高中数学必修三《分层抽样》名师讲义(含答案)

合集下载

苏教版数学必修3讲义:第2章 2.1.3 分层抽样

苏教版数学必修3讲义:第2章 2.1.3 分层抽样

2.1.3分层抽样1.正确理解分层抽样的概念.(重点)2.掌握分层抽样的一般步骤.(重点)3.能区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样.(难点、易混点)[基础·初探]教材整理1分层抽样阅读教材P48~P49“练习”上边的内容,并完成下列问题.1.分层抽样的概念当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比例实行抽样,这种抽样方法叫分层抽样.2.分层抽样的步骤(1)将总体按一定标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样或系统抽样).判断正误:(1)分层抽样实际上是按比例抽样.()(2)分层抽样中每个个体被抽到的可能性不一样.()(3)分层抽样中不能用简单随机抽样或系统抽样.()【解析】(1)√.由分层抽样的定义知该结论正确.(2)×.分层抽样是等可能抽样,每个个体被抽到的可能性相同. (3)×.在每层中抽样时,可能要用到简单随机抽样或系统抽样. 【答案】 (1)√ (2)× (3)× 教材整理2 三种抽样方法的比较阅读教材P 50“例3”上边的内容,并完成下列问题.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务的情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次是____________________.【导学号:11032034】【解析】 由于甲、乙、丙、丁四个地区有明显差异,所以在完成①时,需用分层抽样法.在丙地区中20个特大型销售点,没有显著差异,所以完成②宜采用简单随机抽样.【答案】 分层抽样、简单随机抽样。

人教A版高中数学必修三_第2章_21-213分层抽样2(有答案)

人教A版高中数学必修三_第2章_21-213分层抽样2(有答案)

人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1. 某市对大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若采用分层抽样的方法抽取一个样本,且中学生中被抽到的人数为150,则抽取的样本容量n等于()A.1500B.1000C.500D.1502. 某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8B.12C.16D.243. 某商场有四类食品,食品类别和种数见下表:现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.7B.6C.5D.44. 某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法二、填空题某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.三、解答题一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.参考答案与试题解析人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1.【答案】C【考点】分层抽样方法【解析】设抽到的大、中、小学生的人数分别为2×3×5x,由|3x=150,得x=50,所以n= 100+150+250=500故选C【解答】此题暂无解答2.【答案】D【考点】分层抽样方法频率分布直方图列举法计算基本事件数及事件发生的概率【解析】设放在该校门口的绿色公共自行车的辆数是x,则x36=21+2,解得x=24故选D【解答】此题暂无解答3.【答案】B【考点】分层抽样方法【解析】依题意有:20⋅10+2040+10+30+20=6种【解答】此题暂无解答4.【答案】B【考点】分层抽样方法收集数据的方法离散型随机变量的期望与方差【解析】此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【解答】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第①项调查总体中个体较少,应采用简单随机抽样法.故选B.二、填空题【答案】60【考点】分层抽样方法独立性检验系统抽样方法【解析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【解答】.该校一年级、二年级、三年级、四年级的本科生人数之比为4.5.5.6=60…应从一年级本科生中抽取学生人数为:300×44+5+5+6故答案为60.【答案】760【考点】分层抽样方法系统抽样方法收集数据的方法【解析】由题意知样本和总体比为200:1600=1.8,设抽取女生为X人,则男生为x+10,∵x+x+10=2x+10=200,解得x=95人,根据样本和总体比可得该校的女生人数为95×8=760,该校的男生人数为1600−760=840,故答案为840.【解答】此题暂无解答三、解答题【答案】见解析【考点】分层抽样方法收集数据的方法频率分布直方图【解析】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将30万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:00×33+2+5+2+3=60(人),300×23+2+5+2+3=40{人),300×53+2+5+2+3=100(人),300×23+2+5+2+3=40(人),300×33+2+5+2+3=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.【解答】此题暂无解答。

说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》

说课稿 人教版 高中数学必修三 第二章第一节《分层抽样》

分层抽样一、说教材1.教材分析《分层抽样》是人教版高中数学必修第三册第二章第一节的内容。

本节是在学习了前两节简单随机抽样和系统抽样的基础上,结合此两种随机抽样特点和适用范围,针对总体的复杂性,为提高样本的代表性,有学习掌握分层抽样这种随机抽样的必要性;而且本节为下节“用样本估计总体”的学习打下了基础。

因此,本节内容在学习统计学知识的过程中起到承上启下的重要过渡作用。

2. 教学目标根据以上对教学内容和结构的分析,又考虑到高二年级学生的知识水平,我制定了以下三维教学目标:首先,知识与技能目标是:理解分层抽样的概念;掌握分层抽样的一般步骤;能区分简单随机抽样、系统抽样和分层抽样,会选择适当的方法进行抽样。

其次,过程与方法目标是:通过对现实生活中实际问题进行分层抽样,感知有具体到一般的数学研究方法,培养概括和归纳的能力。

最后,情感态度和价值观目标是:通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,激发思考、分析、探求的学习激情。

3.教学重点和难点根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的教学重点为:正确理解分层抽样的定义,灵活应用分层抽样抽取样本。

根据本节课的内容,以及学生的心理特点和认知水平,确定本节课的教学难点为:恰当的选择三种抽样方法解决现实生活中的抽样问题。

二、说学情掌握学生的基本情况,对于把握和处理教材具有重要作用,所以接下来我来说一下学生情况。

高二的学生思维活跃,积极性高,已初步形成解决数学问题的合作探究能力。

知识经验较为丰富,具备了较强的抽象逻辑思维能力和演绎推理能力。

根据学生的这一心理发展特点,应在教学过程中注意引导和启发,从而促进学生思维发展水平的提高。

三、说教法教师是学习的组织者,引导者。

我会采取直观演示法、指导发现法、讲练结合法,三法结合并辅以多媒体教学工具,帮助学生理解体会本课的内容,突出本课的重点,突破难点,实现教学目标。

四、说学法科学的学习方法十分重要,它是打开知识宝库的“金钥匙”,是通向成功的“桥梁”。

人教课标版高中数学必修3《分层抽样》名师课件2

人教课标版高中数学必修3《分层抽样》名师课件2

A.180
B.240
C.480
D.720
巩固练习
1、某单位有职工160人,其中业务员有104人, 管理人员32人,后勤24人,现用分层抽样从中 抽取一容量为20的样本,则抽取业务人员、管
理人员、后勤各( B )人
A、13,3,4
B、13,4,3
C、7,4,9
D、12,4,9
2、某校有老师200人,男学生1200人,女学生 1000人,现用分层抽样的方法从所有师生中抽 取一个容量为n的样本,已知女学生中抽取的 人数为80,则n= 192
各自特点
从总体中逐 个抽取
联系
适用 范围
总体中 个体较 少
将总体平均分成 几部分,按预先 制定的规则在各 部分抽取
在起始部分 时采用简单 随机抽样
总体中 个体较 多
各层抽样 总体由
将总体分成几层, 时采用简 差异明
分层进行抽取 单随机抽 显的几
样或系统 部分组
抽样

分析(:2)三个学段中个体有较大差别,应如何 提高样本的代表性? 应考虑他们在样本中所占的比例。 (3)如何确定各学段所要抽取的人数? 按比例分配人数到各个阶段,得到各个学段
所要抽取的个体数.
新课讲解
假设某地区有高中生2400人,初中生10900人,小学生 11000人.此地区教育部门为了了解本地区中小学生的近视 情况及其形成原因,要从本地区的中小学生中抽取1%的学 生进行调查,你认为应当怎样抽取样本?
分层抽样
复习引入
简单随机抽样、系统抽样的特点是什么? 简单随机抽样:
①总体容量较小; ②逐个抽取; ③不放回抽取; ④每个个体被抽到的机会相等 系统抽样: ①总体容量较大; ②分段,按规定的间隔在各部分抽取; ③每个个体被抽到的机会相等.

新课标人教A版高中数学必修3分层抽样名师课件

新课标人教A版高中数学必修3分层抽样名师课件

例、一个单位的职工有500人,其中不到35岁的有125人, 35~49岁的有280人,50岁以上的有95人。为了了解该单位 职工年龄与身体状况的有关指标,从中抽取100名职工作为 样本,应该怎样抽取?
分析:这总体具有某些特征,它可以分成几个不同的部 分:不到35岁;35~49岁;50岁以上,把每一部分称为一个 层,因此该总体可以分为3个层。由于抽取的样本为100,所 以必须确定每一层的比例,在每一个层中实行简单随机抽样。
很喜爱 喜爱 一般 不喜爱
2400 4200 3800 1600
打算从中抽取60人进行详细调查,如何抽取?
三种抽样方法的比较
(4)按(3)中确定的数目在各层中随机抽取 个体,合在一起得到容量为n的样本.
注:
(1)分层抽样适用于总体由差异明显的几 部分组成的情况,每一部分称为层,在每一层 中实行简单随机抽样。这种方法较充分地利用 了总体己有信息,是一种实用、操作性强的方 法。而且更具代表性。
(2)分层抽样的一个重要问题是总体如何分 层,分多少层,这要视具体情况而定。总的原则 是:层内样本的差异要小,而层与层之间的差异 尽可能地大,否则将失去分层的意义。
解:抽取人数与职工总数的比是100:500=1:5,则各 年龄段(层)的职工人数依次是125:280:95=25:56:19, 然后分别在各年龄段(层)运用简单随机抽样方法抽取。
答:在分层抽样时,不到35岁、35~49岁、50岁以上的三个 年龄段分别抽取25人、56人和19人。
练习
一个电视台在因特网上就观众对其某一节目 的喜爱程度进行调查,参加调查的总人数为 12000人,其中持各种态度的人数如下所示:
分层抽样
当总体由差异明显的几部分组成时, 为了使样本充分地反映总体的情况,常 将总体分成互不交叉的层,然后按照各 层所占的比例进行抽样。

