D.对于平面α内任意向量a,使a=λ1e1+λ2e2的实数λ1,λ2有无数对
【单元知识结构框架】
教学重点: 平面向量基本定理、平面向量的坐标表示及平面向量运算的坐标表示。教学难点: 平面向量基本定理唯一性证明。

高中数学二轮讲义:专题2 第1讲 平面向量(教师版)

高中数学二轮讲义:专题2   第1讲 平面向量(教师版)

专题二 第1讲 平面向量【要点提炼】考点一 平面向量的线性运算1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.【热点突破】【典例】1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14【答案】 A【解析】 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn =________.【答案】 -2【解析】 ∵a ∥b ,∴m ×(-1)=2×n ,∴mn=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________. 【答案】 (1,+∞)【解析】 由题意可得,OD →=kOC →=k λOA →+k μOB →(0<k<1),又A ,D ,B 三点共线,所以k λ+k μ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.【拓展训练】1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G.若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.【答案】 12【解析】 由题意可设CG →=xCE →(0<x<1), 则CG →=x(CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线, 所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.【答案】 [1,3]【解析】 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B(1,0),A ⎝ ⎛⎭⎪⎫12,32,C(cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3. 则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y(1,0),即⎩⎪⎨⎪⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g(θ)=3cos θ-33sin θ, 易知g(θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g(θ)取得最大值为3,当θ=π3时,g(θ)取得最小值为1,故x +3y 的取值范围为[1,3].【要点提炼】考点二 平面向量的数量积1.若a =(x ,y),则|a |=a ·a =x 2+y 2. 2.若A(x 1,y 1),B(x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.【热点突破】【典例】2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935【答案】 D【解析】 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 【答案】 C【解析】 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.【答案】 ⎣⎢⎡⎦⎥⎤255,22 【解析】 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(1,2),D(0,2), 设AM →=λAC →(0≤λ≤1),则M(λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.【拓展训练】2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 【答案】 B【解析】 方法一 设a 与b 的夹角为θ, 因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B.方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3, 即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)【答案】 A【解析】 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A(0,0),B(2,0),C(3,3),F(-1,3). 设P(x ,y),则AP →=(x ,y),AB →=(2,0),且-1<x<3. 所以AP →·AB →=(x ,y)·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2B .1- 2C.2-1 D .1【答案】 A【解析】 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题训练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( ) A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →【答案】 A【解析】 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 【答案】 B【解析】 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69 kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2 B .-1 C .-12 D.12【答案】 A【解析】 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P(3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 【答案】 D【解析】 由P(3,1),得P ⎝ ⎛⎭⎪⎫2cos π6,2sin π6, ∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2,又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q(-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 【答案】 C【解析】 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23 B.34 C.56 D .1 【答案】 A【解析】 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC→+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形【答案】 C【解析】 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .2 3B .3 3C .4 3D .5 3 【答案】 D【解析】 设△ABC 的外接圆的圆心为O ,则圆的半径为332×12=3, OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →. 又||4PO →+OC→2=51+8PO→·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A. 2B. 3 C .2 D .2 2 【答案】 C【解析】 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r=1.易得B(-3,0),C(3,0),A(0,3),D(0,0), 设M(cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y,3x),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y)2-2xy]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y)2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 【答案】 BC【解析】 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a-b 的夹角为π4,故C 正确.11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( ) A .若k<-2,则a 与b 的夹角为钝角 B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝⎛⎭⎪⎫22,-22D .若|a |=2|b |,则k =22或-2 2 【答案】 CD【解析】 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k<2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b|b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( ) A.AB →·CE →=-1 B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76【答案】 BCD【解析】 因为AE →=EB →,△ABC 是等边三角形, 所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E(0,0),A(1,0),B(-1,0),C(0,3),D ⎝ ⎛⎭⎪⎫13,233,设O(0,y),y ∈(0,3),则BO →=(1,y),DO →=⎝ ⎛⎭⎪⎫-13,y -233,又BO →∥DO →,所以y -233=-13y ,解得y =32,即O 是CE 的中点,OE →+OC →=0,所以选项B 正确; |OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.【答案】22【解析】 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.【答案】 5【解析】 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°, ∴A ⎝ ⎛⎭⎪⎫12,32.设C(a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32=-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D , ∴BO →=23BD →=23×12()BA →+BC→ =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36.∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5.15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.【答案】 19【解析】 ∵△ABC 是锐角三角形, ∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2 =λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ, ∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________.【答案】2829【解析】 设e 1=(1,0),e 2=(x ,y), 则a =(x +1,y),b =(x +3,y). 由2e 1-e 2=(2-x ,-y), 故|2e 1-e 2|=2-x2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤ 1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b |a |·|b |2 =⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y2x +32+y 22 =⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5 =4x +13x +5=433x +5-833x +5=43-833x +5,当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.。

