最新-2018年高考数学试题分项版解析专题18 概率(学生版) 理 精品

合集下载

2018年各地高考真题分类汇编概率统计学生版完整版.doc

2018年各地高考真题分类汇编概率统计学生版完整版.doc

概率统计1.(2018年全国一·文科3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018年全国二·文科5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.3.(2018年全国三·文科5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.74.(2018年全国三·文科14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.5.(2018年全国一·文科19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水00.1,0.10.2,0.20.3,0.30.4,0.40.5,0.50.6,0.60.7,0.60.50.40.3量频数1 32 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量00.1,0.10.2,0.20.3,0.30.4,0.40.5,0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)6.(2018年全国二·文科18)(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;y y t t 1,2,,17L ?30.413.5y t t 1,2,,7L ?9917.5y t(2)你认为用哪个模型得到的预测值更可靠?并说明理由.7.(2018年全国三·文科18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式m m m mm(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.8.(2018年北京·文科17)电影公司随机收集了电影的有关数据,经分类整理得到下表:22()()()()()n adbc K a b c d a c b d 2()0.0500.0100.0013.8416.63510.828P K k k电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510 好评率0.4 0.2 0.15 0.25 0.2 0.1 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)9.(2018年天津·文科15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.学&科网(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.高考赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

2018年普通高等学校招生全国统一考试数学分类解析—概率统计一.选择题:1. (安徽理)(10).设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示。

则有( A ) A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 (B )A.16625 B.96625 C.192625D.2566253. (福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 (C )A.12125 B.16125 C.48125 D.961254. (广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .125.(湖南理) 4.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46. (江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C )A .1180 B .1288 C .1360D .14807. (辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B ) (A )511(B )681 (C )3061(D )40819.(山东理) (8)右图是根据《山东统计年整2018》中的资料作成的1997年至2018年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2018年我省城镇居民百户家庭人口数的平均数为(B )(A )318.6 (B )318.6 (C)318.6 (D)301.6 10.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )AB C .3D .8510.(陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 11.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D )(A)15(B)14(C)13(D)1212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法7420136203851192(C)随机数表法 (D)分层抽样法13.(重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文) (11).为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85, [)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是 13 .2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 318 318 318 318 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 318 318 318 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;3 127 7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 734 3 2 35 6甲乙② .以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). (2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3).甲品种棉花的纤维长度的中位数为318mm ,乙品种棉花的纤维长度的中位数为318mm . (4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3. (湖北文)11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 10 . 4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .5. (湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1m =4()m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .6. (湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。

2018届全国百套高考数学模拟试题分类汇编-183概率与统计解答题+精品推荐

2018届全国百套高考数学模拟试题分类汇编-183概率与统计解答题+精品推荐

A 1A 2A 3N2018届全国百套高考数学模拟试题分类汇编18概率与统计三、解答题1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.(1)求3个旅游团选择3条不同的线路的概率 (2)求恰有2条线路没有被选择的概率. (3)求选择甲线路旅游团数的期望.解:(1)3个旅游团选择3条不同线路的概率为:P 1=834334=A(2)恰有两条线路没有被选择的概率为:P 2=16943222324=⋅⋅A C C (3)设选择甲线路旅游团数为ξ,则ξ=0,1,2,3P (ξ=0)=6427433= P (ξ=1)=6427433213=⋅C P (ξ=2)= 64943313=⋅C P (ξ=3)= 6414333=C ∴ξ的分布列为:∴期望E ξ=0×6427+1×6427+2×649+3×641=4332214、(安徽省皖南八校2018届高三第一次联考)如图,在某城市中,M,N两地之间有整齐的方格形道路网,1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处,今在道路网M、N处的甲、乙两人分别要到M,N处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止。

(1)求甲经过2A 的概率;(2)求甲、乙两人相遇经2A 点的概率;(3)求甲、乙两人相遇的概率;解:(1)甲经过2A 到达N,可分为两步:第一步:甲从M经过2A 的方法数:13C 种;第二步:甲从2A 到N的方法数:13C 种;所以:甲经过2A 的方法数为213)(C ;所以:甲经过2A 的概率209)(36213==C C P (2)由(1)知:甲经过2A 的方法数为:213)(C ;乙经过2A 的方法数也为:213)(C ;所以甲、乙两人相遇经2A 点的方法数为: 413)(C =81;甲、乙两人相遇经2A 点的概率40081)(3636413==C C C P(3)甲、乙两人沿最短路径行走,只可能在1A 、2A 、3A 、4A 处相遇,他们在)4,3,2,1(=i A i 相遇的走法有413)(-i C 种方法;所以:433423413403)()()()(C C C C +++=164甲、乙两人相遇的概率10041400164==P 5、(江西省五校2018届高三开学联考)下表为某班英语及数学成绩的分布.学生共有50人,成绩分1~5五个档次.例如表中所示英语成绩为4分、数学成绩为2分的学生为5人.将全班学生的姓名卡片混在一起,任取一枚,该卡片同学的英语成绩为x ,数学成绩为y 。

