全等三角形与勾股定理练习题(一)

合集下载

八下数学勾股定理与全等三角形综合大题

八下数学勾股定理与全等三角形综合大题

八下数学| 勾股定理与全等三角形综合大题【一】已知,如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,过D作DE∥AC交AB于E.(1)求证:AE=DE;【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠BAC,∴∠CAD=∠EAD.∴∠EAD=∠ADE.∴AE=DE;(2)如果AC=3,,求AE的长.【解答】解:过点D作DF⊥AB于F.∵∠C=90°,AC=3,AC=2√3,在Rt△ACD中,由勾股定理得AC2+DC2=AD2.∴=√3.∵AD平分∠BAC,∴DF=DC=√3.又∵AD=AD,∠C=∠AFD=90°,∴Rt△DAC≌Rt△DAF(HL).∴AF=AC=3,∴Rt△DEF中,由勾股定理得EF2+DF2=DE2.设AE=x,则DE=x,EF=3﹣x,∴(3-x)²+(√3)²=x²,∴x=2.∴AE=2.【二】如图,在Rt△ACB中,∠ACB=90°,AB=10,AC=6.AD平分∠CAB交BC于点D.(1)求BC的长;【解答】解:在Rt△ACB中,∠ACB=90°,由勾股定理得:=∠AB²-BC²∠10²-6²=.(2)求CD的长.【解答】解:过点D作DE⊥AB于点E,如图.∴∠DEA=90°=∠C(垂直定义).∵AD平分∠CAB(已知),∴∠1=∠2(角平分线定义).在△AED和△ACD中,∠DEA=∠C,∠2=∠1,AD=AD△AED≌△ACD(AAS).∴AE=AC=6,DE=DC(全等三角形的对应边相等).∴BE=AB﹣AE=4.设CD=x,则DE=x,DB=8﹣x.在Rt△DEB中,∠DEB=90°,由勾股定理,得(8﹣x)2=x2+42.解得x=3.即CD=3.【三】如图,在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.【解答】解:∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2-BC2=√102-62=8;(2)求斜边AB上的高.【解答】解:设边AB上的高为h则S△ABC=1/2×BC=1/2AB•h,∴1/2×6×8=1/2×10×h,∴h=24/5,答:斜边AB上的高为24/5;(3)①当点P在BC上时,PC的长为16﹣2t .(用含t的代数式表示)【解答】解:当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②若点P在∠BAC的角平分线上,则t的值为20/3 .【解答】解:当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,AP=AP,PD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20/3.(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC =8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=24/5,在Rt△BCH中,由勾股定理得:BH=√BC2-CH2=√62-(24/5)2=18/5=3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=1/2×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=1/2×AC=1/2×8=4,在Rt△BPQ中,由勾股定理得:BP=√BQ2+PQ2=√32-42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1。

在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A 。

2 B.4 C 。

6 D 。

82.有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3。

直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6。

飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7。

如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度。

8。

一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。

求CD 的长。

第5题图 第7题图 第8题图9。

如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。

他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第9题图5m 13m 第11题勾股定理的逆定理(2)一、选择题1.下列各组数据中,不能作为直角三角形三边长的是( )A.9,12,15 B 。

