多重共线性和虚拟变量的应用

合集下载

计量经济学名词解释与简答

计量经济学名词解释与简答

1、完全共线性:对于多元线性回归模型,其基本假设之一是解释变量1x ,2x ,…,k x 是相互独立的,如果存在02211=+++ki k i i x c x c x c ,i=1,2,…,n ,其中c 不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。

2、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时而导致的序列相关。

3、残差项:是指对每个样本点,样本观测值与模型估计值之间的差值。

4、多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

5、无偏性:是指参数估计量的均值(期望)等于模型的参数值。

6、工具变量:是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。

7、结构分析:经济学中所说的结构分析是指对经济现象中变量之间关系的研究。

8、虚假回归(伪回归):如果两列时间序列数据表现出一致的变化趋势(非平稳),即它们之间没有任何经济关系,但进行回归也会表现出较高的可决系数。

9、异方差性:即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差。

10、计量经济学:它是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科。

11、计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

12、截面数据:是一批发生在同一时间截面上的数据。

13、回归分析:是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论,其目的在于通过后者的已知和设定值,去估计和(或)预测前者的(总体)均值。

14、随机误差项:观察值围绕它的期望值的离差就是随机误差项。

15、最佳线性无偏估计量(高斯-马尔可夫定理):普通最小二乘估计量具有线性性、无偏性和有效性等优良性质,是最佳线性无偏估计量,这就是著名的高斯-马尔可夫定理。

虚拟变量回归

虚拟变量回归

数据收集
收集不同市场细分群体的基本信息和 产品需求数据,如年龄、性别、收入、 消费习惯等。
变量设置
将市场细分变量转换为虚拟变量,并 引入到回归模型中。
结果分析
分析虚拟变量的系数和显著性,解释 其对产品需求的影响,为市场定位提 供依据。
案例三:教育程度与收入水平的关系研究
目的
研究教育程度对收入水平的影响,以及 不同教育程度对收入水平的差异。
虚拟变量可能依赖于某些自变量,需 要谨慎处理以避免多重共线性问题。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
虚拟变量回归的模型构 建
线性回归模型
线性回归模型是最常用的回归分析方法之一,用 于探索自变量与因变量之间的线性关系。
在线性回归模型中,虚拟变量可以作为自变量引 入,以解释和预测因变量的变化。
变量设置
将教育程度转换为虚拟变量,并引入 到回归模型中。
数据收集
收集受访者的教育程度和收入水平数 据。
结果分析
分析虚拟变量的系数和显著性,解释 其对收入水平的影响,为职业规划和 教育投资提供参考。
案例四:健康状况与生活习惯的关系研究
目的
数据收集
研究生活习惯对健康状况的影响,以及不 同生活习惯对健康状况的差异。
虚拟变量回归的应用场景
1 2
社会科学研究
在社会科学研究中,经常需要研究分类变量对连 续变量的影响。例如,研究不同教育程度或不同 职业对收入的影响。
生物统计学
在生物统计学中,虚拟变量回归可用于研究基因 型、物种或地理区域等因素对连续变量的影响。
3
市场分析
在市场分析中,虚拟变量回归可用于研究不同产 品类别、品牌或市场细分对销售或其他连续变量 的影响。

什么是多重共线性如何进行多重共线性的检验

什么是多重共线性如何进行多重共线性的检验

什么是多重共线性如何进行多重共线性的检验多重共线性是指在统计模型中,独立变量之间存在高度相关性或者线性依赖关系,从而给模型的解释和结果带来不确定性。

在回归分析中,多重共线性可能导致系数估计不准确、标准误差过大、模型的解释变得复杂等问题。

因此,对于多重共线性的检验和处理是非常重要的。

一、多重共线性的检验多重共线性的检验可以通过以下几种方式进行:1. 相关系数矩阵:可以通过计算独立变量之间的相关系数,判断它们之间的关系强度。

当相关系数超过0.8或-0.8时,可以视为存在高度相关性,即可能存在多重共线性问题。

2. 方差扩大因子(VIF):VIF是用来检验自变量之间是否存在共线性的指标。

计算每一个自变量的VIF值,当VIF值大于10或者更高时,可以视为存在多重共线性。

3. 条件数(Condition index):条件数也是一种用来检验多重共线性的指标。

它度量了回归矩阵的奇异性或者相对不稳定性。

当条件数超过30时,可以视为存在多重共线性。

4. 特征值(Eigenvalues):通过计算特征值,可以判断回归矩阵的奇异性。

如果存在特征值接近于零的情况,可能存在多重共线性。

以上是常用的多重共线性检验方法,可以根据实际情况选择合适的方法进行检验。

二、多重共线性的处理在检测到存在多重共线性问题后,可以采取以下几种方式进行处理:1. 去除相关性强的变量:在存在高度相关变量的情况下,可以选择去除其中一个或多个相关性较强的变量。

