2020版高考数学北京版大一轮精准复习精练:10.1分类加法计数原理与分步乘法计数原理、排列与组合含解析
高考数学大一轮复习第十章计数原理10.1分类加法计数原理与分步乘法计数原理课件理北师大版
D.10种
1 号盒放 1 个,2 号盒放 3 个,方法种数是 C1 4=4; 1 号盒放 2 个,2 号盒放 2 个,方法种数是 C2 4=6. 根据加法原理,不同的放球方法有 4+6=10(种).
5.(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中 32 一个小组,则不同的报名方法有________ 种.
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1)在分类加法计数原理中,两类不同办法中的方法可以相同.( × ) (2) 在分类加法计数原理中 ,每类办法中的方法都能直接完成这件 事.( √ ) (3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的 步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完 成.( √ )
题型二 分步乘法计数原理的应用 例2 (1)(2016· 全国甲卷)如图,小明从街道的E
处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,则小明到老年公 寓可以选择的最短路径条数为 A.24 B.18
答案 解析
C.12
D.9
从E点到F点的最短路径有6条,
从F点到G点的最短路径有3条,
(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不
同的选法? 解答
(2)从高三一班、二班男生中或从高三三班女生中选一名学生任学生会
体育部长,有多少种不同的选法? 解答
完成这件事有三类方法: 第一类,从高三一班男生中任选一名共有30种选法; 第二类,从高三二班男生中任选一名共有30种选法; 第三类,从高三三班女生中任选一名共有20种选法. 根据加法原理,共有30+30+20=80(种)不同的选法.
解析
第一位为 0,最后一位为 1,中间 3 个 0,3 个 1,3 个 1 在一起时为 000111,001110 ; 只 有 2 个 1 相 邻 时 , 共 A 共 2+8+4=14(个).
2020版高考数学一轮新高考专用精练:第1讲 分类加法计数原理与分步乘法计数原理 Word版含解析 (27)
第4讲直线与圆、圆与圆的位置关系一、选择题1.(2016·全国Ⅱ卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43 B.-34C. 3D.2解析由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d=|1×a+4-1|1+a2=1,解之得a=-43.答案 A2.(2017·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k=1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.答案 B3.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B. 答案 B4.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个D.4个解析 圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.答案 C5.(2017·福州模拟)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A.y =-34 B.y =-12 C.y =-32D.y =-14解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1, 将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12. 故选B. 答案 B 二、填空题6.(2016·全国Ⅲ卷) 已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________. 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,解得y 1=3,y 2=23,∴A(-3,3),B(0,23).过A,B作l的垂线方程分别为y-3=-3(x+3),y-23=-3x,令y=0,得x C=-2,x D=2,∴|CD|=2-(-2)=4.答案 47.(2017·兰州月考)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________.解析把圆C1、圆C2的方程都化成标准形式,得(x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4.圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2.圆心距d=(4+2)2+(2+1)2=3 5.所以,|PQ|的最小值是35-5.答案35-58.(2017·贵阳一模)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为________.解析设直线上一点为P,切点为Q,圆心为M,则|PQ|即切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1.要使|PQ|最小,即求|PM|的最小值,此题转化为求直线y=x+1上的点到圆心M的最小距离.设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=2 2.所以|PM|的最小值为2 2.所以|PQ|=|PM|2-1≥(22)2-1=7. 答案7三、解答题9.(2015·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM→·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,3),半径r =1, 由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.10.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.法一 (1)证明 由⎩⎨⎧y =kx +1,(x -1)2+(y +1)2=12, 消去y 得(k 2+1)x 2-(2-4k )x -7=0,因为Δ=(2-4k)2+28(k2+1)>0,所以不论k为何实数,直线l和圆C总有两个交点.(2)解设直线与圆交于A(x1,y1),B(x2,y2)两点,则直线l被圆C截得的弦长|AB|=1+k2|x1-x2|=28-4k+11k21+k2=2 11-4k+31+k2,令t=4k+31+k2,则tk2-4k+(t-3)=0,当t=0时,k=-34,当t≠0时,因为k∈R,所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0,故t=4k+31+k2的最大值为4,此时|AB|最小为27.法二(1)证明因为不论k为何实数,直线l总过点P(0,1),而|PC|=5<23=R,所以点P(0,1)在圆C的内部,即不论k为何实数,直线l总经过圆C 内部的定点P.所以不论k为何实数,直线l和圆C总有两个交点.(2)解由平面几何知识知过圆内定点P(0,1)的弦,只有与PC(C为圆心)垂直时才最短,而此时点P(0,1)为弦AB的中点,由勾股定理,知|AB|=212-5=27,即直线l被圆C截得的最短弦长为27.11.(2017·衡水中学月考)两圆x2+y2+2ax+a2-4=0 和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则1a2+1b2的最小值为()A.1B.3C.19 D.49解析x2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1.依题意可得,两圆外切,则两圆圆心距离等于两圆的半径之和,则a2+(2b)2=1+2=3,即a2+4b2=9,所以1a2+1b2=⎝⎛⎭⎪⎫1a2+1b2⎝⎛⎭⎪⎫a2+4b29=19⎝⎛⎭⎪⎫5+a2b2+4b2a2≥19⎝⎛⎭⎪⎫5+2a2b2·4b2a2=1,当且仅当a 2b 2=4b 2a 2,即a =±2b 时取等号. 答案 A12.(2015·山东卷)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A.-53或-35 B.-32或-23 C.-54或-45D.-43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D. 答案 D13.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6, ∴m =6+x P2∈[2,3]. 答案 [2,3]14.(2017·湖南省东部六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解 (1)设圆心C (a ,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。
2020届高考数学(理)一轮复习讲义 10.1 分类加法计数原理与分步乘法计数原理
§10.1分类加法计数原理与分步乘法计数原理最新考纲考情考向分析1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.以理解和应用两个基本原理为主,常以实际问题为载体,突出分类讨论思想,注重分析问题、解决问题能力的考查,常与排列、组合知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查;两个计数原理的考查一般以选择、填空题的形式出现.1.分类加法计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.概念方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?提示①分清要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12 B.8 C.6 D.4答案C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16 B.13 C.12 D.10答案C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).题组三易错自纠4.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案D解析需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有4×3×2×2=48(种)着色方法.5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6答案B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.6.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.题型一分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.10答案B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12个实数对,故a≠0时满足条件的实数对有12-3=9个,所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204 C.729 D.920答案A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.(2016·全国Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.题型二分步乘法计数原理例1 (1)(2016·全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9答案B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.跟踪训练1 一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有______种.(用数字作答)答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.题型三两个计数原理的综合应用例2 (1)(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)答案 1 080解析①当组成四位数的数字中有一个偶数时,四位数的个数为C35·C14·A44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A45=120.故符合题意的四位数一共有960+120=1 080(个).(2)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120 B.140 C.240 D.260答案D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,最后涂C处,若C处与A 处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.24答案B解析长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2 (1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个答案B解析由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40 000大的偶数共有72+48=120(个).故选B.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是_______.答案36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.答案96解析按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3同色时,共有4A33=24(种)方法.②区域1与3不同色:第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法.∴共有A24×2×1×3=72(种)方法.故由分类加法计数原理可知,不同的涂色种数为24+72=96.1.集合A={1,2,3,4,5},B={3,4,5,6,7,8,9},从集合A,B中各取一个数,能组成的没有重复数字的两位数的个数为()A.52 B.58 C.64 D.70答案B解析根据分步乘法计数原理得(C12·C13+C14·C13+C12·C14+C23)·A22=58.2.(2018·包头质检)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种答案B解析分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有()A.24种B.16种C.12种D.10种答案C解析根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.(2018·大连联考)若自然数n使得作竖式加法n+(n+1)+(n+2)各位数均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因为32+33+34不产生进位现象;23不是“开心数”,因为23+24+25产生进位现象,那么,小于100的“开心数”的个数为() A.9 B.10 C.11 D.12答案D解析根据题意个位数n需要满足n+(n+1)+(n+2)<10,即n<2.3,∴个位数可取0,1,2三个数,∵十位数k需要满足3k<10,∴k<3.3,∴十位数可以取0,1,2,3四个数,故小于100的“开心数”共有3×4=12(个).故选D.5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种答案D解析由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420.故选D.6.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24 B.48 C.96 D.120答案C解析若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有1种涂法,共有4×3×2=24(种);若颜色A,D不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有2种涂法,当B和D不同时,C只有1种涂法,共有4×3×2×(2+1)=72(种),根据分类加法计数原理可得,共有24+72=96(种),故选C.7.对33 000分解质因数得33 000=23×3×53×11,则33 000的正偶数因数的个数是() A.48 B.72 C.64 D.96答案A解析33 000的因数由若干个2(共有23,22,21,20四种情况),若干个3(共有3,30两种情况),若干个5(共有53,52,51,50四种情况),若干个11(共有111,110两种情况),由分步乘法计数原理可得33 000的因数共有4×2×4×2=64(个),不含2的共有2×4×2=16(个),∴正偶数因数的个数为64-16=48,即33 000的正偶数因数的个数是48,故选A.8.从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为______.答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数中不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93.综上可知,共有20+1-4=17(个)不同的对数值.9.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有_____个.答案27解析先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.10.2017年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,哈西站一定要有人去,则不同的游览方案为________种.答案65解析根据题意,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,则每人有3种选择,则4人一共有3×3×3×3=81种情况,若哈西站没人去,即四位同学选择了城乡路和哈尔滨大街.每人有2种选择方法,则4人一共有2×2×2×2=16种情况,故哈西站一定要有人去有81-16=65种情况,即哈西站一定有人去的游览方案有65种.11.(2018·鞍山模拟)联合国国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有________种.答案25解析根据题意,可分为:三个国家粮食和药品都有,有1种方法;一个国家粮食,两个国家药品,有3种方法;一个国家药品,两个国家粮食,有3种方法;两个国家粮食,三个国家药品,有3种方法;两个国家药品,三个国家粮食,有3种方法;两个国家粮食,两个国家药品,有3×2=6种方法;三个国家粮食,一个国家药品,有3种方法;三个国家药品,一个国家粮食,有3种方法,故方法总数是25.12.