2018年秋高中数学 第二章 数列 2.2 等差数列 第1课时 等差数列的概念及简单的表示学案 新人教A版必修5

合集下载

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

二、教学重点:研究等差数列的概念以及通项公式的推导。

教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。

四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。

由复习引入,通过数学知识的内部提出问题。

知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。

2017_2018学年高中数学第二章数列2.2等差数列2.2.1等差数列课件新人教A版必修5

2017_2018学年高中数学第二章数列2.2等差数列2.2.1等差数列课件新人教A版必修5

4 代入,得差为常数即可; ������������
题型一
题型二
题型三
题型四
(1)证明 bn+1-bn= =
4- ������
∵b1=
4 -2
������
1
1 ������������ 1 ������������ -2 1 − = − = = . ������������ -2 2( ������������ -2) ������������ -2 2(������������ -2) 2
64 4 + ( ������ − 1) × 15 15
=
4 ������ + 4. 15
题型一
题型二
题型三
题型四
【变式训练1】 已知数列{an}为等差数列,a3=5,a7=13,求数列{an} 的通项公式. 解设首项为a1,公差为d,则 ������3 = ������1 + 2������ = 5, ������ = 1, 解得 1 ������7 = ������1 + 6������ = 13, ������ = 2. 故an=a1+(n-1)d=1+(n-1)×2=2n-1.
题型一
题型二
题型三
题型四
求等差数列的通项公式 【例1】 已知数列{an}是等差数列,a15=8,a60=20,求an. 分析先求出a1,d,再求an. 解设等差数列{an}的公差为d, ������15 = ������1 + 14������ = 8, 由题意,知 ������60 = ������1 + 59������ = 20,
1 , 2 1 2 1 1
1 − ������������+1 -2 ������������ -2