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

中考数学 专题13.1三角形和勾股定理精选考点专项突破卷(一)考试范围:三角形和勾股定理;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2017·江苏中考真题)三角形的重心是( )A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点2.(2019·江苏中考真题)下列长度的三条线段,能组成三角形的是( )A .2,2,4B .5,6,12C .5,7,2D .6,8,103.(2019·山东中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .24.(2019·吉林中考真题)如图,在ABC ∆中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .5.(2019·湖南中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .16.(2018·浙江中考真题)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,△CAD=20°,则△ACE 的度数是( )A .20°B .35°C .40°D .70°7.(2015·贵州中考真题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,48.(2019·湖南中考真题)如图,Rt△ABC 中,△C =90°,△B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则△CAD 的度数是( )A .20°B .30°C .45°D .60°9.(2012·黑龙江中考真题)如图,△ABC 中,AB=AC=10,BC=8,AD 平分△BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .1310.(2019·广西中考真题)如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A.B.C.D.二、填空题(每小题4分,共28分)11.(2019·沭阳县修远中学中考模拟)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积为____.12.(2019·山东中考模拟)如图,在线段AD,AE,AF中,△ABC的高是线段________.13.(2019·北京中考模拟)如图,在△ABC中,射线AD交BC于点D,BE△AD于E,CF△AD于F,请补充一个条件,使△BED△△CFD,你补充的条件是______(填出一个即可).14.(2019·北京中考模拟)当三角形中的一个内角α是另一个内角β的一半时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为______.15.(2019·辽宁中考模拟)如图,已知AB△CF,E为DF的中点,若AB=8,CF=5,则BD=_______.16.(2018·安徽中考模拟)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在△BCD的平分线上时,CA1的长为__.17.(2019·双柏县雨龙中学中考模拟)已知三角形的两边长分别是7和10,则第三边长a的取值范围是_____.三、解答题一(每小题6分,共30分)18.(2014·江苏中考真题)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.19.(2015·浙江中考真题)如图,已知△ABC,△C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若△B=37°,求△CAD的度数.20.(2013·浙江中考真题)如图,在△ABC中,△C=90°,AD平分△CAB,交CB于点D,过点D作DE△AB,于点E(1)求证:△ACD△△AED;(2)若△B=30°,CD=1,求BD的长.21.(2019·重庆中考真题)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分△ABC交AC 于点E,过点E作EF△BC交AB于点F.(1)若△C=36°,求△BAD的度数.(2)若点E在边AB上,EF//AC叫AD的延长线于点F.求证:FB=FE.22.(2019·四川中考真题)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE△直线m于点E,BD△直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.四、解答题二(每小题8分,共32分)23.(2017·江苏中考真题)如图,已知在四边形ABCD中,点E在AD上,△BCE=△ACD=90°,△BAC=△D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求△DEC的度数.24.(2018·山东中考真题)已知,在△ABC 中,△A=90°,AB=AC ,点D 为BC 的中点.(1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE△DF ,求证:BE=AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE△DF ,那么BE=AF 吗?请利用图②说明理由.25.(2015·广西中考真题)如图,在△ABC 中,△ACB=90°,AC=BC=AD .(1)作△A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.26.(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.13.1三角形和勾股定理精选考点专项突破卷(一)参考答案1.A【解析】三角形的重心是三条中线的交点,故选A .2.D【解析】根据三角形三边关系,看其中较小两边的和是否大于最长边即可判断各个选项中的三条线段是否能组成三角形.【详解】224+=Q ,2∴,2,4不能组成三角形,故选项A 错误,5612+<Q ,5∴,6,12不能组成三角形,故选项B 错误,527+=Q ,5∴,7,2不能组成三角形,故选项C 错误,6810+>Q , 6∴,8,10能组成三角形,故选项D 正确,故选D .【点睛】本题考查了三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.B【解析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】△//CF AB ,△A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()ADE CFE AAS ∆≅∆,△3AD CF ==,△4AB =,△431DB AB AD =-=-=.故选:B .【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ADE FCE ∆≅∆是解此题的关键.4.B【解析】由ADC 2B ∠=∠且ADC B BCD ∠=∠+∠知B BCD ∠=∠,据此得DB DC =,由线段的中垂线的性质可得答案.【详解】解:△ADC 2B ∠=∠且ADC B BCD ∠=∠+∠,△B BCD ∠=∠,△DB DC =,△点D 是线段BC 中垂线与AB 的交点,故选B【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.5.C【解析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D到AB的距离为2,故选C.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键. 6.B【解析】先根据等腰三角形的性质以及三角形内角和定理求出△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.再利用角平分线定义即可得出△ACE=12△ACB=35°.【详解】△AD是△ABC的中线,AB=AC,△CAD=20°,△△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.△CE是△ABC的角平分线,△△ACE=12△ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出△ACB=70°是解题的关键.7.B【解析】试题解析:A.)2+)2≠2,故该选项错误;B.12+)2=2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.8.B【解析】根据内角和定理求得△BAC=60°,由中垂线性质知DA=DB,即△DAB=△B=30°,从而得出答案.【详解】在△ABC中,△△B=30°,△C=90°,△△BAC=180°-△B-△C=60°,由作图可知MN为AB的中垂线,△DA=DB,△△DAB=△B=30°,△△CAD=△BAC-△DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.9.C【解析】解:△AB=AC,AD平分△BAC,BC=8,△AD△BC,CD=BD=12BC=4,△点E为AC的中点,△DE=CE=12AC=5,△△CDE的周长=CD+DE+CE=4+5+5=14.故选C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.B【解析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D 不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,△选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.7【解析】如下图,连接A 1C ,B 1A ,C 1B ,,因B 是线段B 1C 的中点,所以B 1B=BC.△A 1B 1A 和△AB 1B 等底同高,根据等底同高的两个三角形面积相等可得S △B1AB =S △ABC =1;同理可得S △A1B1A =S △AB1B =1;所以=S △A1B1A +S △AB1B =1+1=2;同理可得S △C1CB1=2, S △C1AA1=2.S △A1B1C1= S △A1BB1+ S △C1CB1+ S △C1AA1+S △ABC =2+2+2+1=7.考点:等底同高的两个三角形面积相等.12.AF【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】△AF△BC 于F ,△AF 是△ABC 的高线,故答案为:AF .【点睛】本题主要考查了三角形的高线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.答案不唯一,如BD=DC【解析】根据全等三角形的判定定理AAS 判定△BED△△CFD .【详解】解:可以添加条件:BD=DC .理由:△BD=CD ;又△BE△AD ,CF△AD ,△△E=△CFD=90°;△在△BED 和△CFD 中,90BDE CDF E CFD BD CD ∠∠⎧⎪∠∠︒⎨⎪⎩====,△△BED△△CFD(AAS).故答案是:答案不唯一,如BD=DC.【点睛】本题考查了全等三角形的判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.14.45°或30°【解析】分①“特征角”的2倍是直角时,根据“特征角”的定义列式计算即可得解;②“特征角”的2倍与“特征角”都不是直角,根据直角三角形两锐角互余列方程求解即可.【详解】解:①“特征角”的2倍是直角时,“特征角”=12×90°=45°;②“特征角”的2倍与“特征角”都不是直角时,设“特征角是x”,由题意得,x+2x=90°,解得x=30°,所以,“特征角”是30°,综上所述,这个“特征角”的度数为45°或30°.故答案为:45°或30°.【点睛】本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余的性质,读懂题目信息,理解“特征角”的定义是解题的关键.15.3【解析】△AB//CF,△△A=△FCE,△ADE=△F,又△DE=FE,△△ADE△△CFE,△AD=CF=5,△AB=8,△BD=AB-AD=8-5=3,故答案为3.16.【解析】过点A1作A1M△BC于点M.由A1C是角平分线可知△A1CM=45°,可证明A1M=CM,可知△AMC是等腰直角三角形,设CM=A1M=x,在Rt△A1MB中利用勾股定理列方程求出x的值,根据△AMC是等腰直角三角形即可求出答案.【详解】过点A1作A1M△BC于点M.△点A的对应点A1恰落在△BCD的平分线上,△BCD=90°,△△A1CM=45°,即△AMC是等腰直角三角形,△设CM=A 1M=x,则BM=7-x.又由折叠的性质知AB=A 1B=5,△在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x)2,△25-(7-x)2=x 2,解得x 1=3,x 2=4,△在等腰Rt△A 1CM 中,CA 1A 1M ,△CA 1或.【点睛】本题考查折叠性质及解直角三角形,图形折叠后对应边相等,对应角相等,熟练掌握折叠的性质是解题关键.17.3<a <17.【解析】根据三角形的第三边大于两边之差,小于两边之和,即可解决问题.【详解】解:△三角形的两边长分别是10和7,△第三边长a 的取值范围是3<a <17.故答案为3<a <17.【点睛】本题考查三角形三边关系的运用,熟记三角形的第三边大于两边之差,小于两边之和是解题的关键.18.证明见解析.【解析】试题分析:根据等腰三角形的性质可证△DBM=△ECM ,可证△BDM△△CEM ,可得MD=ME ,即可解题. 试题解析:证明:△ABC 中,△AB=AC ,△△DBM=△ECM.△M 是BC 的中点,△BM=CM.在△BDM 和△CEM 中,△,△△BDM△△CEM (SAS ).△MD=ME .BD CE DBM ECM BM CM =⎧⎪∠=∠⎨⎪=⎩考点:1.等腰三角形的性质;2.全等三角形的判定与性质.19.(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)16°.【解析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB的中垂线.(2)要求△CAD的度数,只需求出△CAD,而由(1)可知:△CAD=2△B【详解】解:(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)△在Rt△ABC中,△B=37°,△△CAB=53°.又△AD=BD,△△BAD=△B=37°.△△CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.20.(1)见解析(2)BD=2【解析】解:(1)证明:△AD平分△CAB,DE△AB,△C=90°,△CD=ED,△DEA=△C=90°.△在Rt△ACD和Rt△AED中,AD AD {CD DE==,△Rt△ACD△Rt△AED(HL).(2)△Rt△ACD△Rt△AED ,CD=1,△DC=DE=1.△DE△AB,△△DEB=90°.△△B=30°,△BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出△DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.21.(1)54BAD︒∠=;(2)见解析.【解析】(1)利用等腰三角形的三线合一的性质证明△ADB=90°,再利用等腰三角形的性质求出△ABC即可解决问题.(2)只要证明△FBE=△FEB即可解决问题.【详解】解:(1)AB AC =QC ABC ∴∠=∠36C ︒∠=Q36ABC ︒∴∠=Q D 为BC 的中点,AD BC ∴⊥90903654BAD ABC ︒︒︒︒∴∠=-∠=-=(2)Q BE 平分ABC ∠ABE EBC ∴∠=∠又//EF BC QEBC BEF ∴∠=∠EBF FEB ∴∠=∠BF EF ∴=【点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.①证明见解析;②见解析.【解析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:△90ACB ︒∠=,△90ACE BCD ︒∠+∠=.△90ACE CAE ︒∠+∠=,△CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDC CAE BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CAE BCD AAS ∆∆≌.△EC BD =;②解:由①知:BD CE a ==CD AE b == △1()()2AEDB S a b a b =++梯形 221122a ab b =++. 又△AEC BCD ABC AEDB S S S S =++V V V 梯形2111222ab ab c =++ 212ab c =+. △222111222a ab b ab c ++=+. 整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.23.(1)证明见解析;(2)112.5°.【解析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论; ()2根据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 根据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒Q ,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)△△ACD =90°,AC =CD ,△△1=△D =45°,△AE =AC ,△△3=△5=67.5°,△△DEC =180°-△5=112.5°.24.(1)证明见解析;(2)BE=AF ,证明见解析.【解析】分析:(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、△EBD=△FAD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△BDE△△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出△EBD=△FAD 、BD=AD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△EDB△△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF . 详(1)证明:连接AD ,如图①所示.△△A=90°,AB=AC ,△△ABC 为等腰直角三角形,△EBD=45°.△点D 为BC 的中点, △AD=12BC=BD ,△FAD=45°. △△BDE+△EDA=90°,△EDA+△ADF=90°,△△BDE=△ADF .在△BDE 和△ADF 中,EBD FAD BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF (ASA ),△BE=AF ;(2)BE=AF ,证明如下:连接AD ,如图②所示.△△ABD=△BAD=45°,△△EBD=△FAD=135°.△△EDB+△BDF=90°,△BDF+△FDA=90°,△△EDB=△FDA .在△EDB 和△FDA 中,EBD FAD BD ADEDB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△EDB△△FDA (ASA ),△BE=AF .点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE△△ADF ;(2)根据全等三角形的判定定理ASA 证出△EDB△△FDA . 25.(1)作图见试题解析;(2)作图见试题解析;(3)△ACE△△ADE ,△ACE△△CFB .【解析】试题分析:(1)利用角平分线的作法得出△A 的平分线;(2)利用钝角三角形高线的作法得出BF ;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE 即为所求;(2)如图所示:BF 即为所求;(3)如图所示:△ACE△△ADE ,△ACE△△CFB ,△AC=AD ,AE 平分△CAD ,△AE△CD ,EC=DE ,在△ACE 和△ADE 中,△AE=AE ,△AEC=△AED ,EC=ED ,△△ACE△△ADE (SAS ).考点:1.作图—复杂作图;2.全等三角形的判定.26.(1) AM =(2)见解析;(3)见解析.【解析】(1)根据等腰三角形的性质、直角三角形的性质得到 AD =BD =DC =,求出 △MBD =30°,根据勾股定理计算即可;(2)证明△BDE △△ADF ,根据全等三角形的性质证明; (3)过点 M 作 ME △BC 交 AB 的延长线于 E ,证明△BME △△AMN ,根据全等三角形的性质得到 BE =AN ,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:90BAC ∠=︒Q ,AB AC =,AD BC ⊥,AD BD DC ∴==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒,2AB =Q ,AD BD DC ∴===,30AMN ∠=︒Q ,180903060BMD ∴∠=︒-︒-︒=︒,30BMD ∴∠=︒,2BM DM ∴=,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得,DM =AM AD DM∴=-=(2)证明:AD BC⊥Q,90EDF∠=︒,BDE ADF∴∠=∠,在BDE∆和ADF∆中,{B DAFDB DABDE ADF∠=∠=∠=∠,()BDE ADF ASA∴∆∆≌BE AF∴=;(3)证明:过点M作//ME BC交AB的延长线于E,90AME∴∠=︒,则AE=,45E∠=︒,ME MA∴=,90AME∠=︒∵,90BMN∠=︒,BME AMN∴∠=∠,在BME∆和AMN∆中,{E MANME MABME AMN∠=∠=∠=∠,()BME AMN ASA∴∆∆≌,BE AN∴=,AB AN AB BE AE∴+=+==.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键。