2. 聚合相关变量:将相关性强的变量进行加权平均,得到一个新的变量来替代原来的变量。

3. 主成分分析(PCA):主成分分析是一种降维技术,可以将相关性强的多个变量合并成为一个或多个无关的主成分。

4. 岭回归(Ridge Regression):岭回归是一种缓解多重共线性的方法,通过加入一个正则化项,来使得共线性变量的系数估计更加稳定。

5. Lasso回归(Lasso Regression):Lasso回归也是一种缓解多重共线性的方法,通过对系数进行稀疏化,来选择重要的变量。

多重共线性与虚拟变量

多重共线性与虚拟变量

多重共线性以下是美国1971-1986年间的年数据。

其中,y为售出新客车的数量(千辆);x1为新车,消费者价格指数,1967=100;x2为所有物品所有居民的消费者价格指数,1967=100;x3为个人可支配收入(PDI,10亿美元);x4为利率;x5为城市就业劳动力(千人)。

考虑下面的客车需求函数:Lny=b0+b1lnx1+b2lnx2+b3lnx3+b4lnx4+b5lnx5+u(1)用OLS法估计样本回归方程。

(2)如果模型存在多重共线性,试估计各辅助回归方程,并找出哪些变量是高度共线性的。

(3)如果存在严重的共线性,你会剔除哪一个变量,为什么?(4)在剔除一个或多个解释变量后,最终的客车需求函数是什么?这个模型在哪些方面好于包括所有解释变量的原始模型?(5)你认为还有哪些变量可以更好地解释美国的汽车需求?美国人个可支配收入与储蓄模型(EP129.wf1)问题描述:研究1970~1995年间美国个人可支配收入与个人储蓄的关系。

在1982年,美国遭受到和平时期最严重的经济衰退,当年的城市失业率高达9.7%,是自1948年以来失业率最高的一年。

这种事件会扰乱收入和储蓄之间的关系,现考察这种情况是否会发生。

美国个人可支配收入与个人储蓄数据思考:实际上是对模型稳定性的检验,除了用CHOW 检验,也可用虚拟变量模型进行判断。

1.构造虚拟变量{110 1982 1982D =年以后年及以前2.建立虚拟变量模型在命令窗口输入LS saving c d1 income income*d1,执行后会发现income*d1的系数不显著,可以将其剔除,再次进行LS saving c d1 income ,则发现d1的系数是显著的,因此1982年的事件对美国个人可支配收入与个人储蓄的关系有显著的影响,原模型不具有稳定性。

也可以做分段线性回归,在命令窗口输入LS saving c income (income -2374.3)*d1,执行后也会发现(income -2374.3)*d1的系数显著不为零,可以得到同样的结论。

计量经济学(共33张PPT)

计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在

虚拟变量(dummy variable)

虚拟变量(dummy variable)
19
0
0
1
2000:4
2.7280
20
0
0
0
数据来源:《中国统计年鉴》1998-2001
2.斜率变化
以上只考虑定性变量影响截距,未考虑影响斜率,即回归系数的变化。当需要考虑时,可建立如下模型:
yt=0+1xt+2D+3xtD+ut,
其中xt为定量变量;D为定性变量。当D= 0或1时,上述模型可表达为,
若不采用虚拟变量,得回归结果如下,
GDP = 1.5427 + 0.0405 T
(11.0) (3.5) R2= 0.3991, DW = 2.6,s.e.=0.3
定义
1(1季度)1(2季度)1(3季度)
D1=D2=D3=
0(2, 3,4季度)0(1,3, 4季度)0(1,2, 4季度)
第4季度为基础类别。
15
0
0
1982
7.713
384
16
0
0
1983
8.601
34
1
34
1966
1.271
17
0
0
1984
12.010
35
1
35
1967
1.122
18
0
0
以时间T=time为解释变量,进出口贸易总额用trade表示,估计结果如下:
trade= 0.37 + 0.066time- 33.96D+ 1.20timeD
虚拟变量(dummy variable)
在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。这些因素也应该包括在模型中。