将数字“124467”重新排列后得到不同的偶数的个数为_____.答案 240解析 将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,①若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;②若末位数字为6,同理有5×4×3×2×12=60(种)情况;③若末位数字为4,因为有2个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.13.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.答案 60解析 根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓的时候,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60种方法,故答案是60.14.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且 DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有______种.答案12→+DC→=λDB→(λ∈R),说明△ABC是等腰三角形,且|BA|=|BC|,必有f(1)=f(3),解析由DAf(1)≠f(2).当f(1)=f(3)=1时,f(2)=2,3,4,有三种情况;f(1)=f(3)=2,f(2)=1,3,4,有三种情况;f(1)=f(3)=3,f(2)=2,1,4,有三种情况;f(1)=f(3)=4,f(2)=2,3,1,有三种情况.因而满足条件的函数f(x)有12种.15.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,...,99,3位回文数有90个:101,111,121,...,191,202, (999)则(1)5位回文数有________个;(2)2n(n∈N+)位回文数有________个.答案(1)900(2)9×10n-1解析(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n-1种填法.16.用6种不同的颜色给三棱柱ABC-DEF六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有________种.(用数字作答)答案8 520解析分两步来进行,先涂A,B,C,再涂D,E,F.第一类:若6种颜色都用上,此时方法共有A66=720种;第二类:若6种颜色只用5种,首先选出5种颜色,方法有C56种;先涂A,B,C,方法有A35种,再涂D,E,F中的两个点,方法有A23种,最后剩余的一个点只有2种涂法,故此时方法共有C56·A35·A23·2=4 320种;第三类:若6种颜色只用4种,首先选出4种颜色,方法有C46种;先涂A,B,C,方法有A34种,再涂D,E,F中的一个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有C46·A34·3·3=3 240种;第四类:若6种颜色只用3种,首先选出3种颜色,方法有C36种;先涂A,B,C,方法有A33种,再涂D,E,F,方法有2种,故此时方法共有C36·A33×2=240种.综上可得,不同涂色方案共有720+4 320+3 240+240=8 520种.。
2020年高考数学一轮复习 10.1 分类计数原理与分步计数原理精品教学案(教师版)新人教版
2020年高考数学一轮复习精品教学案10.1 分类计数原理与分步计数原理(新课标人教版,教师版)【考纲解读】1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.排列、组合与二项式定理是历年来高考重点内容之一,一般在选择题、填空题中出现,主要考查两个计数原理、排列数与组合数公式的运用、实际应用以及二项展开式,在考查排列、组合与二项式定理基础知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2020年的高考将会继续保持稳定,坚持考查这部分的基础知识,命题形式相对比较稳定.【要点梳理】1. 分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.【例题精析】考点一分类加法计数原理例1.(2020年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有()(A)4种 (B)10种 (C)18种 (D)20种的方法,只有满足这些条件,才可以用分类加法计数原理.【变式训练】1.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.考点二分步乘法计数原理例2.(2020年高考北京卷理科12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。
2020届高考数学(理)一轮复习讲义 10.1 分类加法计数原理与分步乘法计数原理
§10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.概念方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?提示①分清要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12 B.8 C.6 D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16 B.13 C.12 D.10答案 C解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).题组三易错自纠4.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案 D解析需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有4×3×2×2=48(种)着色方法.5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.6.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.题型一分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.10答案 B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12个实数对,故a≠0时满足条件的实数对有12-3=9个,所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204 C.729 D.920答案 A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.(2016·全国Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案 C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.题型二分步乘法计数原理例1 (1)(2016·全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9答案 B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.跟踪训练1 一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有______种.(用数字作答)答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.题型三两个计数原理的综合应用例2 (1)(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)答案 1 080解析①当组成四位数的数字中有一个偶数时,四位数的个数为C35·C14·A44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A45=120.故符合题意的四位数一共有960+120=1 080(个).(2)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120 B.140 C.240 D.260答案 D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,最后涂C处,若C处与A 处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.24答案 B解析长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2 (1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个答案 B解析由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40 000大的偶数共有72+48=120(个).故选B.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是_______.答案36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.答案96解析按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3同色时,共有4A33=24(种)方法.②区域1与3不同色:第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法.∴共有A24×2×1×3=72(种)方法.故由分类加法计数原理可知,不同的涂色种数为24+72=96.1.集合A={1,2,3,4,5},B={3,4,5,6,7,8,9},从集合A,B中各取一个数,能组成的没有重复数字的两位数的个数为()A.52 B.58 C.64 D.70答案 B解析根据分步乘法计数原理得(C12·C13+C14·C13+C12·C14+C23)·A22=58.2.(2018·包头质检)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种答案 B解析分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有()A.24种B.16种C.12种D.10种答案 C解析根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.(2018·大连联考)若自然数n使得作竖式加法n+(n+1)+(n+2)各位数均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因为32+33+34不产生进位现象;23不是“开心数”,因为23+24+25产生进位现象,那么,小于100的“开心数”的个数为() A.9 B.10 C.11 D.12答案 D解析根据题意个位数n需要满足n+(n+1)+(n+2)<10,即n<2.3,∴个位数可取0,1,2三个数,∵十位数k需要满足3k<10,∴k<3.3,∴十位数可以取0,1,2,3四个数,故小于100的“开心数”共有3×4=12(个).故选D.5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种答案 D解析由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420.故选D.6.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24 B.48 C.96 D.120答案 C解析若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有1种涂法,共有4×3×2=24(种);若颜色A,D不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有2种涂法,当B和D不同时,C只有1种涂法,共有4×3×2×(2+1)=72(种),根据分类加法计数原理可得,共有24+72=96(种),故选C.7.对33 000分解质因数得33 000=23×3×53×11,则33 000的正偶数因数的个数是() A.48 B.72 C.64 D.96答案 A解析33 000的因数由若干个2(共有23,22,21,20四种情况),若干个3(共有3,30两种情况),若干个5(共有53,52,51,50四种情况),若干个11(共有111,110两种情况),由分步乘法计数原理可得33 000的因数共有4×2×4×2=64(个),不含2的共有2×4×2=16(个),∴正偶数因数的个数为64-16=48,即33 000的正偶数因数的个数是48,故选A.8.从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为______.答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数中不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93.综上可知,共有20+1-4=17(个)不同的对数值.9.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有_____个.答案27解析先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.10.2017年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,哈西站一定要有人去,则不同的游览方案为________种.答案65解析根据题意,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,则每人有3种选择,则4人一共有3×3×3×3=81种情况,若哈西站没人去,即四位同学选择了城乡路和哈尔滨大街.每人有2种选择方法,则4人一共有2×2×2×2=16种情况,故哈西站一定要有人去有81-16=65种情况,即哈西站一定有人去的游览方案有65种.11.(2018·鞍山模拟)联合国国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有________种.答案25解析根据题意,可分为:三个国家粮食和药品都有,有1种方法;一个国家粮食,两个国家药品,有3种方法;一个国家药品,两个国家粮食,有3种方法;两个国家粮食,三个国家药品,有3种方法;两个国家药品,三个国家粮食,有3种方法;两个国家粮食,两个国家药品,有3×2=6种方法;三个国家粮食,一个国家药品,有3种方法;三个国家药品,一个国家粮食,有3种方法,故方法总数是25.12.将数字“124467”重新排列后得到不同的偶数的个数为_____.答案240解析将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,①若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;②若末位数字为6,同理有5×4×3×2×12=60(种)情况;③若末位数字为4,因为有2个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.13.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.答案60解析 根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓的时候,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60种方法,故答案是60.14.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且 DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有______种.答案 12解析 由DA →+DC →=λDB →(λ∈R ),说明△ABC 是等腰三角形,且|BA |=|BC |,必有f (1)=f (3),f (1)≠f (2).当f (1)=f (3)=1时,f (2)=2,3,4,有三种情况;f (1)=f (3)=2,f (2)=1,3,4,有三种情况;f (1)=f (3)=3,f (2)=2,1,4,有三种情况;f (1)=f (3)=4,f (2)=2,3,1,有三种情况.因而满足条件的函数f (x )有12种.15.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n (n ∈N +)位回文数有________个.答案 (1)900 (2)9×10n -1 解析 (1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n -1种填法.16.用6种不同的颜色给三棱柱ABC -DEF 六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有________种.(用数字作答)答案8 520解析分两步来进行,先涂A,B,C,再涂D,E,F.第一类:若6种颜色都用上,此时方法共有A66=720种;第二类:若6种颜色只用5种,首先选出5种颜色,方法有C56种;先涂A,B,C,方法有A35种,再涂D,E,F中的两个点,方法有A23种,最后剩余的一个点只有2种涂法,故此时方法共有C56·A35·A23·2=4 320种;第三类:若6种颜色只用4种,首先选出4种颜色,方法有C46种;先涂A,B,C,方法有A34种,再涂D,E,F中的一个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有C46·A34·3·3=3 240种;第四类:若6种颜色只用3种,首先选出3种颜色,方法有C36种;先涂A,B,C,方法有A33种,再涂D,E,F,方法有2种,故此时方法共有C36·A33×2=240种.综上可得,不同涂色方案共有720+4 320+3 240+240=8 520种.。
2020高考数学一轮复习:第十章 第1讲分类加法计数原理与分步乘法计数原理(讲义)