高三数学-2018年高考题分章节汇编-概率 精品

高三数学-2018年高考题分章节汇编-概率 精品

2018年高考题分章节汇编第十一章 概率一、选择题1. (2018年高考·广东卷8)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为( C ) A .61 B .365 C .121 D .21 2.(2018年高考·湖北卷·理12)以平行六面体ABCD —A ′B ′C ′D ′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为( A )A .385367B .385376C .385192D .38518 3.(2018年高考·辽宁卷3)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( D )A .10100610480C C C ⋅B .10100410680C C C ⋅ C .10100620480C C C ⋅D .10100420680C C C ⋅ 4.(2018年高考·江西卷·理12)将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为 ( A )A .561B .701C .3361D .4201 5.(2018年高考·山东卷·理9文10)10张奖券中只有3张有奖,5个人购买,至少有1人中奖的概率是 ( D )A .310B .112C .12D .11126.(2018年高考·天津卷·理7)某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为 ( A )A .12581B .12554C .12536D .12527 7.(2018年高考·天津卷·文3)某人射击一次击中的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为 ( B)A .12581 B .12554 C .12536 D .12527 二、填空题 1. (2018年春考·上海卷6)某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是 (结果用最简分数表示). 2601 2.(2018年高考·上海卷·理8文8)某班有50名学生,其中15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是__________.(结果用分数表示)73 3.(2018年高考·重庆卷·理15)某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 . 12845 4.(2018年高考·重庆卷·文15)若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .4517 5.(2018年高考·天津卷·文16)在三角形的每条边上各取三个分点(如图)以这9个分点为顶点可画出若干个三角形若从中任意抽取一个三角形,则其三个顶点分别落在原三角形的三条不同边上的概率为__________(用数字作答)31三、解答题1.(本小题共13分)(2018年高考·北京卷·文18)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为,32求:(Ⅰ)甲恰好击中目标2次的概率;(Ⅱ)乙至少击中目标2次的概率;(Ⅲ)乙恰好比甲多击中目标2次的概率.解:(I )甲恰好击中目标2次的概率为.83)21(323=C (II )乙至少击中目标2次的概率为.2720)32(31)32(333223=+⋅C C (III )设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2).6191181)21()32()21(31)32(313333303223=+=⋅+⋅⋅=C C C C所以,乙恰好比甲多击中目标2次的概率为.612.(本小题满分12分)(2018年高考·福建卷·文18)甲、乙两人在罚球线投球命中的概率分别为5221与. (Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.本小题主要考查概率的基本知识,运用数学知识解决问题的能力,以及推理和运算能力. 满分12分.解:(Ⅰ)依题意,记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则 .53)(,21)(,52)(,21)(====B P A P B P A P ∵“甲、乙两人各投球一次,恰好命中一次”的事件为B A ⋅+⋅.2152215321)()()(=⨯+⨯=⋅+⋅=⋅+⋅∴B A P B A P B A B A P 答:甲、乙两人在罚球线各投球一次,恰好命中一次的概率为.21 (Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不命中”的概率为100953532121=⨯⨯⨯=P ∴甲、乙两人在罚球线各投球两次至少有一次命中的概率 .10091100911=-=-=P P 答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为.10091 3.(本小题满分12分)(2018年高考·湖北卷·文21)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).本小题主要考查概率的基础知识和运算能力,以及运用概率的知识分析和解决实际问题能力.解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为 );1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为 .34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p4.(本小题满分14分)(2018年高考·湖南卷·文20)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I )3个景区都有部门选择可能出现的结果数为!324⋅C (从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P (A 1)=.943!3424=⋅C (II )解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P (A 3)=271334=,事件A 2的概率为 P (A 2)=1-P (A 1)-P (A 3)=.2714271941=-- 解法二:恰有2个景区有部门选择可能的结果为).!2(32414C C +⋅(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214⋅C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有24C 种不同选法).所以P (A 2)=.27143)!2(342424=+⋅C C 5.(本小题满分12分)(2018年高考·江西卷·文19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率.解:(1)设ξ表示游戏终止时掷硬币的次数,设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-715||ξξn m n m ,可得:.7,5:;7,6,11,6;5,5,00,5的取值为所以时或当时或当ξξξ==========n m n m n m n m .649645322)21(2)21(2)7()5()7(7155=+=+⨯==+==≤C P P P ξξξ 6.(本小题满分13分)(2018年高考·重庆卷·文18)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87, 且各道工序互不影响.(Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率. (Ⅰ)解:1078798109=⨯⨯=P ; (Ⅱ)解法一: 该种零件的合格品率为107,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)103(13=- 解法二:恰好取到一件合格品的概率为189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)107(103)107()103(107333223213=+⋅+⋅⋅C C C 7.(本小题满分12分,每小问满分4分)(2018年高考·江苏卷20)甲、乙两人各射击一次,击中目标的概率分别是32和43。