高中数学 2.1.3分层抽样讲解 新人教A版必修3

高中数学 2.1.3分层抽样讲解 新人教A版必修3

高中数学 2.1.3分层抽样讲解新人教A版必修3系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)将总体的N个个体编号(2)确定分段间隔k,对编号进行分段,当Nn(n是样本容量)是整数,取k=Nn;Nn不是整数时,先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除.(3)在第一段用简单随机抽样确定起始个体的编号L(L≤k)(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.(一)分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等,即保持样本结构与总体结构一致性。(二)分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。(3)各层分别按简单随机抽样或系统抽样的方法抽取。(4)综合每层抽样,组成样本。【说明】(1)分层需遵循不重复、不遗漏的原则。(2)抽取比例由每层个体占总体的比例确定。(3)各层抽样按简单随机抽样或系统抽样的方法进行。探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )A 、每层等可能抽样B 、每层不等可能抽样C 、所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n 样本,那么每个个体被抽到的可能性为 ( ) A.N 1B.n1 C.N n D.N n点拨:(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C 。(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选C 。 (三)、 简单随机抽样、系统抽样、分层抽样的比较 类 别 共同点各自特点 联 系 适用范围 简单随机抽样(1)抽样过程中每个个体被抽到的可能性相等 (2)每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体个数较少 系统抽样将总体均分成几部分,按预先制定的规则在各部分抽取在起始部分样时采用简随机抽样总体个数较多分层抽样将总体分成几层,分层进行抽取分层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成【例题精析】例1 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15C.10,5,30 D15,10,20[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。

高中数学人教A版必修三教学案:第二章第1节第3课时分层抽样-含答案

高中数学人教A版必修三教学案:第二章第1节第3课时分层抽样-含答案

第3课时分层抽样[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P60~P61,回答下列问题.(1)教材探究中你认为应当怎样抽取样本?提示:利用分层抽样方法抽取样本.(2)什么情况下适用分层抽样?提示:当总体中个体之间差异较大时可使用分层抽样抽取样本.2.归纳总结,核心必记(1)分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法.(2)分层抽样的步骤①根据已经掌握的信息,将总体分成互不相交的层;②根据总体中的个体数N和样本容量n计算抽样比k=nN;③确定第i层应该抽取的个体数目n i≈N i×k(N i为第i层所包含的个体数),使得各n i之和为n;④在各个层中,按步骤③中确定的数目在各层中随机抽取个体,合在一起得到容量为n 的样本.[问题思考](1)分层抽样中的总体有什么特征?提示:分层抽样中的总体是由差异明显的几部分组成.(2)有人说系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样的概念,故系统抽样是一种特殊的分层抽样,对吗?提示:不对.因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规则进行的,各层分段有联系,不是独立的,故系统抽样不同于分层抽样.[课前反思]通过以上预习,必须掌握的几个知识点:(1)什么是分层抽样?;(2)分层抽样的步骤:.背景:为了解学生视力情况,某校在开学初对400名学生进行视力抽查.其中高一学生1 200 人,高二有1 300 人,高三有1 500 人.[思考1]学校应怎样抽查这400名学生的视力?提示:由于高一、高二、高三年级学生的视力情况差别较大,因而可利用分层抽样的方法抽取学生进行视力抽查.[思考2]分层抽样有什么特点?名师指津:分层抽样的特点:①适用于总体由差异明显的几部分组成的情况;②更充分地反映了总体的情况;③等可能抽样,每个个体被抽到的可能性都相等.讲一讲1.下列问题中,最适合用分层抽样抽取样本的是()A.从10名同学中抽取3人参加座谈会B.红星中学共有学生1 600名,其中男生840名,防疫站对此校学生进行身体健康调查,抽取一个容量为200的样本C.从1 000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量[尝试解答]A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,适合用系统抽样;B中总体所含个体差异明显,适合用分层抽样.答案:B分层抽样的适用条件当已知总体由差异明显的几部分组成时,为保证所抽取的样本具有代表性,应采用分层抽样抽取样本.练一练1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某学校高一年级有18名女排运动员,要从中选出4人调查训练情况,记作②.那么完成上述两项调查应分别采用的抽样方法是( )A .①用简单随机抽样法,②用系统抽样法B .①用分层抽样法,②用简单随机抽样法C .①用系统抽样法,②用分层抽样法D .①用分层抽样法,②用系统抽样法解析:选B ①因家庭收入不同其社会购买力也不同,宜用分层抽样的方法.②因总体个数较少,宜用简单随机抽样法.[思考] 怎样确定分层抽样中各层入样的个体数?名师指津:在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.讲一讲2.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.[尝试解答] (1)设登山组人数为x ,游泳组中青年人、中年人、老年人所占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例为40%,50%,10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60; 抽取的中年人人数为200×34×50%=75; 抽取的老年人人数为200×34×10%=15. 即游泳组中,青年人、中年人、老年人分别应抽取的人数为60,75,15.分层抽样的步骤练一练2.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人,40人,100人,40人,60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.讲一讲3.①教育局督学组到校检查工作,临时需在每班各抽调两人参加座谈;②某班数学期中考试有14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样[思路点拨]根据三种抽样方法的特征、适用范围判断.[尝试解答]①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.答案:D三种抽样方法的适用范围三种抽样方法均为不放回、逐个、等可能抽样.当总体中的个体较少时,常用简单随机抽样;当总体中的个体较多,样本容量较大时,常用系统抽样,但在第一段内抽取个体时,用简单随机抽样;当总体是由差异明显的几部分组成时,采用分层抽样,但在各层内抽取个体时,可用简单随机抽样或系统抽样.练一练3.某学院A、B、C三个专业共有1 200名学生,其中A专业有380名学生,B专业有420名学生,为调查这些学生勤工俭学的情况,要从中抽取一个容量为120的样本,记为①;某中学高二年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②;从某厂生产的802辆轿车中抽取8辆测试某项性能,记作③.则完成上述3项应分别采用的抽样方法是()A.①用简单随机抽样,②用系统抽样,③用分层抽样。

高中数学必修三课时训练:213分层抽样(含答案)讲解

高中数学必修三课时训练:213分层抽样(含答案)讲解

数学·必修3(苏教版)第2章统计2.1抽样方法2.1.3 分层抽样基础巩固1.某大学共有本科生10 000人,其中一、二、三、四年级的学生比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生为()A.160人B.80人C.120人D.40人答案:D2.简单随机抽样、系统抽样、分层抽样之间的共同点是() A.都是从总体中逐个抽取B.将总体分成几部分,按事先规定的要求在各部分抽取C .抽样过程中每个个体被抽取的机会相同D .将总体分成几层,分层进行抽取 答案:C3.一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是________.解析:依据概念,区分三种抽样. 答案:系统抽样4.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本,那么高一、高二、高三各年级抽取人数分别为________.解析:对应设x ,y ,z ,由300x =200y =400z =90045,可直接求出.答案:15,10,205.某公司有2 000名员工,其中高层管理人员占5%,属于高收入者;中层管理人员占15%,属于中等收入者;一般员工占80%,属于低收入者,现对该公司员工的收入情况进行调查,拟调查10%的员工,应当怎样进行抽样?解析:按收入水平分层,2 000×10%=200(人),200×5%=10(人),200×15%=30(人),200×80%=160(人),故应从高层管理人员中抽取10人,从中层管理人员中抽取30人,从一般员工中抽取160人,再对这200人的收入调查.6.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解析:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取工程师人数为n 36×6=n 6人,技术人员人数为n 36×12=n 3人,技工人数为n 36×18=n2人,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n只能取6.即样本容量n=6.7.对某单位1 000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:试利用上述资料,设计一个抽样比为110的抽样方法.解析:因为抽样比为1 10,故只需从1 000人中抽取1 000×110=100(人).故从任职5年以下的人中抽取300×110=30(人);任职5~10年的人中抽取500×110=50(人);任职10年以上的人中抽取200×110=20(人).能力升级8.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.8 B.6 C.3 D.30解析:分层抽样中每个个体被抽到的可能性相等,则抽取的植物油类与果蔬类食品种数之和是20100×(10+20)=6.答案:B9.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②,③都不能为系统抽样B.②,④都不能为分层抽样C.①,④都可能为系统抽样D.①,③都可能为分层抽样解析:本题主要考查系统抽样及分层抽样的概念.答案:D10.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:由分层抽样的定义可知,该抽样为按比例的抽样.答案:分层抽样法11.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌,现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的婴儿奶粉的品牌数是7,则n=________.答案:2012.某校高一、高二和高三年级学生数分别为n1,n2,n3,为了解学生视力情况,现用分层抽样抽取容量为n0的样本,则在高一抽的人数占高一总人数的比例是________.答案:n0n1+n2+n313.某单位有2 000名职工,老年、中年、青年分别在管理、技术开发、营销、生产各部门中,如下表所示:(1)(2)若要开一个25人参加的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查市民对北京奥运会筹备情况的了解,则应怎样抽取?解析:要达到什么样的目的,就应该考虑怎样抽取样本才具有合理公正性,这就涉及如何使用恰当的抽样方法.(1)因为身体状况主要与年龄有关,所以可以按老年、中年、青年分层抽样法进行抽样,要抽取40人,可以在老年、中年、青年职工中分别抽取4、12、24人.(2)因为出席这样的座谈会的人员应该代表各个部门,所以可以按部门分层抽样的方法进行抽样,要抽取25人,可以在管理、技术开发、营销和生产各部门的职工中分别随机抽取2、4、6、13人.(3)因为对北京奥运会筹备情况的了解与年龄、部门关系不大,所以可以用系统抽样或简单随机抽样的方法抽取样本.14.中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一位住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?解析:调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是:上网而且登陆某网址的人群,那些不能上网的人群,或者不登陆某网址的人群就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.。

