新人教版高中数学培优讲义 学生版 椭圆 知识讲解 - 副本
高中数学椭圆课件
题目4
已知椭圆上任意一点P与椭圆中心O的距离为d, 求点P到椭圆两个焦点的距离之差的绝对值。
答案3
根据椭圆的性质,焦点到椭圆上任意一点的距离 的最小值为半短轴b。已知这个距离的最小值为4 ,可以得出半短轴b=4。由于没有给出半长轴a的 具体数值,所以无法确定椭圆的标准方程。
注意事项:避免常见错误和陷阱
方程形式
注意椭圆的标准方程形式,不要混淆不同的形式 。
焦点位置
注意焦点的位置,有时题目中没有明确指出焦点 的位置,需要自己判断。
参数范围
在解题时,要注意参数的范围,不要超出范围进 行计算。
单位长度
在计算时,要注意单位长度的一致性,不要出现 单位不匹配的情况。
06
椭圆的练习题与答案解析
已知椭圆的一个焦点到 椭圆上任意一点的距离 和为10,求椭圆的标准 方程。
根据椭圆的定义,任意 一点到两个焦点的距离 之和为常数,这个常数 等于长轴的长度。已知 这个距离和为10,可以 得出半长轴a=5。由于 没有给出半短轴b的具 体数值,所以无法确定 椭圆的标准方程。
提高练习题:挑战更高难度
题目3
椭圆的准线与焦点
定义
椭圆的准线是指与椭圆焦点距离 相等的点所在的直线。
性质
准线与椭圆相交于四个点,这四 个点称为椭圆的焦点。焦点到椭 圆中心的距离称为焦距。
03
椭圆的方程求解方法
直接法求解椭圆方程
定义椭圆
根据椭圆的定义,确定椭圆的标准方程。
确定参数
根据椭圆的标准方程,确定参数a、b、c的值。
求解方程
高中数学椭圆课件
目
CONTENCT
高中数学全套讲义 选修1-1 椭圆初步基础学生版
目录第三讲:椭圆初步................................................................................................. 错误!未定义书签。
考点一:椭圆的定义及其应用 (2)题型一:利用定义判断轨迹 (2)考点二:椭圆的标准方程及其几何性质 (2)题型二:椭圆的标准方程相应问题 (3)题型三:椭圆简单性质问题 (3)课后综合巩固练习 (4)考点一:椭圆的定义及其应用椭圆的定义:平面内与两个定点12F F ,的距离之和等于常数(大于12||F F )的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.依椭圆的定义,设P 是椭圆上一点,则有122PF PF a +=,(a 为常数且22)a c >题型一:利用定义判断轨迹1.(2017•天心区校级学业考试)设1F ,2F 为定点,12||6F F =,动点M 满足12||||6MF MF +=,则动点M 的轨迹是( ) A .椭圆B .直线C .圆D .线段2.(2016秋•兴庆区校级期末)点(,)M x y 与定点(4,0)F 的距离和它到直线25:4l x =的距离的比是常数45,求M 的轨迹. 考点二:椭圆的标准方程及其几何性质椭圆的标准方程:①22221(0)x y a b a b +=>>,焦点是1(0)F c -,,2(0)F c ,,且222c a b =-. ②22221(0)y x a b a b +=>>,焦点是1(0)F c -,,2(0)F c ,,且222c a b =-. 椭圆的几何性质1.范围:a x a -≤≤,b y b -≤≤;2.对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心;3.椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的1212A A B B ,,,; 4.长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的12A A ;另一对顶点间的线段叫做椭圆的短轴,如图中的线段12B B . 5.椭圆的离心率:ce a=,焦距与长轴长之比,01e <<,e 越趋近于1,椭圆越扁; 反之,e 越趋近于0,椭圆越趋近于圆.题型二:椭圆的标准方程相应问题1.(2018秋•娄底期末)设椭圆22221(0,0)x y m n m n +=>>的一个焦点为(0,2)-,离心率为12,则(m n -= ) A.8-B.4C.8D22.(2017秋•龙岗区期末)已知ABC ∆的周长为20,且顶点B (0,4)-,C (0,4),则顶点A 的轨迹方程是( )A .221(0)3620x y x +=≠B .221(0)2036x y x +=≠C .221(0)620x y x +=≠D .221(0)206x y x +=≠3.(2018秋•未央区校级期末)若曲线22111x y k k +=-+表示椭圆,则k 的取值范围是( )A .1k >B .1k <-C .11k -<<D .10k -<<或01k <<题型三:椭圆简单性质问题1.(2019•北京)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =2.(2019•昆明模拟)己知椭圆2222:1(0)x y E a b a b +=>>,直线l 过焦点且倾斜角为4π,以椭圆的长轴为直径的圆截l 所得的弦长等于椭圆的焦距,则椭圆的离心率为( )A B C D 课后综合巩固练习1.(2018秋•南关区校级期末)椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为( )A .22110084x y +=B .221259x y +=C .22110084x y +=或22184100x y +=D .221259x y +=或221259y x +=2.(2019•聊城三模)若方程2244x ky k +=表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A .4k >B .4k =C .4k <D .04k <<3.(2019春•湖州期中)经过点P 且与椭圆2214x y +=相切的直线方程是( )A .40x +-=B .40x --=C .20x +-=D .20x -+=4.(2019春•惠城区校级月考)设1F 是椭圆2219x y +=的一个焦点,AB 是经过另一个焦点2F 的弦,则△1AF B 的周长是( )A .12B .6C .4D .85.(2019春•厦门期末)已知椭圆222:1(0)25x y C m m +=>的左、右焦点分别为1F ,2F ,点P在C 上,且△12PF F 的周长为16,则m 的值是( )A .2B .3C .D .46.(2019春•雅安期末)椭圆22221(0)x y a b a b +=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )A 1BC .2D。
人教版数学选修21第二章椭圆椭圆的几何性质讲义
案例(二)——精析精练课堂合作探究重点难点突知识点 椭圆的几何性质由椭圆方程()012222>>=+b a by a x 研究椭圆的性质。
(利用方程研究,说明结论与由图 形观察一致) (1)范围从标准方程得出1,12222≤≤by a x ,即有b y b a x a ≤≤-≤≤-,,可知椭圆落在b y a x ±=±=,组成的矩形中。
(2)对称性把方程中的x 换成x -方程不变,图象关于y 轴对称。
y 换成y -方程不变,图象关于x 轴对称。
把y x ,同时换成y x ,-方程也不变,图象关于原点对称。
如果曲线具有关于x 轴对称,关于y 轴对称和关于原点对称中的任意两种,则它一定具有第三种对称。
原点叫椭圆的对称中心,简称中心。
x 轴、y 轴叫椭圆的对称轴。
从椭圆的方程中直接 可以看出它的范围,对称的截距。
(3)顶点椭圆和对称轴的交点叫做椭圆的顶点。