最新-2018年高考数学真题汇编 13:概率 理 精品

最新-2018年高考数学真题汇编 13:概率 理 精品

2018高考真题分类汇编:概率1.【2018高考真题辽宁理10】在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A) 16 (B) 13 (C) 23 (D) 45【答案】C2.【2018高考真题湖北理8】如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π【答案】A 3.【2018高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是 A.49 B.13 C.29 D.19 【答案】D4.【2018高考真题福建理6】如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A.14B. 15C. 16D. 17【答案】C.5.【2018高考真题北京理2】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π (D )44π- 【答案】D6.【2018高考真题上海理11】三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。

【答案】32 7.【2018高考真题新课标理15】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为【答案】83 8.【2018高考江苏6】(5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ . 【答案】35。

2018年数学高考分类汇编解答题(理)02——概率与统计

2018年数学高考分类汇编解答题(理)02——概率与统计

概率与统计1.(2018天津卷理)16.(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X . 【解析】16.本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分. (I )(i )解:设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i ==则2132322531().5C C P A C C =⋅=(ii )解:设“在1次游戏中获奖”为事件B ,则23B A A =,又22111322222222253531(),2C C C C C P A C C C C =⋅+⋅= 且A 2,A 3互斥,所以23117()()().2510P B P A P A =+=+= (II )解:由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-====X 的数学期望()012.100501005E X =⨯+⨯+⨯= 2. (2018北京理)17.本小题共13分以下茎叶图记录了甲、乙两组各四名同学的植树棵树。

乙组记录中有一个数据模糊,无法确认,在图中以X 表示。

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。

(注:方差()()()2222121n s x x x xx x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… nx 的平均数)【解析】(17)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358()4358[(4122222=-+-+-+-=s(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。

最新--高考真题解析分类汇编(理科数学)18:概率与统计 Word版含解析 精品推荐

最新--高考真题解析分类汇编(理科数学)18:概率与统计 Word版含解析  精品推荐

2018高考试题解析分类汇编(理数)18:概率与统计一、选择题错误!未指定书签。

.(2018年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是18人,则该班的学生人数是()A.45B.50C.55D.60【答案】B第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m,则150.3m=,50m=。

选B.错误!未指定书签。

.(2018年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.18 B.18 C.18 D.18【答案】B使用系统抽样方法,从840人中抽取42人,即从20人抽取1人。

,所以从编号1~480的人中,恰好抽取24人,接着从编号481~720共240人中抽取18人。

故选B错误!未指定书签。

.(2018年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C对A选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A选项错。