第1讲 分类加法计数原理与分步乘法计数原理1.两个计数原理 两个计数原理 目标 策略 过程方法总数 分类加法计数原理 完 成一件 事 有两类 不同的 方案 在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 N =m +n 种不同的方法 分步乘法计数原理需要两 个步骤 做第1步有m 种不同的方法,做第2步有n 种不同的方法N =m ×n 种不同的方法 分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.导师提醒关注三个易错点(1)应用两个计数原理首先要弄清楚先分类还是先分步.(2)分类要做到“不重不漏”,正确把握分类标准.(3)分步要做到“步骤完整”,步步相连.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事件是分两步完成的,其中任何一个单独的步骤都能完成这件事.()答案:(1)×(2)√(3)√(4)×已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为() A.16 B.13C.12 D.10解析:选C.由分步乘法计数原理可知,走法总数为4×3=12.故选C.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10 D.6解析:选D.从0,1,2,3,4,5六个数字中,任取两个不同数字和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为________.解析:3个新节目一个一个插入节目单中,分别有7,8,9种方法,所以不同的插法种数为7×8×9=504.答案:504(教材习题改编)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为________,从第1,2,3层分别各取1本书,不同的取法种数为________.解析:由分类加法计数原理知,从书架上任取1本书,不同的取法总数为4+5+6=15.由分步乘法计数原理知,从1,2,3层分别各取1本书,不同的取法总数为4×5×6=120.答案:15120如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.解析:不同路线共有3×4+4×5=32(条).答案:32分类加法计数原理(典例迁移)(1)椭圆x 2m +y 2n=1(m >0,n >0)的焦点在x 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为( )A .10B .12C .20D .35(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________.【解析】 (1)因为焦点在x 轴上,m >n ,以m 的值为标准分类,由分类加法计数原理,可分为四类:第一类:m =5时,使m >n ,n 有4种选择;第二类:m =4时,使m >n ,n 有3种选择;第三类:m =3时,使m >n ,n 有2种选择;第四类:m =2时,使m >n ,n 有1种选择.故符合条件的椭圆共有10个.故选A.(2)根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 (1)A (2)36[迁移探究1] (变条件)在本例(1)中,若m ∈{1,2,…,k },n ∈{1,2,…,k }(k ∈N *),其他条件不变,这样的椭圆有多少个?解:因为m >n .当m =k 时,n =1,2,…,k -1.当m =k -1时,n =1,2,…,k -2.…当m=3时,n=1,2.当m=2时,n=1.所以共有1+2+…+(k-1)=k(k-1)2(个).[迁移探究2](变条件)若本例(2)条件变为“个位数字不小于十位数字”,则这样的两位数的个数是多少?解:分两类:一类:个位数字大于十位数字的两位数,由本例(2)知共有36个;另一类:个位数字与十位数字相同的有11,22,33,44,55,66,77,88,99,共9个.由分类加法计数原理知,共有36+9=45(个).分类加法计数原理的两个条件(1)根据问题的特点能确定一个适合它的分类标准,然后在这个标准下进行分类.(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.1.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5(种)不同的走法.答案:52.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数共有2+6+12+20+30+42+56+72=240(个).答案:240分步乘法计数原理(典例迁移)(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12 D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.【解析】(1)由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18种走法,故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【答案】(1)B(2)120[迁移探究1](变条件)若本例(2)中将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解:每人都可以从这三个智力项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).[迁移探究2](变条件)若将本例(2)条件中的“每人至多参加一项”改为“每人参加的项目数不限”,其他不变,则有多少种不同的报名方法?解:每人参加的项目数不限,因此每一个项目都可以从六人中任选一人,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).利用分步乘法计数原理解题的策略(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总方法数.[提醒]分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.1.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P 表示坐标平面上第二象限的点的个数为()A.6 B.12C.24 D.36解析:选A.确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.2.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:633.从-1, 0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数学作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6两个计数原理的综合应用(多维探究)角度一涂色、种植问题如图,用6种不同的颜色分别给图中A,B,C,D四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种【解析】完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A开始,有6种方法,B有5种,C有4种,D有3种,完成此事共有6×5×4×3=360种方法;当使用3种颜色时:A,D使用同一种颜色,从A,D开始,有6种方法,B有5种,C有4种,完成此事共有6×5×4=120种方法.由分类加法计数原理可知:不同的涂法有360+120=480(种).【答案】 C角度二与几何有关的问题(1)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24(2)如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).【解析】(1)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.(2)把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).【答案】(1)B(2)40角度三排数与排队问题(1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)生产过程中有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48种D.72种【解析】(1)①首位为5,末位为0:4×3×2=24(个);②首位为5,末位为2:4×3×2=24(个);③首位为5,末位为4:4×3×2=24(个);④首位为4,末位为0:4×3×2=24(个);⑤首位为4,末位为2:4×3×2=24(个).由分类加法计数原理,得共有24+24+24+24+24=120(个).故选B.(2)分两类:①第一道工序安排甲时有1×1×4×3=12(种);②第一道工序不安排甲时有1×2×4×3=24(种).所以共有12+24=36(种).故选B.【答案】(1)B(2)B利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.1.在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24 B.48C.72 D.96解析:选C.分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种).(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种).综上两种情况,不同的涂色方法共有48+24=72(种).2.如果一条直线与一个平面垂直,那么称此直线与该平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18C.24 D.36解析:选D.分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).计数原理中的新定义问题定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【解析】由题意,“规范01数列”有偶数项,即2m项,且所含0与1个数相等,首项为0,末项为1,若m=4,说明数列有8项,得必有a1=0,a8=1,则具体的排法如下:00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101共14个.【答案】 C组数、组点、组线、组队及抽取问题的解题思路(1)组数、组点、组线、组队问题:一般按特殊位置由谁占领分类,每类中再分步计数,当分类较多时,也可用间接法求解.(2)有限制条件的抽取问题:一般根据抽取的顺序分步或根据选取的元素特点分类,当数目不大时,可用枚举法,当数目较大时,可用间接法求解.用a代表红球,b代表蓝球,c代表黑球,由分类加法计数原理及分步乘法计数原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab 表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:选A.因为无区别,所以取红球的方法数为1+a+a2+a3+a4+a5;因为蓝球要都取出,或都不取出,所以方法为1+b5,因为黑球有区别,因此,取黑球的方法数为(1+c)5,所以所有取法数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选A.[基础题组练]1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是()A.30B.42C.36 D.35解析:选C.因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16 C.13D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.3.已知集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14C.15 D.21解析:选B.因为P={x,1},Q={y,1,2},且P⊆Q,所以x∈{y,2}.所以当x=2时,y=3,4,5,6,7,8,9,共7种情况;当x=y时,x=3,4,5,6,7,8,9,共7种情况.故共有7+7=14种情况,即这样的点的个数为14.4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:选D.当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理公比为12,13,23时,也有4个.故共有8个等比数列.5.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:选A.将和等于11的数放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个子集.故选A.6.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).7.直线l :x a +y b=1中,a ∈{1,3,5,7},b ∈{2,4,6,8}.若l 与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( )A .6B .7C .8D .16解析:选B.l 与坐标轴围成的三角形的面积为S =12ab ≥10,即ab ≥20. 当a =1时,不满足;当a =3时,b =8,即1条.当a ∈{5,7}时,b ∈{4,6,8},此时a 的取法有2种,b 的取法有3种,则直线l 的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.8.一个旅游景区的游览线路如图所示,某人从P 点处进,Q 点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有( )A .6种B .8种C .12种D .48种解析:选D.从P 点处进入结点O 以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A 景点,再进入另外两个景点,最后从Q 点处出有(4+4)×2=16种不同的方法;同理,若先游览B 景点,有16种不同的方法;若先游览C 景点,有16种不同的方法,因而所求的不同游览线路有3×16=48(种).9.如图所示,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种B.48种C.24种D.12种解析:选A.法一:首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C 有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.法二:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).10.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013 是“六合数”),则首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B.依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2、2、0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15(个).11.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:选B.当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.12.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种解析:选A.根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方法.13.把3封信投到4种.解析:第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43=64种投法.答案:6414.从班委会5名成员中选出3名,分别担任班级学生委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人担任文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案:3615.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,则符合条件的三角形共有________个.解析:根据三边构成三角形的条件可知,c<25+a.第一类:当a=1,b=25时,c可取25,共1个值;第二类,当a=2,b=25时,c可取25,26,共2个值;……当a=25,b=25时,c可取25,26,…,49,共25个值;所以三角形的个数为1+2+…+25=325.答案:32516.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 880[综合题组练]1.(2019·湖南郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A.4 320种B.2 880种C.1 440种D.720种解析:选A.分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320种不同的涂色方法,故选A.2.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2×3=6种情形;恰好打5局(一人前4局中赢2局,=12种情形.所有可能出现的情形共有2+6+12=20种.故输2局,第5局赢),共有2×4×32选D.3.(创新型)(2019·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:3004.x+y+z=10的正整数解的组数为________.解析:可按x的值分类:当x=1时,y+z=9,共有8组;当x=2时,y+z=8,共有7组;当x=3时,y+z=7,共有6组;当x=4时,y+z=6,共有5组;当x=5时,y+z=5,共有4组;当x=6时,y+x=4,共有3组;当x=7时,y+z=3,共有2组;当x=8时,y+z=2,共有1组.由分类加法计数原理可知:共有8+7+6+5+4+3+2+1=8×9=36(组).2答案:365.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)y=ax2+bx+c表示二次函数时,a的取值有5种情况,b的取值有6种情况,c 的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)当y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.6.(综合型)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解:法一:按所用颜色种数分类.第一类:5种颜色全用,共有A55种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420(种).法二:以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C 与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).。
2020版高考数学一轮复习11.1分类加法计数原理与分步乘法计数原理课件理北师大版
A)
(2)如图,用6种不同的颜色把图中A,B,C,D 4块区域分开,若相邻区 域不能涂同一种颜色,则涂色方法共有 480 种.(用数字作 答)
-14考点1
考点2
考点3
解析: (1)33 000的因数中有若干个2(共有23,22,21,20四种情况),若干 个3(共有3,30两种情况),若干个5(共有53,52,51,50四种情况),若干个 11(共有111,110两种情况), 由分步乘法计数原理可得33 000的因数共有4×2×4×2=64个,不 含2的共有2×4×2=16个, ∴正偶数因数有64-16=48(个),即33 000的正偶数因数的个数是48, 故选A. (2)从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方 法,D有4种涂色方法.由分步乘法计数原理可知,共有 6×5×4×4=480种涂色方法.