高考数学必修五 第二章 2.2 第1课时等差数列的概念及通项公式

高考数学必修五 第二章 2.2 第1课时等差数列的概念及通项公式

§2.2 等差数列第1课时 等差数列的概念及通项公式学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念 思考 给出以下三个数列: (1)0,5,10,15,20; (2)4,4,4,4,…; (3)18,15.5,13,10.5,8,5.5. 它们有什么共同的特征?答案 从第2项起,每项与它的前一项的差是同一个常数.梳理 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为3,2,0,a +b2.梳理 如果三个数a ,A ,b 组成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2.知识点三 等差数列的通项公式思考 对于等差数列2,4,6,8,…,有a 2-a 1=2,即a 2=a 1+2;a 3-a 2=2,即a 3=a 2+2=a 1+2×2;a 4-a 3=2,即a 4=a 3+2=a 1+3×2. 试猜想a n =a 1+( )×2. 答案 n -1梳理 若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用累加法证明.1.若一个数列从第2项起每一项与前一项的差都是常数,则这个数列是等差数列.(×)2.任意两个实数都有等差中项.(√)3.从通项公式可以看出,若等差数列的公差d>0,则该数列为递增数列.(√)4.若三个数a,b,c满足2b=a+c,则a,b,c一定成等差数列.(√)类型一等差数列的概念例1判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n+11,…;(2)-1,11,23,35,…,12n-13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a,a,a,a,a,….考点等差数列的概念题点等差数列概念的理解运用解由等差数列的定义得(1),(2),(5)为等差数列,(3),(4)不是等差数列.反思与感悟判断一个数列是不是等差数列,就是判断该数列的每一项减去它的前一项差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n+1-a n(n≥1,n∈N*)是不是一个与n无关的常数.跟踪训练1数列{a n}的通项公式a n=2n+5,则此数列()A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n的等差数列考点等差数列的概念题点等差数列概念的理解运用答案 A解析∵a n+1-a n=2(n+1)+5-(2n+5)=2,∴{a n}是公差为2的等差数列.类型二等差中项例2 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列. 考点 等差中项 题点 等差中项及其应用解 ∵-1,a ,b ,c,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思与感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 考点 等差中项 题点 等差中项及其应用解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得m +n =6.所以m 和n 的等差中项为m +n2=3.类型三 等差数列通项公式的求法及应用 命题角度1 基本量(a 1,d )的计算例3 在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . 考点 等差数列基本量的计算问题 题点 求等差数列的项解 由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36.解得d =2,a 1=2. ∴a n =2+(n -1)×2=2n .反思与感悟根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n}中的每一项均可用a1和d表示,这里的a1和d就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?考点等差数列基本量的计算问题题点求等差数列的项解(1)由a1=8,a2=5,得d=a2-a1=5-8=-3,由n=20,得a20=8+(20-1)×(-3)=-49.(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为a n=-5+(n-1)×(-4)=-4n-1.由题意,令-401=-4n-1,得n=100,即-401是这个数列的第100项.命题角度2等差数列的实际应用例4某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?考点等差数列的应用题题点等差数列的应用题解根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时a11=11.2+(11-1)×1.2=23.2.即需要支付车费23.2元.反思与感悟在实际问题中,若一组数依次成等数额增长或下降,则可考虑利用等差数列方法解决.在利用数列方法解决实际问题时,一定要确认首项、项数等关键因素.跟踪训练4在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某一个固定数值.如果1 km高度的气温是8.5℃,5 km高度的气温是-17.5℃,求2 km,4 km,8 km高度的气温.考点等差数列的应用题题点等差数列的应用题解用{a n}表示自下而上各高度气温组成的等差数列,则a1=8.5,a5=-17.5,由a5=a1+4d=8.5+4d=-17.5,解得d=-6.5,∴a n=15-6.5n.∴a2=2,a4=-11,a8=-37,即2 km,4 km,8 km 高度的气温分别为2℃,-11℃,-37℃.1.下列数列不是等差数列的是( ) A.1,1,1,1,1 B.4,7,10,13,16 C.13,23,1,43,53 D.-3,-2,-1,1,2考点 等差数列的概念 题点 等差数列概念的理解运用 答案 D2.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A.2 B.3 C.-2 D.-3 考点 等差数列的通项公式 题点 通项公式的综合应用 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A.30° B.60° C.90° D.120° 考点 等差中项 题点 等差中项及其应用 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A.52 B.62 C.-62D.-52考点 等差数列的通项公式 题点 通项公式的综合应用 答案 A解析 公差d =-2-(-5)=3,a 20=-5+(20-1)d =-5+19×3=52. 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A.92B.47C.46D.45考点 等差数列的通项公式 题点 通项公式的综合应用 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法(1)a n +1-a n =d (d 为常数,n ∈N *)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N *)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A.公差为1的等差数列 B.公差为13的等差数列C.公差为-13的等差数列D.不是等差数列 考点 等差数列的概念 题点 等差数列概念的理解运用 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.2.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A.52 B.51 C.50 D.49 考点 等差数列的概念 题点 等差数列概念的理解运用答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d=2+100×12=52.3.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A.b -a B.b -a 2C.b -a 3D.b -a 4考点 等差数列基本量的计算问题 题点 等差数列公差有关问题 答案 C解析 由等差数列的通项公式,得b =a +(4-1)d , 所以d =b -a3.4.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A.15 B.22 C.7 D.29考点 等差数列基本量的计算问题 题点 求等差数列的项 答案 A解析 设{a n }的首项为a 1,公差为d ,根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.5.等差数列20,17,14,11,…中第一个负数项是( ) A.第7项 B.第8项 C.第9项D.第10项考点 等差数列的通项公式 题点 通项公式的综合应用 答案 B解析 ∵a 1=20,d =-3, ∴a n =20+(n -1)×(-3)=23-3n ,∴a7=2>0,a8=-1<0.6.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( ) A.26 B.29 C.39 D.52 考点 等差中项 题点 等差中项及其应用 答案 C解析 ∵5,x ,y ,z,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.7.一个等差数列的前4项是a ,x ,b,2x ,则ab 等于( )A.14B.12C.13D.23 考点 等差中项 题点 等差中项及其应用 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x 2,又∵x 是a ,b 的等差中项,∴2x =a +b , ∴a =x 2,∴a b =13.8.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A.15 B.30 C.31 D.64考点 等差数列基本量的计算问题 题点 求等差数列的项 答案 A解析 由⎩⎪⎨⎪⎧a 4=a 1+3d =1,a 7+a 9=2a 1+14d =16,得⎩⎨⎧a 1=-174,d =74,∴a 12=a 1+11d =-174+11×74=15.二、填空题9.若一个等差数列的前三项为a ,2a -1,3-a ,则这个数列的通项公式为________. 考点 等差数列的通项公式题点 求通项公式答案 a n =n 4+1,n ∈N * 解析 ∵a +(3-a )=2(2a -1),∴a =54. ∴这个等差数列的前三项依次为54,32,74, ∴d =14,a n =54+(n -1)×14=n 4+1,n ∈N *. 10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.考点 等差数列的应用题题点 等差数列的应用题答案 6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4, 解得⎩⎨⎧ a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766. 11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.考点 等差数列的通项公式题点 通项公式的综合应用答案 ⎝⎛⎦⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3. 三、解答题12.在数列{a n }中,a 1=1,a n +1=2a n +2n ,设b n =a n 2n -1. (1)证明:数列{b n }是等差数列;(2)求数列{a n }的通项公式.考点 等差数列的概念题点 等差数列概念的理解运用(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1.又b 1=a 1=1,因此{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知数列{b n }的通项公式为b n =n ,又b n =a n 2n -1,所以数列{a n }的通项公式为a n =n ·2n -1. 13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由;(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由. 考点 等差数列的通项公式题点 通项公式的综合应用解 由题意可知,a 1=3,d =4,则a n =a 1+(n -1)d =4n -1.(1)令a n =4n -1=135,∴n =34,∴135是数列{a n }的第34项.令a n =4n -1=4m +19,则n =m +5∈N *,∴4m +19是数列{a n }的第m +5项.(2)∵a p ,a q 是数列{a n }中的项,∴a p =4p -1,a q =4q -1.∴2a p +3a q =2(4p -1)+3(4q -1)=8p +12q -5=4(2p +3q -1)-1,其中2p +3q -1∈N *,∴2a p +3a q 是数列{a n }的第2p +3q -1项.四、探究与拓展14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N *),则a 10=________. 考点 等差数列的概念题点 等差数列概念的理解运用答案 110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2),∴1a n -1a n -1=1(n ≥2),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110. 15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N *),求数列{a n }的通项公式.考点 等差数列的通项公式 题点 求通项公式解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列. 当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数). 当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2 =7-2k .∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