对B选项,系统抽样要求先对个体进行编号再抽样,所以B选项错。

对C选项,男生方差为40,女生方差为30。

所以C选项正确。

最新-高考数学高考概率与统计2018大考点解析精品

最新-高考数学高考概率与统计2018大考点解析精品

的概率分别是 0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设
该城市时游览的景点数与没有游览的景点数之差的绝对值
.
ξ 表示客人离开
(Ⅰ)求 ξ 的分布及数学期望;
(Ⅱ)记“函数 f(x)=x2-3ξ x+ 1 在区间 [2,+∞ ) 上单调递增”为事件 A ,求事件
A 的概率 .
2、考查随机变量概率分布列与数列结合
高考概率与统计 10 大考点解析
概率与统计试题是高考的必考内容。 它是以实际应用问题为载体, 以排列组合和 概率统计等知识为工具, 以考查对五个概率事件的判断识别及其概率的计算和随机变 量概率分布列性质及其应用为目标的中档师, 预计这也是今后高考概率统计试题的考 查特点和命题趋向。下面对其常见题型和考点进行解析。
(Ⅰ) 在第一次灯泡更换工作中, 求不需要换灯泡的概率和更换 2 只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯 泡的概率;
(Ⅲ)当 p1=0.8, p2=0.3 时,求在第二次灯泡更换工作,至少需要更换 的概率(结果保留两个有效数字) .
4 只灯泡
考点 5 考查随机变量概率分布与期望计算
过的概率依次为 0.6, 0.7, 0.8, 0.9,求在一年内李明参加驾照考试次数
的分布列
和 的期望,并求李明在一年内领到驾照的概率 .
考点 6 考查随机变量概率分布列与其他知识点结合
1 考查随机变量概率分布列与函数结合 例 6.( 2018 湖南卷) 某城市有甲、乙、丙 3 个旅游景点,一位客人游览这三个景点
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为
规则如下:
求 数 列 an 的 通 项 公 式 ; 求

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为。

2018高考全国一卷理科数学答案解析和解析

2018高考全国一卷理科数学答案解析和解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1 【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0 ; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018年全国各省市高考数学真题及解析(高清精美版)

2018年全国各省市高考数学真题及解析(高清精美版)
卷天津卷北京卷以及上海卷浙江卷江苏卷总计在内的13份真题及超详细解析
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!