2019-2020年高中数学新人教版必修3教案:第2章 2-1-3 分层抽样 Word版含答案

2019-2020年高中数学新人教版必修3教案:第2章 2-1-3 分层抽样 Word版含答案

2019-2020年高中数学新人教版必修3教案:第2章2-1-3 分层抽样Word版含答案1.记住分层抽样的特点和步骤.(重点)2.会用分层抽样从总体中抽取样本.(重点、难点)3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)[基础·初探]教材整理1分层抽样的概念阅读教材P60~P61上半部分内容,完成下列问题.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.某学校三个兴趣小组的学生人数分布如下表:(每名同学只参加一个小组)(单位:人)从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.【解析】因为3045+15+30+10+a+20=1245+15,所以解得a=30.【答案】30教材整理2分层抽样的适用条件阅读教材P61“探究”上面的内容,完成下列问题.分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.分层抽样的步骤1.判断(正确的打“√”,错误的打“×”)(1)分层抽样实际上是按比例抽样.()(2)分层抽样中每个个体被抽到的可能性不一样.()(3)分层抽样中不能用简单随机抽样和系统抽样.()【答案】(1)√(2)×(3)×2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解析】因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.【答案】 C3.有一批产品,其中一等品10件,二等品25件,次品5件.用分层抽样从这批产品中抽出8件进行质量分析,则抽取的一等品有____________件.【解析】抽样为810+25+5×10=2.【答案】 2[小组合作型](1) ()A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1 000名工人中,抽取100名调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行() A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽个体数量相同【精彩点拨】当总体由差异明显的几部分组成时,该样本的抽取适合用分层抽样,结合(1)(2)中的四个选项及分层抽样的特点可对(1)(2)作出判断.【尝试解答】(1) A中总体个体无明显差异且个数较少,适合用简单随机抽样;C和D中总体个体无明显差异且个数较多,适合用系统抽样;B中总体个体差异明显,适合用分层抽样.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.【答案】(1)B(2)C1.使用分层抽样的前提分层抽样的适用前提条件是总体可以分层、层与层之间有明显区别,而层内个体间差异较小.2.使用分层抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.[再练一题]1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【解析】由于被抽取的个体属性有明显的差异,因此宜采用分层抽样法.【答案】 D10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.【精彩点拨】 观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→成样【尝试解答】 ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥.∵10020=5,∴105=2,705=14,205=4.∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.分层后,各层的个体较多时,可采用系统抽样或简单随机抽样取出各层中的个体,一定要注意按比例抽取.[再练一题]2.某公司生产三种型号的轿车,产量分别是1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取________辆、________辆、________辆.【解析】 三种型号的轿车共9 200辆,抽取样本为46辆,则按469 200=1200的比例抽样,所以依次应抽取 1 200×1200=6(辆),6 000×1200=30(辆),2 000×1200=10(辆).【答案】 6 30 10[探究共研型]探究1 【提示】 (1)分层抽样适用于已知总体是由差异明显的几部分组成的; (2)分成的各层互不交叉;(3)各层抽取的比例都等于样本容量在总体中的比例,即nN ,其中n 为样本容量,N 为总体容量.探究2 计算各层所抽取个体的个数时,若N i ·nN 的值不是整数怎么办? 【提示】 为获取各层的入样数目,需先正确计算出抽样比n N ,若N i ·nN 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多余的个体.探究3 分层抽样公平吗?【提示】 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N ,样本容量为n ,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n ·N i N ,每个个体被抽到的可能性是n i N i=1N i·n ·N i N =nN .异同?【提示】简单随机抽样是最基本的抽样方法,应用于系统抽样和分层抽样中.简单随机抽样所得样本的代表性与个体编号无关.系统抽样容易实施,可节约抽样成本.系统抽样所得样本的代表性与个体编号有关,如果个体随编号呈现某种特征,所得样本代表性很差.分层抽样应用最广泛,它充分利用总体信息,得到的样本比前两种抽样方法都具有代表性.三种抽样方法的特点及其适用范围如下表:选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个;(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个; (3)有甲厂生产的300个篮球,抽取10个; (4)有甲厂生产的300个篮球,抽取30个.【精彩点拨】 应结合三种抽样方法的使用范围和实际情况灵活使用各种抽样方法解决问题.【尝试解答】 (1)总体容量较小,用抽签法. ①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签; ③把号签放入一个不透明的袋子中,充分搅拌; ④从袋子中逐个抽取3个号签,并记录上面的号码; ⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样. ①确定抽取个数.因为3010=3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法. ①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机地确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10(个)个体;②在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.抽样方法的选取:(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;(3)采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =Nn ;当总体容量不能被样本容量整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =[Nn ][再练一题]3.下列问题中,采用怎样的抽样方法较为合理? (1)从10台电冰箱中抽取3台进行质量检查;(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;(3)体育彩票000 001~100 000编号中,凡彩票号码最后三位数为345的中一等奖.【解】1.下列实验中最适合用分层抽样法抽样的是()A.从一箱3 000个零件中抽取5个入样B.从一箱3 000个零件中抽取600个入样C.从一箱30个零件中抽取5个入样D.从甲厂生产的100个零件和乙厂生产的200个零件中抽取6个入样【解析】D中总体有明显差异,故用分层抽样.【答案】 D2.一批灯泡400只,其中20 W、40 W、60 W的数目之比是4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为() A.20,15,5B.4,3,1C.16,12,4 D.8,6,2【解析】三种灯泡依次抽取的个数为40×48=20,40×38=15,40×18=5.【答案】 A3.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为()A.7,5,8 B.9,5,6C.7,5,9D.8,5,7【解析】由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).【答案】 B4.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C 产品的数量是________件.【解析】抽样比为130∶1 300=1∶10,即每10个产品中抽取1个个体,又A产品的样本容量比C产品的样本容量多10,故C产品的数量是[(3 000-1 300)-100]×12=800(件).【答案】8005.某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:(1)求x的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?【解】(1)由x1 000=0.15,得x=150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,∴第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m名工人,则由m400=501 000,得m=20.∴应在第三车间抽取20名工人.学业分层测评(十一)分层抽样(建议用时:45分钟)[学业达标]一、选择题1.某地区为了了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽1100的居民家庭进行调查,这种抽样是()A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样【解析】由于居民按行业可分为不同的几类,符合分层抽样的特点.【答案】 C2.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6【解析】抽样比例为40800=120,故各层中依次抽取的人数为160×120=8(人),320×120=16(人),200×120=10(人),120×120=6(人).故选D.【答案】 D3.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层抽样的方法对球进行抽样,则应抽红球()A.33个B.20个C.5个D.10个【解析】设应抽红球x个,则1001 000=x50,则x=5.【答案】 C4.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()图2-1-1A.200,20 B.100,20C.200,10 D.100,10【解析】该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为 2 000×2%×50%=20.【答案】 A5.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③【解析】由三种抽样方法的特点.可知,选D.【答案】 D二、填空题6.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.【解析】应在丙专业抽取的学生人数是400150+150+400+300×40=16.【答案】167.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为_____________.【解析】依题意可知三年级学生人数为500,即总体中各年级的人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×28=16.【答案】168.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【解析】高二年级学生人数占总数的310,样本容量为50,则50×310=15.【答案】15三、解答题9.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?【解】(1)按老年、中年、青年分层抽样,抽取比例为402 000=150.故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为25 2 000=180,故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.10.某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的14,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的比例;(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.【解】(1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a,b,c,则有x·40%+3xb4x=47.5%,x·10%+3xc4x=10%,解得b=50%,c=10%.故a=100%-50%-10%=40%,即参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为40%,50%,10%.(2)参加长白山之旅的高一教师应抽取人数为200×34×40%=60;抽取的高二教师人数为200×34×50%=75;抽取的高三教师人数为200×34×10%=15. [能力提升]1.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为() A.8B.11C.16 D.10【解析】若设高三学生数为x,则高一学生数为x2,高二学生数为x2+300,所以有x+x2+x2+300=3 500,解得x=1 600.故高一学生数为800,因此应抽取高一学生数为800 100=8.【答案】 A2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为() A.60 B.80C .120D .180【解析】 11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁学生中抽取的问卷份数为360×13=120(份),故选C. 【答案】 C3.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求得样本容量为________.【解析】 总体容量N =36.当样本容量为n 时,系统抽样间隔为36n ∈N *,所以n 是36的约数; 分层抽样的抽样比为n 36,求得工程师、技术员、技工的抽样人数分别为n 6,n3,n2,所以n 应是6的倍数,所以n =6或12或18或36.当样本容量为n +1时,总体中先剔除1人时还有35人,系统抽样间隔为35n +1∈N *,所以n 只能是6.【答案】 64.某中学举行了为期3天的春季运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?【解】 (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量=120,总体个数=500+3 000+4 000=7 500,则抽样比:1207 500=2125,所以有500×2125=8,3 000×2125=48,4 000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本. ④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