高中数学第二章数列2.2等差数列第1课时等差数列的概念与通项公式课件新人教A版必修5

3.在等差数列{an}中,若 a1·a3=8,a2=3,则公差 d=( )
A.1 B.-1 C.±1 D.±2 a1(a1+2d)=8,
解析:由已知得 a1+d=3,
解得 d=±1. 答案:C
第九页,共32页。
4. lg( 3 + 2 ) 与 lg( 3 - 2 ) 的 等 差 中 项 是 ______________.
第十六页,共32页。
[变式训练] (1)已知数列 3,9,15,…,3(2n-1),…, 那么 81 是它的第________项( )
A.12 B.13 C.14 D.15 (2)已知等差数列{an}中,a15=33,a61=217,试判断 153 是不是这个数列的项,如果是,是第几项? 解析:(1)an=3(2n-1)=6n-3,由 6n-3=81,得 n =14.
第十七页,共32页。
(2)设首项为 a1,公差为 d,则 an=a1+(n-1)d, a1+(15-1)d=33,
由已知 a1+(61-1)d=217,
a1=-23, 解得
d=4. 所以 an=-23+(n-1)×4=4n-27,
第十八页,共32页。
令 an=153,即 4n-27=153,解得 n=45∈N*, 所以 153 是所给数列的第 45 项. 答案:(1)C (2)45
答案:(1)× (2)√ (3)√ (4)√
第七页,共32页。
2.已知等差数列{an}中,首项 a1=4,公差 d=-2,
则通项公式 an 等于( )
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:因为 a1=4,d=-2,所以 an=4+(n-1)×(-
2)=6-2n.

高中数学第二章数列2.2等差数列(第1课时)等差数列的概念及通项公式aa高二数学

高中数学第二章数列2.2等差数列(第1课时)等差数列的概念及通项公式aa高二数学

第二十五页,共三十八页。
将本例的条件改为“f(x)=2-1 x”,其他条件不变,试证明数 列xn-1 1为等差数列.
12/13/2021
第二十六页,共三十八页。
证明:因为 f(x)=2-1 x,所以 xn=2-1xn-1(n≥2),


1 xn-1

1 xn-1-1

1 2-1xn-1-1

1 xn-1-1
逻辑推理
证明方法
12/13/2021
第二页,共三十八页。
问题导学 预习教材 P36~P38,并思考下列问题: 1.等差数列是如何定义的? 2.等差数列的通项公式是什么? 3.等差中项的定义是什么?
12/13/2021
第三页,共三十八页。
1.等差数列的定义 如果一个数列从第___2_项______起,每一项与它的__前__一__项___的差 等于_____同__一__个__常__数_____,那么这个数列就叫做等差数列, 这个常数叫做等差数列的_公__差______,公差通常用字母_d_____ 表示.
12[注意] (1)通项公式法不能作为证明. (2)若数列的前有限项成等差数列,则该数列未必是等差数列; 要否定一个数列是等差数列,只要说明其中连续三项不成等 差数列即可. (3)当 n≥2 时,an+1-an=d(d 为常数),无法说明数列{an}是 等差数列,因为 a2-a1 不一定等于 d.
12/13/2021
第二十三页,共三十八页。
等差数列的判定
已知函数 f(x)=x3+x3,数列{xn}的通项由 xn=f(xn- 1)(n≥2 且 x∈N*)确定. (1)求证:数列x1n是等差数列; (2)当 x1=12时,求 x2 019.