最新-2018年高考数学 高考试题+模拟新题分类汇编专题K

最新-2018年高考数学 高考试题+模拟新题分类汇编专题K

K 概率K1 随事件的概率19.K1、K5、K6[2018·浙江卷] 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列;(2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K2 古典概型15.K2[2018·重庆卷] 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).15.35[解析] 6节课共有A 66=720种排法,相邻两节文化课间最多间隔1节艺术课排法分两类:(1)两节相邻文化课之间没有艺术课间隔:可将三节文化课捆绑为一个元素,然后再与另三节艺术课进行全排列,排法有A 33A 44=144种;(2)三节文化课间都有1节艺术课间隔:有“文艺文艺文艺”与“艺文艺文艺文” 两种形式,其排法有2A 33A 33=72种;(3)三节文化课中有两节之间有一节艺术课,而另一节文化课与前两节文化课之一无间隔,可先对文化课进行全排,然后从3节艺术课选一节放入排好的3节文化课之间,再将此4节课看作一个元素与余下的2节艺术课进行全排,其排法有:A 33C 13C 12A 33=216种.综上可知,相邻两节文化课间最多间隔1节艺术课排法有144+72+216=432种,所以课表上的相邻两节文化课之间最多间隔1节艺术课的概率为432720=35.11.K2[2018·上海卷] 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).11.23[解析] 考查古典概率和组合问题,关键是把情况分析清楚,不要漏掉或者重复情况.所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.6.K2[2018·江苏卷] 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.6.35[解析] 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用.由通项公式a n =1×(-3)n -1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P =35.16.K2、K6[2018·福建卷] 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A .则P (A )=2+350=110.(2)依题意得,X 1的分布列为X 2(3)由(2)得,E (X 1)=1×25+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.7.K2、J1[2018·广东卷] 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.197.D [解析] 本题考查利用古典概型求解概率以及两个基本计数原理,解决本题的突破口是首先确定符合条件的两位数的所有个数,再找到个位是0的个数,利用公式求解,设个位数与十位数分别为y ,x ,则如果两位数之和是奇数,则x ,y 分别为一奇数一偶数:第一类x 为奇数,y 为偶数共有:C 15×C 15=25;另一类x 为偶数,y 为奇数共有:C 14×C 15=20. 两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P (A )=545=19.K3 几何概型10.K3[2018·辽宁卷] 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.4510.C [解析] 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.令AC =x ,CB =12-x ,这时的面积为S =x (12-x ),根据条件S =x (12-x )<32⇒x 2-12x+32>0⇒0<x <4或8<x <12,矩形面积小于32 cm 2的概率P =4-0+-12=23,故而答案为C.2.E5、K3[2018·北京卷] 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4B.π-22C.π6D.4-π42.D [解析] 设事件A :点到坐标原点的距离大于2.如图1-1,P (A )=S 2S =S -S 1S =4-π4.图1-16.K3、B13[2018·福建卷] 如图1-1所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为()A.14B.15C.16D.176.C [解析] 本题考查几何概型的计算与求解以及定积分的计算,解决本题的关键是利用定积分求出阴影部分的面积,再利用几何概型公式求解.阴影部分的面积是:S 阴影=⎠⎛01(x -x)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪ 10=23-12=16,利用几何概型公式得:P =S 阴影S 正方形=161=16. 8.K3[2018·湖北卷] 如图1-3所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1-2π B.12-1πC.2πD.1π8.A [解析] 如下图所示,不妨设扇形的半径为2a ,S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①,而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②. 由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2,所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 2=1-2π.故选A.15.C3、K3[2018·湖南卷] 函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图1-5所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若φ=π6,点P 的坐标为⎝⎛⎭⎪⎫0,332,则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.15.(1)3 (2) π4[解析] 考查三角函数f (x )=sin(ωx +φ)的图象与解析式,结合导数和几何概型,在陈题上有了不少的创新.作为填空题,第二问可在第一问的特殊情况下求解.(1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点⎝⎛⎭⎪⎫0,332代入得ωcos ⎝ ⎛⎭⎪⎫0+π6=332解得ω=3.(2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6,求得A ⎝ ⎛⎭⎪⎫π9,0, B ⎝ ⎛⎭⎪⎫5π18,-3,C ⎝ ⎛⎭⎪⎫4π9,0,故△ABC 的面积为S △ABC =12×3π9×3=π2,曲线段与x 轴所围成的区域的面积S =-⎪⎪f x 4π9π9=-sin ⎝ ⎛⎭⎪⎫4π3+π6+sin ⎝ ⎛⎭⎪⎫3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π4.10.L1、K3[2018·陕西卷] 图1-3是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )图1-3A .P =N1000 B .P =4N1000C .P =M1000 D .P =4M100010.D [解析] 本题主要考查循环结构的程序框图的应用,同时要兼顾考查学习概率的模拟方法中圆周率π的模拟,通过阅读题目和所给数据可知试验了1000次,M 代表落在圆内的点的个数,根据几何概型,π4=M 1000,对应的圆周率π为P =4M1 000.K4 互斥事件有一个发生的概率16.B11、B12、E3[2018·重庆卷] 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.K5 相互对立事件同时发生的概率16.B11、B12、E3[2018·重庆卷] 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.17.K5、K6[2018·湖南卷] 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110.X 的分布列为X E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980. 17.K5、K6[2018·安徽卷] 某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望).17.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=n m +n ·n +1 m +n +2=n n +1m +n m +n +2.(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1 A 2)=n n +n ·n n +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=n n +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是EX =n ×14+(n +1)×2+(n +2)×4=n +1.15.K5、I3[2018·课标全国卷] 某一部件由三个电子元件按图1-4方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.15.[答案] 38[解析] 解法一:设该部件的使用寿命超过1000小时的概率为P (A ).因为三个元件的使用寿命均服从正态分布N (1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P 1=12,P 2=12,P 3=12.因为P (A )=P 1P 2P 3+P 3=12×12×12+12=58,所以P (A )=1-P (A )=38.解法二:设该部件的使用寿命超过1000小时的概率为P (A ).因为三个元件的使用寿命均服从正态分布N (1000,502),所以元件1,2,3的使用寿命超过1000小时的概率分别为P 1=12,P 2=12,P 3=12.故P (A )=P 1P 2P 3+P 1P 2P 3+P 1P 2P 3=12×⎝ ⎛⎭⎪⎫1-12×12+⎝⎛⎭⎪⎫1-12×12×12+12×12×12=38.19.K1、K5、K6[2018·浙江卷] 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列;(2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K6 离散型随机变量及其分布列22.K6[2018·江苏卷] 设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).22.解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 12=111,于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611,所以随机变量ξ的分布列是因此E (x )18.K6[2018·江西卷] 如图1-4,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).(1)求V =0的概率;(2)求V 的分布列及数学期望EV .18.解:(1)从6个点中随机取3个点总共有C 36=20种取法,选取的3个点与原点在同一个平面内的取法有C 13C 34=12种,因此V =0的概率为P (V =0)=1220=35.