python最小二乘虚拟变量法

python最小二乘虚拟变量法

python最小二乘虚拟变量法最小二乘法(Least Squares Method)是一种常用的回归分析方法,用于估计自变量和因变量之间的线性关系。

虚拟变量法(Dummy Variable Method)是最小二乘法的一种应用,它用于处理离散型特征变量(如性别、国籍等)的影响。

虚拟变量是指在回归模型中引入的二元变量,用于表示某一分类特征的不同取值。

例如,在研究房屋价格时,我们可能会考虑到房屋的位置,而位置通常是以城市、乡村等离散的分类特征来表示的。

在这种情况下,我们可以引入虚拟变量来表示城市和乡村,然后将其作为自变量来探究位置对房屋价格的影响。

在使用虚拟变量法时,首先需要将一个分类特征变量拆分成多个二元虚拟变量。

例如,在一个二分类变量(如性别)中,我们可以引入一个虚拟变量,以0表示男性,以1表示女性。

同样,对于一个多分类变量(如城市、乡村),我们可以引入多个虚拟变量,以0表示某个特定的分类,以1表示其他分类。

在回归模型中,引入虚拟变量后,我们需要将其作为自变量来拟合模型。

通常,当分类变量有m个不同的取值时,我们需要引入m-1个虚拟变量,以避免“虚拟变量陷阱”(Dummy Variable Trap),即变量之间存在多重共线性。

多重共线性会导致模型的预测能力较差,同时使得解释变量的系数解释不明确。

使用最小二乘法估计回归模型时,我们通过最小化残差平方和来寻找最优解。

虚拟变量法的目标是通过引入虚拟变量来改进模型的拟合效果。

相比于只使用连续型自变量进行回归分析,引入离散型变量的虚拟变量能够更准确地描述原始数据的特征。

虚拟变量法除了能够增加模型的解释力和预测能力外,还能够帮助解释不同分类变量对因变量的影响。

通过在模型中引入虚拟变量,并对其系数进行解释,我们可以得知在不同分类中因变量的均值差异,从而了解不同变量对结果的影响程度。

总结来说,虚拟变量法是一种常见的最小二乘法的应用。

它适用于处理离散型变量对回归模型的影响,通过引入虚拟变量来更准确地描述数据的特征。

虚拟变量(dummy variable)

虚拟变量(dummy variable)
D=
1(1978 - 1984)
中国进出口贸易总额数据(1950-1984)(单位:百亿元人民币)

trade
T
D
T*D

trade
T
D
T*D
1950
0.415
1
0
0
1968
1.085
19
0
0
1951
0.595
2
0
0
1969
1.069
20
0
0
1952
0.646
3
0
0
1970
1.129
21
0
0
1953
1(第2季度)
D2=
0(其他季度)
1(第3季度)
D3=
0(其他季度)
1(第4季度)
D4=
0(其他季度)
1(1998:1~2002:4)
DT=
0(1990:1~1997:4)
得估计结果如下:
GDPt= 1.1573+0.0668t+0.0775D2+0.2098D3+0.2349D4+1.8338DT-0.0654DTt
(50.8)(64.6) (3.7)(9.9) (11.0)(19.9) (-28.0)
R2=0.99, DW=0.9,s.e.=0.05, F=1198.4,T=52,t0.05 (52-7)= 2.01
对于1990:1~1997:4
GDPt= 1.1573+0.0668t+0.0775D2+0.2098D3+0.2349D4
首先看天津市粮食市场小麦批发价格的变化情况(图1)。1995年初,天津市粮食市场的小麦批发价格首先放开。在经历5个月的上扬之后,进入平稳波动期。从1996年8月份开始小麦批发价格一路走低。至2002年12月份,小麦批发价格降至是1160元/吨。

计量经济学题库(超完整版)及答案

计量经济学题库(超完整版)及答案

计量经济学题库(超完整版)及答案四、简答题(每⼩题5分)1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。

2.计量经济模型有哪些应⽤?3.简述建⽴与应⽤计量经济模型的主要步骤。

4.对计量经济模型的检验应从⼏个⽅⾯⼊⼿?5.计量经济学应⽤的数据是怎样进⾏分类的? 6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。

9.试述回归分析与相关分析的联系和区别。

10.在满⾜古典假定条件下,⼀元线性回归模型的普通最⼩⼆乘估计量有哪些统计性质? 11.简述BLUE 的含义。

12.对于多元线性回归模型,为什么在进⾏了总体显著性F 检验之后,还要对每个回归系数进⾏是否为0的t 检验?13.给定⼆元回归模型:01122t t t t y b b x b x u =+++,请叙述模型的古典假定。

14.在多元线性回归分析中,为什么⽤修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数2R 及其作⽤。

16.常见的⾮线性回归模型有⼏种情况?17.观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(1018. 观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210③ t t t u x b b y +=)/(10 ④t b t t u x b y +-+=)1(11019.什么是异⽅差性?试举例说明经济现象中的异⽅差性。