-9考点1
考点2
考点3
分类加法计数原理 例1(1) 满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解 的有序数对(a,b)的个数为( B ) A.14 B.13 C.12 D.9
������2 (2)已知椭圆 ������
n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为 20
-15考点1
考点2
考点3
思考应用分步乘法计数原理解决问题时,如何分步?对分步有何 要求? 解题心得利用分步乘法计数原理解决问题时,要按事件发生的过 程合理分步,并且分步必须满足两个条件:一是完成一件事的各个 步骤是相互依存的,二是只有各个步骤都完成了,才算完成这件事.
-16考点1
考点2
考点3
对点训练2(2018安徽合肥三模)如图,给7条线段的5个端点涂色, 要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选 择,则不同的涂色方法种数有( C ) A.24 B.48 C.96 D.120 解析:若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B 有2种涂法,C只有一种涂法,共有4×3×2=24种;若A,D颜色不同,先 涂E有4种涂法,再涂A有3种涂法,再涂D有3种涂法,当B和D相同 时,C有一种涂法,当B和D不同时, C只有一种涂法,共有 4×3×3×(1+1)=72种,根据分类加法计数原理可得,共有 24+72=96(种),故选C.
北师版高考总复习一轮数学精品课件 第11章 第1节分类加法计数原理与分步乘法计数原理
③剩下的2人负责拖地,有1种情况,
则有4×3×1=(12)种不同的分工方法.
(2)有六名同学报名参加三个智力项目,每项恰好报一人,且每人至多参加
120
一项,则共有
种不同的报名方法.
解析 每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目
有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计
圆共有4+3+2+1=10(个).
[对点训练1](2024·江苏宿迁模拟)如图,一条电路从A处到B处接通时,可以
有
9
种不同的线路(每条线路仅含一条通路).
解析 依题意按上、中、下三条线路可分为三类:上线路中有2种;中线路中
只有1种;下线路中有2×3=6(种).根据分类加法计数原理,共有
2+1+6=9(种).
路,从丙地到丁地有4条路.则从甲地到丁地不同的路线有( D )
A.11条
B.12条
C.13条
D.14条
解析 从甲到丁分为两类,第一类,从甲过乙到丁分两步,从甲地到乙地有3条
路,从乙地到丁地有2条路,由分步乘法计数原理得,从甲到丁有6条路线;第
二类,从甲过丙到丁分两步,从甲地到丙地有2条路,从丙地到丁地有4条路,
考点二 分步乘法计数原理
例2(1)(2024·辽宁大连模拟)某天的值日工作由4名同学负责,且其中1人负
责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工方法共有
12
种.
解析 根据题意,分3步分析:
①在 4 人中选出一人负责清理讲台,有C41 =4 种情况;
②在剩下的 3 人中选出一人负责扫地,有C31 =3 种情况;
2020版高考数学理科一轮复习课件(北师大版):分类加法计数原理与分步乘法计数原理
法计数 第 2 步有 n 种不同的方法,那么 同的方法,做第 2 步有 m2 种不同的方法,…,做 计数原理与分步有关,各
原理
完成这件事共有 N= m×n
第 n 步有 mn 种不同的方法,那么完成这件事共个步骤相互依存,只有各
有 N= m1×m2×…×mn 种不同的方法
个步骤都完成了,这件事
种不同的方法
原理
有 N=
m+n
法,那么完成这件事共有 N= m1+m2+…+mn
种不同的方
加法计数原理与分类有
种不同的方法
法
关,各种方法相互独立,用
其中的任何一种方法都可
完成一件事需要两个步骤,做
分步乘 第 1 步有 m 种不同的方法,做 完成一件事需要 n 个步骤,做第 1 步有 m1 种不以完成这件事;分步乘法
组成无重复数字的三位数,其中奇数的个数
Байду номын сангаас
为
.
[答案] 18
[解析] 分两类情况讨论:第一类,三位数的百位、
十位、个位分别为奇数、偶数、奇数,个位有 3
种选择,十位有 2 种选择,百位有 2 种选择,共有
3×2×2=12(个)奇数;第二类,三位数的百位、十位、
个位分别为偶数、奇数、奇数,个位有 3 种选择,
课前双基巩固
题组二 常错题
◆索引:分类、分步时标准不清导致出错.
5.有 3 女 2 男共 5 名志愿者要全部分配到 3 个社区去
参加志愿服务,每个社区 1 到 2 人,甲、乙 2 名女志愿
者需到同一社区,男志愿者到不同社区,则不同的分法
种数为
.
[答案] 12
[解析] 先安排甲、乙 2 名女志愿 者,有 3 种分法.剩余 1 女 2 男,分 为 1 男 1 女和 1 男两组,分组后安 排到 2 个社区,共有 2×2=4(种)分 法.故总的分法有 3×4=12(种).
2020版高考数学新增分大一轮新高考第十章 10.1 分类加法计数原理与分步乘法计数原理 Word版含解析
§分类加法计数原理与分步乘法计数原理最新考纲通过实例,了解分类加法计数原理、分步乘法计数原理及其意义..分类加法计数原理完成一件事有两类不同方案,在第类方案中有种不同的方法,在第类方案中有种不同的方法,那么完成这件事共有=+种不同的方法..分步乘法计数原理完成一件事需要两个步骤,做第步有种不同的方法,做第步有种不同的方法,那么完成这件事共有=×种不同的方法..分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.概念方法微思考.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理..两种原理解题策略有哪些?提示①分清要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析.判断下列结论是否正确(请在括号中打“√”或“×”)()在分类加法计数原理中,两类不同方案中的方法可以相同.(×)()在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)()在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)()如果完成一件事情有个不同步骤,在每一步中都有若干种不同的方法(=,…,),那么完成这件事共有…种方法.(√)()在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)题组二教材改编.已知集合={,-},={-,-},从,这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是() ....答案解析分两步:第一步先确定横坐标,有种情况,第二步再确定纵坐标,有种情况,因此第一、二象限内不同点的个数是×=,故选.。
2020版高考数学大一轮复习分类加法计数原理与分步乘法计数原理分层演练理(含解析)
第1讲分类加法计数原理与分步乘法计数原理1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是( )A.30 B.42C.36 D.35解析:选C.因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.用10元、5元和1元来支付20元钱的书款,不同的支付方法有( )A.3种B.5种C.9种D.12种解析:选C.只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).3.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为( )A.20 B.25C.32 D.60解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.4.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为( )A.24 B.48C.60 D.72解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知偶数的个数为2×4×3×2×1=48.5.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.6.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为( )A .18个B .10个C .16个D .14个解析:选B.第三、四象限内点的纵坐标为负值,分2种情况讨论. ①取M 中的点作横坐标,取N 中的点作纵坐标,有3×2=6种情况; ②取N 中的点作横坐标,取M 中的点作纵坐标,有4×1=4种情况. 综上共有6+4=10种情况.7.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B ,C ,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有( )A .180种B .360种C .720种D .960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).8.直线l :x a +y b=1中,a ∈{1,3,5,7},b ∈{2,4,6,8}.若l 与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( )A .6B .7C .8D .16解析:选B.l 与坐标轴围成的三角形的面积为S =12ab ≥10,即ab ≥20.当a =1时,不满足;当a =3时,b =8,即1条.当a ∈{5,7}时,b ∈{4,6,8},此时a 的取法有2种,b 的取法有3种,则直线l 的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.9.一个旅游景区的游览线路如图所示,某人从P 点处进,Q 点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有( )A.6种B.8种C.12种D.48种解析:选D.从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(4+4)×2=16种不同的方法;同理,若先游览B景点,有16种不同的方法;若先游览C景点,有16种不同的方法,因而所求的不同游览线路有3×16=48(种).10.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48 B.18C.24 D.36解析:选D.分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).11.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y ∈A∪B},则A*B中元素的个数是( )A.7 B.10C.25D.52解析:选B.因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A ∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得2×5=10.12.在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( )A.24种B.48种C.72种D.96种解析:选C.分两种情况:。
分类加法计数原理与分步乘法计数原理2020年高考数学一轮考点