(2)V 的所有可能取值为0,16,13,23,43,因此V 的分布列为EV =0×35+16×120+13×320+23×320+43×120=940.19.K6[2018·全国卷] 乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2.(1)B =A 0·A +A 1·A -,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48,P (B )=P (A 0·A +A 1·A -)=P (A 0·A )+P (A 1·A -)=P (A 0)P (A )+P (A 1)P (A -)=0.16×0.4+0.48×(1-0.4) =0.352.(2)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3.P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A -)=P (A 0)P (A -)=0.16×0.6=0.186, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.186 =0.418.E ξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3) =0.418+2×0.352+3×0.186 =1.400.16.B11、B12、E3[2018·重庆卷] 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.16.解:(1)因f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=x +x -2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值f (1)=3,无极大值.20.K6、K8[2018·陕西卷] 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.20.解:设Y 表示顾客办理业务所需的时间,用频率估计概率,得Y 的分布列如下:(1)A A 对应三种情形: ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P (A )=P (Y =1)P (Y =3)+P (Y =3)P (Y =1)+P (Y =2)P (Y =2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)解法一:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟. 所以P (X =0)=P (Y >2)=0.5;X =1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P (X =1)=P (Y =1)P (Y >1)+P (Y =2) =0.1×0.9+0.4=0.49;X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01. 所以X 的分布列为EX 解法二:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟, 所以P (X =0)=P (Y >2)=0.5;X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01; P (X =1)=1-P (X =0)-P (X =2)=0.49. 所以X 的分布列为EX19.I2、I4、K6、K8[2018·辽宁卷] 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”. (1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n ,19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:将2×2χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=-275×25×45×55=10033≈3.180.因为3.180<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=np =3×4=4.D (X )=np (1-p )=3×14×34=916.18.K6、B10[2018·课标全国卷] 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80. 所以y 关于n 的函数解析式为 y =⎩⎪⎨⎪⎧10n -80,n <16,80,n ≥16(n ∈N ). (2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76. X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.18.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小. 另外,虽然EX <EY ,但两者相差不大.故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.17.K5、K6[2018·湖南卷] 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率) 17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110.X 的分布列为X E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.20.K6、K7[2018·湖北卷] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9.求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.20.解:(1)由已知条件和概率的加法公式有:P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6.由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P X <P X =0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.17.I2、K6[2018·广东卷] 某班50位学生期中考试数学成绩的频率分布直方图如图1-4所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.17.解:(1)由题设可知(3×0.018+0.01+x +0.184)×10=1, 解之得x =0.018.(2)由题设可知,成绩在区间[80,90)内的人数为0.018×10×50=9, 成绩在区间[90,100]内的人数为0.018×10×50=3,所以不低于80分的学生人数为9+3=12,ξ的所有可能取值为0,1,2.P (ξ=0)=C 29C 212=611,P (ξ=1)=C 19C 13C 212=922,P (ξ=2)=C 23C 212=122.所以ξ的数学期望E ξ=0×611+1×922+2×122=12.17.K5、K6[2018·安徽卷] 某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望).17.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=n m +n ·n +1 m +n +2=n n +1m +n m +n +2.(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1 A 2)=n n +n ·n n +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=n n +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是EX =n ×14+(n +1)×2+(n +2)×4=n +1.16.K2、K6[2018·福建卷] 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A .则P (A )=2+350=110.(2)依题意得,X 1的分布列为X 2(3)由(2)得,E (X 1)=1×25+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车.19.K6、K7[2018·山东卷] 现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX . 19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736, (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C -D -)=P (B )P (C -)P (D -) =34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23 =19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23 =13, P (X =4)=P (B -CD ) =⎝ ⎛⎭⎪⎫1-34×23×23 =19, P (X =5)=P (BCD ) =34×23×23 =13. 故X 的分布列为所以EX =0×36+1×12+2×9+3×3+4×9+5×3=12.16.K6,K7[2018·天津卷] 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E ξ.16.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ随机变量ξ的数学期望E ξ=0×27+2×81+4×81=81.19.K1、K5、K6[2018·浙江卷] 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列;(2)求X 的数学期望E (X ).19.解:(1)由题意得X 取3,4,5,6,且P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.K7 条件概率与事件的独立性16.K6,K7[2018·天津卷] 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E ξ.16.解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ随机变量ξ的数学期望E ξ=0×27+2×81+4×81=81.s20.K6、K7[2018·湖北卷] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9.求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.20.解:(1)由已知条件和概率的加法公式有:P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6.由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P X <P X =0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.19.K6、K7[2018·山东卷] 现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX . 19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,。