20.产⽣异⽅差性的原因及异⽅差性对模型的OLS 估计有何影响。

虚拟变量的引入

虚拟变量的引入
ቤተ መጻሕፍቲ ባይዱ
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
虚拟变量的创建方法
手动创建
确定变量范围
根据研究需求,确定需要引入的虚拟变量及其取值范 围。
创建变量矩阵
根据确定的取值范围,创建相应的变量矩阵,用于表 示各个虚拟变量。
赋值编码
为矩阵中的各个元素进行赋值编码,以表示不同的虚 拟变量取值。
2. 交互作用
虚拟变量可以用于表示两个或多个分类变量之间的交互作用。例如,在回归分析中,可以引入交互项来研究不同类别 之间的相互作用对因变量的影响。
3. 多因素分析
虚拟变量在多因素分析中非常有用,例如在回归分析、方差分析、聚类分析等中。通过引入虚拟变量, 可以研究不同类别之间的差异和交互作用。
虚拟变量的应用场景
虚拟变量的引入会增加模型的复杂度,使得模型更难以解释和理解。
多重共线性问题
如果虚拟变量之间存在多重共线性关系,会导致回归系数不稳定, 影响模型的准确性。
过度拟合问题
过度引入虚拟变量可能导致模型过度拟合,使得模型在训练数据上 表现良好,但在实际应用中表现较差。
如何选择合适的虚拟变量
考虑变量的实际意义 在选择虚拟变量时,应考虑变量 的实际意义,确保选择的变量能 够反映研究问题的实际情况。
1. 市场调查
在市场调查中,常常需要了解不同人群的特征和行为。虚 拟变量可以用于表示不同的群体或类别,例如性别、年龄 段、职业等。
2. 社会科学研究
在社会科学研究中,常常需要研究不同群体之间的差异和 交互作用。虚拟变量可以用于表示不同的社会群体或状态, 例如种族、宗教、教育程度等。
3. 生物统计学

计量经济学第九章虚拟变量

计量经济学第九章虚拟变量

虚拟变量的类型
季节虚拟变量
用于反映季节变动对经济活动的影响。
政策虚拟变量
用于反映某项政策实施前后对经济活 动的不同影响。
地区虚拟变量
用于反映不同地区之间经济活动的差 异。
行业虚拟变量
用于反映不同行业之间经济活动的差 异。
虚拟变量的引入原因
解决遗漏变量问题
01
当某些重要变量无法直接观测或获取时,可以通过引入虚拟变
在模型中引入虚拟变量与解释变量的交互项,通过 改变斜率的值来反映不同组别之间的差异。
斜率变动模型的应用
适用于研究不同组别之间在某一解释变量上 的边际效应差异,如不同教育水平对收入的 影响等。
含有多个虚拟变量的模型
含有多个虚拟变量的模型的定义
当模型中引入多个虚拟变量时,称为含有多个虚拟变量的模型。
含有多个虚拟变量的模型的设定
VS
使用计算变量功能
可以使用SPSS的计算变量功能手动创建虚 拟变量。在数据视图中,点击“转换”菜 单下的“计算变量”选项。在弹出的对话 框中,输入虚拟变量的名称和标签,并在 计算表达式中输入相应的逻辑表达式。例 如,对于分类变量`industry`,可以使用如 下表达式生成虚拟变量
SPSS中实现虚拟变量的方法
截距变动模型的设

在模型中引入虚拟变量,通过改 变截距项的值来反映不同组别之 间的差异。
截距变动模型的应

适用于研究不同组别之间在某一 解释变量上的平均差异,如不同 性别、不同地区等。
斜率变动模型
斜率变动模型的定义
当虚拟变量不仅影响模型的截距项,还影响 解释变量的斜率时,称为斜率变动模型。
斜率变动模型的设定
通过比较政策虚拟变量的系数,可以分析 出政策变动对市场需求的影响程度。

计量经济学重点内容

计量经济学重点内容

第一章导论计量经济学定义:计量经济学(Econometrics)是一门应用数学、统计学和经济理论来分析、估计和检验经济现象与理论的科学。

通过使用统计数据和经济模型,计量经济学试图量化经济关系,以更好地理解经济变量之间的相互作用。

研究的问题(相关关系):计量经济学的目的是研究经济变量之间的关系,例如:1. 消费与收入的关系。

2. 教育与工资的关系。

3. 利率与投资的关系。

第二章 OLS (普通最小二乘法):OLS 是一种用于估计线性回归模型中未知参数的方法。

它通过最小化误差平方和来找到回归线。

在一元线性回归中,我们通常使用普通最小二乘法(OLS)来估计模型参数。

对于模型 Y = α + βX + ε,我们可以使用以下公式来计算α和β:β= Σ( (X - mean(X)) (Y - mean(Y)) ) / Σ( (X - mean(X))^2 ) α̂ = mean(Y) - β̂ * mean(X)这里,mea n(X) 是 X 变量的平均值(即ΣX/n),mean(Y) 是 Y 变量的平均值(即ΣY/n)。