2018_2019版高中数学第二章数列2.2.1等差数列的概念及通项公式课件新人教A版必修

2018_2019版高中数学第二章数列2.2.1等差数列的概念及通项公式课件新人教A版必修
解 (1)an+1-an=3(n+1)+2-(3n+2)=3(n∈N*),故该数列为等差数列. (2)an+1-an=(n+1)2+(n+1)-(n2+n)=2n+2,故该数列不是等差数列.
反思感悟定义法是判定(或证明)数列{an}是等差数列的基本方法,其 步骤为: (1)作差 an+1-an; (2)对差式进行变形; (3)当 an+1-an 是一个与 n 无关的常数时,数列{an}是等差数列;当 an+1-an 不是常数,而是与 n 有关的代数式时,数列{an}不是等差数列.
【问题思考】 1.观察下列三个数列:①100,150,200,250,300,…;②0,-4,-8,-12,-16,…;
1 1 1 1 1 ③3 , 3 , 3 , 3 , 3,….
思考:(1)你能否写出每个数列后面的各项?依据是什么?(2)这几个数 列的共同特征是什么?
提示 (1)可以写出每个数列后面的各项,例如:①350,400,…;② -20,-24,…;③ , ,…等,依据是这些数列前几项所呈现出的规律;(2) 在这些数列中,从第 2 项起,每一项与其前一项的差都是同一个常数.
1
2
3
变式训练 1 在等差数列{an}中,求解下列各题: (1)已知公差 d=- ,a7=8,则 a1= (2)已知 a3=0,a7-2a4=-1,则公差 d=
1 25 1 3
. ;
(3)a1= ,公差 d>0,且从第 10 项开始每项都大于 1,则此等差数列公 差 d 的取值范围是 .
解析 (1)由题意,得 a1+6× -
1 3
=8,解得 a1=10;

高中数学第二章数列2.2等差数列第1课时等差数列的概念与简单表示A版公开课PPT课件

高中数学第二章数列2.2等差数列第1课时等差数列的概念与简单表示A版公开课PPT课件





2.2 等差数列

第1课时 等差数列的概念与简单表示









1.理解等差数列的概念.(难点) 2.掌握等差数列的通项公式及应用.(重点、难点) 3.掌握等差数列的判定方法.(重点)
[基础·初探] 教材整理 1 等差数列的含义 阅读教材 P36~P37 思考上面倒数第二自然段,完成下列问题. 1.等差数列的概念 (1)文字语言:如果一个数列从第 2 项起,每一项与它的 前一项 的差等于 同一个常数 ,那么这个数列就叫做等差数列,这个常数 叫做等差数列的 公差 , 公差通常用字母 d 表示. (2)符号语言:an+1-an=d(d 为常数,n∈N*).
[小组合作型] 等差数列的判定与证明
已知数列{an}的通项公式 an=pn2+qn(p,q∈R,且 p,q 为常数). (1)当 p 和 q 满足什么条件时,数列{an}是等差数列? (2)求证:对任意实数 p 和 q,数列{an+1-an}是等差数列. 【精彩点拨】 利用等差数列定义判断或证明 an+1-an 为一个常数即可.
等差数列的判定方法有以下三种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数列; (3)通项公式法:an=an+b(a,b 是常数,n∈N*)⇔{an}为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.
1.已知等差数列{an}中,首项 a1=4,公差 d=-2,则通项公式 an=________. 【解析】 ∵a1=4,d=-2, ∴an=4+(n-1)×(-2)=6-2n. 【答案】 6-2n

高中数学必修5课件:第2章2-2-1等差数列

高中数学必修5课件:第2章2-2-1等差数列

第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式aa高二数学

高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式aa高二数学

中项.事实上,若 a,A,b 成等差数列,即 A= a b ,则 A 就是 a 与 b 的等差中项;若 A= a b ,
2
2
即 A-a=b-A,则 a,A,b 成等差数列.
在等差数列{an}中,任取相邻的三项 an-1,an,an+1(n≥2,n∈N*),则 an 是 an-1 与 an+1 的等差 中项.
15
15
2021/12/9
第十四页,共二十九页。
法二 因为 a60=a15+(60-15)d,所以 d= 20 8 = 4 ,所以 60 15 15
a75=a60+(75-60)d=20+15× 4 =24. 15
法三
由数列{an}是等差数列,可设
an=kn+b.由
a15=8,a60=20

15k 60k
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
10 6 4 4
2021/12/9
第十页,共二十九页。
3.我国古代数学(shùxué)著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,
.
a1+(n-1)d
通项公式的推导,教材是根据等差数列的定义,通过归纳的方式得出的,还可以采
用以下的推导方法:
法一(累加法)
an-an-1=d,
an-1-an-2=d,
an-2-an-3=d, …
因为{an}是等差数列,所以
a2-a1=d, 两边分别相加得an-a1=(n-1)d,所以an=a1+(n-1)d.