2014年人教A版必修四课件 2.2 平面向量的线性运算

2014年人教A版必修四课件 2.2  平面向量的线性运算

结论: 同起点两向量的和, 是以这两向量为邻边的 平行四边形的一条对角线, 起点是已知两向量的起点. 这种方法叫做向量加法的平行四边形法则.
C D
AB AC AD.
A B
练习(课本第84页): 2. 如图, 已知 a、b, 用向量加法的平行四边形法 则作出 ab. (2) (1) b b a (作图如下, 作法略)
· · 问题1. 以上操作中的三个向量构成一个什么图形? 从三个向量的图形关系看, 你得到一个什么结论?
A C
AB BC AC . 向量加法的三角形法则: 求向量 a b , 是将向量 b 的起点与向量 a 的终点重合, 则 a 的起点到 b 的终点 的向量即为和向量 a b .
本章内容
2.1 2.2 2.3 2.4 2.5 平面向量的实际背景及基本概念 平面向量的线性运算 平面向量的基本定理及坐标表示 平面向量的数量积 平面向量应用举例 第二章 小结
2.2.1 向量加法运算及其几何意义 2.2.2 向量减法运算及其几何意义 2.2.3 向量数乘运算及其几何意义
2.2.1 向量加法运算 及其几何意义
D C
2 5 ≈5.4. tan∠CAB 5 2.5, 2 得∠CAB≈68. 答: 船实际航行的速度约为 5.4 km/h, B A 68 方向约是东偏北 .
2
D 2
C
A
B
练习(补充). 如图是一个正六边形, 根据向量加法 的平行四边形法则求下列向量的和: A F (1) AB AF; (2) OB OD; (3) BO OC ; (4) BC DE . B 解: (1) AB AF AO . (2) OB OD OC . (3) BO OC OE OC OD. (4) BC DE OD OF OE .

人教A版高中数学必修第二册 平面向量的应用

人教A版高中数学必修第二册 平面向量的应用

同理,在单杠上做引体向上运动,两臂的夹角越小越省力。
思考:1当为何值时,F1 最小?最小值是多少?
G
当 0时,F1 最小。F1 2 为最小值。
2 F1 能等于 G 吗?为什么?
F1 能等于G。若要使F1
G,只需cos
2
1 ,此时
2
2
1 ,即
2
2
3
知识探究(二):向量在物理中的应用举例
例4、如图6.4 6,一条河两岸平行,河的宽度d 500m, 一艘船从河岸边的A地出发,向河对岸航行。已知船的
人教必修二 第六章
6.4平面向量的应用
旧知导入 思考:你还记得平面向量学习了哪些知识吗? 1、平面向量的定义;
2、平面向量的加、减、数乘三种线性运算;
3、平面向量的数量积运算;
4、平面向量基本定理;
5、平面向量的坐标表示及坐标运算;
平面向量在解决数学和实际问题中有举足轻重的作用,那 么,接下来我们将借助向量的运算探索三角形边长与角度的关 系,把解直角三角形问题拓展到解任意三角形问题。
2
这里,G 为定值。
知识探究(二):向量在物理中的应用举例
通过这个式子发现,当由0逐渐变大到时, 由0逐渐变大到 ,
2
2
c
os
2
的值由大逐渐变小,此时
F1
由小逐渐变大
反之,当 由逐渐变小到 0时, 由 逐渐变小到 0,cos 的值由小逐渐变大,
22
2
此时 F1由大逐渐变小。 这就是说,F1, F2之间的夹角越大越费力,夹角越小越省力。
所以AD 1 AB, AE 1 AC
从而DE
2 AE AD
1
2 AC
1

最新人教A版高中数学教材目录(全)