2020 年高考数学一轮考点专题 56分类加法计数原理与分步乘法计数原理一、【知识精讲】1.分类加法计数原理达成一件事有两类不一样方案,在第 1 类方案中有 m种不一样的方法,在第 2 类方案中有 n 种不一样的方法 . 那么达成这件事共有N=m+ n 种不一样的方法 .2.分步乘法计数原理达成一件事需要两个步骤,做第 1 步有 m种不一样的方法,做第 2 步有 n 种不一样的方法,那么达成这件事共有 N=m×n 种不一样的方法 .3.分类加法和分步乘法计数原理,差别在于:分类加法计数原理针对“分类”问题,此中各样方法相互独立,用此中任何一种方法都能够做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都达成了才算完成这件事 .【注意点】分类加法计数原理与分步乘法计数原理是解决摆列组合问题的基础,并贯串其始终 .1.分类加法计数原理中,达成一件事的方法属于此中一类,而且只属于此中一类 .2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立,分步达成”.二、【典例精练】考点一分类加法计数原理的应用【例 1】 (1) 从甲地到乙地有三种方式能够抵达 . 每日有 8 班汽车、 2 班火车和 2 班飞机 . 一天一人从甲地去乙地,共有 ________种不一样的方法 .(2)知足 a,b∈{ - 1,0,1,2} ,且对于 x 的方程 ax2+2x+b= 0 有实数解的有序数对 ( a,b) 的个数为 ________.【答案】(1)12(2)13【分析】(1)一类是乘飞机有分三类:一类是乘汽车有 8 种方法;一类是乘火车有 2 种方法; 2 种方法,由分类加法计数原理知,共有 8+ 2+ 2=12( 种 ) 方法 .(2)当 a=0 时, b 的值能够是- 1,0,1,2,故 ( a,b) 的个数为 4;当 a≠0时,要使方程 ax2+ x+b=0有实数解,需使=- ab≥,即 ab≤1.2440若 a=- 1,则 b 的值能够是- 1, 0, 1, 2, ( a,b) 的个数为 4;若 a=1,则 b 的值能够是- 1,0,1,( a,b) 的个数为 3;若 a=2,则 b 的值能够是- 1,0,( a,b) 的个数为 2.由分类加法计数原理可知,( a, b) 的个数为 4+4+3+2=13.【解法小结】分类标准是运用分类加法计数原理的难点所在,应抓住题目中的重点词、重点元素和重点地点.(1)依据题目特色恰入选择一个分类标准 .(2)分类时应注意达成这件事情的任何一种方法一定属于某一类,而且分别属于不一样种类的两种方法才是不一样的方法,不可以重复 .(3)分类时除了不可以交错重复外,还不可以有遗漏,如本例 (2) 中易漏 a=0 这一类 . 考点二分步乘法计数原理的应用【例 2】 (1) 用 0,1,2,3,4,5 可构成无重复数字的三位数的个数为________. (2)(2018 ·合肥质检 ) 五名学生报名参加四项体育竞赛,每人限报一项,则不一样的报名方法的种数为________. 五名学生抢夺四项竞赛的冠军 ( 冠军不并列 ) ,则获取冠军的可能性有________种 .【答案】(1)100(2)4 554【分析】(1) 可分三步给百、十、个位放数字,第一步:百位数字有 5 种放法;第二步:十位数字有 5 种放法;第三步:个位数字有 4 种放法,依据分步乘法计数原理,三位数的个数为5×5×4= 100.(2)五名学生参加四项体育竞赛,每人限报一项,可逐个学生落实,每个学生有54 种报名方法,共有 4 种不一样的报名方法 . 五名学生抢夺四项竞赛的冠军,可对44 个冠军逐个落实,每个冠军有5 种获取的可能性,共有 5 种获取冠军的可能性 .【解法小结】 1. 利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后次序的,而且分步一定知足:达成一件事的各个步骤是相互依存的,只有各个步骤都达成了,才算达成这件事.2.分步一定知足两个条件:一是步骤相互独立,互不扰乱;二是步与步保证连续,逐渐达成 .考点三两个计数原理的综合应用角度 1与数字相关的问题【例 3-1】(2012 山东)现有 16 张不一样的卡片,此中红色、黄色、蓝色、绿色卡片各 4 张,从中任取 3 张,要求这 3 张卡片不可以是同一种颜色, 而且红色卡片至多 1 张,不一样取法的种数是A .232B .252C .472D .484【答案】 C【分析】若没有红色卡片,则需从黄、蓝、绿三色卡片中选3 张,若都不一样色则有 C 41 C 41 C 41 =64,若 2 张同色,则有 C 32 C 21 C 42 C 41 144 ,若红色 1 张,其余2 张不一样色,则有C 41 C 32 C 41 C 41 192 ,其余2 张同色则有C 41 C 31 C 4272 ,因此共有 64+144+192+72=472.另解1: 33 2 116 15 14 16 72 560 88 472 , 答案应选 .C164C 4C 4C126C 另解 2: C 40C 123 3C 43 C 41C 12212 11 10 12 4 12 11 220264 12 472.6 2角度 2 与几何相关的问题【例 3-2】 假如一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对” . 在一个正方体中,由两个极点确立的直线与含有四个极点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36【答案】D【分析】在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”; 而正方体的六个对角面中, 每个对角面有两条面对角线与之垂直,共构成 12 个“正交线面对”,因此共有 36 个“正交线面对”.角度 3 涂色、栽种问题【例 3-3】 ( 一题多解 ) 如下图,将一个四棱锥的每一个极点染上一种颜色,并使同一条棱上的两头异色, 假如只有 5 种颜色可供使用, 求不一样的染色方法种数 .【分析】解法一按所用颜色种数分类.5第一类: 5 种颜色全用,共有 A5种不一样的方法;第二类:只用 4 种颜色,则必有某两个极点同色(A与 C,或 B与 D4,共有×A5)2种不一样的方法;第三类:只用 3 种颜色,则 A 与 C,B 与 D 必然同色,共有 A53种不一样的方法 .由分类加法计数原理,得不一样的染色方法种数为543=420( 种).A+2×A+ A555法二以 S,A, B, C, D 次序分步染色 .第一步: S 点染色,有 5 种方法;第二步: A 点染色,与 S 在同一条棱上,有 4 种方法;第三步: B 点染色,与 S,A 分别在同一条棱上,有 3 种方法;第四步: C点染色,也有 3 种方法,但考虑到D点与 S, A,C 相邻,需要针对A 与 C 能否同色进行分类,当 A 与 C 同色时, D点有 3 种染色方法;当 A 与 C 不一样色时,由于 C 与 S,B 也不一样色,因此 C 点有 2 种染色方法, D 点也有 2 种染色方法 . 由分步乘法、分类加法计数原理得不一样的染色方法共有 5×4×3×(1 ×3+2×2) = 420( 种).【解法小结】 1. 在综合应用两个原理解决问题时应注意:(1)一般是先分类再分步 . 在分步时可能又用到分类加法计数原理 .(2) 对于较复杂的两个原理综合应用的问题,可适合地列出表示图或列出表格,使问题形象化、直观化 .2. 解决涂色问题,可按颜色的种数分类,也可按不一样的地区分步达成.例题中,相邻极点不一样色,要按A,C 和 B, D 能否同色分类办理 .三、【名校新题】1.(2019 ·石家庄模拟 ) 教课大楼共有五层,每层均有两个楼梯,由一层到五层的走法有 ()A.10种B.25种C.52种D.24种【答案】D【分析】每相邻的两层之间各有 2 种走法,共分 4 步 .由分步乘法计数原理,共有24种不一样的走法 .2.(2018 ·九江模拟 ) 已知两条异面直线a, b上分别有 5 个点和8 个点,则这13 个点能够确立不一样的平面个数()为A.40 B .16 C .13 D .10【答案】C【分析】分两状况:第 1 ,直 a 分与直 b 上的 8 个点能够确立 8 个不一样的平面;第 2 ,直 b 分与直 a 上的 5 个点能够确立 5 个不一样的平面.依据分加法数原理知,共能够确立8+ 5= 13 个不一样的平面.3.(2018 ·北京旭日区二模 ) 将 5 号的影票分甲、乙等 5 个人,每人一,且甲、乙分得的影票号,共有不一样分法的种数() A.12 B .24 C .36 D .48【答案】D3【分析】甲、乙分得的影票号有4×2= 8 种状况,其余三人有A3种分法,3因此共有 8A3=48 种, D.4.(2019 · 沙模 ) 将字母 a,a,b,b,c,c 排成三行两列,要求每行的字母互不同样,每列的字母也互不同样,不一样的摆列方法共有() A.12种 B .18种 C .24种 D .36种【答案】A【分析】第一步先排第一列,有A33= 6( 种) ,再排第二列,当第一列确立,第二列有两种方法,如所示,因此不一样的摆列方法共有6×2= 12( 种) .5.(2019 ·山模 ) 用 0,1 ,⋯, 9 十个数字,能够成有重复数字的三位数的个数()A.243B.252 C.261D.279【答案】B【分析】由分步乘法数原理知:用0,1 ,⋯,9 十个数字成三位数 ( 可有重复数字 ) 的个数9×10×10= 900,成没有重复数字的三位数的个数9×9×8= 648,成有重复数字的三位数的个数900-648=252. 故 B.6.(2019 ·福州模拟 ) 有 4 位教师在同一年级的 4 个班中各教一个班的数学,在数学检测时要求每位教师不可以在本班监考,则监考的方法有()A.8种 B .9种 C .10种 D .11种【答案】B【分析】设四位监考教师分别为 A,B,C,D,所教班分别为 a,b,c,d,假定 A监考 b,则余下三人监考剩下的三个班,共有 3 种不一样方法,同理 A 监考 c, d 时,也分别有 3 种不一样方法,由分类加法计数原理共有 3+3+3=9 种.7.(2019 ·四川泸州模拟 ) 如图,将一环形花坛分红 A,B,C,D 四块,现有 3 种不一样的花供选种,要求在同一块中种一栽花,且相邻的2 块种不一样的花,则不一样的种法总数为 ()A.12 B .24 C .18 D .6【答案】C22【分析】四块地种 2 种不一样的花共有C3A2=6 种不一样的栽种方法,四块地种33种不一样的花共有2A3= 12 种不一样的栽种方法,因此共有 6+ 12=18 种不一样的栽种方法,应选 C.8. (2019 ·广西桂林模拟 ) 如图,某货场有两堆集装箱,一堆 2 个,一堆 3 个,现需要所有装运,每次只好取此中一堆最上边的一个集装箱,则在装运的过程中不一样取法的种数是 ()A.6 B .10 C .12 D .24【答案】B【分析】将图中左侧的集装箱从上往下分别记为1,2,3 ,右侧的集装箱从上往下分别记为 4,5. 分两种状况议论:若先取 1,则有12345,12453,12435,14523,14235,14253 ,共 6种取法;若先取4,则有45123,41235,41523,41253 ,共 4 种取法,故共有6+ 4= 10 种取法.9.(2019 ·广西南宁模拟 ) 用 4 种颜色给正四棱锥的五个极点涂色,同一条棱的两个极点涂不一样的颜色,则切合条件的所有涂法共有()A.24种 B .48种 C .64种 D .72种【答案】D【分析】设该正四棱锥为 S-ABCD,极点 S 有 4 种不一样的涂法,用三种不一样的颜色涂底面 ABCD的四个极点.①当 A,C 同色时,有 3×2×2= 12 种不一样的涂法;②当 A,C 不一样色时,有 3×2×1×1= 6 种不一样的涂法,故切合条件的所有涂法共有 4×(12 + 6) =72 种.应选 D.10.(2019 ·河北保定模拟 ) 甲、乙、丙、丁四位同学高考以后计划去 A,B,C 三个不一样社区进行帮扶活动,每人只好去一个社区,每个社区起码一人.此中甲必须去 A 社区,乙不去 B 社区,则不一样的安排方法种数为() A.8 B.7 C.6 D.5【答案】B【分析】依据题意,分两种状况议论:①乙和甲一同去 A 社区,此时将丙、丁二人安排到 B,C 社区即可,有 A22=2 种状况,②乙不去 A 社区,则乙一定去 C 社区,若丙、丁都去 B 社区,有 1 种状况,若丙、丁中有 1 人去 B 社区,则先在丙、丁中选出 1 人,安排到 B 社区,剩下 1 人安排到 A 或 C 社区,有 2×2= 4种状况,则不一样的安排方法种数有2+1+4=7 种.