高中数学第2章数列2.2等差数列第1课时等差数列的概念与通项公式aa高二数学

高中数学第2章数列2.2等差数列第1课时等差数列的概念与通项公式aa高二数学

12/12/2021
第九页,共四十页。
2.已知等差数列{an}的通项公式an=3-2n,则它的公差为_-_2_____. [解析] d=an-an-1=3-2n-3+2(n-1)=-2. 3.方程(fāngchéng)x2-6x+1=0的两根的等差中项3 等于_____.
[解析] 设方程 x2-6x+1=0 的两根为 x1,x2,则 x1+x2=6. 所以其等差中项为x1+2 x2=3.
12/12/2021
第二十五页,共四十页。
[解析] (1)①an+1-an=3(n+1)+2-(3n+2)=3(常数),n 为任意正整数,所 以此数列为等差数列.
②因为 an+1-an=(n+1)2+(n+1)-(n2+n)=2n+2(不是常数),所以此数列 不是等差数列.
(2)∵1a,1b,1c成等差数列,∴2b=1a+1c, 则 b(a+c)=2ac,∴ac=ba2+c. ∴b+a c+a+c b=b+cc+aca+ba=ba+ca+c a2+c2=2a12cb+aa+2+cc2=2ab+c, 12/12/20即21 b+a c,c+b a,a+c b也成等差数列.
第三页,共四十页。
12/12/2021
自主预习(yùxí)学案
第四页,共四十页。
汉朝的天文著作《周髀算经》中有记载,大意如下:在平地 上立八尺高的土圭,日中测影,在二十四节气中,冬至影长 1 丈 3 尺 5 寸,以后每一节气影长递减 9 寸 916分;夏至影最短,仅长 1 尺 6 寸,以后每一节气影长递增 9 寸 916分.如果把这些影长记 录下来,会构成一个什么样的数列呢?
12,则它的周长是___1_2__2__.
12/12/2021
第十九页,共四十页。

高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课

高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课

以用这三个基本量来表示,五个量a1,d,n,an,Sn中可知三
求二,注意利用等差数列的性质以简化计算过程,同时在具体
求解过程中还应注意已知与未知的联系及整体思想的运用.
2.2.2 等差数列的前n项和(一)
11
预课当跟习堂踪导讲检演学义测练1 在等差数列{a栏n}中目.索引 CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
CONTENTS PAGE
[学习目标]
1.体会等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式.
3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
其中三个求另外两个.
2.2.2 等差数列的前n项和(一)
2
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
(1)a1=65,an=-32,Sn=-5,求 n 和 d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由题意,得 Sn=na1+ 2 an=n56- 2 23=-5,
解得n=15.
又 a15=56+(15-1)d=-32,∴d=-61.
2.2.2 等差数列的前n项和(一)
12
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
(2)a1=4,S8=172,求a8和d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由已知,得 S8=8a1+2 a8=84+2 a8=172,解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
2.2.2 等差数列的前n项和(一)
13

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5

第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,

∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2

⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an

开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.

第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)

§2 2.2 第1课时 等差数列的前n项和

§2  2.2  第1课时 等差数列的前n项和

20×(20 −1) S= ×20 = 3 800(m). 2
答 植树工人共走了3 800m路程 路程. 植树工人共走了3 800m路程.
九江抗洪指挥部接到预报,24h后有一洪峰到达 后有一洪峰到达. 例11 九江抗洪指挥部接到预报,24h后有一洪峰到达. 为确保安全, 为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第 二道防线.经计算,需调用20台同型号翻斗车, 20台同型号翻斗车 二道防线.经计算,需调用20台同型号翻斗车,平均每辆 工作24h后方可筑成第二道防线. 24h后方可筑成第二道防线 工作24h后方可筑成第二道防线.但目前只有一辆车投入施 其余的需从昌九高速公路沿线抽调,每隔20min 20min能有 工,其余的需从昌九高速公路沿线抽调,每隔20min能有 一辆车到达,指挥部最多可调集25辆车,那么在24h 25辆车 24h内能 一辆车到达,指挥部最多可调集25辆车,那么在24h内能 否构筑成第二道防线? 否构筑成第二道防线? 从第一辆车投入工作算起,各车工作时间(单位: 解 从第一辆车投入工作算起,各车工作时间(单位: h)依次设为 依次设为: h)依次设为:
∵a1 =1 a120 =120, n =120 ,
120×(1+120) ∴S120 = = 7 260 支) ( . 2
支铅笔. 答:V形架上共放着7 260支铅笔. 形架上共放着7 260支铅笔
1.回顾从特殊到一般的研究方法; 1.回顾从特殊到一般的研究方法; 回顾从特殊到一般的研究方法 2.倒序相加的算法及数形结合的数学思想; 2.倒序相加的算法及数形结合的数学思想; 倒序相加的算法及数形结合的数学思想 3.掌握等差数列的两个求和公式及简单应用, 3.掌握等差数列的两个求和公式及简单应用,及函数与方 掌握等差数列的两个求和公式及简单应用 程的思想. 程的思想.