2018-2019版高中数学北师大版必修三文档 第一章(2.2)第一课时分层抽样Word版含答案

2018-2019版高中数学北师大版必修三文档 第一章(2.2)第一课时分层抽样Word版含答案

2.2分层抽样与系统抽样第1课时分层抽样学习目标 1.理解分层抽样的概念.2.会用分层抽样从总体中抽取样本(重点).3.能用分层抽样解决实际问题(难点).预习教材P12-13完成下列问题:知识点1分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样. 分层抽样具有如下特点:(1)适用于总体由差异明显的几部分组成的情况;(2)按比例确定每层抽取个体的个数;(3)在每一层进行抽样时,采用简单随机抽样或系统抽样的方法;(4)分层抽样能充分利用已掌握的信息,使样本具有良好的代表性;(5)分层抽样也是等机会抽样,每个个体被抽到的可能性都是样本容量n总体容量N,而且在每层抽样时,可以根据个体情况采用不同的抽样方法.【预习评价】1.分层抽样中要将总体中层次分明的几部分分层按比例抽取,其中“比例”一词如何理解?提示可从两个方面理解:一是所抽样本中各层个体数之比与总体中各层个体数之比相同;二是每层所抽个体数与该层个体总数之比等于样本容量与总体容量之比.2.分层抽样有什么优点?提示分层抽样时,每个个体被抽到的机会是均等的,由于分层抽样充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.知识点2分层抽样的步骤【预习评价】 为了保证分层抽样时每个个体等可能地被抽取,必须要求(正确的打√,错误的打×) (1)每层等可能抽取( ) (2)每层抽取的个体数相等( )(3)每层抽取的个体数可以不一样多,但必须满足抽取n i =n ·N iN (i =1,2,…,k )个个体(其中i 是层数,n 为抽取的样本容量,N i 是第i 层中个体的个数,N 是总体容量)( )(4)只要抽取样本容量一定,每层抽取的个体数没有限制( ) 提示答案 (1)× (2)× (3)√ (4)×题型一 对分层抽样概念的理解【例1】 有40件产品,其中一等品10件,二等品25件,次品5件.现从中抽出8件进行质量分析,则应采取的抽样方法是( )A.抽签法B.随机数法C.系统抽样D.分层抽样解析总体是由差异明显的几部分组成,符合分层抽样的特点,故采用分层抽样. 答案 D规律方法判断抽样方法是分层抽样,主要是依据分层抽样的特点:(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.【训练】在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个.方法2:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法正确的是()①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是1 5;②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征;④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征.A.①②B.①③C.①④D.②③解析根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是nN,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法2抽到的样本更有代表性,③正确,④错误.故①③正确.答案 B【例2】一个单位有职工500人,其中不到35岁的有125人,35岁至50岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解用分层抽样来抽取样本,步骤是:(1)分层:按年龄将500名职工分成三层:不到35岁的职工;35岁至50岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至50岁的职工中抽取280×15=56(人);在50岁以上的职工中抽取95×15=19(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【迁移1】(改变条件)把本题中的“其中不到35岁的有125人,35岁至50岁的有280人,50岁以上的有95人”改为“不到35岁的人数、35岁至50岁的人数、50岁以上的人数的比为5∶3∶2”,其他条件不变,应怎样抽取?解用分层抽样来抽取样本,步骤是:(1)分层:按年龄将500名职工分成三层,各层人数:不到35岁的职工510×500=250(人);35岁至50岁的职工310×500=150(人);50岁以上的职工210×500=100(人).(2)确定每层抽取个体的个数,抽样比为100500=15,则在不到35岁的职工中抽取250×15=50(人);在35岁至50岁的职工中抽取150×15=30(人);在50岁以上的职工中抽取100×15=20(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【迁移2】(变条件,变问法)某中学高中学生有900名,学校要从中选出9名同学作为国庆60周年庆祝活动的志愿者.已知高一有400名学生,高二有300名学生,高三有200名学生.为了保证每名同学都有参与的资格,学校采用分层抽样的方法抽取,求高一、高二、高三分别抽取学生的人数.解样本容量与总体容量的比为:9900=1100,所以在高一年级应抽取400×1100=4(人),在高二年级应抽取300×1100=3(人),在高三年级应抽取200×1100=2(人),即高一、高二、高三分别抽取学生的人数为4人、3人、2人.规律方法利用分层抽样抽取样本的操作步骤:(1)将总体按一定属性特征进行分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层的个体数占总体的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用简单随机抽样);(5)最后将每一层抽取的样本汇总合成样本.课堂达标1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是() A.简单随机抽样 B.抽签法C.随机数表法D.分层抽样解析从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层抽样.答案 D2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人解析先求抽样比nN=903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3 600×1120=30(人),乙校抽取5 400×1120=45(人),丙校抽取1 800×1120=15(人),故选B.答案 B3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是________.解析抽样比为1654+42=16,则一班和二班分别被抽取的人数是54×16=9,42×16=7.答案9,74.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.解析根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.答案605.一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个容量为300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.解因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照比例随机抽取各乡镇应抽取的样本.300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.(3)将(2)中抽取的300人合到一起,即得到一个样本.课堂小结1.对于分层抽样中的比值问题,常利用以下关系式解: (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律:(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法.(2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体是由差异明显的几部分组成时,可采用分层抽样法.基础过关1.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层抽样的方法对球进行抽样,则应抽红球( ) A.33个 B.20个 C.5个D.10个解析 由1001 000=x50,则x =5. 答案 C2.将A ,B ,C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A ,B ,C 三种性质的个体分别抽取( ) A.12,6,3 B.12,3,6 C.3,6,12D.3,12,6 解析 由分层抽样的概念,知A ,B ,C 三种性质的个体应分别抽取21×17=3,21×27=6,21×47=12. 答案 C3.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A.100B.150C.200D.250解析由题意得,70n-70=3 5001 500,解得n=100,故选A.答案 A4.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4 800-x)件.由题意,得5080=4 800-x4 800,解得x=1 800.答案 1 8005.一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是________.解析抽样比为40800=120,故各层抽取的人数依次为160×120=8,320×120=16,200×120=10,120×120=6.答案8,16,10,66.某商场有四类食品,其中粮食类、植物油类、动物类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,求抽取的植物油类与果蔬类食品种数之和.解分层抽样中,分层抽取时都按相同的抽样比nN来抽取,本题中抽样比为2040+10+30+20=15,因此植物油类应抽取10×15=2(种),果蔬类应抽20×15=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6.7.某网站欲调查网民对当前网页的满意程度,在登录的所有网民中收回有效贴子共50 000份,其中持各种态度的份数如下表所示:为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类中各应抽选出多少份?解 因为50050 000=1100,所以10 800100=108,12 400100=124,15 600100=156, 11 200100=112.故应从持四种态度的帖子中分别抽取108份,124份,156份,112份进行调查.能力提升8.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是( ) A.124 B.136 C.160D.16解析 在分层抽样中,每个个体被抽取的可能性都相等,且为样本容量总体容量.所以每个个体被抽取的可能性是20120=16. 答案 D9.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本; ②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样;Ⅱ分层抽样.其中问题与方法能配对的是( ) A.①Ⅰ,②Ⅱ B.①Ⅱ,②Ⅰ C.①Ⅱ,②ⅡD.①Ⅰ,②Ⅰ解析 对于①,由于箱子颜色差异较为明显,可采用分层抽样方法抽取样本;对于②,由于总体容量、样本容量都较小,宜采用简单随机抽样. 答案 B10.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的辆数为________.解析 设三种型号的轿车依次抽取x 辆,y 辆,z 辆,则有⎩⎪⎨⎪⎧x 1 200=y 6 000=z 2 000,x +y +z =46,解得⎩⎨⎧x =6,y =30,z =10.故填6,30,10.答案 6,30,1011.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析 分层抽样时,由于40岁以下年龄段占总数的50%,故容量为40的样本中在40岁以下年龄段中应抽取40×50%=20(人). 答案 2012.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求x ,y ;(2)若从高校B 相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.解 (1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:x 54=13⇒x =18,3654=y3⇒y =2,故x =18,y =2.(2)总体容量和样本容量较小,所以应采用抽签法,过程如下: 第一步,将36人随机的编号,号码为1,2,3,…,36, 第二步,将号码分别写在相同的纸片上,揉成团,制成号签;。