最新人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义习题课件新人教A版必修4

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义习题课件新人教A版必修4

思考题 2 已知 λ∈R,则下列命题正确的是( )
A.|λ a|=λ|a| C.|λ a|=|λ|·|a|
B.|λ a|=|λ|·a D.|λ a|>0
【答案】 C
题型二 向量共线定理的应用 例 3 设两个非零向量 a 与 b 不共线: (1)若A→B=a+b,B→C=2a+8b,C→D=3(a-b),求证:A、B、 D 三点共线; (2)试确定实数 k,使 ka+b 与 a+kb 共线.
要点 2 向量数乘的运算律 设 a,b 为任意向量,λ 、μ 为任意实数,则有 (1)λ(μa)=(λμ)a; (2)(λ+μ)a=λa+μa; (3)λ(a+b)=λa+λb. 要点 3 共线向量定理 向量 b 与非零向量 a 共线,当且仅当有唯一一个实数 λ,使 得 b=λa.
1.向量与实数可以求积,能求加、减运算吗? 答:不能,如 λ+a,λ-a 无意义.
-λ,y=λ,即 x+y=1. 【答案】 1
例 5 如图所示,D 是△ABC 的边 AB 上的中点,则向量C→D =( )
A.B→C-12B→A B.-B→C+12B→A C.-B→C-12B→A D.B→C-12B→A
【解析】 解法一 ∵D 是 AB 的中点,∴B→D=12B→A, ∴C→D=C→B+B→D=-B→C+12B→A. 解法二 由C→D=12(C→B+C→A)=12[C→B+(C→B+B→A)]=C→B+12 B→A=-B→C+12B→A. 【答案】 B
【解析】 (1)真命题,∵ 2>0,∴ 2a 与 a 同向. 又| 2a|= 2|a|,∴ 2a 的模是 a 的模的 2倍; (2)真命题.∵-3<0, ∴-3a 与 a 方向相反且|-3a|=3|a|. 又∵6>0,∴6a 与 a 方向相同且|6a|=6|a|. ∴-3a 与 6a 方向相反且模是 6a 的模的12;

《平面向量的坐标运算》教学设计【高中数学人教A版必修2(新课标)】

《平面向量的坐标运算》教学设计【高中数学人教A版必修2(新课标)】

《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。

2022-2023学年高一下学期数学人教A版(2019)必修第二册 平面向量及运算的坐标表示 课件

2022-2023学年高一下学期数学人教A版(2019)必修第二册 平面向量及运算的坐标表示 课件

归纳小结
问题10 本节课收获了哪些知识,请你从以下几方面总结:
(1)如何求平面向量的坐标?
(2)你认为平面向量坐标(线性)运算的方法是什么?
用Hale Waihona Puke 表示向量?平面向量基本定理好在哪里?
(1)向量的坐标等于终点的相应坐标减去起点的相应坐标,
只有当向量的起点在坐标原点时,向量的坐标才等于终点的坐标.
求向量的坐标一般转化为求点的坐标, 常常结合图形,利用三角函数的定义进行计算.
− 3 = −14,
= −11,
因此ቊ
解得ቊ
− 4 = −19.
= −15.
所以点M的坐标为(−11, −15) .
初步应用
例3 已知O是坐标原点,=(k,12),=(4,5),=(10,k),当k为何值
时,A,B,C三点共线?
解答: 依题意,得
= − =(4,5) − (k,12)=(4 − k, − 7)
平面向量及运算的坐标表示
新知探究
问题1 如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30°,且
|a|=4,以向量i,j为基,如何表示向量a?
a=2 3i+2j.
新知探究
问题2 如图,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位i,j作标
准正交基.
y
P(x,y)
a
对于坐标平面内的任意向量a,以坐标原点O为起
向量的线性坐标运算可类比数的运算进行.
归纳小结
问题10 本节课收获了哪些知识,请你从以下几方面总结:
(3)两平面向量共线的条件有几种形式?你能写出来吗?
(4)你有什么困惑吗?
(3)2种,①若a=(x1,y1),b=(x2,y2),则a∥b(a≠0)的条件是x1y2-x2y1=0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的线性运算(二)(人教A版)
一、单选题(共12道,每道8分)
1.若,为非零向量,且,则有( )
A.共线,且方向相同
B.
C. D.以上都不对
2.如图,,为互相垂直的单位向量,向量可表示为( )
A. B.
C. D.
3.在矩形中,是对角线的交点,若,,则( )
A. B.
C. D.
4.已知是平面上的三点,直线上有一点,满足,则( )
A. B.
C. D.
5.如图,已知是圆的直径,点等分弧AB,若,,则( )
A. B.
C. D.
6.在中,已知是上一点,若,,则的值为( )
A. B.
C. D.
7.如图,在中,,,若,则
=( )
A.1
B.
C. D.
8.在中,是边上一点,若,则=( )
A. B.
C. D.
9.若不共线的四点满足,,则实数的值为( )
A. B.
C. D.
10.已知平面上不共线的四点.若,则( )
A. B.
C. D.
11.已知为所在平面内一点,当时,点P位于的( )
A.边上
B.边上
C.内部
D.外部
12.在中,若,则是( )
A.等边三角形
B.等腰三角形
C.等腰直角三角形
D.直角三角形。

相关文档
最新文档