在椭圆12222=+by a x 的方程里,令0=y 得a x ±=,因此椭圆和x 轴有两个交点()()0,,0,21a A a A -,它们是椭圆12222=+by a x 的顶点。
令0=x ,得b y ±=,因此椭圆和y 轴有两个交点()()b B b B ,0,,021-,它们也是椭圆12222=+by a x 的顶点。
因此椭圆共有四个顶点:()()0,,0,21a A a A -,()()b B b B ,0,,021-。
加两焦点()()0,,0,21c F c F -共有六个特殊点。
21A A 叫椭圆的长轴,21B B 叫椭圆的短轴,长分别为b a 2,2。
b a ,分别为椭圆的长半轴长和短半轴长。
椭圆的顶点即为椭圆与对称轴的交点。
至此我们从椭圆的方程中直接可以看出它的 ,对称性、顶点。
因而只需少量描点就可以较正确地作图了。
(4)离心率长轴相等,短轴不同,扁圆程度不同,这种扁平性质是由椭圆焦距与长轴长之比来决定的。
高二人教版数学椭圆知识点
高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。
本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。
一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。
其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。
二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。
2. 对称性质:椭圆关于长轴和短轴都具有对称性。
3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。
4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。
离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。
三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。
四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。
五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。
2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。
3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。
4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。
六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。
通过改变θ的取值,可以得到椭圆上的所有点坐标。
七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。
例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。
此外,椭圆在艺术设计和建筑设计中也常常被使用。
人教版数学选修21第二章椭圆椭圆的标准方程讲义
案例(二)——精析精练课堂合作探究重点难点突破知识点一 对椭圆定义的理解平面内与两个定点1F ,2F 的距离的和等于常数(大于21F F )的点的轨迹(或集合)叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距。
根据椭圆的定义可知:椭圆上的点M 满足集合()a MF MF M P 221=+=,c F F 221=,0>a ,0>c ,且a 、c 都为常数。
当c a >即c a 22>时,集合P 为椭圆。
当c a =即c a 22=时,集合P 为线段21F F 。
当c a <即c a 22<时集合P 为空集。
对于后两种情况我们应该注意,它们可以帮助我们理解椭圆的定义,并在具体问题中做 出适当的判断。
知识点二 椭圆的标准方程根据椭圆的定义,结合求曲线方程的步骤,寻求它的方程,方程的繁简取决于坐标系的建立。
首先,可以结合椭圆的形状,感性地认识到椭圆具有对称性,并利用对称性来建立适当的坐标系。
其次,如何将椭圆定义中线段长度关系用坐标的形式表示出来,于是设椭圆上任意一点坐标为()y x M ,,M 点到两焦点间的距离之和为常数a 2,即()()a y c x y c x 22222=+-+++,然后化简方程。
其中带根式方程的化简较困难,原因可能是方法不当,也可能是运算较繁,在推导过程中,只要抓住“怎样消去方程中的根式”这一关键问题,演算虽较繁,也能迎刃而解。
关于0>>c a 、022>-c a 、()0222>=-b b c a 以及为什么要设222b c a =-,这正是定义中括号内内容强调的所在,在学习过程中一定要深刻地认识和体会。
特别地,引入b的作用是为了使方程的形式简单,到下节研究椭圆的性质,就可以明确b 的几何意义。
至于焦点在y 轴上的情形,可仿上研究。
此外:①在椭圆的两种标准方程中,总是0>>b a ;②如果椭圆的焦点在x 轴上,则焦点坐标为()()0,,0,c c -;如果焦点在y轴上,则焦点坐标为()()c c -,0,,0;③a 、b 、c 有关系式222c b a +=;④两种形式的椭圆标准方程都可以写成122=+ny mx ()n m n m ≠>>,0,0,这为后面的学习奠定了基础。
椭圆培优经典讲义-(学生版)
--第一节 椭 圆考点一 椭圆的定义及应用1.椭圆22192x y +=的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|= ,∠F1PF 2的大小为 .2.椭圆22143x y +=的左焦点为F,直线x =m 与椭圆相交于点A、B ,当△F AB的周长最大时,△F AB 的面积是 .3.已知F 1、F 2是椭圆C: 22221x y a b+= (a >b>0)的两个焦点,P 为椭圆C上一点,且12PF PF ⊥,若△P F1F 2的面积为9,则b= .考点二 椭圆的方程及其简单性质应用1.已知椭圆E: 22221x y a b+= (a>b>0)的右焦点为F(3,0),过点F的直线交E 于A 、B 两点.若A B的中点坐标为(1,-1),则E 的方程为( )(A )2214536x y += (B)2213627x y += (C)2212718x y +=ﻩ (D )221189x y += 2.在平面直角坐标系xO y中,椭圆C 的中心为原点,焦点F1、F 2在x 轴上,,过F1的直线l 交C 于A、B 两点,且△ABF 2的周长为16,那么C 的方程为 . 3.若椭圆22221x y a b +=的焦点在x 轴上,过点11,2⎛⎫ ⎪⎝⎭作圆x 2+y 2=1的切线,切点分别为A 、B,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .考点三 椭圆离心率的求法1.设F 1,F 2是椭圆E : 22221x y a b += (a >b >0)的左、右焦点,P 为直线x =32a 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B)23 (C)34 ﻩ(D)452.椭圆Γ: 22221x y a b += (a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线x+c)与椭圆Γ的一个交点满足∠MF 1F2=2∠MF 2F1,则该椭圆的离心率等于 .3.