2017-2018学年高中数学北师大版必修三教师用书 第1章

2017-2018学年高中数学北师大版必修三教师用书 第1章

2.2 分层抽样与系统抽样1.通过实例,准确把握分层抽样、系统抽样的概念.(重点)2.会用分层抽样、系统抽样解决实际问题.(难点)3.了解各种抽样方法的适用范围,能根据具体情况选择恰当的抽样方法.(难点)教材整理1 分层抽样阅读教材P 12~P 13“抽象概括”以上部分,完成下列问题.1.分层抽样的概念将总体按其属性特征分成若干类型(有时称为层),然后在每个类型中按照所占比例随机抽取一定的样本,这种抽样方法通常叫作分层抽样,有时也称为类型抽样.2.对分层抽样的公平性的理解在分层抽样的过程中,每个个体被抽到的概率是相同的,与分层的情况无关.如果总体的个体数是N ,共分k 层,n 为样本容量,N i (i =1,2,3,…,k )是第i 层中的个体数,则第i 层中所要抽取的个体数n i =n ×N i N ,而每一个个体被抽取的可能性是n i N i =n N,与层数无关,所以对所有个体而言,其被抽到的概率是相同的,也就是说分层抽样是公平的.判断(正确的打“√”,错误的打“×”)(1)分层抽样中每层抽样的可能性是不相等的.( )(2)分层抽样时,样本是在各层中分别抽取.( )(3)分层抽样时,如果总体个数不能被样本容量整除,则应先剔除部分个体.( )【解析】 (1)×,每个个体被抽到的可能性相同.(2)√,由分层抽样的概念知正确.(3)√,由于考虑到实际意义,需剔除部分个体.【答案】 (1)× (2)√ (3)√教材整理2 系统抽样阅读教材P 13第三、四自然段,完成以下问题.系统抽样的概念将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法叫系统抽样,有时也叫等距抽样或机械抽样.判断(正确的打“√”,错误的打“×”)(1)系统抽样的分段段数与所抽取的样本容量的关系是相等.( )(2)系统抽样时每个个体被抽到的机会不同.( )(3)系统抽样时,如果总体个数不能被样本容量整除,则应先剔除部分个体.( )【解析】 (1)√,系统抽样时,分段的段数由所抽样本容量确定.(2)×,无论是系统抽样还是分层抽样,每个个体被抽到的机会都相等.(3)√,系统抽样时为了保证间隔k 为整数,应先剔除一部分个体.【答案】 (1)√ (2)× (3)√某企业共有3 200名职工,其中青、中、老年职工的比例为3∶5∶2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽到的可能性相同吗?【精彩点拨】 总体明显分三层,应按分层抽样法抽取样本. 【自主解答】 因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理. 因为青、中、老年职工的比例是3∶5∶2,所以应分别抽取:青年职工400×310=120(人); 中年职工400×510=200(人); 老年职工400×210=80(人). 由样本容量为400,总体容量为3 200可知,抽样比是4003 200=18,所以每人被抽到的可能性相同,均为18.1.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占的比例抽取.2.用分层抽样抽取样本时,需照顾到各层中的个体,所以每层抽取的比例应等于样本容量在总体中的比例.3.在分层抽样中,确定抽样比k 是抽样的关键.一般地,抽样比k =n N(N 为总体容量,n 为样本容量),按抽样比k 在各层中抽取个体,就能确保抽样的公平性.4.在每层抽样时,应采用简单随机抽样或系统抽样的方法进行.1.某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.【导学号:63580005】【解】 第一步:样本容量与总体容量的比为21210=110;第二步:确定各种商店要抽取的数目:大型商店:20×110=2(家),中型商店:40×110=4(家),小型商店:150×110=15(家);第三步:采用简单随机抽样在各层中分别抽取大型商店2家,中型商店4家,小型商店15家,综合每层抽样即得样本.位的平均用时,决定抽取10%的工人进行调查,如何采用系统抽样完成这一抽样?【精彩点拨】 624的10%约为62,而624不能被62整除.为保证“等距”抽样,应先从总体中剔除4人,剔除方法可以采用随机数法,再利用系统抽样法抽取样本.【自主解答】 第一步:由题意知,应抽取在岗职工62人作为样本,即分成62组,由于62462的商是10,余数是4,所以每组有10人,还剩4人.这时,抽样距是10; 第二步:用随机数法从这些职工中抽取4人并剔除,不进行调查;第三步:将余下的在岗职工620人进行编号,编号分别为000,001,002,…,619; 第四步:在第一组000,001,002,…,009这10个编号中,随机选定一个起始编号.每间隔10抽取一个编号,共抽62个编号,这样就抽取了容量为62的一个样本.1.解决本题时,对总体、个体先进行编号,然后依据样本容量确定分段数及每段间隔长度,再利用简单随机抽样法在第1段中抽取一个号码作为起始号码,并依次加间隔长度即可获取样本号码.2.系统抽样又称等距抽样,当给出总体数和样本容量后,应先确定组数和组距(注意一般组数等于样本容量/组距),在第一组抽取起始号码后,只需依次加间隔长度即可得到样本.2.相关部门对某食品厂生产的303盒月饼进行质量检验,需要从中抽取10盒,请用系统抽样法完成对此样本的抽取.【解】 第一步:将303盒月饼用随机的方式编号;第二步:从总体中剔除3盒月饼,将剩下的300盒月饼重新编号(分别为000,001,…,299),并分成10段;第三步:在第一段中用简单随机抽样抽取起始号码l ;第四步:将编号为l ,l +30,l +2×30,…,l +9×30的个体取出,组成样本.探究1 简单随机抽样是不放回抽样吗?【提示】 是不放回抽样.探究2 分层抽样时为什么要将总体分成互不重叠的层?【提示】 在总体中由于个体之间存在着明显的差异,为了使抽取的样本更合理、更具代表性,故将总体分成互不重叠的层,而后独立地抽取一定数量的个体.探究 3 系统抽样的第二步中,当N n不是整数时,从总体中剔除一些个体采用的方法是什么?影响系统抽样的公平性吗?【提示】 剔除一些个体可以用简单随机抽样的方法抽取,不影响系统抽样的公平性.选择恰当的抽样方法,并写出抽样过程.(1)有30个篮球,其中,甲厂生产的有21个,乙厂生产的有9个,现抽取10个作样品;(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,现取出3个作样品;(3)有甲厂生产的300个篮球,抽取10个作样品;(4)有甲厂生产的300个篮球,从中抽取30个作样品.【精彩点拨】 根据三种抽样方法的特点作出判断,然后按照各自的步骤写出抽样过程.【自主解答】 (1)因总体是由差异明显的几部分构成,可采用分层抽样的方法抽取.第一步:确定抽取个数.因为1030=13,所以甲厂生产的应抽取21×13=7(个),乙厂生产的应抽取9×13=3(个); 第二步:用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(2)总体容量较小,用抽签法.第一步:将30个篮球编号,编号为00,01, (29)第二步:将以上30个编号分别写在一张小纸条上,揉成小球,制成号签;第三步:把号签放入一个不透明的袋子中,充分搅匀;第四步:从袋子中逐个抽取3个号签,并记录上面的号码;第五步:找出与所得号码对应的篮球.(3)总体容量较大,样本容量较小,适宜用随机数法.第一步:将300个篮球用随机方式编号,编号为001,002, (300)第二步:在随机数表中随机的确定一个数作为开始,如第3行第5列的数“3”开始.任选一个方向作为读数方向,比如向右读;第三步:从数“3”开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到241,242,232,283,039,101,158,272,266,166这10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,适宜用系统抽样法.第一步:将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段; 第二步:在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;第三步:将编号为002,012,022,…,292的个体抽出,组成样本.三种抽样方法的比较:3.某社区有700户家庭,其中高收入家庭有225户,中收入家庭有400户,低收入家庭75户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某中学高二年级有12名篮球运动员,要从中选出3人调查投篮命中率情况,记作②;从某厂生产的802辆轿车中抽取40辆测试某项性能,记作③.为完成上述三项抽样,则应采取的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①分层抽样,②简单随机抽样,③系统抽样C.①简单随机抽样,②分层抽样.③系统抽样D.①分层抽样,②系统抽样,③简单随机抽样【解析】对于①.总体由高收入家庭、中收入家庭和低收入家庭差异明显的三部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样;对于②,总体中的个体数较少,而且所调查内容对12名调查对象是平等的,应采用简单随机抽样;对于③,总体中的个体数较多,且个体之间差异不明显,样本中个体数也较多,应采用系统抽样.【答案】 B1.简单随机抽样、系统抽样、分层抽样之间的共同点是( )A.都是从总体中逐个抽取B.将总体分成几部分,按事先确定的规则在各部分中抽取C.抽样过程中每个个体被抽取的机会相同D.将总体分成几层,分层进行抽取【解析】三种抽样的共同点是在抽样过程中每个个体被抽到的机会相同.【答案】 C2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解析】由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.【答案】 C3.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况.用分层抽样的方法从该学生中抽取一个容量为n的样本.已知高中学生抽取70人,则n的值为________.【导学号:63580006】【解析】由题意,得703 500=n3 500+1 500,解得n=100.【答案】1004.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.【解析】根据系统抽样的定义可得,样本中产品的编号间隔为16,再根据编号为28的产品在样本中,可得样本中产品的编号为12,28,44,60,76,故该样本中产品的最大编号为76.【答案】765.从某汽车制造公司生产的800辆轿车中随机抽取80辆测试某项性能,请用系统抽样法写出抽样过程.【解】第一步:将800辆汽车进行编号,编号如下:001,002,003, (800)第二步:分段,由于样本容量为80,所以可分80段,每段长度为10,分段情况如下:(001,002,…,010),(011,012,…,020),(021,022,…,030),(031,032,…,040),…,(791,792,…,800).第三步:在第1段中用简单随机抽样法抽取一个号码(如007)作为起始号.第四步:在后面的各段中依次加间隔10,即可得样本号码如:007,017,027,037, (797)这样将编号为007,017,027,…,797的轿车取出就组成了一个样本.。