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

勾股定理与全等三角形

勾股定理与全等三角形

1、已知:如图,△ABC中,△C=90°,D为AB得中点,E、F分别在AC、BC上,且DE△DF.求证:AE2+BF2=EF2。

2、如图,△ACB与△ECD都就是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.3、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;ﻫ(2)若CD=2,求AD得长、4、如图①,已知点D在AB上,△ABC与△ADE都就是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC得中点。

ﻫ)1)求证:△BMD为等腰直角三角形、(思路点拨:考虑M为EC得中点得作用,可以延长DM交BC于N,构造△CMN≌△EMD,于就是ED=CN=DA,即可以证明△BND也就是等腰直角三角形,且BM就是等腰三角形底边得中线就可以了。

)请您完成证明过程:(2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形得结论就是否仍成立?若成立,请证明:若不成立,请说明理由。

1、证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:△△DF=DF,△EDF=△FDG=90°,DG=DE△△△EDF△△GDF(SAS),△△EF=FG△又△D为斜边BC中点△BD=DC又△△BDE=△CDG,DE=DG△△BDE△△CDG(SAS)△BE=CG,△B=△BCG △△AB△CG△△△GCA=180°-△A=180°-90°=90°在Rt△FCG中,由勾股定理得:FG2=CF2+CG2=CF2+BE2ﻫ△EF2=FG2=BE2+CF2.证明:过点A作AM△BC,交FD延长线于点M,连接EM、△AM△BC,△△MAE=△ACB=90°,△MAD=△B.△△AD=BD,△ADM=△BDF,△△ADM△△BDF.△AM=BF,MD=DF、又DE△DF,△EF=EM、△AE2+BF2=AE2+AM2=EM2=EF2、2、证明:(1)∵∠ACB=∠ECD,ﻫ∴∠ACD+∠BCD=∠ACD+∠ACE,ﻫ即∠BCD=∠ACE.ﻫ∵BC=AC,DC=EC,∴△ACE≌△BCD。

勾股定理与全等三角形

勾股定理与全等三角形

1、已知:如图,△ ABC中,/ C=90° D为AB的中点,E、F分别在AC BC上,且DE丄DF.求ffi: AE2+BF2=EF2.32、如图,△ ACB和^ ECD都是等腰直角三角形,/证:(1 )△ ACE^A BCD; (2) AD2+DB2=D呂.3、如图,△ ABC 中,AB=BC BE丄AC于点E, AD丄BC 于点D,Z BAD=45°, AD 与BE交于点F,连接CF.(1)求证:BF=2AE(2)若CD= 2,求AD 的长.4、如图①,已知点D在AB上, △ ABC和^ ADE都是等腰直角三角形,/ ABC=/ ADE=90°,c1、证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:•/ DF=DE / EDF=Z FDG=90 ,° DG=DE:.△ EDF^A GDF ( SAS ,•••EF=FG又••• D为斜边BC中点•••BD=DC又•/ / BDE=/ CDG, DE=DG•••△ BDE^A CDG (SAS••• BE=CG / B=/ BCG ••• AB// CG ••• / GCA=180-° A=180 -90 =90 在RtA FCG中,由勾股定理得:FG2=CF+CG=CF+BE ••• EF2=FG=Be+CF.3证明:过点A作AM // BC,交FD延长线于点M,连接EM.•/ AM // BC,••• / MAE=/ ACB=90 ,° / MAD= / B.•/ AD=BD, / ADM= / BDF, •••△ ADM^A BDF.••• AM=BF, MD=DF.又DE丄DF, ••• EF=EM.••• AE2+BF2=AE2+AM2=EM2=E^.2、证明:(1)v/ ACB=^ ECD •••/ ACD+Z BCDK ACD+Z ACE 即/ BCD=^ ACE ••• BC=AC DC=EC(2)v^ ACB是等腰直角三角形,• / B=/ BAC=45度.•••/ B=/ CAE=45 •••/ DAE=^ CAE+Z BAC=45+45°90°, • AD2+AE2=DE2由(1)知AE=DB• AD2+DB2=DE23、解答:(1)证明:T AD丄BC,Z BAD=45,:.△ ABD是等腰直角三角形, /. AD=BD, •/ BE丄AC, AD 丄BC, :•/ CAD+Z ACD=90 ,/ CBE+/ ACD=90 , :•/ CAD=/ CBE在^ ADC和^ BDF中,/ CAD=Z CBEAD= BD/ ADC=Z BDF= 90°•: △ ADC^^ BDF (ASA),•: BF=AC •/ AB=BC BE丄AC, •: AC=2AE •: BF=2AE(2)解:•••△ ADC^^ BDF, •: DF=CD=在RtA CDF中,CF=DF+CD22=2,•/ BE丄AC,AE=EC•••AF=CF=2/. AD=AF+DF=2+團①4、解答:(1)证明:延长DM交BC于N,:EDA=Z ABC=90 ,/. DE//BC,•••/ DEM=Z MCB,在^ EMD和^ CMN中/ DEM=Z NCMEM = CM/EMD=Z NMC,.•.△ EMD" CMN, •••CN=DE=DA MN=MD ,•/ BA=BC /. BD=BN, •: △ DBN是等腰直角三角形,且BM是底边的中线, ••• BM 丄DM,/ DBM=/ DBN=45=/ BDM ,:.△ BMD为等腰直角三角形.(2)解:△ BMD为等腰直角三角形的结论仍成立, 证明:作CN// DE交DM的延长线于N,连接BN, :•/ E=Z MCN=4° , vZ DME=Z NMC, EM=CM,:.△ EMDW CMN (ASA),:.CN=DE=DA MN=MD , 在^ DBA和^ NBC中DA= CNZ DAB=Z BCN,BA= BC•••/ DBA=Z NBC, DB=BN, /•Z DBN=Z ABC=90 , •/△ DBN是等腰直角三角形,且BM是底边的中线, ••• BM 丄DM , Z DBM=Z DBN=45=Z BDM ,:.△ BMD为等腰直角三角形.。