已知椭圆C: 22221x y a b+= (a>b>0)的左焦点为F,椭圆C 与过原点的直线相交于A,B 两点,连接AF,B F.若|A B|=10,|AF |=6,cos ∠ABF=45,则椭圆C 的离心率e= . 考点四 直线与椭圆的位置关系1.设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN 的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.2.已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF 的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.3.平面直角坐标系xOy中,过椭圆M:22221x ya b+=(a>b>0)右焦点的直线x+y-3=0交M于A,B两点,P为AB的中点,且OP的斜率为12.(1)求M的方程;(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值. 4.如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.5.如图,椭圆E:22221x ya b+= (a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.--。
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
高中新教材数学人课件选择性必修时椭圆的简单几何性质
特殊点(顶点、焦点)坐标
01
椭圆的四个顶点坐标分别为 $A_1(-a,0)$,$A_2(a,0)$, $B_1(0,-b)$,$B_2(0,b)$。
02
椭圆的两个焦点坐标分别为 $F_1(-c,0)$,$F_2(c,0)$,其中 $c = sqrt{a^2 - b^2}$。
点到焦点距离关系
椭圆上任意一点$P$到两个焦点 $ PF_2 = 2a$ 。
当离心率e接近0时,椭圆形状趋近于圆 形。
02
椭圆上点坐标特征
任意点坐标表示方法
椭圆上任意一点$P$的坐标可以用参数方程表示为$P(acostheta, bsintheta)$,其中$a$和$b$分别为椭圆的长 半轴和短半轴,$theta$为参数。
椭圆上任意一点$P$的坐标也可以用普通方程表示为$P(x,y)$,其中$x$和$y$满足椭圆的方程$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$。
判断二次方程的解的个数,即直线与椭圆的交点个数。当判别式 $Delta > 0$ 时 ,有两个交点;当 $Delta = 0$ 时,有一个交点(即相切);当 $Delta < 0$ 时,无交点。
切线条件及切线方程求解
切线条件
直线与椭圆相切时,判别式 $Delta = 0$。
切线方程求解
根据切线条件,解出切线斜率 $k$,进而写出切线方程 $y = kx + b$。
06
总结回顾与拓展延伸
关键知识点总结回顾
椭圆的定义和标准方程
椭圆是由在平面内满足“从两个定点F1和F2 出发的线段长度之和等于常数(且大于两定 点间距离)的所有点”组成的集合。其标准 方程为$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$($a > b > 0$)。
(完整版)人教版文科数学椭圆讲义
2.1椭圆第1课时椭圆及其标准方程1.归纳总结,核心必记(1)椭圆的定义平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)椭圆的标准方程(-c,0),(c,0)(0,-c),(0,c)例题1(椭圆定义理解)已知椭圆x2a2+y2b2=1(a>b>0),F1,F2是它的焦点.过F1的直线AB与椭圆交于A、B两点,求△ABF2的周长.解:∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,又∵△ABF2的周长=|AB|+|BF2|+|AF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a,∴△ABF2的周长为4a.由椭圆的定义可知,点的集合P={M||MF1|+|MF2|=2a}(其中|F1F2|=2c)表示的轨迹有三种情况:当a>c时,集合P为椭圆;当a=c时,集合P为线段F1F2;当a<c时,集合P 为空集.在利用椭圆的定义判断有关点的轨迹问题时一定要注意所给常数与已知两定点之间距离的大小关系.因为椭圆上的点与两个焦点构成一个三角形,所以可联系三角形两边之和大于第三边来帮助记忆.案例11.已知命题甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a,其中a为大于0的常数;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若点P 的轨迹是椭圆,则一定有|P A |+|PB |=2a (a >0,为常数). 所以甲是乙的必要条件.反过来,若|P A |+|PB |=2a (a >0,为常数),当2a >|AB |时,点P 的轨迹是椭圆;当2a =|AB |时,点P 的轨迹是线段AB ;当2a <|AB |时,点P 的轨迹不存在,所以甲不是乙的充分条件.综上可知,甲是乙的必要不充分条件.2.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段解析:选D 因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 例题2(求椭圆的标准方程)(1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.解:(1) ∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210,∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6. ∴所求椭圆的标准方程为x 210+y 26=1.(2) 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点,∴⎩⎪⎨⎪⎧4m =1,n =1, ∴⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.案例2 求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26. 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为2a =(5+3)2+02+(5-3)2+02=10,2c =6,所以a =5,c =3,所以b 2=a 2-c 2=52-32=16.所以所求椭圆的标准方程为x 225+y 216=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为2a =26,2c =10, 所以a =13,c =5. 所以b 2=a 2-c 2=144.所以所求椭圆的标准方程为y 2169+x 2144=1.例题3(与椭圆有关的轨迹问题)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[尝试解答] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .动圆P 与圆M 外切并且与圆 N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆定义可知,曲线C 是以M 、N 为左、右焦点,长半轴长为2,短半轴长为 3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).解决与椭圆有关的轨迹问题的两种方法(1)定义法:用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.案例3 如图,圆C :(x +1)2+y 2=16及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于M ,求点M 的轨迹方程.解:由垂直平分线性质可知|MQ |=|MA |,∴|CM |+|MA |=|CM |+|MQ |=|CQ |. ∴|CM |+|MA |=4.又|AC |=2, ∴M 点的轨迹为椭圆.由椭圆的定义知,a =2,c =1,∴b 2=a 2-c 2=3. ∴所求轨迹方程为x 24+y 23=1.例题4 (与焦点有关的三角形问题)如图所示,P 是椭圆x 24+y 23=1上的一点,F 1,F 2为椭圆的左、右焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积.[思考点拨] 由余弦定理结合椭圆的定义求出|PF 1|,再代入三角形的面积公式求解. [尝试解答] 由已知a =2,b =3, 得c =a 2-b 2=4-3=1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|·cos 120°,即|PF 2|2=|PF 1|2+4+2|PF 1|, ① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|. ② ②代入①解得|PF 1|=65.∴S △PF 1F 2=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335.即△PF 1F 2的面积是335.第2课时 椭圆的简单几何性质1.预习教材,问题导入根据以下提纲,预习教材P 37~P 40“探究”的内容,回答下列问题. 观察教材P 38-图2.1-7,思考以下问题:(1)椭圆x 2a 2+y 2b 2=1(a >b >0)中x ,y 的取值范围各是什么?提示:-a ≤x ≤a ,-b ≤y ≤b .(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的对称轴和对称中心各是什么?提示:对称轴为x 轴和y 轴,对称中心为坐标原点(0,0). (3)椭圆x 2a 2+y 2b2=1(a >b >0)与坐标轴的交点坐标是什么?提示:与x 轴的交点坐标为(±a ,0),与y 轴的交点坐标为(0,±b ). (4)椭圆的长轴和短轴分别对应图中的哪些线段? 提示:长轴为A 1A 2,短轴为B 1B 2.(5)椭圆的离心率是什么?用什么符号表示?其取值范围是什么? 提示:离心率e =ca;0<e <1.(6)如果保持椭圆的长半轴长a 不变,改变椭圆的短半轴长b 的值,你发现b 的变化与椭圆的扁圆程度有什么关系?提示:b 越大,椭圆越圆;b 越小,椭圆越扁. (7)根据离心率的定义及椭圆中a ,b ,c 的关系可知, e =c a=c 2a 2=a 2-b 2a 2=1-⎝⎛⎭⎫b a 2,所以e 越接近于1,则c 越接近于a ,从而b =a 2-c 2就越小;e 越接近于0,则c 越接近于0,从而b 越接近于a .那么e 的大小与椭圆的扁圆程度有什么关系?提示:e 越大,椭圆越扁;e 越小,椭圆越圆. 2.归纳总结,核心必记 椭圆的简单几何性质(1)借助椭圆图形分析,你认为椭圆上到对称中心距离最近和最远的点各是哪些? 提示:短轴端点B 1和B 2到中心O 的距离最近;长轴端点A 1和A 2到中心O 的距离最远. (2)借助椭圆图形分析,你认为椭圆上的点到焦点距离的最大值和最小值各是何值? 提示:点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离分别是椭圆上的点与焦点F 1的最大距离和最小距离,分别为a +c 和a -c .(3)如何用a ,b 表示离心率?提示:由e =c a 得e 2=c 2a 2=a 2-b 2a2, ∴e = 1-⎝⎛⎭⎫b a 2. ∴e = 1-b 2a2. 续表例题1 (由椭圆的标准方程研究几何性质)求椭圆4x 2+9y 2=36的长轴长和焦距、焦点坐标、顶点坐标和离心率.[尝试解答] 将椭圆方程变形为x 29+y 24=1,∴a =3,b =2.∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.案例1 求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解:椭圆的方程m 2x 2+4m 2y 2=1(m >0), 可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2, ∴1m 2>14m2, ∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m .∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m . 离心率e =c a =32m 1m=32.例题2 (由椭圆的几何性质求方程)求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A (5,0); (2)离心率e =35,焦距为12.[尝试解答] (1)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1. (2)由e =c a =35,2c =12,得a =10,c =6,∴b 2=a 2-c 2=64.当焦点在x 轴上时,所求椭圆的标准方程为x 2100+y 264=1;当焦点在y 轴上时,所求椭圆的标准方程为y 2100+x 264=1.综上所述,所求椭圆的标准方程为x 2100+y 264=1或y 2100+x 264=1.案例2 求满足下列条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且经过点A (2,3);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解:(1)若椭圆的焦点在x 轴上,设标准方程为x 24b 2+y 2b2=1(b >0),∵椭圆过点A (2,3),∴1b 2+9b 2=1,b 2=10.∴方程为x 240+y 210=1.若椭圆的焦点在y 轴上. 设椭圆方程为y 24b 2+x 2b2=1(b >0),∵椭圆过点A (2,3),∴94b 2+4b 2=1,b 2=254.∴方程为y 225+4x 225=1.综上所述,椭圆的标准方程为x 240+y 210=1或y 225+4x 225=1.(2)由已知⎩⎪⎨⎪⎧a =2c ,a -c =3,∴⎩⎪⎨⎪⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.例题3(求椭圆的离心率)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c ,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e . [尝试解答] 由A (-a ,0),B (0,b ), 得直线AB 的斜率为k AB =ba,故AB 所在的直线方程为y -b =ba x ,即bx -ay +ab =0.