2018年高考数学试卷真题附标准答案(理科)

2018年高考数学试卷真题附标准答案(理科)

2018年高考数学试卷真题附标准答案(理科)2018年高考试卷理科数学卷本试卷分选择题和非选择题两部分。

全卷共5页,满分150分,考试时间120分钟。

第I 卷(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式:球的表面积公式棱柱的体积公式24S R π= V Sh =球的体积公式其中S 表示棱柱的底面积,h 表示棱柱的高 343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++棱锥的体积公式其中12,S S 分别表示棱台的上、下底面积,13V Sh =h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)设函数,0,(),0,x x f x x x ?≥?=?-A .– 3B .±3C .– 1D .±12. (原创)复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. (原创)甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43 B.119 C.1 D.894. (改编)右面的程序框图输出的结果为() .62A .126B .254C .510D5. (改编)已知直线l ⊥平面α,直线m ?平面β,下面有三个命题:①//l m αβ?⊥;②//l m αβ⊥?;③//l m αβ?⊥ 其中假命题的个数为().3A .2B .1C .0D6. (改编)已知函数f (x )的图象如右图所示,则f (x )的解析式可能是()A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. (原创)等差数列{}n a 的前n 项和为n S ,且满足548213510Sa a -+=,则下列数中恒为常数的是( )A.8aB. 9SC. 17aD. 17S8. (改编)已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C的一条渐近线的垂线,垂足为H ,若2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为() A .2 B .3 C .2D . 3(第6题)9. (原创)已知,x y 满足不等式00224x y x y t x y ≥??≥?+≤??+≤?,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4B.[]4,6C.[]5,8D. []6,7 10. (改编)若函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。

最新-2018年高考数学试题解析分项版专题18概率理精品

最新-2018年高考数学试题解析分项版专题18概率理精品

解析: 因为甲乙两位同学参加同一个小组有 3 种方法, 两位同学个参加一个小组共有
种方法;所以,甲乙两位同学参加同一个小组的概率为
31 93
点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。
33 9
4. (2018 年高考广东卷理科 6) 甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就
. 当 K 正常工
作且 A1、A2 至少有一个正常工作时, 系统正常工作 . 已知 K、A1、A2 正常工作的概率依次为 0.9 、
0.8 、 0.8 ,则系统正常工作的概率为
A.0.960
B.0.864
C.0.720
D.0.576
答案: B
解析:系统正常工作概率为
C
1 2
0.9
0.8
(1
0.8)
0.9
取 2 瓶,则至少取到 1 瓶已过保质期的概率为
(结果用最简分数表示)
答案: 28 145
解析:因为 30 瓶饮料中未过期饮料有
30-3=27 瓶,故其概率为
P
1
C227 C320
28 .
145
5.(20 11 年高考重庆卷理科 13) 将一枚均匀的硬币投掷 6 次, 则正面出现的次数比反面出现的
次数多的概率为
, P ( 3)
32 2 3 2 2
3 2 2 12
3 2 2 12
故E
1
4
5
25
0
1
2
3
12 12 12 12 3
2. (2018 年高考江西卷理科 12) 小波通过做游戏的方式来确定周末活动,他随机地往单位圆
内投掷一点,若此点到圆心的距离大于

最新-【数学】2018年高考数学试题精编:20181概率 精

最新-【数学】2018年高考数学试题精编:20181概率 精

第十一章概率与统计一概率【考点阐述】随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.【考试要求】(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.【考题分类】(一)选择题(共6题)1.(安徽卷文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618【答案】C【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。

两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于. 【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.2.(北京卷文3)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是(A)45 (B)35(C)25 (D)153.(湖北卷理4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A512 B12 C712 D34【答案】C【解析】因为事件A,B中至少有一件发生与都不发生互为对立事件,故所求概率为1571P(A)P(B)=1-=2612-⨯,选C 。

4.(江西卷理11)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为1p 和2p .则A .12p p =B .12p p <C .12p p >D .以上三种情况都有可能【答案】B 【解析】考查不放回的抽球、重点考查二项分布的概率。

高三数学-2018年高考题分章节汇编-概率与统计 精品

高三数学-2018年高考题分章节汇编-概率与统计 精品

2018年高考题分章节汇编选修Ⅱ第一章概率与统计一、选择题1.(2018年高考.湖北卷.理11文12)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2, (270)并将整个编号依次分为10段。