在这些公式中,mean 表示求平均值。

Σ 表示对所有数据点求和,n 是样本大小。

这里α_hat 是截距的估计值,β_hat 是斜率的估计值。

结论及推论:1. 在高斯马尔可夫假设下,OLS 估计量是最佳线性无偏估计量(BLUE)。

2. 当误差项的方差是常数时,OLS 估计量是有效的。

3. 如果模型是正确规范的,并且误差项是独立且同分布的,那么 OLS 估计量是一致的。

4. 如果误差项与解释变量相关,或者存在遗漏变量,那么 OLS 估计量可能是有偏的。

5. OLS 提供了估计的标准误差、t 统计量和其他统计量,这些可以用于进行假设检验和构建置信区间。

第三章一元回归:(1)总函、样函:总函数和样本函数是线性回归模型的两种表现形式。

总函数(总体函数)表示整体样本的关系,一般形式为Y = β0 + β1X + ε。

解决多重共线性的方法

解决多重共线性的方法

解决多重共线性的方法多重共线性是回归分析中常见的问题之一,指的是自变量之间存在高度相关关系,导致回归分析结果不准确、稳定性差。

解决多重共线性问题的主要方法有以下几种:1. 删除相关性较高的自变量:检查自变量之间的相关性,当相关系数大于0.7或0.8时,考虑删除其中一个自变量。

通常选择与因变量相关性更强的自变量作为模型的预测变量。

2. 增加样本量:多重共线性问题的一个原因是样本量较小,数据集中存在较少的观测点。

增加样本量可以减少误差,增强回归模型的稳定性。

3. 主成分分析(Principal Component Analysis, PCA):PCA是一种常用的降维方法,可以将高维的自变量空间转化为低维空间,去除自变量之间的相关性。

首先利用相关系数矩阵进行特征值分解,然后根据特征值大小选取主成分,最后通过线性变换将原始自变量转化为主成分。

4. 岭回归(Ridge Regression):岭回归是一种正则化方法,通过增加一个正则项(L2范数)来限制模型中系数的大小,从而减小共线性的影响。

岭回归可以在一定程度上缓解多重共线性问题,但会引入一定的偏差。

5. 奇异值分解(Singular Value Decomposition, SVD):奇异值分解是一种常用的矩阵分解方法,可以将自变量矩阵分解为三个矩阵的乘积,其中一个矩阵表示主成分。

通过去除奇异值较小的主成分,可以减少共线性问题。

6. 距离相关系数(Variance Inflation Factor, VIF):VIF用于度量自变量之间的相关性程度,计算每个自变量的VIF值,若VIF值大于10,则认为存在严重的多重共线性问题。

通过删除VIF值较高的自变量,可以解决多重共线性。

除了以上方法,还需注意以下问题:1. 尽量选择“经济学意义上的变量”作为自变量,避免冗余变量的引入。

2. 如果共线性问题严重,即使通过降维方法或者删除变量,仍然无法解决,可以考虑选择其他回归模型,如岭回归、Lasso回归等,这些模型在设计时已经考虑到了多重共线性问题。

虚拟变量陷阱名词解释计量经济学

虚拟变量陷阱名词解释计量经济学

虚拟变量陷阱名词解释计量经济学1.引言概述部分主要介绍虚拟变量陷阱的基本概念和背景信息。

以下是对概述部分内容的一种可能的编写方式:1.1 概述在统计学和经济学等领域中,虚拟变量是一种常用的数据处理技术,用于将非连续的定性变量转化为对应的哑变量或二进制变量。