高中数学必修五第二章数列

高中数学必修五第二章数列

设等差数列
的前n项和为sn,已知a3=12,s12>0,s13<0,
(1)求公差d的取值范围
(2)指出s1,s2,s3……,s12中哪一个的值最大,并说明理由
2.4等比数列
定义:一般的,如果一个数列从第二项起,每一项与它的前 一项的比等于同意常数,那么这个数列叫做等比数列,这个 常数叫做等比数列的公比,公比通常用字母q表示。
Sn=an+(an-d)+(an-2d)+……+【an-(n-1)d】 两式相加得 2sn=n(a1+an) 由此可得 sn=n(a1+an)/2 带入通项公式得 sn=na1+n(n-1)d/2
例题一
2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通 知》。
某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间在全 市中小学建成不同标准的校园网。据测算,2001年该市用于“校校通”工程 的经费为500万元。为了保证工程的顺利实施,计划每年投入的资金都比上 一年增加50万元。那么从2001年起的未来10年内,该市在“校校通”工程 中的总投入是多少?
(1)求AB,BC,CD的长
(2)已AB,BC,CD的长为等差数列的前三项,以第十项为边长的正方形 面积为多少?
AB C
D
2.3等差数列的前n项和
定义:一般的,我们称a1+a2+a3+……+an 为数列 表示,即sn=a1+a2+……+an
的前n项和,用Sn
推理过程: 因为 Sn=a1+(a1+d)+(a1+2d)+……+【a1+(n-1)d】

第二章数列第2节等差数列第1课时等差数列的概念及通项公式

第二章数列第2节等差数列第1课时等差数列的概念及通项公式

讲一讲 3.判断下列数列是否为等差数列. (1)在数列{an}中,an=3n+2;(链接教材 P38-例 3) (2)在数列{an}中,an=n2+n.
[尝试解答] (1)an+1-an=3(n+1)+2-(3n+2)= 3(n∈N*),所以这个数列为等差数列.
(2)an+1-an=(n+1)2+(n+1)-(n2+n)=2n+2,不是 常数,所以这个数列不是等差数列.
可以看到: 对于数列①,从第 2 项起,每一项与前一项的差都等于 5 ; 对于数列②,从第 2 项起,每一项与前一项的差都等于 5 ; 对于数列③,从第 2 项起,每一项与前一项的差都等于-2.5; 对于数列④,从第 2 项起,每一项与前一项的差都等于72 . 也就是说,这些数列有一个共同特点:从第 2 项起,每一项 与前一项的差都等于 同一个常数 .
讲一讲 2.(1)在-1 与 7 之间顺次插入三个数 a,b,c,使这 五个数成等差数列,求此数列; (2) 已 知 数 列 {xn} 的 首 项 x1 = 3 , 通 项 xn = 2np + nq(n∈N*,p,q 为常数),且 x1,x4,x5 成等差数列.求 p, q 的值.
[尝试解答] (1)∵-1,a,b,c,7 成等差数列,∴b 是 -1 与 7 的等差中项.∴b=-12+7=3.又 a 是-1 与 3 的等差 中项,∴a=-12+3=1.又 c 是 3 与 7 的等差中项,∴c=3+2 7 =5.∴该数列为-1,1,3,5,7.
[思考] (1)在数列{an}中,若 an-an-1=d(常数)(n≥2 且 n∈N*),则{an}是等差数列吗?为什么?
(2)在数列{an}中,若有 2an=an-1+an+1(n≥2,n∈N*)成 立,则{an}是等差数列吗?为什么?

1819 第2章 2.2 2.2.1 2.2.2 第1课时 等差数列的概念及通项公式

1819 第2章 2.2 2.2.1 2.2.2 第1课时 等差数列的概念及通项公式

双 基
量,已知其中的三个量,可以求得另一个量,即“知三求一”.
合 作 探 究 • 攻 重
2.已知数列的其中两项,求公差 d,或已知一项、公差和其中一项的序 号,求序号的对应项时,通常应用变形 an=am+(n-m)d.
课 时 分 层 作 业

返 首 页













[跟踪训练]



2.已知递减等差数列{an}前三项的和为 18,前三项的积为 66.求该数列
• 固



合 作 探 究 • 攻 重
可知aa11+ +411dd==1301,, 解得ad=1=3-,2, ∴an=-2+(n-1)×3=3n-5.


(2)由 an=13,得 3n-5=13,解得 n=6.
时 分




返 首 页






习 •
[规律方法]
标 •


新 知
1.从方程的观点看等差数列的通项公式,an=a1+(n-1)d 中包含了四个
合 作
的通项公式,并判断-34 是该数列的项吗?