全等三角形与勾股定理练习题

全等三角形与勾股定理练习题

全等三角形与勾股定理练习题(一)一.填空题1.一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 .2.在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

5.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

7.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.8.一个三角形三边之比为2:5:3,则这个三角形的形状是 . 9.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________. 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________.11.如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值是___________。

12.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180o 形成的,若150BAC ∠=o ,则θ∠的度数是 . 二.选择题1、若Rt ABC V 中,90C ︒∠=且c=37,a=12,则b=( )A 、50B 、35C 、34D 、262、如图,平行四边形ABCD 对角线AC,BD 交于O ,过O 画直线EF 交AD 于E ,交BC 于F,,则图中全等三角形共有( ) (A)7对 (B)6对 (C)5对 (D)4对3.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN 。

八年级数学下册勾股定理习题(附答案)(含答案)

八年级数学下册勾股定理习题(附答案)(含答案)

C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

全等三角形与勾股定理练习题(一)之令狐文艳创作

全等三角形与勾股定理练习题(一)之令狐文艳创作

全等三角形与勾股定理练习题(一)一.令狐文艳二.填空题1.一个矩形的抽斗长为24cm ,宽为7cm,在里面放一根铁条,那么铁条最长可以是.2.在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB =.3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的AD 后离高4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

5.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

7.已知两条线段的长为5c m 和12c m,当第三条线段的长为c m 时,这三条线段能组成一个直角三角形.A 第3题8.一个三角形三边之比为2:5:3,则这个三角形的形状是.9.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________.10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________. 11.如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值是___________。

12.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是.三.选择题1、若Rt ABC 中,90C ︒∠=且c=37,a=12,则b=( )A 、50B 、35C 、34D 、262、如图,平行四边形ABCD 对角线AC,BD 交于O ,过O 画直线EF 交AD 于E ,交BC 于F,,则图中全等三角形共有( )(A)7对(B)6对 (C)5对 (D)4对3.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ; ② CM =CN ;③ AC =DN 。

勾股定理练习题及答案

勾股定理练习题及答案

八年级上数学专题训练一《勾股定理》典型题练习答案解析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )常用勾股数口诀记忆常见勾股数3,4,5 :勾三股四弦五5,12,13 : 我要爱一生 6,8,10: 连续的偶数 7,24,25 : 企鹅是二百五 8,15,17 : 八月十五在一起 特殊勾股数连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,104、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A.S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1S 3S 2S 1【类型题总结】(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示 S1、S2、S3则它们有S2+S3=S1关系.(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示S1、S2、S3.则它们有S2+S3=S1关系.(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有S2+S3=S1关系.并选择其中一个命题证明.考点:勾股定理.专题:计算题.分析:(a)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(b)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(c)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.解答:解:(1)S3=81πAC2,S2=81πBC2S1=81AB2∴S2+S3=S1.(2)S2+S3=S1…(4分)由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,…(8分)∵三角形ABC是直角三角形,又∵AC2+BC2=AB2…(10分)∴S2+S3=S1.(3)S1=43AB2S2=43BC2 S3=43AC2∴S2+S3=S1.点评:此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

第一章--勾股定理同步练习(16页)

第一章--勾股定理同步练习(16页)

第一章勾股定理测试1 勾股定理(一)一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).(A)4 (B)6 (C)8 (D)1028.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③测试2 勾股定理(二)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B到上端点A的直线距离为( ).6题图(A)212(B)310(C)56(D)58三、解答题7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)课堂学习检测一、填空题1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62 ,斜边为2,则该三角形的面积是( ).(A)41(B)43(C)21(D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41(C)24(D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少? 15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE 为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC中,(b-a)(b+a)=c2,则∠B=____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是______三角形.7.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.8.△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a=6,b=8,c=10 (B)3,2,1===cba(C)43,1,45===cba(D)6,3,2===cba10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶169 11.已知三角形的三边长为n、n+1、m(其中m2=2n+1),则此三角形( ).(A)一定是等边三角形(B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.13.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.14.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=CB41,求证:AF⊥FE.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.第十八章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a+b=c(B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半(D)三角形的三边为9,40,4110.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).10题图(A)450a元 (B)225a元 (C)150a元 (D)300a元11.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ).(A)2 (B)3 (C)22 (D)3212.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于( ).(A)5 (B)135 (C)1313 (D)59三、解答题13.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.15.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2. 3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)参考答案 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B13..2172提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为.m 380。

勾股定理习题集(含答案)

勾股定理习题集(含答案)