如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是(D )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样2.(2018年高考·江西卷·文12)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为( A )A.0,27,78 B.0,27,83C.2.7,78 D.2.7,833.(2018年高考·江苏卷7)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(D)A.9.4,0.484 B.9.4,0.016 C.9.5,0.18 D.9.5,0.0164.(2018年高考·浙江卷·文6)从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( A ) A.0.53B.0.5C.0.47D.0.37二、填空题1.(2018年高考·湖南卷·理11文12)一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品. 56002.(2018年高考·山东卷·文13)某学校共有教师490人,其中不到40岁的有140人,岁即以上的有人。

2018年全国卷高考数学计算题真题解析

2018年全国卷高考数学计算题真题解析

2018年全国卷高考数学计算题真题解析2018年全国卷高考数学试卷是一份经典的试卷,对于备战高考的学生来说具有重要的参考价值。

本文将对2018年全国卷高考数学试卷中的计算题进行解析,帮助同学们更好地理解和掌握相关知识。

1. 题目一解析:这道题目是一道简单的四则运算题。

首先,我们先算括号内的乘法运算,即18×5=90。

然后,根据次序律,先乘法后加法,我们得到90+15=105。

因此,答案为105。

2. 题目二解析:这道题目是一道概率题。

根据题目中的描述,共有4只红球、3只蓝球和2只绿球。

因此,总共有9只球。

我们需要计算抽到红球的概率。

根据概率的定义,红球的概率等于红球的数目除以总球数,即4/9。

因此,答案为4/9。

3. 题目三解析:这道题目是一道三角函数题。

根据题目中的给定条件,我们可以先利用已知的两个角的正弦值和余弦值计算出这两个角的正弦差。

然后,根据正弦差公式sin(A-B)=sinAcosB-cosAsinB,我们可以算出正弦差的值。

最后,我们带入给定条件求解参数a和b的值。

经过计算,得出a=-3,b=2。

因此,答案为a=-3,b=2。

......通过对2018年全国卷高考数学试卷中的计算题进行解析,我们不仅可以学习具体的解题方法,还可以理解各题目背后的数学原理和思维逻辑。

这些题目中所涉及的知识点和解题方法对于我们备战高考、提高数学能力都具有指导意义。

希望同学们能够充分理解并掌握这些解题方法,在数学考试中取得优异的成绩。

总结:以上是对2018年全国卷高考数学计算题真题的解析。

在备战高考的过程中,通过分析真题解析,我们可以了解到高考数学试卷的题型和难度,学习解题技巧和思维方法,提高解题能力和应对考试的能力。

希望同学们能够认真学习和理解这些解析内容,为高考取得优异的成绩奠定坚实的基础。

加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考试题分项版解析数学(理科)专题12 概率(学生版)
一、选择题:
1. (2018年高考广东卷理科7)从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是( ) A.
49 B. 13 C. 29
D. 19
2.(2018年高考北京卷理科2)设不等式组⎩⎨
⎧≤≤≤≤2
0,
20y x ,表示平面区域为D ,在区域D 内随
机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )
4π (B )22π- (C )6
π (D )44π-
4.(2018年高考辽宁卷理科10)在长为12cm 的线段AB 上任取一点C.现作一矩形,领边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2
的概率为( ) (A)
16 (B) 13 (C) 23 (D) 4
5
二、填空题:
1. (2012年高考江苏卷6)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .
2.(2018年高考上海卷理科11)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).
4. (2018年高考湖南卷理科15)函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.
(1)若6
π
ϕ=
,点P 的坐标为(0,
2
),则ω= ;
(2)若在曲线段ABC与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为 .
5.(2018年高考重庆卷理科15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).
三、解答题:
2. (2018年高考广东卷理科17)(本小题满分13
分)某班50位学生期中考试数学成绩的频率分布
直方图如图4所示,其中成绩分组区间是:
[40,50][50,60][60,70][70,80][80,90][90,100]。

(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.
5. (2018年高考福建卷理科16)(本小题满分13分)
受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:
将频率视为概率,解答下列问题:
(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆
乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;
(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品
牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.
9. (2018年高考新课标全国卷理科18)(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,
如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n
)的函数解析式。

(单位:枝,n N
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率。

(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
请说明理由。

12.(2018年高考安徽卷理科17)(本小题满分12分)
某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束。

试题库中现共有n m +道 试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量。

(Ⅰ)求2X n =+的概率;
(Ⅱ)设m n =,求X 的分布列和均值(数学期望)。

16. (2018年高考全国卷理科19)(本小题满分12分)(注意:在试题卷上作答无效
.........)
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望。

相关文档
最新文档