又F 1(-c ,0),由点到直线的距离公式可得 d =|-bc +ab |a 2+b 2=b 7,∴7·(a -c )=a 2+b 2.又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0, 即8⎝⎛⎭⎫c a 2-14c a+5=0.∴8e 2-14e +5=0.解得e =12或e =54(舍去).综上可知,椭圆的离心率e =12.求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c ,可直接利用e =ca 求解.若已知a ,b 或b ,c ,可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.案例3 如图,已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点和上顶点,P 为椭圆上的一点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆的中心)时,求椭圆的离心率.解:由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则由题意可知P ⎝⎛⎭⎫-c ,b 2a .∵△PF 1O ∽△BOA , ∴PF 1BO =F 1O OA . ∴b 2a b =ca ,即b =c , ∴a 2=2c 2, ∴e =c a =22.第3课时 直线与椭圆的位置关系(习题课)1、直线与椭圆的位置关系(重要)[思考1] 判断直线与圆的位置关系有哪几种方法?名师指津:(1)几何法:利用圆心到直线的距离d 与圆的半径的大小关系判断,d =r ⇔相切;d >r ⇔相离;d <r ⇔相交.(2)代数法:联立直线与圆的方程,利用方程组解的个数判断.[思考2] 能否利用判断直线与圆的位置关系的方法判断直线与椭圆的位置关系? 名师指津:不能采用几何法,但是可以利用代数法判断直线与椭圆的位置关系. [思考3] 已知直线l 和椭圆C 的方程,如何判断直线与椭圆的位置关系?名师指津:判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.例题1 已知椭圆4x 2+y 2=1及直线y =x +m .问m 为何值时,直线与椭圆相切、相交、相离.[尝试解答] 将y =x +m 代入4x 2+y 2=1,消去y 整理得5x 2+2mx +m 2-1=0.Δ=4m 2-20(m 2-1)=20-16m 2.当Δ=0时,得m =±52,直线与椭圆相切;当Δ>0时,得-52<m <52,直线与椭圆相交; 当Δ<0时,得m <-52或m >52,直线与椭圆相离.判断直线与椭圆的位置关系的方法案例1 若直线y =kx +1与焦点在x 轴上的椭圆 x 25+y 2m=1总有公共点,求m 的取值范围.解:由⎩⎪⎨⎪⎧y =kx +1,x 25+y 2m=1,消去y ,整理得(m +5k 2)x 2+10kx +5(1-m )=0,所以Δ=100k 2-20(m +5k 2)(1-m )=20m (5k 2+m -1), 因为直线与椭圆总有公共点, 所以Δ≥0对任意k ∈R 都成立, 因为m >0,所以5k 2≥1-m 恒成立, 所以1-m ≤0, 即m ≥1.又因为椭圆的焦点在x 轴上, 所以0<m <5, 综上,1≤m <5,2、直线与椭圆的相交弦问题[思考1] 若直线l 与圆C 相交于点A ,B ,如何求弦长|AB |?名师指津:(1)利用r 2=d 2+⎝⎛⎭⎫l 22求解;(2)利用两点间的距离公式求解;(3)利用弦长公[思考2] 若直线l :y =kx +m 与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,如何求|AB |的值?名师指津例题2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程.[尝试解答] (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2=52×62=310. 所以线段AB 的长度为310.(2)法一:设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4, 解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2), 则有⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即y =-12x +4.(1)弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2,或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2.其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(2)解决椭圆中点弦问题的两种方法①根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.②点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎨⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB =-b 2x 0a 2y 0. 案例2(1)直线y =x +1被椭圆x 24+y 22=1所截得线段的中点的坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73C.⎝⎛⎭⎫-23,13D.⎝⎛⎭⎫-132,-172 解析:选C 联立方程组⎩⎪⎨⎪⎧y =x +1,x 24+y 22=1,消去y 得3x 2+4x -2=0.设交点A (x 1,y 1),B (x 2,y 2),中点M (x 0,y 0), ∴x 1+x 2=-43,x 0=x 1+x 22=-23,y 0=x 0+1=13.∴所求中点的坐标为⎝⎛⎭⎫-23,13. (2).椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且椭圆与直线x +2y +8=0相交于P ,Q ,且|PQ |=10,求椭圆方程.解:∵e =32,∴b 2=14a 2.∴椭圆方程为x 2+4y 2=a 2. 与x +2y +8=0联立消去y ,得2x 2+16x +64-a 2=0,由Δ>0得a 2>32,由弦长公式得10=54×[64-2(64-a 2)].∴a 2=36,b 2=9.∴椭圆方程为x 236+y 29=1. 例题3(与椭圆有关的最值问题)已知椭圆x 2a 2+y 2b 2=1的离心率e =63.(1)若2a 2c=32,求椭圆方程;(2)直线l 过点C (-1,0)交椭圆于A 、B 两点,且满足:,试求△OAB 面积的最大值.[尝试解答](1)由题意知⎩⎨⎧c a =63,2a2c =32,解得a =3,c = 2.所以a 2=3,b 2=1, 所以椭圆方程为x 23+y 2=1.(2)由e =c a =63,及a 2=b 2+c 2,得a 2=3b 2,可设椭圆的方程为x 23b 2+y 2b 2=1,设A (x 1,y 1),B (x 2,y 2),由题意知直线l 的斜率存在,则设l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 23b 2+y 2b 2=1,得(3k 2+1)x 2+6k 2x +3k 2-3b 2=0, 且Δ=12(3b 2-1)k 2+12b 2, 因为直线l 交椭圆于A 、B 两点,且,所以点C 在椭圆内部,所以a >1, 所以3b 2>1,所以Δ>0.