勾股定理习题集一、选择题(本大题共13小题,共39.0分)1.下列命题中,是假命题的是A. 在中,若,则是直角三角形B. 在中,若,则是直角三角形C. 在中,若:::4:5,则是直角三角形D. 在中,若a:b::4:5,则是直角三角形2.已知中,a、b、c分别为、、的对边,则下列条件中: , ;;:::3:2;:::4:5;其中能判断是直角三角形的有个.A. 1B. 2C. 3D. 43.下列四组线段中,可以构成直角三角形的是A. , ,B. , ,C. , ,D. , ,4.如图,直线l上有三个正方形,,,若,的面积分别为5和11,则b的面积为A. 4B. 6C. 16D. 555.一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据A. , ,B. , ,C. , ,D. , ,6.直角三角形两条直角边的和为7,面积为6,则斜边为A. B. 5 C. 25 D. 77.如图,在四边形ABCD中,,分别以四边形的四条边为边向外作四个正方形,若 , ,则8.9.A. 136B. 64C. 50D. 8110.如图,在矩形ABCD中, , ,将矩形沿AC折叠,点D落在处,则重叠部分的面积是11.12.A. 8B. 10C. 20D. 3213.如图,第1个正方形设边长为的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边依此不断连接下去通过观察与研究,写出第2016个正方形的边长为14.15.A. B.C. D.16.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是A. 8cmB.C.D. 1cm17.中, , ,高,则的周长为A. 42B. 32C. 42或32D. 37或3318.如图,在中,, , , 是的平分线若,分别是AD和AC上的动点,则的最小值是A. B. 4 C. D. 519.如图所示,的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A. B.C. D.二、填空题(本大题共15小题,共45.0分)20.如图, , , , , 则阴影部分的面积______ .21.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为______ .22.如图,在中, , , 是AB的中点,过点D作于点E,则DE的长是______.23.24.25.26.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为______ .27.28.29.30.31.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是______ .32.33.34.35.36.如图是由一系列直角三角形组成的螺旋形,37.,则第n个直角38.三角形的面积为______ .39.40.41.42.如图,在中, , ,点M为BC中点,43.于点N,则MN的长是______ .44.45.46.如图,点P是等边内一点,连接,,,:PB::4:5,以AC为边作≌,连接,则有以下结论:是等边三角形;是直角三角形;;其中一定正确的是______ 把所有正确答案的序号都填在横线上47.48.49.50.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边,下列四个说法:, , , 其中说法正确的结论有______ .51.已知,如图长方形ABCD中,,,将此长方形折叠,使点B与点D重合,折痕为EF,则的面积为______ .52.若直角三角形的两条边长为,,且满足,则该直角三角形的第三条边长为______ .53.如图,矩形ABCD中,,,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积______ .54.55.56.57.如果一架25分米长的梯子,斜边在一竖直的墙上,这时梯足距离墙角7分米,若梯子的顶端沿墙下滑4分米,那么梯足将向右滑______ 分米.58.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将绕点B顺时针旋转到的位置若 , , ,则______ 度59.60.61.62.63.已知a是的整数部分,,其中b是整数,且,那么以a、b为两边的直角三角形的第三边的长度是______ .三、计算题(本大题共2小题,共12.0分)64.如图,在中,, , ,垂足为,,求AB的长.65.66.67.68.69.70.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知,,求EC的长.71.72.四、解答题(本大题共8小题,共64.0分)73.如图,在笔直的铁路上A、B两点相距,、D为两村庄,,,于,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等求E应建在距A多远处?74.75.76.77.78.79.如图,在中, , , ,求的面积.80.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.81.作于D,设,用含x的代数式表示CD,则______ ;82.请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;83.利用勾股定理求出AD的长,再计算三角形的面积.84.85.如图,一个长方体形的木柜放在墙角处与墙面和地面均没有缝隙,有一只蚂蚁从柜角A处沿着木柜表面爬到柜角处86.请你画出蚂蚁能够最快到达目的地的可能路径;87.当 , , 时,求蚂蚁爬过的最短路径的长;88.求点到最短路径的距离.89.在中,, 、、的对边长分别为a、b、c,设的面积为S,周长为l.90.如果,观察上表猜想:______ ,用含有m的代数式表示;说出中结论成立的理由.91.点,的位置如图,在网格上确定点C,使,.92.在网格内画出;93.直接写出的面积为______.94.如图,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处已知,求:95.的长;96.阴影部分的面积.97.98.99.100.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.101.【思考题】如图,一架米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为米,如果梯子的顶端沿墙下滑米,那么点B将向外移动多少米?102.请你将小明对“思考题”的解答补充完整:103.解:设点B将向外移动x米,即,104.则 ,105.而,在中,由得方程______,106.解方程得______,______,107.点B将向外移动______米108.解完“思考题”后,小聪提出了如下两个问题:109.【问题一】在“思考题”中,将“下滑米”改为“下滑米”,那么该题的答案会是米吗?为什么?110.【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?111.请你解答小聪提出的这两个问题.112.113.如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分或全部为一边,再用32m长的篱笆围成一块长方形场地CDEF.114.怎样围成一个面积为的长方形场地?115.长方形场地面积能达到吗?如果能,请给出设计方案,如果不能,请说明理由.答案和解析【答案】1. C2. C3. C4. C5. B6. B7. B8. B9. B10. A11. C12. C13. A14. 2415. 12016.17. 2718. 4719.20.21.22.23.24. 5或25.26. 827. 13528. 或529. 解:在中,, ,, ;即,.在中,.30. 解:四边形ABCD为矩形,, , ,折叠矩形的一边AD,使点D落在BC边的点F处, ,在中,,,设,则,,在中,,,解得,的长为3cm.31. 解:设,则,由勾股定理得:在中,,在中,,由题意可知:,所以:,解得:分所以,E应建在距A点15km处.32.33. 解:如图,木柜的表面展开图是矩形或.故蚂蚁能够最快到达目的地的可能路径有如图的或;蚂蚁沿着木柜表面矩形爬过的路径的长是.蚂蚁沿着木柜表面矩形矩形爬过的路径的长,蚂蚁沿着木柜表面爬过的路径的长是.,故最短路径的长是.作于E,,是公共角,∽ ,即,则为所求.34.35. 536. 解:如图, , ,;由勾股定理得:;由题意得:设为, ;;,,而,∽,,解得:..由题意得:,阴影矩形.37. ;;舍去;38. 解:设,则,依题意得:,整理得,解得 , ,当时,当时不合题意舍去能围成一个长14m,宽9m的长方形场地.设,则,依题意得整理得故方程没有实数根,长方形场地面积不能达到.【解析】1. 解:A、在中,若,则是直角三角形,是真命题;B、在中,若,则是直角三角形,是真命题;C、在中,若:::4:5,则是直角三角形,是假命题;D、在中,若a:b::4:5,则是直角三角形,是真命题;故选C.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.2. 解:,,此三角形是直角三角形,故本小题正确;:::3:2,设,则,,,,此三角形是直角三角形,故本小题正确;:::4:5,设,则,.,,解得,, , ,此三角形不是直角三角形,故本小题错误;,设,则,,解得:,,此三角形是直角三角形,故本小题正确.故选C.分别根据三角形内角和定理、勾股定理的逆定理对各选项进行逐一分析即可.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.3. 解:A、,不能构成直角三角形,故不符合题意;B、,不能构成直角三角形,故不符合题意;C、,能构成直角三角形,故符合题意;D、,不能构成直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长,,满足,那么这个三角形就是直角三角形.4. 解:、b、c都是正方形,,;,,, ,≌,,;在中,由勾股定理得:,即,运用正方形边长相等,结合全等三角形和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.5. 解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直角三角形,且,符合勾股定理,故选B.根据等腰三角形的三线合一,得底边上的高也是底边上的中线根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.考查了等腰三角形的三线合一以及勾股定理的逆定理.6. 解:设一直角边为x,则另一直角边为,根据题意得,解得:或,则另一直角边为3和4,根据勾股定理可知斜边长为,故选:B.设一直角边为x,则另一直角边为,可得面积是,根据“面积为6”作为相等关系,即可列方程,解方程即可求得直角边的长,再根据勾股定理求得斜边长.此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7. 解:由题意可知:, , , ,如果连接BD,在直角三角形ABD和BCD中,,即,因此,故选B.