虚拟变量的引入有助于通过回归分析研究变量之间的关系,并且常用于解释定性因素对于结果变量的影响程度。

然而,虚拟变量的应用也存在着一个潜在的问题,即虚拟变量陷阱。

虚拟变量陷阱(Dummy Variable Trap)指的是在回归分析中,由于自变量之间存在完全多重共线性,导致回归系数估计出现扭曲、不稳定甚至无意义的现象。

具体来说,虚拟变量陷阱会使得回归模型的解释变得困难,而且可能会对模型的预测能力产生负面影响。

通常情况下,虚拟变量陷阱会在引入全部虚拟变量作为自变量时出现。

这是因为当我们引入一个包含K个类别的定性变量时,一般会通过引入K-1个虚拟变量来表征不同的类别,其中一个类别作为基准类别。

然而,如果我们同时引入了全部K个虚拟变量,就会引入完全多重共线性,从而导致虚拟变量陷阱的发生。

在本文中,我们将详细探讨虚拟变量陷阱的概念、影响和避免方法。

通过了解虚拟变量陷阱的本质和原因,我们可以更准确地应用虚拟变量,并确保回归分析的结果可信、有效。

接下来的章节将从定义和作用开始,逐步展开对虚拟变量陷阱的解释和分析。

然后,我们将探讨虚拟变量陷阱可能产生的影响,并提供一些避免虚拟变量陷阱的实用经验和方法。

通过深入研究和论证,我们旨在为读者提供一个全面且实用的虚拟变量陷阱指南。

【1.2 文章结构】本文将分为以下几个部分来讨论虚拟变量陷阱,以帮助读者更好地理解和避免这个常见的统计分析问题。

首先,在引言部分,我们将概述文章的主题和目的。

然后,我们将介绍文章的整体结构,以指导读者对整篇文章的理解和阅读方式。

接下来,我们将进入正文部分。

首先,我们会对虚拟变量进行定义和解释其作用。

计量经济学简答题及答案

计量经济学简答题及答案

简答:1、时间序列数据和横截面数据有何不同?时间序列数据是一批按照时间先后排列的统计数据。

截面数据是一批发生在同一时间截面上的调查数据。

这两类数据都是反映经济规律的经济现象的数量信息,不同点:时间序列数据是含义、口径相同的同一指标按时间先后排列的统计数据列;而横截面数据是一批发生在同一时间截面上不同统计单元的相同统计指标组成的数据列。

2、建立计量经济模型赖以成功的三要素。

P16(课本)成功的要素有三:理论、方法和数据。

理论:即经济理论,所研究的经济现象的行为理论,是计量经济学研究的基础;方法:主要包括模型方法和计算方法,是计量经济学研究的工具与手段,是计量经济学不同于其他经济学分支科学的主要特征;数据:反映研究对象的活动水平、相互间以及外部环境的数据,更广义讲是信息,是计量经济学研究的原料。

三者缺一不可。

3、什么是相关关系、因果关系;相关关系与因果关系的区别与联系。

相关关系是指两个以上的变量的样本观测值序列之间表现出来的随机数学关系,用相关系数来衡量。

因果关系是指两个或两个以上变量在行为机制上的依赖性,作为结果的变量是由作为原因的变量所决定的,原因变量的变化引起结果变量的变化。

因果关系有单向因果关系和互为因果关系之分。

具有因果关系的变量之间一定具有数学上的相关关系。

而具有相关关系的变量之间并不一定具有因果关系。

4、回归分析与相关分析的区别与关系。

P23-P24(课本)相关分析与回归分析既有联系又有区别。

首先,两者都是研究非确定性变量间的统计依赖关系,并能测度线性依赖程度的大小。

其次,两者间又有明显的区别。

相关分析仅仅是从统计数据上测度变量间的相关程度,而无需考察两者间是否有因果关系,因此,变量的地位在相关分析中饰对称的,而且都是随机变量;回归分析则更关注具有统计相关关系的变量间的因果关系分析,变量的地位是不对称的,有解释变量与被解释变量之分,而且解释变量也往往被假设为非随机变量。