数学必修3教材梳理 2.1.3分层抽样 含解析 精品

数学必修3教材梳理 2.1.3分层抽样 含解析 精品

庖丁巧解牛知识·巧学一、分层抽样的概念当已知总体由差异明显的几部分组成时,不宜用简单随机抽样和系统抽样,为了使样本更能充分地反映总体的情况,应将总体分成互不交叉的几部分,然后按照各部分所占的比例,从各部分中独立抽取一定数量的个体,再将各部分抽出的个体合在一起作为样本,这种抽样方法叫做分层抽样.其中所分成的每一部分叫层.根据定义可知,分层抽样使用的前提是总体可以分层,层与层之间有明显的区别,互不重叠,而层内个体间差异很小,每层中所抽取的个体数可按各层个体数在总体中所占的比例抽取,也就是各层抽取的比例都等于样本容量在总体中的比例,即总体容量样本容量.这样抽取能使所得到的样本结构与总体结构基本相同,可以提高样本对总体的代表性.深化升华 分层抽样具有以下主要特点:(1)适用于总体由差异明显的几部分组成的情况;(2)在每一层进行抽样时,采用简单随机抽样或系统抽样;(3)它能充分利用已掌握的信息,使样本具有良好的代表性;(4)它也是等可能性抽样,每个个体被抽到的可能性都是N n .而且在每层抽样时,可以根据具体情况采用不同的抽样方法.二、分层抽样的一般步骤分层抽样的操作步骤是:(1)分层:将总体按某种特征分成若干部分.(2)确定比例:计算各层的个体数与总体的个体数的比.计算出抽样比k=总体容量样本容量 (3)确定各层应抽取的样本容量.(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.(5)汇合成样本.学法一得 ①分层抽样时,各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;每一层抽样中采用简单随机抽样或系统抽样.②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.三、三种抽样方法的比较在具体情景中,需要我们准确地选择适当的抽样方法进行抽样.在各种方法间选择时,要遵循以下原则:(1)若总体由差异明显的几个层次组成,则宜用分层抽样法.当抽样比与各层的个体数的乘积是整数时,则该积就是该层的入样数;当抽样比与各层的个体数的乘积不是整数时,则该积经过四舍五入后就是该层的入样数.(2)若总体中没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.①当总体容量较小时宜用抽签法;②当总体容量较大,样本容量较小时宜用随机数表法;③当总体容量较大,样本容量也较大时宜用系统抽样法.三种抽样方法的优、缺点及相互之间的关系:简单随机抽样:简单随机抽样是最基本的抽样方法,其他的各种随机抽样方法中大都会用到它.其优点是简便易行,缺点是当容量较大时难于操作,个体差异明显时所得样本无代表性.系统抽样:优点是①系统抽样比其他随机抽样方法更容易实现,可节约抽样成本.②系统抽样比简单随机抽样的应用范围更广.它可以应用到个体有自然编号,但总体中个体的数目却在抽样时无法确定的情况(如生产线的产品的质量检验).缺点是系统抽样所得样本的代表性和具体的编号有关(简单随机抽样所得样本的代表性与个体的编号无关).如果编号的个体特征随编号变化呈现一定的周期性,可能会使系统抽样的代表性很差.分层抽样:优点是充分利用了已知的总体信息,得到的样本比前两种方法有更好的代表性,并且可得到各层的子样本以顾及各层的信息.简单随机抽样、系统抽样、分层抽样的共同点是在抽样过程中每个个体被抽到的可能性相等,体现了这些抽样方法的客观性和公平性.其中简单随机抽样是最简单和最基本的抽样方法,在进行系统抽样和分层抽样时都要用到简单随机抽样的方法,抽样方法经常交叉起来使用.对于个体数量很大的总体,可采用系统抽样,系统中每一均衡部分,又可采用简单随机抽样.典题·热题知识点一 分层抽样的概念例1 某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样思路解析:由于总体由差异明显的三部分组成,考虑用分层抽样.总体总人数为28+54+81=163(人).样本容量为36,若按36︰163取样本,无法得到整数解.故考虑先剔除1人,抽取比例变为36︰162=2︰9,则中年人取54×92=12(人),青年人取81×92=18(人), 应从老年人中剔除1人,老年人取27×92=6(人),组成容量为36的样本.∴应选D.答案:D误区警示通过以上的实例分析可以感悟到,在具体情景中,需要我们准确地选择适当的抽样方法进行抽样.各种方法间选择时,要遵循以下原则:(1)若总体由差异明显的几个层次组成,则宜用分层抽样法.当抽样比与各层的个体数的乘积是整数时,则该积就是该层的入样数;当抽样比与各层的个体数的乘积不是整数时,则该积经过四舍五入后就是该层的入样数.知识点二分层抽样的过程与步骤例2 选择合适的抽样方法抽样,写出抽样过程.(1)30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样;(3)有甲厂生产的300个篮球,抽取10个入样;(4)有甲厂生产的300个篮球,抽取30个入样.思路分析:应结合三种抽样方法的使用范围和实际情况灵活使用各种抽样方法解决问题. 解:(1)总体由差异明显的几个层次组成,需选用分层抽样法.第一步:确定抽取个数,30/10=3,所以甲厂生产的应抽取21/3=7个,乙厂生产的应抽取9/3=3个;第二步:用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本;(2)总体容量较小,用抽签法.第一步:将30个篮球编号,编号为00,01, (29)第二步:将以上30个编号分别写在一张小纸条上,揉成小球,制成号签;第三步:把号签放入一个不透明的袋子中,充分搅匀;第四步:从袋子中逐个抽取3个号签,并记录上面的号码;第五步:找出和所得号码对应的篮球.(3)总体容量较大,样本容量较小,宜用随机数表法.第一步:将300个篮球用随机方式编号,编号为001,002, (299)第二步:在随机数表中随机地确定一个数作为开始,如第8行第29列的数7开始,任选一个方向作为读数方向,比如向右读;第三步:从数7开始向右读,每次读三位,凡不在001—299中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到286,211,234,297,207,013,027,086,284,281这10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样法.第一步:将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段;第二步:在第一段000,001,002,…,009这三个编号中用简单随机抽样抽出一个(如002)作为起始号码;第三步:将编号为002,012,022,…,292的个体抽出,组成样本.巧解提示在解决问题的过程中,应结合三种抽样方法的使用范围和实际情况灵活使用各种抽样方法.问题·探究方案设计探究问题为了考查某校的教学水平,将抽查这个学校高三年级的部分学生的本学年考试成绩进行考查,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了号,假定该校每班学生人数都相同)(1)从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;(2)每个班都抽取1人,共计20人,考察这20个学生的成绩;(3)把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考查.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人)试探究上面三种抽取方式各自抽取样本的步骤.探究过程:(1)这三种抽取方式中,其总体都是指该校高三年级全体学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本年度的成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本年度的成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本年度的成绩,样本容量为100;(2)上面三种抽取方式中,第一种方式采用的方法是简单的随机抽样法;第二种方式采用的方法是简单的随机抽样法和系统抽样法;第三种方式采用的方法是简单的随机抽样法和分层抽样法;(3)第一种方式抽样的步骤如下:第一步,在这20个班中用抽签法任意抽取一个班;第二步,从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,在第一个班中,用简单的随机抽样法任意抽取某一学生,记其学号为a;第二步,在其余的19个班中,选取学号为a的学生,共计20人.第三种方式抽样的步骤如下:第一步,分层.因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次;第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为100∶1 000=1∶10,所以在每个层次抽取的个体数依次为150/10,600/10,250/10,即15,60,25;第三步,按层次分别抽取.在优秀生中用简单的随机抽样法抽取15人,在良好生中用简单的随机抽样法抽取60人,在普通生中用简单的随机抽样法抽取25人.探究结论:三种抽样方法都是一种等几率抽样,经常交叉起来使用,比如,分层抽样中,若每层中个体数量仍很大,则可辅之系统抽样,系统中的每一均衡的部分,又可采用简单随机抽样.为熟练掌握三种抽样方法,应结合具体实例,多分析,多实践,从解决问题的过程中体会三种抽样方法的特点和用法,进一步理解抽样的必要性和统计的基本思想.。

高中数学 分层抽样讲义 新人教A版必修3

高中数学 分层抽样讲义 新人教A版必修3

分层抽样开篇语我们知道:当总体容量较小时,我们可以用简单随机抽样的方法进行抽样,简单易行,也容易保证抽样时的“均匀”,当总体容量较大时,简单随机抽样就会操作不方便,而且样本的代表性不容易很好,此时我们会选择系统抽样.实际生活中,我们还会遇到一些容量较大,有明显“层”的总体,为了更好的保证样本的代表性,我们考虑使用分层抽样.重难点易错点解析题一:一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( ).A.12, 24, 15, 9 B.9, 12, 12, 7 C.8, 15, 12, 5 D.8, 16, 10, 6题二:某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是_______.金题精讲题一:某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是_____.若用分层抽样方法,则40岁以下年龄段应抽取________人.题二:从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.题三:某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表: 人数其中a :b :c =2:5:3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A .15人B .30人C .40人D .45人题四:某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是( ).90件 D .80件题五:在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( )A .等于15B .等于310C .等于23D .不确定思维拓展题一:某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且2b=a +c ,则第二车间生产的产品数为( )A .800B .1000C .1200D .1500学习提醒分层抽样是按比例抽样;分析清楚各种比例,就可以较好的完成各类问题.分层抽样讲义参考答案重难点易错点解析题一:D 题二:5.7%金题精讲题一:37; 20 题二:60 题三:D题四:B 题五:A思维拓展题一:C精美句子1、善思则能“从无字句处读书”。

2019年高中数学北师大版必修三:第1章 3 2.2 第1课时 分层抽样 含解析

2019年高中数学北师大版必修三:第1章 3 2.2 第1课时 分层抽样 含解析

[A 基础达标]1.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ) A.9 B.10 C.12 D.13解析:选D.由分层抽样可得,360=n260,解得n=13.2.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )解析:选C.设该样本中的老年教师人数为x,由题意及分层抽样的特点得x 900=3201 600,故x=180.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种.现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4 B.5 C.6 D.7解析:选C.食品共有100种,抽取容量为20的样本,各抽取15,故抽取植物油类与果蔬类食品种数之和为2+4=6.故选C.4.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12、21、25、43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012解析:选B.甲社区驾驶员的抽样比例为1296=18,四个社区驾驶员总人数的抽样比例为12+21+25+43N =101N ,由101N =18得N =808.5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:选A.若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x +x 2+x2+300=3 500,解得x =1 600,故高一学生数为800,因此应抽取高一学生数为800100=8.6.从总体容量为N 的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的可能性为0.25,则N 等于________.解析:分层抽样是等可能抽样,故总体容量为30÷0.25=120. 答案:1207.最新高考改革方案已在上海和浙江实施,某教育机构为了解某省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下表:不赞成改革”的教师和学生人数分别为________.解析:由题意知,抽样比为50500=110,则应抽取“不赞成改革”的教师人数为110×20=2,学生人数为110×40=4.答案:2,48.某单位青年、中年、老年职员的人数之比为11∶8∶6,从中抽取200名职员作为样本,则应抽取青年职员的人数为________.解析:该单位青年职员所占人数比为1111+8+6=1125,所以抽取青年职员的人数为200×1125=88.答案:889.某高级中学共有学生3 000名,各年级男、女生人数如下表:(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?解:(1)由x3 000=0.18得x=540,所以高二年级有540名女生.(2)高三年级人数为:y+z=3 000-(487+513+540+560)=900.所以9003 000×300=90,故应在高三年级抽取90名学生.10.某校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出抽取血型为AB型的学生的过程.解:因为总体由差异明显的四部分组成,故采用分层抽样法.因为40÷500=225,所以血型为O型的应抽取200×225=16(人),血型为A型的应抽取125×225。

高中数学北师大版必修三教学案第一章§2 第2课时 分层抽样与系统抽样 Word版含答案

高中数学北师大版必修三教学案第一章§2 第2课时 分层抽样与系统抽样 Word版含答案

第课时分层抽样与系统抽样[核心必知].分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样..系统抽样的概念系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.系统抽样又叫等距抽样或机械抽样.[问题思考].分层抽样时为什么要将总体分成互不重叠的层?提示:在总体中由于个体之间存在着明显的差异,为了使抽取的样本更合理,更具有代表性,所以将总体分成互不重叠的层,而后独立地抽取一定数量的个体..系统抽样的第二步中,当不是整数时,从总体中剔除一些个体采用的方法是什么?影响系统抽样的公平性吗?提示:剔除一些个体可以用简单随机抽样抽取,不影响系统抽样的公平性.讲一讲.某企业共有名职工,其中青、中、老年职工的比例为∶∶.若从所有职工中抽取一个容量为的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽到的可能性相同吗?[尝试解答] 因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理.因为青、中、老年职工的比例是∶∶,所以应分别抽取:青年职工×=(人);中年职工×=(人);老年职工×=(人).由样本容量为,总体容量为可知,抽样比是)=,所以每人被抽到的可能性相同,均为.分层抽样的步骤:()根据已经掌握的信息,将总体分成互不重叠的层;()根据总体中的个体数和样本容量计算抽样比=;()确定第层应该抽取的个体数目=×(为第层所包含的个体数),使得各之和为;()在各层中,按步骤()中确定的数目在各层中随机地抽取个体,合在一起得到容量为的样本.练一练.某城市有家百货商店,其中大型商店家,中型商店家,小型商店家.为了掌握各商店的营业情况,计划抽取一个容量为的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.解:第一步:样本容量与总体容量的比为=;第二步:确定各种商店要抽取的数目:大型商店:×=(家),中型商店:×=(家),小型商店:×=(家);第三步:采用简单随机抽样在各层中分别抽取大型商店家,中型商店家,小型商店家,综合每层抽样即得样本..相关部门对某食品厂生产的盒月饼进行质量检验,需要从中抽取盒,请用系统抽样法完成对此样本的抽取.[尝试解答] 第一步将盒月饼用随机的方式编号.第二步从总体中剔除盒月饼,将剩下的盒月饼重新编号(分别为,…,),并分成段.第三步在第一段中用简单随机抽样抽取起始号码.第四步将编号为,+,+×,…,+×的个体取出,组成样本..当总体容量能被样本容量整除时,分段间隔=;当用系统抽样抽取样本时,通常是将起始数加上间隔得到第个个体编号(+),再加得到第个个体编号(+),依次进行下去,直到获得整个样本..当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等,剔除几个个体后使总体中剩余的个体能被样本容量整除,然后再按系统抽样方法抽取样本.练一练.为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的名学生的数学成绩中抽取容量为的样本.请用系统抽样写出抽取过程.。