连接BD,即可利用勾股定理的几何意义解答.本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.8. 解:重叠部分的面积是矩形ABCD的面积减去与的面积再除以2,矩形的面积是32,,,由翻折而成,,,,,,.故选B.解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.本题通过折叠变换考查学生的逻辑思维能力.9. 解:第2016个正方形的边长.第一个正方形的边长是2,设第二个的边长是x,则,则,即第二个的边长是:;设第三个的边长是y,则,则,同理可以得到第四个正方形的边长是,则第n个是:.正确理解各个正方形的边长之间的关系是解题的关键,大正方形的边与相邻的小正方形的边,正好是同一个等腰直角三角形的斜边与直角边.10. 解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为:,故折痕长不可能为8cm.故选:A.根据勾股定理计算出最长折痕即可作出判断.考查了折叠问题,勾股定理,根据勾股定理计算后即可做出选择,难度不大.11. 解:此题应分两种情况说明:当为锐角三角形时,在中,,在中,的周长为:;当为钝角三角形时,在中,,在中,,.的周长为:当为锐角三角形时,的周长为42;当为钝角三角形时,的周长为32.故选C.本题应分两种情况进行讨论:当为锐角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将的周长求出;当为钝角三角形时,在和中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.12. 解:如图,过点C作交AB于点M,交AD于点P,过点P作于点Q,是的平分线.,这时有最小值,即CM的长度,, , ,.,即的最小值为.故选:C.过点C作交AB于点M,交AD于点P,过点P作于点Q,由AD是的平分线得出,这时有最小值,即CM的长度,运用勾股定理求出AB,再运用,得出CM的值,即的最小值.本题主要考查了轴对称问题,解题的关键是找出满足有最小值时点P和Q的位置.13. 解:的面积,由勾股定理得,,则,解得,故选:A.根据图形和三角形的面积公式求出的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.14. 解:在中,,, ,,即可判断为直角三角形,阴影部分的面积.答:阴影部分的面积.故答案为:24.先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD为直角三角形.15. 解:设三边分别为,,,则,,三边分别为,,,,三角形为直角三角形,.故答案为:120.根据已知可求得三边的长,再根据三角形的面积公式即可求解.此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用.16. 解:过A作于F,连接CD;中, , ,则;中, , ;,;,即.故答案为:.过A作BC的垂线,由勾股定理易求得此垂线的长,即可求出的面积;连接CD,由于,则、等底同高,它们的面积相等,由此可得到的面积;进而可根据的面积求出DE的长.此题主要考查了等腰三角形的性质、勾股定理、三角形面积的求法等知识的综合应用能力.17. 解:最大的正方形的边长为3cm,正方形G的面积为,由勾股定理得,正方形E的面积正方形F的面积,正方形A的面积正方形B的面积正方形C的面积正方形D的面积,图中所有正方形的面积之和为,故答案为:27.根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是,,斜边长为c,那么.18. 解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:;;;即最大正方形E的边长为:,所以面积为:.故答案为:47.分别设中间两个正方形和最大正方形的边长为,,,由勾股定理得出, , ,即最大正方形的面积为.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19. 解:根据题意可知: , ,第n个直角三角形的直角边长为.第n个直角三角形的另一条直角边长为1.第n个直角三角形的面积为.故答案为:.这是一个规律性题目,第一个三角形的斜边正好是第二个三角形的直角边,依次进行下去,且有一个直角边的边长为从而可求出面积.本题考查勾股定理的应用,应用勾股定理求出三角形的斜边正好是下一个三角形的直角边.20. 解:连接AM,,点M为BC中点,三线合一, ,, ,,根据勾股定理得:,又,.连接AM,根据等腰三角形三线合一的性质得到,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.21. 解:是等边三角形,则,又≌ ,则, ,是正三角形,正确;又PA:PB::4:5,设,则:,,,根据勾股定理的逆定理可知:是直角三角形,且, 正确;又是正三角形,,正确;错误的结论只能是.故答案为.先运用全等得出,,从而,得出是等边三角形,, ,再运用勾股定理逆定理得出,由此得解.本题主要考查了勾股定理的逆定理、全等三角形的性质以及等边三角形的知识,解决本题的关键是能够正确理解题意,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.22. 解:为直角三角形,根据勾股定理:,故本选项正确;由图可知,,故本选项正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为,即;故本选项正确;由可得,又,得,,整理得,,,故本选项错误.正确结论有.故答案为.根据正方形的性质、直角三角形的性质、直角三角形面积的计算公式及勾股定理解答.本题考查了勾股定理及正方形和三角形的边的关系,此图被称为“弦图”,熟悉勾股定理并认清图中的关系是解题的关键.23. 解:长方形折叠,使点B与点D重合,,,,解得:,的面积为:,故答案为:.首先翻折方法得到,在设出未知数,分别表示出线段,,的长度,然后在中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得的面积了.此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.24. 解:该直角三角形的第三条边长为x,直角三角形的两条边长为,,且满足,, .若4是直角边,则第三边x是斜边,由勾股定理得:,;若4是斜边,则第三边x为直角边,由勾股定理得:,;第三边的长为5或.故答案为:5或.设该直角三角形的第三条边长为x,先根据非负数的性质求出a、b的值,再分4是斜边或直角边的两种情况,然后利用勾股定理求解.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25. 解:四边形ABCD是矩形,,,,,.与关于BD对称,≌,,,.设DE为x,则,,由勾股定理,得,解得:,,.故答案为90.根据轴对称的性质及矩形的性质就可以得出,由勾股定理就可以得出DE的值,由三角形的面积公式就可以求出结论.本题考查了轴对称的性质的运用,矩形的性质的运用,勾股定理的运用,解答时运用轴对称的性质求解是关键.26. 解:如下图所示:AB相当于梯子,是梯子和墙面、地面形成的直角三角形,是下滑后的形状,,即:分米,分米,分米,BD是梯脚移动的距离.分米.分米,在中,由勾股定理可得:,分米,分米,故答案为:8.梯子和墙面、地面形成的直角三角形,如下图所示可将该直角三角形等价于和,前者为原来的形状,后者则是下滑后的形状由题意可得出分米,分米,分米,在中,由勾股定理可得:,将AB、CB的值代入该式求出AC的值,;在中,求出OD的值,分米,即求出了梯脚移动的距离.本题主要考查勾股定理在实际中的应用,通过作相应的等价图形,可以使解答更加清晰明了.27. 解:连接绕点B顺时针旋转到是直角,是直角三角形,与全等,,, , ,,是直角三角形,,.故答案为:135.首先根据旋转的性质得出,是直角三角形,进而得出,即可得出答案.此题主要考查了旋转的性质,根据已知得出是直角三角形是解题关键.28. 解:,,,,,又是整数,且,, .分两种情况:若为直角边,则第三边;若为斜边,则第三条边.故答案为或5.先根据,可得出a的值,根据,结合b是整数,且,求出b、c的值,再分情况讨论,为直角边,为斜边,根据勾股定理可求出第三边的长度.本题考查了估算无理数的大小、勾股定理的知识,注意“夹逼法”的运用是解答本题的关键.29. 根据等腰三角形的性质和三角形内角和定理,易求得,故,由此可证得是等腰三角形,即可求出AD的长,再根据含30度角的直角三角形的性质即可求出AB的长.此题主要考查等腰三角形的判定和性质以及三角形内角和定理的应用;求得是正确解答本题的关键.30. 根据矩形的性质得 , , ,再根据折叠的性质得 , ,在中,利本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了勾股定理.31. 根据题意设出E点坐标,再由勾股定理列出方程求解即可.本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.32. 解: , ,,故答案为:;,, ,,解得:;由得:,.直接利用BC的长表示出DC的长;直接利用勾股定理进而得出x的值;利用三角形面积求法得出答案.此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.33. 根据题意,先将长方体展开,再根据两点之间线段最短.本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.34. 解:的面积,周长,故当a、b、c三边分别为3、4、5时, , ,故,同理将其余两组数据代入可得为 ,.应填:, ,通过观察以上三组数据,可得出.,,.,, ,即.的面积,周长,分别将3、4、 , 、12、 , 、15、17三组数据代入两式,可求出的值;通过观察以上三组数据,可得出:;根据, , 可得出:,即.本题主要考查勾股定理在解直角三角形面积和周长中的运用.在中,,.故的面积为.故答案为:5.先连结AB,再确定C点,连结,即可求解;根据勾股定理得到,的长,再根据三角形面积公式即可求解.本题考查了勾股定理,学生作图与根据图象分析处理、以及计算面积的能力.36. 证明∽,列出比例式,求出,得到.,即可解决问题.运用阴影该题主要考查了旋转变换的性质及其应用、勾股定理及其应用等问题.37. 解:,故答案为; ,舍去, .不会是米,若米,则米米米,米米米,,,该题的答案不会是米.有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有,解得:或舍当梯子顶端从A处下滑米时,点B向外也移动米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.直接把C、C、的值代入进行解答即可;把中的换成可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入中方程,求出x的值符合题意.本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.38. 首先设,则,进而利用面积为得出等式求出即可;结合中求法利用根的判别式分析得出即可.此题主要考查了一元二次方程的应用,表示出长方形的面积是解题关键.。