应选 B.11.(2019 ·驻马店质检 ) 将一个四周体 ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不可以涂同样颜色,则不一样的涂色方案有()A.1 种B.3 种C.6 种D.9 种【答案】C【分析】由于只有三种颜色,又要涂六条棱,因此应当将四周体的对棱涂成相同的颜色,故有 3×2×1= 6( 种) 涂色方案 .12. (2019 ·苏州模拟 ) 从 2,3,4,5,6,7,8,9这 8 个数字中任取 2 个不一样的数字分别作为一个对数的底数和真数,则所产生的不一样对数值的个数为() A.56 B .54 C .53 D .52【答案】D【分析】在 8 个数字中任取 2 个不一样的数字共可产生8×7= 56 个对数值,在这 56 个对数值中, log 24=log 39,log 42=log 9 3, log 23=log 49,log 32=log 9 4,则知足条件的对数值共有 56- 4= 52 个.13.(2019 ·江西新余模拟 )7 人站成两排行列,前排 3 人,后排 4 人,现将甲、乙、丙三人加入行列,前排加一人,后排加两人,其余人保持相对地点不变,则不一样的加入方法种数为 ()A.120 B .240 C .360 D .480【答案】C【分析】第一步,从甲、乙、丙三人中选一个加到前排,有 3 种方法;第二步,前排 3 人形成了 4 个空,任选一个空加一人,有 4 种方法;第三步,后排 4 人形成了 5 个空,任选一个空加一人,有 5 种方法,此时形成了 6 个空,任选一个空加一人,有6 种方法;依据分步乘法计数原理可得不一样的加入方法种数为3×4×5×6= 360. 应选 C.14.(2019 ·武汉模拟 ) 在一块并排 10 垄的田地中,选择 2 垄分别栽种 A,B 两种作物,每种作物栽种一垄.为有益于作物生长,要求A, B 两种作物的间隔不小于 6 垄,则不一样的选垄方法有 ()A.2种 B .6种 C .12种 D .14种【答案】C【分析】分两步:第一步,先选垄,如下图,共有 6 种选法;第二步,栽种A,B 两种作物,有2种方法.因此依据分步计数原理,不一样的选垄方法有×26=12( 种) .15.(201 9·定州模拟 ) 将“福”“禄”“寿”填入到如下图的4×4小方格中,每格内只填入一个汉字,且随意的两个汉字既不一样行也不一样列,则不一样的填写方法有()A.288 种 B .144 种 C .576 种 D .96 种【答案】C【分析】依题意可分为以下 3 步:(1)先从16 个格子中任选一格放入第一个汉9字,有16 种方法; (2)随意的两个汉字既不一样行也不一样列,第二个汉字只有个格子能够放,有 9 种方法;(3) 第三个汉字只有 4 个格子能够放,有 4 种方法.根据分步乘法计数原理可得不一样的填写方法有16×9×4= 576( 种) .16.(2019 ·宁波模拟 ) 如图,矩形的对角线把矩形分红 A,B,C,D 四部分,现用5 种不一样颜色给四部分涂色,每部分涂 1 种颜色,要求共边的两部分颜色互异,则共有 ________种不一样的涂色方法.【答案】260【分析】地区 A 有 5 种涂色方法;地区 B 有 4 种涂色方法;地区 C 的涂色方法可分 2 类:若 C 与 A 涂同色,地区 D 有 4 种涂色方法;若 C与 A 涂不一样色,此时地区 C有3 种涂色方法,地区D 也有3种涂色方法.因此共有× × +5 4 45×4×3×3= 260 种涂色方法.17.(2019 ·南通模拟 ) 从 1 到 9 的正整数中随意抽取 2 个数相加,所得的和为奇数的不一样情况种数是 ________.【答案】20【分析】依据题意,从 1 到 9 的正整数中随意抽取 2 个数相加,若所得的和为奇数,则拿出的 2 个数必为 1 个奇数、 1 个偶数.分两步:先在 1,3,5,7,9 中拿出 1 个奇数,有 5 种取法,再在 2,4,6,8 中拿出 1 个偶数,有 4 种取法.则 1 个奇数、1 个偶数的取法有 5×4= 20( 种) ,即所得的和为奇数的不一样情况种数是 20.x2y218.(2019 ·菏泽六校联考 ) 椭圆m+n= 1 的焦点在 x 轴上,且 m∈{1 , 2,3,4,5} ,n∈{1 , 2, 3,4,5,6,7} ,则这样的椭圆的个数为________.【答案】10【分析】由于焦点在 x 轴上,因此m n,以 m的值为标准分类,分为四类:第>一类: m=5时,使m n, n 有4种选择;第二类: m=4时,使 m n,n 有3种选>>择;第三类: m=3时,使 m n, n 有2种选择;第四类: m=2时,使 m n,n 有>>1 种选择 . 由分类加法计数原理,切合条件的椭圆共有10 个.19.(2018 ·沈阳模拟 ) 现有 2 门不一样的考试要安排在 5 天以内进行,每日最多进行一门考试,且不可以连续两天有考试,那么不一样的考试安排方案种数为________.【答案】 12【分析】若第一门安排在开头或结尾,则第二门有 3 种安排方法,这时,共有1种方法;若第一门安排在中间的 3 天中,则第二门有 2 种安排方法,这C×3= 62时,共有 3×2= 6 种方法.综上可得,不一样的考试安排方案共有6+6=12 种.20.(2019 ·河北衡水中学模拟 ) 已知一个公园的形状如下图,现有 3 种不一样的植物要种在此公园的 A,B,C,D,E 这五个地区内,要求有公共界限的两块相邻地区种不一样的植物,则不一样的种法共有 ________种.【答案】18【分析】先栽种A,B,C 三个地区,有× × =6种方法.① A, E 同样时:3 2 1D 有1各种法,此时共有× × =6种方法;② A,E 不一样时: D 有2各种法,611此时共有6×1×2= 12 种方法.由分类加法计数原理知共有6+12= 18 种不一样的种法.。
高三数学一轮 10.1 分类加法计数原理与分步乘法计数原理导学案 理 北师大版
第十一章计数原理、随机变量及其分布学案63 两个计数原理导学目标:理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.自主梳理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N=________种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=________种不同的方法.3.分类加法计数原理与分步乘法计数原理,都是涉及完成一件事的不同方法的种数,它们的区别在于:分类加法计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步乘法计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,从思想方法的角度看,分类加法计数原理的运用是将一个问题进行“分类”思考,分步乘法计数原理是将问题进行“分步”思考.自我检测1.(2009·北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324 B.328 C.360 D.6482.如图小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为 ( )A.26 B.24 C.20 D.193.(2011·青岛月考)某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种B.36种C.42种D.60种4.(2010·湖北)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.56B.65C.5×6×5×4×3×22D.6×5×4×3×25.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则不同着色方法共有________种.(以数字作答) 6.(2011·泉州调研)集合A含有5个元素,集合B含有3个元素.从A到B可有________个不同映射.探究点一分类加法计数原理的应用例1 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?变式迁移 1 方程x2m+y2n=1表示焦点在y轴上的椭圆,其中m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?探究点二分步乘法计数原理的应用例2 (2011·黄山模拟)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,求不同的出场安排共有多少种?变式迁移2 有0、1、2、…、8这9个数字.(1)用这9个数字组成四位数,共有多少个不同的四位数?(2)用这9个数字组成四位密码,共有多少个不同的四位密码?探究点三两个计数原理的综合应用例3 如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有( )A.180种B.240种C.360种C.420种变式迁移3如图所示为一电路图,从A到B共有________条不同的线路可通电.分类讨论思想例(12分)从1到20这20个正整数中,每次取出3个,问:它们可以组成多少组不同的等差数列.多角度审题本题是一道计数原理与等差数列的综合题,能构成等差数列的三个数有很多,到底如何取这三个数才能准确的、不重、不漏的找出所有能构成等差数列的三个数是本题的难点.【答题模板】解依题意,要使这三个数成等差数列,公差d的取值可以为±1,±2,…,±9,因此分18类.[3分]当d=±1时,可以组成36组不同的等差数列;当d=±2时,可以组成32组不同的等差数列;…;当d=±9时,可以组成4组不同的等差数列.[9分]根据分类加法计数原理,共有36+32+28+…+8+4=180(组)不同的等差数列.[12分]【突破思维障碍】由于取出的三个数必须构成等差数列,因此,按照公差的大小来分类能使取出的三个数不重不漏,那么每一类型有多少个三位数,由于从前往后取,关键看取到最后,由各数列的特点,就能看出有几个数列,例如:当等差数列的公差为1时,能构成等差数列的三个数为1 2 3,2 3 4,3 4 5,…,18 19 20,查个数时,看每组数的第一个数,分别为1,2,3,…,18,因此共18个等差数列;再例如当公差为2时,取到最后剩17,19, 20.但前面能构成等差数列的三个数分别为1 3 5,2 4 6,3 5 7,4 6 8,…,16 18 20,看每组数的第一个数分别为1,2,3,…,16,共16个等差数列.【易错点剖析】容易遗忘公差为-1,-2,…,-9时的情况,有可能找不到公差每增加1个单位,等差数列个数减少4个的规律.1.关于两个计数原理的应用范围:(1)如果完成一件事情有几类办法,这几类办法彼此之间相互独立,无论哪一类办法中的哪一种方法都能独立完成这件事,求完成这件事的方法种数时就用分类加法计数原理,分类加法计数原理可利用“并联电路”来理解.(2)如果完成一件事情要分几个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的办法,求完成这件事的方法种数时就用分步乘法计数原理,分步乘法计数原理可利用“串联电路”理解.2.应用两个计数原理的注意事项:(1)要真正理解“完成一件事”的含义,以确定需要分类还是需要分步.(2)分类时要做到不重不漏.(3)对于复杂的计数问题,可以分类、分步综合应用.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·合肥调研)从1到10的正整数中,任意抽取两个相加所得的和为奇数的不同情形的种数是( )A.10 B.15 C.20 D.252.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) A.5种B.6种C.7种D.8种3.(2010·佛山模拟)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个选续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要( )A.3 360元B.6 720元C.4 320元D.8 640元4.