课 时 分 层 作 业

返 首 页




预 习 • 探
[解] 依题意得aa11+ a2aa32=+6a63= ,18,
达 标 • 固


知 合
∴3aa1·1+a1+3d= d·1a8, 1+2d=66,

第二章 2.2 第1课时 等差数列的概念及通项公式

第二章 2.2 第1课时  等差数列的概念及通项公式

§2.2等差数列第1课时等差数列的概念及通项公式学习目标1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,可正可负可为零.知识点二等差中项的概念如果三个数a ,A ,b 组成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2. 思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列:(1)2,4;(2)-1,5;(3)0,0;(4)a ,b .答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b 2. 知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用累加法证明.1.数列4,4,4,……是等差数列.( )2.数列3,2,1是等差数列.( )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( ) 4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( )题型一 等差数列的概念例1 判断下列数列是不是等差数列?(1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…;(3)1,2,1,2,…;(4)1,2,4,6,8,10,…;(5)a ,a ,a ,a ,a ,….跟踪训练1 数列{a n }的通项公式a n =2n +5,则此数列( )A .是公差为2的等差数列B .是公差为5的等差数列C .是首项为5的等差数列D .是公差为n 的等差数列题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N *),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项.跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.题型三 等差数列通项公式的求法及应用例3 在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n .反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项.(2)若a 2=11,a 8=5,求a 10.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列; (2)求数列{a n }的通项公式.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3).(1)判断数列{a n }是否为等差数列?说明理由;(2)求{a n }的通项公式.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( )A .1,1,1,1,1B .4,7,10,13,16C.13,23,1,43,53 D .-3,-2,-1,1,22.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-33.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于() A .30° B .60° C .90° D .120°4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( )A .公差为1的等差数列B .公差为13的等差数列C .公差为-13的等差数列 D .不是等差数列5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( )A .92B .47C .46D .451.判断一个数列是否为等差数列的常用方法(1)a n +1-a n =d (d 为常数,n ∈N *)⇔{a n }是等差数列;(2)2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N *)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n}(n∈N*)是公差为d的等差数列,若a2=4,a4=6,则d等于() A.4 B.3 C.2 D.12.已知等差数列-5,-2,1,…,则该数列的第20项为()A.52 B.62 C.-62 D.-523.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为()A.52 B.51 C.50 D.494.若5,x,y,z,21成等差数列,则x+y+z的值为()A.26 B.29 C.39 D.525.已知在等差数列{a n}中,a3+a8=22,a6=7,则a5等于()A.15 B.22 C.7 D.296.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项7.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14 B.12 C.13 D.238.(2018·天津市南开中学检测)在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12 B.13 C.14 D.16二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为 .10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是 .三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式.13.(2018·辽宁省东北育才中学月考)已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式.14.已知数列{a n}中,a1=1,a n-1-a n=a n a n-1(n≥2,n∈N*),则a10=. 15.已知数列{a n}满足:a1=10,a2=5,a n-a n+2=2(n∈N*),求数列{a n}的通项公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 等差数列的概念及简单的表示学习目标:1.理解等差数列的概念(难点).2.掌握等差数列的通项公式及应用(重点、难点).3.掌握等差数列的判定方法(重点).[自 主 预 习·探 新 知]1.等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.(2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 2.等差中项(1)条件:如果a ,A ,b 成等差数列.(2)结论:那么A 叫做a 与b 的等差中项.(3)满足的关系式是a +b =2A .思考:观察所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)a ,b ;(4)0,0. [提示] 插入的数分别为3,2,a +b2,0.3.等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =a 1+(n -1)d .思考:教材上推导等差数列的通项公式采用了不完全归纳法,还有其它方法吗?如何操作? [提示] 还可以用累加法,过程如下: ∵a 2-a 1=d ,a 3-a 2=d , a 4-a 3=d ,……a n -a n -1=d (n ≥2),将上述(n -1)个式子相加得a n -a 1=(n -1)d (n ≥2),∴a n =a 1+(n -1)d (n ≥2),当n =1时,a 1=a 1+(1-1)d ,符合上式, ∴a n =a 1+(n -1)d (n ∈N *). 4.从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f (n )=a 1+(n -1)d =nd +(a 1-d ). (1)点(n ,a n )落在直线y =dx +(a 1-d )上; (2)这些点的横坐标每增加1,函数值增加d .思考:由等差数列的通项公式可以看出,要求a n ,需要哪几个条件?[提示] 只要求出等差数列的首项a 1和公差d ,代入公式a n =a 1+(n -1)d 即可.