再次,相关分析只关注变量间的具体依赖关系,因此可以进一步通过解释变量的变化来估计或预测被解释变量的变化,达到深入分析变量间依存关系,掌握其运动规律的目的。

第四章多重共线性和虚拟变量的应用

第四章多重共线性和虚拟变量的应用
16
多重共线性的修正
三、补充新数据。 ▪ 由于多重共线性是一样本特征,故有可能在关于
同样变量的另一样本中共线性没有第一个样本那 么严重。Christ(1966)认为:解释变量之间的相 关程度与样本容量成反比,即样本容量越小,相 关程度越高;样本容量越大,相关程度越小。因 此,收集更多观测值,增加样本容量,就可以避 免或减轻多重共线性的危害。
(2)删除某个变量可能会导致模型设定误差(specification error)。所谓模型设定误差,指的是在建立回归模型的 过程中,因为错误设定模型结构而产生的误差。错误的删 除解释变量将会导致最小二乘估计值是有偏的。
14
二、改变解释变量的形式。
▪ 1、差分法 对于时间序列数据而言,若原始变量
存在严重的多重共线性,则可以考虑对变量取差
13
多重共线性的修正
一、删除不必要的变量
▪ 如果在产生多重共线性的因素中有相对不重要的变量,则 可试着将其删除,这是解决多重共线性最简单的方法,但 删除变量也可能会导致新问题的产生:
(1)被删除变量对因变量的影响将被其它解释变量和随机 误差项所吸收,这可能一方面解决了一部分变量的多重共 线性问题,但另一方面却又同时增强了另一部分变量的多 重共线性问题,而且,还可能使随机误差项的自相关程度 增强。
分形式,可在一定程度上降低多重共线性的程度。
例如对于模型
Yt= 0+1X1t+ 2X2,t+u可t 把变量
变换为差分形式: Yt=0+1X1t+ 2X2t+ut
▪ 2、指数增长率方法 例如研究三种指数 p1、p2、p3



关系时,可用如下模型:p1t=1+ 2 p 2t+ 3 p 3t+vt

计量经济学4.3多重共线性

计量经济学4.3多重共线性
数据预处理
对数据进行清洗,处理缺失值和异常 值,进行描述性统计分析和可视化, 以初步了解数据分布和特征。
模型构建与求解过程
变量选择
模型设定
模型求解
根据研究目的和理论基础,选 择与被解释变量(贷款违约风 险)相关的解释变量(如年龄 、收入、负债比等),并控制 其他可能影响结果的变量(如 性别、教育程度等)。
诊断工具
相关系数矩阵
通过观察解释变量之间的相关系数,可以初步判断是否存在多重 共线性。当相关系数较高时,可能存在多重共线性问题。
散点图与回归分析
通过绘制散点图并进行回归分析,可以直观地观察解释变量之间的 线性关系,从而判断是否存在多重共线性。
方差分解与主成分分析
利用方差分解和主成分分析方法,可以诊断多重共线性的来源和影 响程度。
采用多元线性回归模型,以贷 款违约风险为被解释变量,以 上述解释变量为自变量,构建 计量经济学模型。
运用最小二乘法(OLS)对模型 进行求解,得到各解释变量的系 数估计值、标准误、t统计量和p 值等。
结果展示与解读
结果展示
将模型求解结果以表格形式展示,包括各解释变量的系数估计值、标准误、t统计量、p值和置信区间等。
检验方法
方差膨胀因子(VIF)检验
通过计算解释变量的方差膨胀因子,判断是否存在多重共线性。当VIF值远大于1时,表明存在严 重的多重共线性。
条件指数(CI)检验
利用条件指数的大小来判断多重共线性的程度。条件指数越大,多重共线性问题越严重。
特征根与条件数检验
通过计算特征根和条件数来判断多重共线性的存在。当特征根接近于0或条件数较大时,表明存 在多重共线性。
案例分析
案例一
通过收集某地区房价、人口、收入等变量的数据,建立计量经济学模型进行实证分析。在模型检验过 程中,发现房价与人口、收入之间存在较高的相关系数,且VIF值较大,表明存在多重共线性问题。 经过进一步诊断和处理,最终得到合理的模型结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 2 2 y x x x x y x y x x y x x 0 i 1i 2i 1i 2i i 2i i 2i 2i i 2i 2i ˆ 1 x1i 2 x2i 2 ( x1i x2i )2 2 ( x 2 2 i ) 2 2 ( x 2 2 i ) 2 0
3
为对上述两概念加以区别,我们以一组解释变量 X1、X2、...Xn 为例 如果存在一组不完全为零的常数 1、 2、 ... n 满足1X1+ 2X2+...+ nXn=0 ,即任一变量都可以由其它变 量的线性组合推出,则这组变量满足完全多重共线性。 若变量组 X1、X2、...Xn , 满足如下关系式 1X1+ 2X2+...+ nXn+u=0 ,其中u表示随机误差项,即 某一变量不仅取决于其它变量的线性组合,也取决于随机 误差项,此时变量组之间存在非严格但近似的线性关系, 解释变量之间高度相关,也即变量组存在近似多重共线性 关系。