2018年高中数学北师大版必修三:第1章322第1课时分层抽样含解析

2018年高中数学北师大版必修三:第1章322第1课时分层抽样含解析

[A 基础达标 ]1.某工厂甲、乙、丙三个车间生产了同一种产品,数目分别为120 件, 80 件, 60 件.为认识它们的产质量量能否存在明显差别,用分层抽样方法抽取了一个容量为n 的样本进行检查,此中从丙车间的产品中抽取了 3 件,则 n= ( )A .9B .10 C. 12 D.13分析:选 D.由分层抽样可得,3 n60 =260,解得 n=13.2.某校老年、中年和青年教师的人数见下表,采纳分层抽样的方法检查教师的身体状况,在抽取的样本中,青年教师有320 人,则该样本中的老年教师人数为( )类型人数老年教师900中年教师 1 800青年教师 1 600共计 4 300A.90 B.100 C. 180 D. 300分析:选 C.设该样本中的老年教师人数为x,由题意及分层抽样的特色得x 320900 =1 600,故 x= 180.3.某商场有四类食品,此中粮食类、植物油类、动物性食品类及果蔬类分别有40 种、10 种、30 种、20 种.现从中抽取一个容量为20 的样本进行食品安全检测,若采纳分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 ( )A .4B . 5 C. 6 D. 7分析:选 C.食品共有100 种,抽取容量为20 的样本,各抽取12 5,故抽取植物油类与果蔬类食品种数之和为+4= 6.应选 C.4 .交通管理部门为认识灵活车驾驶员(简称驾驶员 )对某新法例的了解状况,对甲、乙、丙、丁四个社区做分层抽样检查.假定四个社区驾驶员的总人数为N,此中甲社区有驾驶员96 人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12、21、 25、 43,则这四个社区驾驶员的总人数N为()A .101B .808C. 1 212 D. 2 012分析:选 B. 甲社区驾驶员的抽样比率为12 1 12+ 21+ 25+ 43 101 96=8,四个社区驾驶员总人数的抽样比率为N =N ,101 1由N =8得 N= 808.5.某学校高一、高二、高三三个年级共有学生 3 500 人,此中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300 人,此刻按 1 的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()100A .8 B. 11C.16 D. 10分析:选 A. 若设高三学生数为 x,则高一学生数为x x x x2,高二学生数为2+ 300,所以有 x+2+2+ 300=3 500,800解得 x= 1 600,故高一学生数为800,所以应抽取高一学生数为100=8.6.从整体容量为 N 的一批部件顶用分层抽样抽取一个容量为30 的样本,若每个部件被抽取的可能性为0.25,则 N 等于 ________.分析:分层抽样是等可能抽样,故整体容量为30÷0.25= 120.答案: 1207.最新高考改革方案已在上海和浙江实行,某教育机构为认识某省广大师生对新高考改革方案的见解,对某市部分学校500 名师生进行检查,统计结果以下表:同意改革不同意改革无所谓教师120 20 40学生150 40 130 现从 500 名师生顶用分层抽样的方法抽取50 名进行问卷检查,则应抽取“不同意改革”的教师和学生人数分别为 ________.分析:由题意知,抽样比为50 =1,则应抽取“不同意改革” 的教师人数为1× 20= 2,学生人数为1× 40500 10 10 10 =4.答案: 2, 48.某单位青年、中年、老年职员的人数之比为11∶ 8∶ 6,从中抽取200 名职员作为样本,则应抽取青年职员的人数为 ________.分析:该单位青年职员所占人数比为11 =11,所以抽取青年职员的人数为200×11= 88.11+8+ 6 25 25 答案: 889.某高级中学共有学生 3 000 名,各年级男、女生人数以下表:高一年级高二年级高三年级女生487 x y男生513 560 z 已知在全校学生中随机抽取 1 名,抽到高二年级女生的概率是0.18.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300 名学生,问应在高三年级抽取多少名学生?解:(1)由x3 000= 0.18 得 x= 540,所以高二年级有 540 名女生.(2) 高三年级人数为:y+ z= 3 000-(487+ 513+540+ 560)=900.所以900 × 300= 90,故应在高三年级抽取90 名学生.3 00010.某校高一年级500 名学生中,血型为O 型的有 200 人, A 型的有 125 人, B 型的有 125 人, AB 型的有。