所以x 1+x 2=-6k 23k 2+1.因为,所以(x 1+1,y 1)=3(-1-x 2,-y 2),所以x 1=-4-3x 2,所以x 2+1=-13k 2+1,所以|x 1-x 2|=43k 2+1.又O 到直线l 的距离为d =|k |1+k 2,所以S △ABO =12|AB |d =121+k 2|x 1-x 2|·d=2|k |3k 2+1=23|k |+1|k |≤33,所以当且仅当3|k |=1|k |,即k =±33时,S △ABO 取得最大值33.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.案例3 在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.解:设与椭圆相切并与l 平行的直线方程为y =32x +m ,代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0,Δ=9m 2-16(m 2-7)=0⇒m 2=16⇒m =±4,故两切线方程为y =32x +4和y =32x -4,显然y =32x -4距l 最近,d =|16-8|32+(-2)2=813, 切点为P ⎝⎛⎭⎫32,-74.。
高三数学椭圆人教版(文)知识精讲
高三数学椭圆人教版(文)【同步教育信息】一. 本周教学内容:椭圆二. 知识内容: 1. 椭圆方程(1)标准方程:12222=+b y a x )0(>>b a 或12222=+b x a y )0(>>b a(2)参数方程:⎩⎨⎧==ϕϕsin cos b y a x2. 椭圆的几何性质对称性、离心率、X 围、顶点等 3. 直线与椭圆位置关系 (1)相交0>∆⇔ (2)相切0=∆⇔ (3)相离0<∆⇔【典型例题】[例1] 直线1+=kx y )(R k ∈与焦点在x 轴上的椭圆1522=+my x 总有公共点,求m 的取值X 围。
解:由0)1(510)5(1512222=-+++⇒⎪⎩⎪⎨⎧=++=m kx x k m m y x kx y 则0)5)(1(2010022≥+--=∆k m m k 对R k ∈恒成立0522≥-+⇔m m mk 对R k ∈恒成立,又0>m ,则有m k -≥152对R k ∈恒成立,故01≤-m 即1≥m ,又由5<m ,所以)5,1[∈m另解:令⎪⎪⎩⎪⎪⎨⎧==v my u x5,则问题转化为直线15+=u k v m 与圆122=+v u 总有公共点,求m 的取值X 围。
由点线距离公式,有01515|100|22≥-+⇔≤++-m k mk 对R k ∈恒成立,下同解法1 又解:利用数形结合,直线系1+=kx y 恒过定点)1,0(,直线与椭圆总有公共点等价于点)1,0(在椭圆内部11502≤+⇔m,即1≥m ,又5>m 故)5,1[∈m[例2] 已知椭圆2222a y x =+)0(>a 和两点)2,1(A ,)4,3(B ,若线段AB 和椭圆没有公共点,求a 的取值X 围。
解:线段AB 的方程为:131242--=--x y )31(≤≤x ,即01=+-y x )31(≤≤x 代入椭圆方程,并整理得0)1(24322=-++a x x )31(≤≤x 问题等价于该方程无实数解,令)1(243)(22a x x x f -++=,由)(x f 对称轴,32-=x ,故0)(=x f 在31≤≤x 上没有实根的充要条件是⋅)1(f 0)241)(29(0)3(22>--⇔>a a f 2412>⇔a 或292<a ,又0>a ,故2230<<a 或282>a又法:利用数形结合,当椭圆分别过点A 和点B 时29221222=+=Aa ,222423+=B a 241=,故282>a 或2230<<a[例3] 已知椭圆13422=+y x 和直线l :m x y +=4,试确定m 的X 围,使椭圆上有两个不同的点关于直线对称。
第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析
第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。
3.1.2椭圆的简单几何性质课件(人教版)
x2 a2
y2 b2
1,
(4)
由此可知,点M的轨迹是椭圆,方程(1)是椭圆
的参数方程,在椭圆的参数方程(1)中,常数a、
b分别是椭圆的长半轴长和短半轴长.
6、椭圆的参数方程
椭圆 x2 a2
y2 b2
1 (a
b
0),的参数方程是
x
y
a cos b sin
(为参数)
7、椭圆的焦半径公式
P(x0,y0)是椭圆
c2
b2,就可化
成:x a
2 2
y2 b2
(1 a
b 0).
这是椭圆的标准方程,所以点M的轨迹是长轴、 短轴长分别为2a、2b的椭圆.
5、椭圆的第二定义
平面内点M与一个定点的距离和它到一定直线的
距离的比是常数:e c (0<e<1)时,这个 a
点M的轨迹是椭圆,定点是椭圆的焦点,定直线 叫做椭圆的准线,常数e是椭圆的离心率.
长、离心率、焦点和顶点的坐标,并用描点法
画出它的图形.
解:把已知方程化成标准方程: x 2 52
y2 42
1,
这里,a 5,b 4,所以:c 25 16 3,
因此,椭圆的长轴和短轴的长分别是:2a 10
和 2b 8,离心率 e c 3,两个焦点分别是 a5
F1 ( 3,0)和F2 (3,0),椭圆的四个顶点是 A(1 5,0)、A(2 5,0),B(1 0, 4)和B(2 0,4).
练习
一、选择题
1、椭圆短轴长是2,长轴是短轴的2倍,则椭圆
的中心到其准线的距离是(D )
A、8 5 5
B、 4 5 5
C、8 3 3
D、 4 3 3
2、椭圆 9x2 25 y 2 225 上有一点P,它到右准
高中数学2221椭圆的简单几何性质课件新人教A版选修
椭圆的几何性质
椭圆的对称性
椭圆具有中心对称性,即关于 中心对称
椭圆具有轴对称性,即关于长 轴或短轴对称
椭圆具有旋转对称性,即关于 原点旋转一定角度后仍保持形 状不变
椭圆的对称性是椭圆的一个重 要几何性质,也是椭圆与其对称轴,它们互相垂直,相交于椭圆的中心。 长轴是椭圆的两个顶点之间的连线,短轴是椭圆的两个焦点之间的连线。 长轴的长度是短轴长度的2倍,短轴的长度是长轴长度的一半。 长轴和短轴的长度决定了椭圆的形状和大小。
椭圆面积的求法: 利用椭圆面积公 式,结合已知条 件求解
椭圆面积的性质: 与长半轴和短半 轴的乘积成正比
椭圆面积的应用: 在几何、物理、 工程等领域都有 广泛应用
椭圆的周长
椭圆周长公 式:
L=4aE(1e^2)
a:椭圆的长 半轴
b:椭圆的短 半轴
e:椭圆的离 心率
E:椭圆的偏 心率
椭圆周长的 计算方法: 根据公式进 行计算,注 意公式中的 参数值需要 准确获取。
椭圆面积与周长的关系
椭圆面积与周长的关系:椭圆的面积与周长之间存在一定的关系,可以通过公式进行计算。 椭圆面积公式:S=πab,其中a、b分别为椭圆的长轴和短轴。 椭圆周长公式:L=4(a+b),其中a、b分别为椭圆的长轴和短轴。 椭圆面积与周长的关系:椭圆的面积与周长之间存在一定的关系,可以通过公式进行计算。
高中数学2221椭圆的简单几 何性质课件新人教A版选修
汇报人:
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 单击添加目录项标题 2 椭圆的定义与标准方程 3 椭圆的几何性质 4 椭圆的面积与周长 5 椭圆的切线与法线 6 椭圆的极坐标方程
高中数学第2章2.1.2第一课时椭圆的简单几何性质课件新人教A选修11.ppt
【名师点评】
变式训练3 已知椭圆的两个焦点为F1、F2, A为椭圆上一点,且AF1⊥AF2,∠AF2F1= 60°,求该椭圆的离心率.