(2011·杭州月考)如果一个三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数共有( )A.240个B.285个C.231个D.243个5.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得21分,答错得-21分;选乙题答对得7分,答错得-7分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( )A.48 B.44 C.36 D.24二、填空题(每小题4分,共12分)6.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有________种.7.(2011·安庆模拟)计划展出6幅不同的画,其中1幅水彩画,2幅油画,3幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列法有______种.8.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有________种不同的结果.三、解答题(共38分)9.(12分)(2011·开封模拟)从{-3,-2,-1,0,1,2,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条抛物线经过原点且顶点在第一象限或第三象限?10.(12分)用0,1,2,3,4,5可以组成多少个无重复数字的比2 000大的四位偶数.11.(14分)有一个圆形区域被3条直径分成6块(如图所示),在每一块区域内种植植物,相邻的两块区域种植不同的植物,现有4种不同的植物选择,一共有多少种不同的种植方法.学案63 两个计数原理自主梳理1.m+n 2.m×n自我检测1.B[若组成没有重复数字的三位偶数,可分为两种情况:①当个位上是0时,共有9×8=72(种)情况;②当个位上是不为0的偶数时,共有4×8×8=256(种)情况.综上,共有72+256=328(种)情况.]2.D [本题只要类比成供水系统中水管的最大流量问题即可.由B 到A ,单位时间内第一条网线传递的最大信息量为3,第二条网线传递的最大信息量为4,第三条网线传递的最大信息量为6,第四条网线传递的最大信息量为6,由分类加法计数原理,得3+4+6+6=19.]3.D [某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则可分两类:第一类,在两个城市分别投资1个项目、2个项目,此时有3×4×3=36(种)方案;第二类,在三个城市各投资1个项目,有4×3×2=24(种)方案,共计有36+24=60(种)方案.]4.A [由分步乘法计数原理得5×5×5×5×5×5=56.] 5.72解析 本题根据题意,可分类求解:第一类,用三种颜色着色,有4×3×2=24(种)方法;第二类,用四种颜色着色,有2×4×3×2=48(种)方法.从而共有24+48=72(种)方法. 6.243解析 A 中的任一元素去选择B 的某一元素都有3种方法,且要完成一个映射应该使A 中的每一个元素在B 中都能找到唯一的元素与之对应,由分步乘法计数原理知共有3×3×3×3×3=35=243(个).课堂活动区例1 解题导引根据十位上的数分类→确定个位数字大于十位数字的两位数――→分类加法计数原理结果 应用分类加法计数原理,首先根据问题的特点,确定分类的标准,分类应满足:完成一件事的任何一种方法,必属于某一类且仅属于某一类.解 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个). 变式迁移1 解 以m 的值为标准分类,分为五类. 第一类:m =1时,使n>m ,n 有6种选择; 第二类:m =2时,使n>m ,n 有5种选择; 第三类:m =3时,使n>m ,n 有4种选择; 第四类:m =4时,使n>m ,n 有3种选择; 第五类:m =5时,使n>m ,n 有2种选择.∴共有6+5+4+3+2=20(种)方法,即有20个符合题意的椭圆.例2 解题导引考虑队员的出场次序→分步进行――→分步乘法计数原理结果“分步”是乘法原理的标志.要注意在同一类中合理分步的几个原则:分步标准必须一致;分步要做到步骤关联,步骤连续,步骤独立,确保对每一类事件的分步不重不漏.这样才能保证使用分步乘法计数原理时的正确性.解 按出场位置顺序逐一安排.第一位置队员的安排有3种方法;第二位置队员的安排有7种方法;第三位置队员的安排有2种方法;第四位置队员的安排有6种方法;第五位置队员的安排只有1种方法.由分步乘法计数原理知,不同的出场安排方法有3×7×2×6×1=252(种).变式迁移2 解 (1)未强调四位数的各位数字不重复,只需首位不为0,依次确定千、百、十、个位,各有8、9、9、9种方法,∴共能组成8×93=5 832(个)不同的四位数. (2)每一位上的数字都有9种方法,∴共能组成94=6 561(个)不同的四位密码.例3 解题导引题意→按花色分类→每一类再分步→结果(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.D[由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.①当用三种颜色时,花池2、4同色和花池3、5同色,此时共有A35种方案.②当用四种颜色时,花池2、4同色或花池3、5同色,故共有2A45种方案.③当用五种颜色时有A55种方案.因此所有栽种方案为A35+2A45+A55=420(种).]变式迁移3 8解析按上、中、下三条线路可分为三类:上线路中有3条,中线路中有1条,下线路中有2×2=4(条),根据分类加法计数原理,共有3+1+4=8(条).课后练习区1.D[当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25(种).]2.C[由于本题种数不多,可用列举法具体写出:3×60+2×70;4×60+2×70;5×60+2×70;6×60+2×70;3×60+3×70;4×60+3×70;3×60+4×70,共7种不同的选购方式.]3.D[从01至10的三个连号的个数有8种;从11至20的两个连号的个数有9种;从21至30的单选号的个数有10种,从31至36的单选号的个数有6种,故总的选法有8×9×10×6=4 320(种),可得需要钱数为8 640元.]4.A[当十位数字是9时,百位数字有8种取法,个位数字有9种取法,此时取法种数为8×9;当十位数字是8时,百位数字有7种取法,个位数字有8种取法,此时取法种数为7×8,依此类推,直到当十位数字是2时,百位数字有1种取法,个位数字有2种取法,此时取法种数为1×2,所以总的个数为1×2+2×3+3×4+…+8×9=240.] 5.C[由题意总分为0分三类:第一类得分为21,21,-21,-21,第二类为7,7,-7,-7,第三类为21,-21,7,-7.每类中4位同学的不同得分可认为4个分数填4个空,每空填一个分数,前两类中各有C24种填法,第三类有4×3×2×1=24(种)填法,总共有6+6+24=36(种).]6.48解析如图所示,在A点可先参观区域1,也可先参观区域2或3,共有3种不同选法.每种选法中又有2×2×2×2=16(种)不同路线.∴共有3×16=48(种)不同的参观路线.7.24解析先把每种品种的画看成一个整体,而水彩画只能放在中间,又油画与国画放在两端有2种放法,再考虑2幅油画本身排放有2种方法,3幅国画本身排放有3×2=6(种)方法,故不同的陈列法有2×2×6=24(种).8.28 800解析分两类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400(种)结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果,因此共有不同结果17 400+11 400=28 800(种).9.解抛物线经过原点,得c=0,当顶点在第一象限时,a<0,-b2a>0,即⎩⎪⎨⎪⎧ a<0,b>0,则有3×4=12(种);(6分)当顶点在第三象限时,a>0,-b2a<0,即⎩⎪⎨⎪⎧a>0,b>0,则有4×3=12(种);(10分) 共计有12+12=24(种).(12分) 10.解 完成这件事有3类方法: 第一类是用0做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步计数原理,这类数的个数有4×4×3=48个.(4分)第二类是用2做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0,只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步计数原理,这类数的个数有3×4×3=36个.(8分)第三类是用4做结尾的比2 000大的4位偶数,其步骤同第二类.(10分)所以所求无重复数字的比 2 000大的四位偶数有4×4×3+3×4×3+3×4×3=120个.(12分)11.解 分3类考虑.第一类:A ,C ,E 种同1种植物,有4种种法,当A ,C ,E 种好后,B ,D ,F 从余下3种植物中选1种,各有3种种法,一共有4×3×3×3=108(种)种法;(4分)第二类:A ,C ,E 种2种植物,有A 24种种法,当A ,C 种同一种植物时,B 有3种种法,D ,F 有2种种法,若C ,E 或E ,A 种同一种植物,种法相同,因此,共有A 24×3×(3×2×2)=432(种)种法;(8分)第三类:A ,C ,E 种3种植物,有A 34种种法,这时B ,D ,F 各有2种种法,共有A 34×23=192(种)种法.由分类计数原理知,共有108+432+192=732(种)种法.(14分)。
2020版高考数学一轮新高考专用精练:第1讲 分类加法计数原理与分步乘法计数原理 Word版含解析 (24)
第1讲 直线的方程一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30°B.60°C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.答案 B4.(2017·高安市期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A.6x -4y -3=0 B.3x -2y -3=0 C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2016·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B6.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0. 答案 x +13y +5=010.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A.4x -3y -3=0 B.3x -4y -3=0 C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.答案 D14.(2017·成都诊断)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B.[-1,0] C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12. 答案 A15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ).则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23. 如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,216.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________.解析 直线OA 的方程为y =x , 代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0。
2020新课标高考艺术生数学复习:分类加法计数原理与分步乘法计数原理含解析
2.分步乘法计数原理、达成数学建模、逻辑推理和数学抽象的素养.