全等三角形与勾股定理专题

全等三角形与勾股定理专题

第一章勾股定理专题练习一.填空题1.一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 . 2.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

4.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

5.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

6.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.7.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________.8.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________.9.如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值是___________.10.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是 .ABCD7cmD B C A第3题ABCDAEBθABCDDCBA11.如图,直线l 过正方形ABCD 的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .二.选择题1.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN 。

一次函数综合练习(全等三角形,勾股定理)

一次函数综合练习(全等三角形,勾股定理)

一次函数综合练习(全等三角形,勾股定理)1`.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.4.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).5.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y 轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?6.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.7.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.8.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.9.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.10.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.12.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.。

《第17章 勾股定理》测试卷(1)

《第17章 勾股定理》测试卷(1)

《第17章勾股定理》测试卷(1)一、选择题(共10小题)1.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣12.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角的度数之比为3:4:55.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,6,96.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x27.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想8.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.109.下列是勾股数的有()①3,4,5 ②5,12,13 ③9,40,41④13,14,15 ⑤⑥11,60,61A.6组B.5组C.4组D.3组10.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.二、填空题(共10小题)11.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.12.课本中有这样一句话:“利用勾股定理可以作出,,…线段(如图所示).”即:OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=;再过A1作A1A2⊥OA1且A1A2=1,得OA2=;…以此类推,得OA2018=.13.如图,阴影部分是一个正方形,此正方形的面积为cm2.14.已知:△ABC中,AB=4cm,AC=3cm,BC=5cm,则△ABC的面积是cm2.15.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.16.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.17.下列四组数:①0.6,0.8,1;②5,12,13;③8,15,17;④4,5,6.其中是勾股数的组数为.18.下列各组数:①1、2、3;②,,2;③0.3、0.4、0.5;④9、40、41,其中是勾股数的是(填序号).19.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若a+b=,ab=2,则小正方形的面积为.20.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾AE=6,弦AD=10,则小正方形EFGH的面积是.三、解答题(共10小题)21.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点.当它靠在另一侧墙上时,梯子的顶端在D点,已知梯子长2.5m,D点到地面的垂直距离DE=1.5m,两墙的距离CE长3.5m.求B点到地面的垂直距离BC.22.如图,一架25米长的云梯AC斜靠一面竖直的墙AB上,这时梯子底端C离墙7米.(1)这个梯子的顶端A距离地面多远?(2)如果梯子的顶端A下滑了4米,那么梯子底端C在水平方向滑动了4米吗?23.如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷,若绳子的长度为5.5米,固定点C到帐篷支撑杆底部B的距离是4.5米,现有一根高为3.2米的竿,它能否做帐篷的支撑竿,请说明理由.24.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.25.如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.26.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.28.通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式(a+b)(a﹣b)=a2﹣b2给予解释.图乙中的△ABC是一个直角三角形,∠C=90°,人们很早就发现直角三角形的三边a,b,c满足a2+b2=c2的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,求出(a+b)2的值.29.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22﹣1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32﹣1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.30.课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律4=,12=,24=…,于是他很快表示了第二数为,则用含a的代数式表示第三个数为;(3)用所学知识加以说明.。

勾股定理练习题含答案

勾股定理练习题含答案

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A .2016B .2017C .2018D .2019 3.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .27C .5D .254.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对 5.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,12C.8,12,13 D.2、3、56.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.47.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则 h 的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 8.已知三组数据:①2,3,4;②3,4,5;③1,25三角形的三边长,能构成直角三角形的是()A.②B.①②C.①③D.②③9.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C34D.43410.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a²二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.16.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________19.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =3D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.22.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O .(1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.24.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).29.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP12OP23OP34=2,∴OP45…,OP20182019故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.3.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接C D′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +'=()22422+=6,故选 A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.4.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+= 2251213AC ∴=+=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.5.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.7.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD 是筷子,AB 长是杯子直径,BC 是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm ,BC=8cm ,△ABC 是直角三角形∴在Rt △ABC 中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.8.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形.解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x故选:D10.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.96 25【分析】将△B´CF的面积转化为求△BCF的面积,由折叠的性质可得CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,可证得△ECF是等腰直角三角形,EF=CE,∠EFC=45°,由等面积法可求CE的长,由勾股定理可求AE的长,进而求得BF的长,即可求解.【详解】根据折叠的性质可知,CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,∴∠DCE+∠B´CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,且CE⊥AB,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=10,∴CE=245,∴EF=245,∵AE 185,∴BF=AB−AE−EF=10-185-245=85,∴S△CBF=12×BF×CE=12×85×245=9625,∴S△CB´F=96 25,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.13.48【分析】用a和b表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S =.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3,B 3B 4=16,B 4B 5=332, …, B n ﹣1B n =32n .故答案为:332,32n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.16.5【分析】 在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =,∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.17.4【分析】根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.19.10【分析】首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.【详解】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N′=22+=10.OM ON''故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.20.522,32++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221-=,BC BF∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221-=,BC BF∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==,22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F , ∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=123 S △ADB =12332⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =3;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)2;(2)32q p =;(3)27OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴223MN MO NO p =-=, ∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,23ME =, ∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒, 在Rt FMG △中,112FG MF ==,则3MG =,在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)详见解析;(241;(33【分析】 (1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠= 所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆203123. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根 当2a c b +=时,23612a a +=,解得92a = 当2bc a +=时,26362a a +=,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则655ABC S ∆===当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt △ABE 中,()2222AE=AB BE =1025=45--∵△ABC 的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t,QF=2t-6由PD=QF得6-t=2t-6,解得t=4,综上得t的值为4.(3)同(2)可知v>1时,Q在AF之间不存在CP=BQ,Q在FC之间存在CP=BQ,Q在F点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab +b 2=a 2+b 2,∴ab =a 2,∴a =b ,∴△ABC 是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A。

勾股定理习题(附答案)

勾股定理习题(附答案)

DCBA 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDABDCE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