解:不妨设椭圆的焦点在 x 轴上,画出草图如图 所示. 由 AF1⊥AF2 知△AF1F2 为 直角三角形,且∠AF2F1=60°. 由椭圆定义,知|AF1|+|AF2|=2a,|F1F2|=2c.则在 Rt△AF1F2 中,由∠AF2F1=60°得|AF2|=c,|AF1|
例1 求椭圆4x2+9y2=36的长轴长、焦距、焦 点坐标、顶点坐标和离心率.
【思路点拨】 化为标准形式 → 确定焦点位置
→ 求a,b,c → 求椭圆几何性质
【解】 将椭圆方程变形为x92+y42=1, ∴a=3,b=2,∴c= a2-b2= 9-4= 5. ∴椭圆的长轴长和焦距分别为 2a=6,2c=2 5;焦点坐 标为 F1(- 5,0),F2( 5,0);顶点坐标为 A1(-3,0),
∴所求椭圆的标准方程为1x424+8y02 =1 或1y424+8x02=1.
(2)设椭圆方程为xa22+by22=1(a>b>0).如图所示,△
A1FA2 为等腰直角三角形,OF 为斜边 A1A2 的中线 ( 高 ) ,且 |OF|= c , |A1A2|= 2b , ∴ c = b= 4, ∴a2 =b2+c2=32,故所求椭圆的方程为3x22+1y62 =1.
考点二 利用椭圆的几何性质求标准方程 (1)利用椭圆的几何性质求标准方程通常采用待定 系数法. (2)根据已知条件求椭圆的标准方程的思路是“选 标准,定参数”,一般步骤是:①求出a2,b2的值; ②确定焦点所在的坐标轴;③写出标准方程.
例2 求适合下列条件的椭圆的标准方程: (1)长轴长是 6,离心率是23; (2)在 x 轴上的一个焦点,与短轴的两个端 点的连线互相垂直,且焦距为 6.
高二数学椭圆(一)人教版知识精讲
(a>b>0) 高二数学椭圆(一)人教版【同步教育信息】一. 本周教学内容椭圆(一)二. 重点、难点1. 定义:212122F F c a PF PF =>=+(其中P 为椭圆上一点,21F F 焦点)2. 椭圆的标准方程:12222=+b y a x12222=+bx a y 3. 椭圆的性质)0(12222>>=+b a by a x (1)a x ≤ b y ≤(2)x 、y 轴为椭圆对称轴,原点为对称中心。
(3)顶点)0,(a ±),0(b ±(4)离心率ac e =)(222b a c -=4. 直线与椭圆的位置关系 l :0=++C By Ax椭圆M :12222=+by a x代入:222222)(b a Bc Ax a bx =++ ※ 研究※式的判别式∆ (1)0<∆ 无交点(2)0=∆ 一个交点(相切) (3)0>∆ 两个不同的交点弦长2121x x k -+=(k 为l 的斜率,21x x 为※式的根)【典型例题】[例1] 求满足下面条件的椭圆的方程。
(1)求焦点为)0,3(,)0,3(-,离心率31=e 的椭圆。
解:3=c 9=a 26=b ∴1728122=+y x (2)求中心在原点,两准线间距离为5,焦距为4的椭圆方程。
解:522=⋅ca 2=c ∴ 5=a 1=b∴ 1522=+y x 或1522=+x y (3)求中心在原点、焦点在x 轴,椭圆上点M )12,8(到左焦点距离为20的椭圆方程。
解:2222012)8(=++c 2216)8(=+c 8=c2221212)88(=+- ∴ 3212202=+=a 16=a∴119225622=+y x (4)椭圆中心在坐标原点,焦点在x 轴,直线1+=x y 与椭圆交于M 、N 若ON OM ⊥且210=MN 求椭圆方程。
解:设椭圆122=+ny mx 当1+=x y 交),(11y x M ),(22y x N1)1(112222=++⇒⎩⎨⎧+==+x n mx x y ny mx即:012)(2=-+++n nx x n m∴ ⎪⎪⎩⎪⎪⎨⎧+-=⋅+-=+n m n x x n m n x x 122121ON OM ⊥ ∴ 02121=+y y x x 0)1x )(1x (x x 2121=+++⋅ ①2101121=-⋅+=x x MN ② 由①②⎪⎪⎩⎪⎪⎨⎧==⇒2123n m (舍)⎪⎪⎩⎪⎪⎨⎧==2321n m ∴132222=+y x [例2] 直线m x y +=与椭圆191622=+y x 的交点的个数,并求最大弦长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的方程【学习目标】1.经历从具体情境中抽象出椭圆模型的过程;2.掌握椭圆的定义和标准方程;3.能用椭圆的定义和标准方程解决简单的实际问题. 【要点梳理】 要点一、椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(21212F F a PF PF >=+),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.要点诠释:若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形.要点二、椭圆的标准方程标准方程的推导:由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立直角坐标系(如图).设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF 1|+|MF 2|=2a }. (3)代数方程即:(4)化简方程 由22a c >可得222a cb -=,则得方程22221(0)x y a b a b+=>>关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.因此,方程22221(0)x y a b a b+=>>即为所求椭圆的标准方程.它表示的椭圆的焦点在x 轴上,焦点是F 1(-c ,0)、F 2(c ,0).这里c 2=a 2-b 2.椭圆的标准方程:1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;要点诠释:1.这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有0a b >>和222b ac -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -;4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 要点三、求椭圆的标准方程求椭圆的标准方程主要用到以下几种方法:(1)待定系数法:①若能够根据题目中条件确定焦点位置,可先设出标准方程,再由题设确定方程中的参数a,b ,即:“先定型,再定量”.②由题目中条件不能确定焦点位置,一般需分类讨论;有时也可设其方程的一般式:221(,0m n)mx ny m n +=>≠且.(2)定义法:先分析题设条件,判断出动点的轨迹,然后根据椭圆的定义确定方程,即“先定型,再定量”。
利用该方法求标准方程时,要注意是否需先建立平面直角坐标系再解题.【典型例题】 类型一:椭圆的定义例1. 若一个动点P (x ,y )到两个定点A (-1,0)、A '(1,0)的距离的和为定值m (m>0),试求P 点的轨迹方程。
举一反三:【变式1】(一模)设椭圆22221(a b 0)x y a b+=>>的左、右焦点分别为F 1,,F 2,上顶点为B 。