高中数学第一章统计1.2.2分层抽样与系统抽样学案含解析北师大版必修3

高中数学第一章统计1.2.2分层抽样与系统抽样学案含解析北师大版必修3

2.2 分层抽样与系统抽样考纲定位重难突破1.理解、掌握分层抽样、系统抽样.2.会用分层抽样、系统抽样从总体中抽取样本.3.了解三种抽样方法的联系与区别.重点:两种抽样方法的步骤和使用范围.难点:1.三种抽样方法的选择.2.两种抽样方法的具体应用.授课提示:对应学生用书第05页[自主梳理]1.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.2.系统抽样系统抽样是将总体的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本.然后按相同间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.[双基自测]1.某市为了了解职工家庭生活状况,先把职工按所从事的行业分为8类(每类家庭数不完全相同),再对每个行业抽取的职工家庭进行调查,这种抽样方法是()A.简单随机抽样B.系统抽样C.分层抽样D.不属于以上几类抽样解析:因为职工所从事的行业有明显差异,所以适合用分层抽样.答案:C2.某报告厅有50排座位,每排有60个座号,一次报告会坐满了听众,会后留下座位号为18,78,138,198,…的50位听众进行座谈,这种抽取样本的方法是()A.抽签法B.随机数表法C.系统抽样D.有放回抽样解析:总体容量(3 000)较大,抽取间隔相等,符合系统抽样的特点,是系统抽样.答案:C3.若总体中含有1 645个个体,采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为______段,分段间隔k=______,每段有______个个体.解析:因为N=1 645,n=35,则编号后确定编号分为35段,且k=Nn=1 64535=47,则分段间隔k=47,每段有47个个体.答案:354747授课提示:对应学生用书第06页探究一分层抽样[典例1] 某政府机关现有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出具体实施过程.[解析] 因为机构改革关系到各种人的不同利益,故采用分层抽样方法为妥.(1)因为每个人的地位不一样,我们按类别分为3层.(2)计算总体的个数与样本容量的比:10020=5. (3)按照样本容量的比例随机抽取各层应抽取的样本.因为10020=5,所以105=2,705=14,205=4.所以从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(4)因副处以上干部与工人人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人.1.如果总体中的个体有差异时,就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层.2.在实际操作中,应先计算出抽样比k =样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.1.某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000很喜爱 喜爱 一般 不喜爱2 435 4 5673 926 1 072应怎样进行抽样?解析:采用分层抽样的方法,抽样比为6012 000. “很喜爱”的有2 435人,应抽取2 435×6012 000≈12(人); “喜爱”的有4 567人,应抽取4 567×6012 000≈23(人); “一般”的有3 926人,应抽取3 926×6012 000≈20(人); “不喜爱”的有1 072人,应抽取1 072×6012 000≈5(人). 因此,采用分层抽样的方法在“很喜爱”、“喜爱”、“一般”和“不喜爱”的人中分别抽取12人、23人、20人和5人.探究二 系统抽样[典例2] 某单位共有在岗职工624人,为了调查职工上班时从离开家到来到单位的平均用时,决定抽取10%的工人进行调查,如何采用系统抽样完成这一抽样?[解析] 第一步 由题意知,应抽取在岗职工62人作为样本,即分成62组,由于62462的商是10,余数是4,所以每组有10人,还剩4人.这时,抽样距是10;第二步用随机数法从这些职工中抽取4人,不进行调查;第三步将余下的在岗职工620人进行编号,编号分别为000,001,002, (619)第四步在第一组000,001,002,…,009这10个编号中,随机选定一个起始编号.每间隔10抽取一个编号,共抽62个编号,这样就抽取了容量为62的一个样本.1.解决系统抽样问题的关键步骤:(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.2.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等,剔除几个个体后使总体中剩余的个体数能被样本容量整除.2.为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.解析:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 003个个体编号为1,2,3,…,1 003.(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000.(3)将总体按编号顺序均分成50部分,每部分包含20个个体.(4)在编号为1,2,3,…,20的第一部分个体中,利用简单随机抽样抽取一个号码,比如抽取的号码是18.(5)以18为起始号码,这样得到一个容量为50的样本:18,38,58,…,978,998.探究三三种抽样方法的综合应用[典例3]已知某工厂共有20个生产车间,并且每个生产车间内的工人已经按随机方式编好了序号,假定该厂每车间工人数都相同.为了考查工人对技术水平的熟练程度,采取以下三种方式进行抽查:①从全厂20个车间中任意抽取一个车间,再从该车间中任意抽取20人,考查这20个工人的技术水平.②每个车间都抽取1人,共计20人,考查这20个工人的技术水平.③把工人按技术等级分成高级工、一级工、初级工三个级别,从中抽取100名工人进行调查(已知按技术等级分,该厂工人中高级工共150人,一级工共600人,初级工共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,各自采用何种抽取样本的方法?(2)试分别写出上面三种抽取方式各自抽取样本的步骤.[解析](1)上面三种抽取方式中,第一种方式采用的是简单随机抽样法;第二种方式采用的是系统抽样法和简单随机抽样法;第三种方式采用的是分层抽样法和简单随机抽样法.(2)第一种方式抽样的步骤如下:第一步,在这20个车间中用抽签法任意抽取一个车间.第二步,从这个车间中按编号用随机数法或抽签法抽取20名工人,考查其技术水平.第二种方式抽样的步骤如下:第一步,在第一个车间中,用简单随机抽样法任意抽取某一工人,记其编号为x.第二步,在其余的19个车间中,选取编号为x 的工人,共计20人.第三种方式抽样的步骤如下:第一步,分层,因为若按技术水平等级分,其中高级工共150人,一级工共600人,初级工共250人,所以在抽取样本中,应该把全体工人分成三个层次.第二步,确定各个层次抽取的人数,因为样本容量与总体的个数比为100∶1 000=1∶10,所以在每个层次抽取的个体数依次为15010,60010,25010,即15,60,25. 第三步,按层次分别抽取:在高级工中用简单随机抽样法取15人;在一级工中用简单随机抽样法抽取60人;在初级工中用简单随机抽样法抽取25人.解决此类问题的关键是灵活运用统计中的一些基本概念和基本方法,对照简单随机抽样、系统抽样、分层抽样的概念得出抽样过程.三种抽样方法有各自的适用范围,在抽样时要分析实际情况,抓住总体的本质特点,灵活选择合适的方法,有时要综合运用几种不同的抽样方法.三种抽样方法,关系密切,对抽取样本来说,可谓异曲同工.3.为了考察某校的教学水平,对这个学校高三年级的部分学生的本年度考试成绩进行考察.为了全面地反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相等):①从全年级20个班中任意抽取一个班,再从该班任意抽取20名学生,考察他们的学习成绩; ②每个班都抽取1人,共计20人,考察这20名学生的成绩;③把学生成绩分成优秀、良好、普通三个级别.从其中共抽取100名学生进行考察.(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.解析:(1)上面三种抽取方式中,总体都是高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20; 第三种抽取方式中样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的是简单随机抽样;第二种方式采用的是系统抽样和简单随机抽样;第三种方式采用的是分层抽样和系统抽样.(3)第一种方式抽样的步骤如下:第一步,在这20个班中用抽签法任意抽取1个班;第二步,从这个班中用简单随机抽样法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,在第1个班中,用简单随机抽样法抽取某一学生(其学号为a ).第二步,在其余的19个班中,选取学号为a 的学生,共计20人.第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应把全体学生分成三层.第二步,确定各层抽取的人数,因为样本容量与总体的个体数的比为100∶1 000=1∶10,所以在每层抽取的个体数依次为15010,60010,25010,即15,60,25. 第三步,按层次分别抽取,分别在优秀生、良好生、普通生中用系统抽样的方法各抽取15人、60人、25人.因选取抽样方法不当致误[典例] 某校共有教师302名,其中老年教师30名,中年教师150名,青年教师122名.为调查他们对新课程改革的看法,从中抽取一个60人的样本.请写出抽样过程.[解析] (1)把122名青年教师编号,利用随机数法剔除2个个体.(2)因为60300=15,30×15=6,150×15=30,120×15=24,所以可将老年教师30名,中年教师150名,青年教师120名编号后,运用随机数法,分别从中抽取6,30,24个个体,合在一起即为要抽取的60人样本.[错因与防范] 本题的一种错误解法是从总人数中,利用随机数法剔除2个个体,再将剩余的300名教师重新编号,分成60段.从每段抽一人,共抽取60人,以上抽样方法对该问题抽取的样本代表性不强,因3个层次的教师对新课程改革的看法是有较大差别的,因此应采用分层抽样,又因为教师总人数和青年教师人数均不能被60整除,此时就需先从青年教师中剔除2个个体,再进行抽样.[随堂训练] 对应学生用书第07页1.某社区有400个家庭,其中高等收入家庭120个,中等收入家庭180个,低等收入家庭100个.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①.某校高一年级有13名排球运动员,要从中选出3人调查学习负担情况,记作②.那么,完成上述两项调查宜采用的抽样方法分别是( )A .①用简单随机抽样,②用系统抽样B .①用分层抽样,②用简单随机抽样C .①用系统抽样,②用分层抽样D .①用分层抽样,②用系统抽样解析:由于①中总体的个体数量较多,不同个体的差异较大,∴应采用分层抽样方法;由于②中总体的个体数量较少,个体之间差异不大,∴应采用简单随机抽样,故选B.答案:B2.某厂从50件产品中,依次抽取到编号为4,8,12,16,20,24,28,32,36,40,44,48的产品进行质检,这种抽样方法最有可能是( )A .随机数法B .抽签法C .系统抽样D .以上都不是解析:系统抽样的显著特点是抽出个体的编号是等距的.答案:C3.某市有大型超市200家、中型超市400家、小型超市1 400家,为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.解析:根据题意,可得抽样比为100200+400+1400=120,故应抽取中型超市400×120=20(家).答案:204.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A ,C A 产品的数量比样本中C 产品的数量多10,根据以上信息,求该企业生产C 产品的数量.解析:设样本的容量为x ,则x 3 000×1 300=130, ∴x =300.∴在样本中A 产品和C 产品共有300-130=170(件).设样本中C 产品数量为y ,则y +y +10=170,∴y =80.∴该企业生产C 产品的数量为3 000300×80=800.。

数学苏教必修3备课资料 2分层抽样 含答案

数学苏教必修3备课资料 2分层抽样 含答案

备课资料备选例题例 1 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50 000份,其中持各种态度的份数如下表所示:很满意 满意 一般 不满意10 800 12 400 15 600 11 200为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,应该怎样抽取样本?解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很满意”“满意”“一般”“不满意”;②因为总体为50000份,所以从各层中的份数占总体份数的比分别为:“很满意”占5000010800;“满意”占5000012400;“一般”占5000015600;“不满意”占5000011200; ③因此,各层中抽出的份数为:“很满意”有5000010800×500=108份;“满意”有5000012400×500=124份;“一般”有5000015600×500=156份;“不满意”有5000011200×500=112份; ④在每层中用系统抽样的方法抽取样本,把各层抽得的个体合在一起就得到了所需的样本.例2 某学校有教师160人,后勤服务人员40人,行政管理人员20人,要从中抽选20人参加学校召开的职工代表大会,为了使所抽的人员更具有代表性,应该怎样抽取样本?解:采用分层抽样.具体抽样步骤如下:①总体分成三层:“教师”“后勤服务人员”“行政管理人员”;②因为总人数为160+40+20=220人,抽选出20人,所以从每层中抽出的人数占该层人数的比为20∶220=1∶11;③因此,各层中抽出的人数为:“教师”有111×160≈14人;“后勤服务人员” 有111×40≈4人;“行政管理人员”有111×20≈2人; ④在每层中用简单随机抽样的方法抽取样本,把各层抽得的个体合在一起就得到了所需的样本.备用习题1.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的概率为( )81.101.241.801.D C B A2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用了抽样方法是()A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法3.对于简单随机抽样,下列说法中正确的命题为()①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作③它是一种不放回抽样④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性A.①②③B.①②④C.①③④D.①②③④4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).则完成(1)、(2)这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法5.中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样方法抽取,其组容量为()A.10B.100C.1 000D.10 0006.某小礼堂有25排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下了座位号是15的所有的25名学生测试.这里运用的抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法7.某中学有高级教师27人,中级教师54人,初级教师81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从高级教师中随机剔除1人,再用分层抽样8.某地区中小学生人数的分布情况如下表所示(单位:人):学段 城市 县镇 农村小学 357 000 221 600 258 100初中 226 200 134 200 11 290高中 112 000 43 300 6 300请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案. 参考答案:1.D 分析:因为管理人员占单位全部职工的101808 ,所以应从管理人员中抽取1人,因此每个管理人员被抽到的概率为101. 2.B3.D4.B5.C6.C7.C8.解:采用分层抽样,具体步骤如下:(1)将所有中小学生分为九个层:“城市小学生”“城市初中生”“城市高中生”“县镇小学生”“县镇初中生”“县镇高中生”“农村小学生”“农村初中生”“农村高中生”;(2)应抽取“城市小学生”357 000×10001=357人,应抽取“城市初中生”226 200×10001=226.2≈226人,应抽取“城市高中生”112 000×10001=112人,应抽取“县镇小学生” 221 600×10001=221.6≈222人,应抽取“县镇初中生”134 200×10001=134.2≈134人,应抽取“县镇高中生”43 300×10001=43.3≈43人,应抽取“农村小学生”258 100×10001=258.1≈258人,应抽取“农村初中生”11 290×10001=11.29≈11人,应抽取“农村高中生”6 300×10001=6.3≈6人; (3)将各层抽出的学生合在一起就组成了所需的样本.(设计者:王慧)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分层抽样
开篇语
我们知道:当总体容量较小时,我们可以用简单随机抽样的方法进行抽样,简单易行,也容易保证抽样时的“均匀”,当总体容量较大时,简单随机抽样就会操作不方便,而且样本的代表性不容易很好,此时我们会选择系统抽样.实际生活中,我们还会遇到一些容量较大,有明显“层”的总体,为了更好的保证样本的代表性,我们考虑使用分层抽样.
重难点易错点解析
题一:一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是().
A.12, 24, 15, 9 B.9, 12, 12, 7 C.8, 15, 12, 5 D.8, 16, 10, 6
题二:某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是_______.
金题精讲
题一:某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是_____.若用分层抽样方法,则40岁以下年龄段应抽取________人.
题二:从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示.
人.
题三:某学校在校学生2000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
其中a :b :c =2:5:3,全校参与登山的人数占总人数的14
.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )
A .15人
B .30人
C .40人
D .45人
题四:某企业三月中旬生产A 、B 、C 三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10件,根据以上信息,可得C 产品的数量是
( )
C .90件
D .80件
题五:在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( )
A .等于15
B .等于310
C .等于23
D .不确定
思维拓展
题一:某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且2b=a +c ,则第二车间生产的产品数为( )
A .800
B .1000
C .1200
D .1500
学习提醒
分层抽样是按比例抽样;
分析清楚各种比例,就可以较好的完成各类问题.
分层抽样
讲义参考答案
重难点易错点解析
题一:D 题二:5.7%
金题精讲
题一:37; 20 题二:60 题三:D 题四:B 题五:A
思维拓展
题一:C。

相关文档
最新文档