勾股定理习题与详细答案

勾股定理习题与详细答案

勾股定理11111111一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣52.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()74.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.46.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,78.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)26.(2016•长春模拟)探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.27.(2016•东明县一模)如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.28.(2016•安徽模拟)如图,在Rt△ABC中,∠C=90°,AC=BC,点D在AB的垂直平分线上,∠DAB=15°且AD=10cm,求BC的长.29.(2016春•丰城市期末)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.30.(2016春•柳江县期末)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?勾股定理11111111参考答案与试题解析一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【考点】勾股定理.【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理和其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.2.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【考点】勾股定理;等腰三角形的性质.【专题】分类讨论.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【考点】勾股定理.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以和规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.4.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.5.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【考点】勾股定理.【专题】计算题;推理填空题.【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以和正方形的面积的求法,要熟练掌握.6.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【考点】勾股定理的证明.【专题】数学建模思想;构造法;等腰三角形与直角三角形.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【考点】勾股定理的逆定理.【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.8.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m【考点】勾股定理的应用.【分析】先根据三角形外角的性质求出∠E的度数,再根据锐角三角函数的定义可求BE,再根据线段的和差故选即可得出结论.【解答】解:在△BDE中,∵∠ABD是△BDE的外角,∠ABD=150°,∠D=60°,∴∠E=150°﹣60°=90°,∵BD=520m,∵sin60°==,∴DE=520•sin60°=260(m),公路CE段的长度为260﹣80(m).答:公路CE段的长度为(260﹣80)m.故选:C.【点评】本题考查的是解直角三角形的应用,熟知三角形外角的性质和锐角三角函数的定义是解答此题的关键.9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.【考点】勾股定理的应用.【分析】从点A,B,C,D中任取三点,找出所有的可能,以和能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选D.【点评】此题考查了列表法与树状图法,以和三角形的三边关系和勾股定理的逆定理运用,用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【考点】等腰直角三角形;等腰三角形的性质.【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP (OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【点评】本题考查勾股定理、四点共圆、全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,学会利用四点共圆解决问题,题目比较难,用到的知识点比较多.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9米(结果精确到0.1米,参考数据:=1.41,=1.73).【考点】勾股定理的应用.【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米),故答案为:2.9.【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.【考点】勾股定理;线段垂直平分线的性质.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.【点评】本题考查了线段的垂直平分线的性质以和全等三角形的判定与性质,正确列方程求得EC的长是关键.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为或.【考点】勾股定理;线段垂直平分线的性质.【分析】在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC 与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB 的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.【解答】解:如图,作AD⊥BC于D,∵AC=AC′=2,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=,BF=2EF=,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=AB=4,由勾股定理得:CD==2,BD==4,即F在C和D之间,∵BC=BD﹣CD=4﹣2=2,∴CF=BF﹣BC=﹣2=,C′F=BC′﹣BF=4+2﹣=,故答案为:或.【点评】本题考查了含30度角的直角三角形,线段垂直平分线的性质,等腰三角形三线合一的性质,勾股定理的应用,根据题意画出图形进行分类讨论是解题的关键.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为14.【考点】勾股定理;等腰直角三角形.【分析】过P作PD⊥AC于D,PE⊥BC于E,根据四边形CDPE是矩形,得到CD=PE=y,CE=PD=x,设PD=x,PE=y,AC=BC=a,列方程组即可得到结论.【解答】解:过P作PD⊥AC于D,PE⊥BC于E,则四边形CDPE是矩形,设PD=x,PE=y,AC=BC=a,∴CD=PE=y,CE=PD=x,∴,∴,∴a2﹣ay﹣ax=28,∴S△APB=S△ABC﹣S△APC﹣S△BCP=a2﹣ax﹣ay=14.故答案为:14.【点评】本题考查了勾股定理,等腰直角三角形的性质,熟记各性质是解题的关键.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【考点】勾股定理.【专题】分类讨论.【分析】利用分类讨论,当∠APB=90°时,分两种情况讨论,情况一:如图1,易得∠PBA=30°,利用直角三角形斜边的中线等于斜边的一半得出结论;情况二:利用锐角三角函数得AP的长;如图2,当∠BAP=90°时,如图3,利用锐角三角函数得AP的长.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,利用分类讨论,数形结合是解答此题的关键.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为110.【考点】勾股定理的证明.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵直角△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴矩形KLMJ的面积为10×11=110.【点评】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm.【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过4米.【考点】勾股定理的应用.【分析】如图,先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点G,利用△CBP为等腰直角三角形即可求得平板手推车的长度不能超过多少米.【解答】解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴GP=PO﹣OG=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CG=2GP=4(m).故答案为:4【点评】本题主要考查了勾股定理的应用以和等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【考点】勾股定理.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.【考点】勾股定理.【专题】新定义.【分析】(1)直接根据“勾股三角形”的定义,判断得出即可;(2)利用已知得出等量量关系组成方程组,进而求出x+y的值;(3)过B作BH⊥AC于H,设AH=x,利用勾股定理首先得出AH=BH=,HC=1,进而得出∠A=45°,∠C=60°,∠B=75°,即可得出结论.【解答】(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.【点评】此题主要考查了新定义、多元方程组解法、勾股定理和锐角三角函数关系,利用勾股定理得出AH,HC的长是解题关键.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【考点】勾股定理的应用.【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100∴AB=AO﹣BO=(100﹣100)≈73米,∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,∴此车超过每小时80千米的限制速度.【点评】本题考查了解直角三角形的应用,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形与勾股定理练习题(一)
一.填空题
1.一个矩形的抽斗长为24cm ,宽为7c m,在里面放一根铁条,那么铁条最长可以是 .
2.在Rt △A BC 中,∠C =90°,BC =12cm ,S△ABC =30cm 2
,则AB = .
3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方
形A ,B,C ,D 的面积之和为___________cm 2。

5.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

7.已知两条线段的长为5c m 和12c m ,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.
8.一个三角形三边之比为2:5:3,则这个三角形的形状是 . 9.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________. 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿 纸箱爬到B点,那么它所行的最短路线的长是____________.
11.如图,在△ABC 中,AD 平分∠BA C,A B=AC -BD ,则∠B ∶∠C 的值是___________。

12.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若
150BAC ∠=,则θ∠的度数是 .
二.选择题
1、若Rt ABC 中,90C ︒
∠=且c=37,a =12,则b=( )
A 、50
B 、35 C、34 D 、26
2、如图,平行四边形AB CD 对角线AC,BD 交于O,过O 画直线EF 交AD 于E , 交BC 于F ,,则图中全等三角形共有( ) (A )7对 (B )6对 (C)5对 (D)4对
3.如图,△DAC 和△EBC均是等边三角形,AE、B D分别与C D、CE 交于点M 、N,有如下结论:① △ACE ≌△D CB ; ② CM =CN;③ AC=DN 。

正确结论的个数是( ).(A) 3个 (B )2个 (C)1个(D)0个
4.如图,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC交BC于D ,DE ⊥A B于D ,若A B=1
A B C D
7cm D B
C
A 第3题
A
B
A
C
D
A
E
B θ
D
C
B
A
0,则△BDE 的周长等于____.
5如图,直线l 过正方形AB CD的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .
6.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )
A 、56ﻩﻩ B、48ﻩ C 、40ﻩﻩﻩD、32
7.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40ﻩ B、80ﻩﻩ C 、40或360ﻩ D 、80或360 8.下列各组数中,能构成直角三角形的是( )
A、4,5,6 B 、1,1,2 C、6,8,11 D 、5,12,23 9.已知a、b、c 是三角形的三边长,如果满足2
(6)810
0a b c -+-+-=,则三角形的形状是
( ) A 、底与边不相等的等腰三角形B 、等边三角形 C 、钝角三角形 D 、直角三角形 10.正方形的面积是2,它的对角线长为( ) A 、1 B 、2 C 、2 D、
2
2
11一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,另一轮船12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A 、36 海里 B 、48 海里C 、60海里 D、84海里 三.简答题
1、如图,在四边形ABCD 中,BC >BA ,AD=CD,BD 平分ABC ∠,
求证: 0
180=∠+∠C A
2.小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2
,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?
3、如图、,CD 是AB 上的高,A C=4,BC=3, 95
DB =
E
D C B
A D
C
B
A
2.6m
4m
(1)求AD 的长
(2)ABC 是直角三角形吗?请说明理由
4、如图、四边形ABCD 中,6AB AD ==, 60A ︒
∠=, 150ADC ︒
∠=,已知四边形的周长为30,求ABCD S 四边形
5.如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.
6.如图,△ACB 和△ECD 都是等腰直角三角形,A,C ,D 三点在同一直线上,连结BD ,A E,并延长AE 交BD 于F.
(1)求证:△ACE ≌△BC D.ﻩ
(2)直线A E与B D互相垂直吗?请证明你的结论.
7.已知:如图,△ABC 中,∠A BC =45°,C D⊥AB 于D,BE 平分∠ABC ,
且B E⊥AC 于E,与CD 相交于点F,H是BC 边的中点,连结DH 与BE 相交于点G 。

(!)求证:BF =AC ; (2)求证:CE =
1
2
BF ; (3)CE 与BG 的大小关系如何?试证明你的结论。

A
B C D
E
F D
C
B
A
8、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF 的理由;(2)如果AB=a,AC=b,求AE、BE的长.
11. 如图,已知:点C是∠FAE的平分线AC上一点,CE⊥AE,CF
E
D
G
F
C B
A
⊥AF,E、F为垂足。

点B在AE的延长线上,点D在AF上。

若AB=21,AD=9,BC=DC=10。

求AC的长。

相关文档
最新文档