[基础自测]1.思考辨析(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( ) [答案] (1)× (2)√ (3)√提示:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列.(3)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列.2.等差数列-6,-3,0,3,…的公差d =________. 3 [(-3)-(-6)=3,故d =3.] 3.下列数列: ①0,0,0,0; ②0,1,2,3,4; ③1,3,5,7,9; ④0,1,2,3,….其中一定是等差数列的有________个.3 [①②③是等差数列,④只能说明前4项成等差数列.] 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________.【导学号:91432137】60° [因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.][合 作 探 究·攻 重 难]等差中项在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.【导学号:91432138】[解] ∵-1,a ,b ,c,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项, ∴a =-1+32=1.又c 是3与7的等差中项, ∴c =3+72=5.∴该数列为-1,1,3,5,7.或c ,可用来解决等差数列的判定n +1=a 2n ∈N*1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.[解] 由m 和2n 的等差中项为4,得m +2n =8.又由2m 和n 的等差中项为5,得2m +n =10.两式相加,得m +n =6.所以m 和n 的等差中项为m +n2=3.等差数列的通项公式及其应用(1)在等差数列{a n }中,已知a 4=7,a 10=25,求通项公式a n ; (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,求a 15的值.【导学号:91432139】思路探究:设出基本量a 1,d ,利用方程组的思想求解,当然也可以利用等差数列的一般形式a n =a m +(n -m )d 求解.[解] (1)∵a 4=7,a 10=25,则⎩⎪⎨⎪⎧a 1+3d =7,a 1+9d =25,得⎩⎪⎨⎪⎧a 1=-2,d =3,∴a n =-2+(n -1)×3=3n -5, ∴通项公式a n =3n -5(n ∈N *).(2)法一:(方程组法)由⎩⎪⎨⎪⎧a 3=54,a 7=-74,得⎩⎪⎨⎪⎧a 1+2d =54,a 1+6d =-74,解得a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝ ⎛⎭⎪⎫-34=-314.法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d , 即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝ ⎛⎭⎪⎫-34=-314.m -d =n -d =.若已知等差数列中的任意两项跟踪训练]2.(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? [解] (1)由a 1=8,d =5-8=-3,n =20, 得a 20=8+(20-1)×(-3)=-49. (2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为 a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明[探究问题]1.在数列{a n }中,若a n -a n -1=d (常数)(n ≥2且n ∈N *),则{a n }是等差数列吗?为什么? 提示:由等差数列的定义可知满足a n -a n -1=d (常数)(n ≥2)是等差数列.2.在数列{a n }中,若有2a n =a n -1+a n +1(n ≥2,n ∈N *)成立,则{a n }是等差数列吗?为什么? 提示:是,由等差中项的定义可知.3.若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少? 提示:∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d . ∴{a n +a n +2}是公差为2d 的等差数列.已知数列{a n },满足a 1=2,a n +1=2a na n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由;(2)求a n .【导学号:91432140】思路探究:①要判断数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列,是否要先求1a n +1-1a n的表达式?②能否求出数列⎩⎨⎧⎭⎬⎫1a n 的通项公式?[解] (1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n,∴1a n +1-1a n =12, 即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n 2,∴a n =2n.母题探究:1.(变条件,变结论)将例题中的条件“a 1=2,a n +1=2a n a n +2”换为“a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2”.(1)试证明数列{b n }为等差数列;(2)求数列{a n }的通项公式. [解] (1)证明:b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎪⎫4-4a n -2-1a n -2=a n a n --1a n -2=a n -2a n -=12. 又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2, ∴a n =1b n +2=2n+2.∴数列{a n }的通项公式为a n =2n+2.2.(变条件)将例题中的条件“a 1=2,a n +1=2a n a n +2”换为“a 1=1,a 2=2,2a n +1=2a n +3(n ≥2,n ∈N *)”试判断数列{a n }是否是等差数列.[解] 当n ≥2时,由2a n +1=2a n +3,得a n +1-a n =32,但a 2-a 1=1≠32,故数列{a n }不是等差数列.(1)定义法:常数n ∈*⇔(2)等差中项法:=a n +a +2n ∈*⇔{()通项公式法:+ba ,b 是常数,n *⇔{为等差数列差数列,则必须用定义法或等差中项法.标·固1.已知等差数列{1-3n },则公差d 等于( )A .1B .3C .-3D .nC [∵a n =1-3n ,∴a 1=-2,a 2=-5,∴d =a 2-a 1=-3.]2.下列命题:①数列6,4,2,0是公差为2的等差数列;②数列a ,a -1,a -2,a -3是公差为-1的等差数列;③等差数列的通项公式一定能写成a n =kn +b 的形式(k ,b 为常数);④数列{2n +1}是等差数列.其中正确命题的序号是( )【导学号:91432141】A .①②B .①③C .②③④D .③④C [②③④正确,①中公差为-2.]3.在等差数列{a n }中,若a 1=84,a 2=80,则使a n ≥0,且a n +1<0的n 为( ) A .21 B .22 C .23D .24B [公差d =a 2-a 1=-4,∴a n =a 1+(n -1)d =84+(n -1)(-4)=88-4n ,令⎩⎪⎨⎪⎧a n ≥0,a n +1<0,即⎩⎪⎨⎪⎧88-4n≥0,88-n +⇒21<n ≤22.又∵n ∈N *,∴n =22.]4.已知a =13+2,b =13-2,则a ,b 的等差中项为______.3 [a +b2=13+2+13-22=3-2+3+22= 3.]5.已知数列{a n },a 1=a 2=1,a n =a n -1+2(n ≥3),判断数列{a n }是否为等差数列?说明理由.【导学号:91432142】[解] 因为a n =a n -1+2(n ≥3), 所以a n -a n -1=2(常数).又n ≥3,所以从第3项起,每一项减去前一项的差都等于同一个常数2, 而a 2-a 1=0≠a 3-a 2, 所以数列{a n }不是等差数列.。

相关文档
最新文档