若|BF 2|=|F 1F 2|=2,则该椭圆的方程是( )A.22143x y += B. 2213x y += C. 2212x y += D. 2214x y +=【变式2】(二模)已知B (-2,0),C (2,0),A 为动点,ABC ∆的周长为10,则动点A 的满足的方程为( )B. 22165x y += B. 22195x y +=C. 22194x y +=D. 22184x y +=【高清课堂:椭圆的方程 例2】【变式3】设动圆P 与圆22:(3)4M x y -+=外切,与22:(3)100N x y ++=内切,求动圆圆心P 的轨迹方程.类型二:椭圆的标准方程例2. 椭圆22110036x y +=的焦距是 ,焦点坐标是 ;若AB 为过椭圆的一个焦点F 1的一条弦,F 2为另一个焦点,则2ABF 的周长是 .举一反三:【变式1】方程2212516x y m m+=-+表示焦点在y 轴上的椭圆,则m 的取值范围是________【变式2】已知椭圆的标准方程是222125x y a +=(a >5),它的两焦点分别是F 1,F 2,且F 1F 2=8,弦AB 过点F 1,则△ABF 2的周长为________.【变式3】(模拟)已知曲线C 的方程为221x y a b+=,则“a >b ”是“曲线C 为焦点在x 轴上的椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件例3.当39k <<时,指出方程22193x y k k +=--所表示的曲线.举一反三:【变式】如果方程222(0)x ky k +=>表示焦点在y 轴上的椭圆,则k 的取值范围是类型三:求椭圆标准方程 【高清课堂:椭圆的方程 例1】例4. 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和是10; (2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点35(,)22-举一反三:【变式1】已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,则椭圆的标准方程是________.【变式2】已知一椭圆的对称轴为坐标轴且与椭圆22194x y +=有相同的焦点,并且经过点(3,-2),求此椭圆的方程。
例5. 求经过点P (-3,0)、Q (0,2)的椭圆的标准方程。
举一反三:【变式1】过点(-3,2)且与椭圆22194x y +=有相同焦点的椭圆的标准方程是________.【变式2】已知椭圆的中心在原点,经过点P (3,0)且a=3b ,求椭圆的标准方程。
类型四:椭圆的综合问题例6.设F 1、F 2是椭圆22194x y +=的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,则△PF 1F 2的面积等于________.举一反三:【变式1】已知P 为椭圆221169x y +=上的一点,12,F F 是两个焦点,1260O F PF ∠=,求12F PF 的面积.【变式2】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为______类型五:坐标法的应用例7.△ABC 的两个顶点坐标分别是B (0,6)和C (0,-6),另两边AB 、AC 的斜率的乘积是49-,求顶点A 的轨迹方程。
举一反三:【变式1】已知A 、B 两点的坐标分别为(0,-5)和(0,5),直线MA 与MB 的斜率之积为49-,则M 的轨迹方程是( )A .221100259x y += B .221(5)100259x y x +=≠± C .221225254x y += D .221(0)225254x y x +=≠【变式2】△ABC 两顶点的坐标分别是B (6,0)和C (-6,0),另两边AB 、AC 的斜率的积是49-,则顶点的轨迹方程是( )A .221(6)8136x y y +=≠± B .221(6)8116y x y +=≠± C .221(6)1636x y x +=≠± D .221(6)3616x y x +=≠± 【高清课堂:椭圆的方程 例3】【变式3】如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP',求线段PP'中点M 的轨迹【巩固练习】 一、选择题1.如果方程22216x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .3a >B .2a <-C . 3a >或2a <-D .3a >或62a -<<-2.(月考)若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上,则这个椭圆的方程为( )A .221129x y += B .221912x y += C .221129x y +=或221912x y += D .以上都不对 3.直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的取值范围是( )A .1m >B .1m ≥或01m <<C . 1m ≥且5m ≠D .05m <<且1m ≠4.设P 是椭圆2212516x y +=上的点,若12,F F 是椭圆的两个焦点,则12||PF PF +等于( )A.4B.5C.8D.105. (模拟)“ab >0”是“方程ax 2+by 2=1表示椭圆的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.若椭圆的2221kx ky +=的一个焦点为(0,-4),则k 的值为( ) A.132B .18 C .8 D .32二、填空题7.设F 1,F 2分别是椭圆E :x 2+22by =1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A 、B 两点,若|AF 1|=3|F 1B|,AF 2⊥x 轴,则椭圆E 的方程为 .8.(模拟)已知椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点分别为F 1,F 2,点P 为椭圆在y 轴上的一个顶点,若2b ,12||F F ,2a 成等差数列,且△PF 1F 2的面积为12,则椭圆C 的方程为________.9.已知椭圆221169x y +=的左、右焦点分别为F 1、F 2,P 是椭圆上的一点,Q 是PF 1的中点,若OQ =1,则PF 1=________.10.设F 1、F 2是椭圆22194x y +=的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,则△PF 1F 2的面积等于________.11.椭圆221x y m n+=-- (m <n <0)的焦点坐标是________. 三、解答题12.ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.13.已知圆C :(x -3)2+y 2=100及点A (-3,0),P 是圆C 上任意一点,线段P A 的垂直平分线l 与PC 相交于点Q ,求点Q 的轨迹方程.14.已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为354和352,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.15.已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.。