3.两个原理的综合应用、提升数据分析、逻辑推理和数学抽象的素养
预计2020年的高考将两个计数原理和排列组合结合起来考查、一般以选择题、填空题形式出现、难度不大、属中低档题型
原理
第二类、一个村最多修两条路、但是象下面这样的两个排列对应一种修路方法、A-B-C-D、D-C-B-A、要去掉重复的这样、因此共有有 4+12=16(种)、故选C.]
2.A与B是I={1,2,3,4}的子集、若A∩B={1,2}、则称(A、B)为一个理想配集、若将(A、B)与(B、A)看成不同的“理想配集”、则符合此条件的“理想配集”的个数是( )
A.22种B.24种C.25种D.36种
解析:C[由题意知正方形ABCD(边长为3个单位)的周长是12、
抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12、
列举出在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4;共有6种组合、
前三种组合1,5,6;2,4,6;3,4,5;又可以排列出A =6(种)结果、
A.34种B.48种C.96种D.144种
解析:C[根据题意、程序A只能出现在第一步或最后一步、则从第一个位置和最后一个位置选一个位置把A排列、有A =2种结果、又由程序B和C实施时必须相邻、把B和C看做一个元素、同除A外的3个元素排列、注意B和C之间还有一个排列、共有A A =48种结果、
根据分步计数原理知共有2×48=96种结果、故选C.]
3.(20xx·柳州一模)某人设计一项单人游戏、规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处、然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位、如果掷出的点数为i(i=1,2、…6)、则棋子就按逆时针方向行走i个单位、一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )
2020版高考数学新增分大一轮新高考专用精练:第1讲 分类加法计数原理与分步乘法计数原理含解析
第1讲 分类加法计数原理与分步乘法计数原理一、选择题1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个解析 ∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案 C2.某校举行乒乓球赛,采用单淘汰制,要从20名选手中决出冠军,应进行比赛的场数为( )A.18B.19C.20D.21解析 因为每一场比赛都有一名选手被淘汰,即一场比赛对应一个失败者,要决出冠军,就要淘汰19名选手,故应进行19场比赛.答案 B3.(2016·济南质检)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式( )A.24B.14C.10D.9解析 第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式,第二类:选2套连衣裙中的一套服装有2种选法.∴由分类加法计数原理,共有12+2=14(种)选择方式.答案 B4.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为( )A.20B.25C.32D.60解析 依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.答案 C5.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( )A.9B.14C.15D.21解析 当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案 B6.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为( )A.3B.5C.9D.12解析 只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).答案 C7.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每12一小组中取一个,有C=2种,共有2×2×2×2×2=32个.故选A.答案 A8.(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9解析 由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.答案 B二、填空题9.(2017·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答).131313解析 当相同的数字不是1时,有C个;当相同的数字是1时,共有C C个,131313由分类加法计数原理知共有“好数”C+C C=12(个).答案 1210.如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析 把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案 4011.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法(用数字作答).解析 区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案 26012.有六名同学报名参加三个智力竞赛项目(不一定六名同学都能参加),(1)每人恰好参加一项,每项人数不限,则有________种不同的报名方法;(2)每项限报一人,且每人至多参加一项,则有________种不同的报名方法;(3)每项限报一人,但每人参加的项目不限,则有________种不同的报名方法(用数字作答).解析 (1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).答案 (1)729 (2)120 (3)21613.(2017·衡水调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.279解析 0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案 B14.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对解析 与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对.正方体的12条面对角线共有12×8=96(对),且每对均重复计算一次,故共有=48(对).962答案 C15.一个旅游景区的游览线路如图所示,某人从P 点处进,Q点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有________种(用数字作答).解析 根据题意,从点P 处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知共有6×4×2=48种不同游览线路.答案 4816.(2016.广州模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,...,99.3位回文数有90个:101,111,121,...,191,202, (999)则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.解析 (1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合计数原理,知有9×10n种填法.答案 (1)90 (2)9×10n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十计数原理【真题典例】10.1分类加法计数原理与分步乘法计数原理、排列与组合挖命题【考情探究】分析解读 1.分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个事件来完成,两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.排列与组合的综合是高考中的热点.本节内容在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题.此外,还经常与概率、分布列问题相结合,出现在解答题的第(1)问中,难度中等或中等偏上.破考点【考点集训】考点计数原理、排列与组合1.(2017课标Ⅱ,6,5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种答案 D2.将7个座位连成一排,安排4个人就座,恰有两个空座位相邻的不同坐法有()A.240种B.480种C.720种D.960种答案 B3.无偿献血是践行社会主义核心价值观的具体行动,现需要在报名的2名男教师和6名女教师中选择5人参加无偿献血,要求男、女教师都有,则不同的选择方法的种数为.(结果用数字表示)答案504.在一次数学会议中,有五位老师来自A,B,C三所学校,其中A学校有2位,B学校有2位,C学校有1位.现在五位老师站成一排照相,若要求来自同一学校的老师不相邻,则共有种不同的站队方法.答案48炼技法【方法集训】方法1排列问题的常见解法1.(2014辽宁,6,5分)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24答案 D2.(2014重庆,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168答案 B3.在一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案 C方法2组合问题的常见解法4.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有()A.60种B.70种C.75种D.150种答案 C5.(2014安徽,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对答案 C6.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有种.(用数字作答)答案36方法3分组与分配问题的解题技巧7.按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.解析(1)无序不均匀分组问题.先选1本,有种选法;再从余下的5本中选2本,有种选法;最后余下3本全选,有种选法.故共有分配方式=60种.(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配,共有分配方式=360种.(3)无序均匀分组问题.先分三步选,每步选2本,则有种方法,但是这里出现了重复.不妨记六本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共有种情况,而这种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有=15种.(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式·==90种.(5)无序部分均匀分组问题.共有分配方式=15种.(6)有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式·=90种.(7)直接分配问题.甲选1本,有种方法;乙从余下的5本中选1本,有种方法;余下4本留给丙,有种方法.共有分配方式=30种.过专题【五年高考】A组自主命题·北京卷题组1.(2012北京,6,5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6答案 B2.(2013北京,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.答案963.(2011北京,12,5分)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)答案14B组统一命题、省(区、市)卷题组1.(2016四川,4,5分)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72答案 D2.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B3.(2015四川,6,5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个答案 B4.(2018课标Ⅰ,15,5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)答案165.(2017天津,14,5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)答案 1 0806.(2017浙江,16,5分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)答案6607.(2015广东,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案 1 560C组教师专用题组1.(2016课标Ⅲ,12,5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个答案 C2.(2014福建,10,5分)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)答案 A3.(2013四川,8,5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是()A.9B.10C.18D.20答案 C4.(2013山东,10,5分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279答案 B5.(2013福建,5,5分)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10答案 B6.(2013重庆,13,5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是.(用数字作答)答案590【三年模拟】一、选择题(每小题5分,共40分)1.(2018北京东城一模,6)故宫博物院五一期间同时举办“戏曲文化展”“明代御窑瓷器展”“历代青绿山水画展”“赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有()A.6种B.8种C.10种D.12种答案 C2.(2018北京丰台一模,7)某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,则不同的排法有()A.4种B.8种C.12种D.24种答案 B3.(2017北京房山一模,4)某中学语文老师从《红楼梦》《平凡的世界》《红岩》《老人与海》4本书中选出3本,分给三个同学去读,其中《红楼梦》必选,则不同的分配方法共有()A.6种B.12种C.18种D.24种答案 C4.(2017北京朝阳二模,5)现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则不同的分法总数为()A.12B.24C.36D.48答案 D5.(2017北京海淀一模,7)甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,则排法种数为()A.12B.40C.60D.80答案 D6.(2018北京朝阳一模,5)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法的种数为()A.18B.24C.48D.96答案 B7.(2018北京石景山一模,6)现有4种不同的颜色,对如图所示的四个部分进行涂色,要求有公共边界的两块不能用同一种颜色,则不同的涂色方法共有()A.24种B.30种C.36种D.48种答案 D8.(2019届北京一零一中学统考(二),6)某班有甲、乙、丙、丁四名学生参加志愿者服务工作,需将这四名学生分配到A,B,C三个不同的展馆服务,每个展馆至少分配一人.若要求甲不到A馆,则不同的分配方案有()A.36种B.30种C.24种D.20种答案 C二、填空题(每小题5分,共30分)9.(2018北京通州一模,12)2位教师和4名学生站成一排合影,要求2位教师站在中间,学生甲不站在两边,则不同排法的种数为.(结果用数字表示)答案2410.(2018北京西城期末,12)把4件不同的产品A,B,C,D摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有种.(用数字作答)答案811.(2018北京一七一中学期中,13)将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有种.(用数字作答)答案48012.(2017北京石景山一模,13)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法有种.(用数字作答)答案3613.(2017北京东城二模,11)某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B类课程,则不同的选法共有种.(用数字作答)答案1414.(2017北京海淀零模,13)小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有种.答案36。