在实际金融数据中,完全多重共线性只是一种极端情况, 各种解释变量之间存在的往往是近似多重共线性,因此 通常所说多重共线性造成的后果是指近似多重共线性造 成的后果,具体而言,它将造成如下的后果: (1)回归方程参数估计值将变得不精确,因为 较大的方差 将会导致置信区间变宽。 (2)由于参数估计值的标准差变大,t值将缩小,使得t检验 有可能得出错误的结论 。 (3)将无法区分单个变量对被解释变量的影响作用。
v 2 x2i 2
ˆ 的方差也是无限大的。因此,当存在完 同理, 2 全多重共线性时,我们将不能求得参数估计值, 参数估计值的方差无限大。 当存在近似多重共线性时,尽管可以求得参数估 计值,但它们是不稳定的,同时参数估计值的方 差将变大,变大的程度取决于多重共线性的严重 程度。
7
9
检验多重共线性问题是否严重
若回归模型的 R 2 值高(如 R 2 >0.8),或F检验值 显著,但单个解释变量系数估计值却不显著;或 从金融理论知某个解释变量对因变量有重要影响, 但其估计值却不显著,则可以认为存在严重的多 重共线性问题。 若两个解释变量之间的相关系数高,比如说大于 0.8,则可以认为存在严重的多重共线性。
Ri 2 /(k 1) Fi= (1 Ri 2 ) /(n k)
2
服从自由度为k-1与n-k的F分布
其中 Ri (i=1,2,…k)为第i个解释变量 Xi 关于其 余解释变量的辅助回归的拟和优度,k为解释变 量的个数,n代表样本容量。
11
检验多重共线性的表现形式
当确定多重共线性是由哪些主要变量引起后,若要找出与 主要变量有共线性的解释变量,即确定多重共线性的表现 Xj 偏相关系数 形式,可采用偏相关系数法。解释变量 X与 i 即是在其它的解释变量固定的情况下它们之间的相关系数。 偏相关系数法构造的检验统计量定义如下: ,服从自由度为n-k-1的t分布
5
多重共线性的后果
多重共线性不会改变最小二乘估计的无偏性,但在解释变 量之间存在严重的多重共线性而被忽略时,会对模型的估 计、检验与预测产生严重的不良后果。以某一离差形式 (即 xt Xt X )表示的二元线性回归模型 为例 yi 1 x1i 2 x2i vi
若存在完全多重共线性,假设存在关系 x1i x2i 常数 0 。则 1的估计值
Байду номын сангаас
8
多重共线性的检验
如前所述,多重共线性普遍存在于金融、经济数据中,因 此对多重共线性的检验并不是要确定其是否存在,而是要 确定多重共线性的程度。 由于多重共线性是对被假定为非随机变量的解释变量的情 况而言的,所以它是一种样本而非总体特征,这决定了我 们只能以某些经验法则(rules of thumb)来检验模型的 多重共线性。 对多重共线性的检验主要包括以下内容: (1)检验多重共线性问题是否严重 (2)多重共线性的存在范围,即确定多重共线性 是由哪些主要变量引起的。 (3)多重共线性的表现形式,即找出与主要变量 有共线性的解释变量。
第四章 多重共线性和 虚拟变量的应用
1
本章要点
多重共线性的含义 多重共线性产生的原因 多重共线性的后果 判断多重共线性的方法及其修正方法 虚拟变量的设置原则 虚拟变量模型的应用 邹氏检验的做法及缺陷 虚拟变量法检验结构稳定性的优点
2
多重共线性的概念
多重共线性(multicollinearity)一词最早由 挪威经济学家弗瑞希(R.Frisch)于1934年提出。 其原义是指回归模型中的一些或全部解释变量中 存在的一种完全(perfect)或准确(exact)的线性 关系。而现在所说的多重共线性,除指上述提到 的完全多重共线性(perfect multicollinearity ), 也包括近似多重共线性(near multicollinearity)。
10
判断多重共线性的存在范围
要确定多重共线性是由哪些主要变量引起的,可 以采用辅助回归法(auxiliary regression method)。所谓辅助回归是指某一解释变量对其 余解释变量的回归,区别于因变量对所有解释变 量回归的主回归(main regression)。 辅助回归法构造的检验统计量定义如下:
ˆ 也是无法确定的,即不能求得参数估计值。 同理 2
6
而对于参数估计值的方差,有
2 2 x v 2i ˆ) var( 1 2 2 2 2 2 2 2 2 2 x1i x2i ( x1i x2i ) ( x 2 i ) ( x 2 i )
4
多重共线性产生的原因
多重共线性问题在金融数据中是普遍存在的,不仅存在于 时间序列数据中,也存在于横截面数据中。具体而言,多 重共线性产生的原因主要有以下几点: (1)数据收集及计算方法。 (2)模型或从中取样的总体受到限制。 (3)模型设定偏误。 此外,在观测值个数较少,以至于小于解释变量个数时, 也会产生多重共线性;时间序列数据中,若同时使用解释 变量的当期值和滞后值,由于当期值和滞后值之间往往高 度相关,也容易产生多重共线性。
相关文档
最新文档