几个特殊的代数系统 6.1

合集下载

第七章 半群与群

第七章 半群与群

☆ 定理 6.1-4 每个循环独异点都是可交换的。
证 设〈S, *, e〉是循环独异点, 其生成元是g, 对任意a、 b∈S, 存在m、n∈N, 使a=gm和b=gn, 因此
a b g g g
m n
m n
g
n m
g g b aຫໍສະໝຸດ n m证毕。例 2
(a) 下表给出的代数是个循环独异点, 生成元是c(也可以是b), 因为 c0 = 1 c = c c2 = c*c = a c3 = c2 * c =a * c = b c4 = c3 * c = b * c = 1 = c0
即:在G运算表的每一行里,G的每个元素都出现一次,且出现
一次。在不同的行里,元素的排列顺序也不同。 证 首先, 证明运算表中的行或列所含G的一个元素不可能多 于一次。用反证法, 如果对应于元素a∈G的那一行中有两个元素 都是k, 即假定a * b1=a * b2=k, 而b1≠b2, 但根据定理6.2-2有b1=b2。 得出矛盾。对于列也一样可以证明。
如果x是G中满足a * x=b的任意元素, 则
x=e * x=(a-1 * a) * x = a-1 * (a * x) = a-1 * b
所以, x=a-1 * b是满足a * x=b的唯一元素。
定理 6.2-2 如果〈G, *〉是一个群, 则对于任何a、b、c∈G,
(a ) a b a c b c ( b) b a c a b c
所以, h(a*b)=fa*b=fa ·b=h(a) · 。 证毕。 f h(b)
6.2 群
6.2.1 群的定义和性质
定义 6.2-1 群〈G , * 〉是一代数系统, 其中二元运算*满足

代数系统简介

代数系统简介

代数系统简介一、代数系统的基本概念代数系统,也称为代数结构或代数系统,是数学中一个重要的概念,它由集合和定义在这个集合上的运算组成。

代数系统是代数学的基本研究对象,也是泛代数、抽象代数、代数学等领域中重要的研究对象。

代数系统通常由两个部分组成:一个是非空元素集合,称为代数系统的论域或标量域;另一个是定义在论域上的运算,这些运算需满足一定的性质或公理。

根据所涉及的运算不同,代数系统可分为不同类型,如群、环、域、格等。

代数系统的概念来源于对数学中不同分支中抽象概念的概括和总结,其研究范围包括数学中不同领域的许多分支。

例如,集合论、抽象代数、泛代数、拓扑学等都是研究代数系统的重要领域。

二、代数系统的分类根据所涉及的运算和性质的不同,代数系统有多种分类方式。

以下是其中几种常见的分类方式:1.根据所涉及的运算的性质,可以将代数系统分为有交换律和结合律的代数系统(如群、环、域)和没有交换律和结合律的代数系统(如格、布尔代数)。

2.根据运算是否涉及单位元和逆元,可以将代数系统分为有单位元的代数系统和无单位元的代数系统。

前者如群、环、域等,后者如格等。

3.根据所涉及的元素是否具有可交换性,可以将代数系统分为可交换的代数系统和不可交换的代数系统。

前者如交换群等,后者如李群等。

4.根据所涉及的元素是否具有无限性,可以将代数系统分为有限代数系统和无限代数系统。

前者如有限群等,后者如无限群等。

此外,还可以根据其他性质和特征对代数系统进行分类。

通过不同的分类方式,我们可以更好地了解和研究不同类型代数系统的特性和性质。

三、代数系统的性质代数系统的性质是指代数系统中元素之间通过运算所表现出来的关系和性质。

以下是几个常见的代数系统的性质:1.封闭性:如果对于代数系统中的任意两个元素x和y,它们的运算结果仍属于该集合,则称该运算满足封闭性。

封闭性是代数系统中一个重要的性质,它保证了运算结果的元素仍属于该系统。

2.结合律:如果对于代数系统中的任意三个元素x、y和z,有(x·y)·z=x·(y·z),则称该运算满足结合律。

第6章代数

第6章代数

第六章 代 数 例3 (a) 考虑具有〈N, +, 0〉形式的构成成分和下述公理的代数类。 (1) a+b=b+a (2) (a+b)+c=a+(b+c) (3) a+0=a
那么〈I, ·, 1〉, 〈ρ(S), ∪, 和〈R, min, +∞〉(这里R是
包含+∞的非负实数)等, 都是这一种类的成员。
而每一非0元素 x 的逆元是(k - x) 。
第六章 代 数
(g) 设Nk是前k个自然数的集, 这里k≥2, 定义模k乘法×k如下:
x×ky = z
这里z∈Nk, 且对某一n, xy – z = nk。
即 xy/k = n …… z (余 )
( --------用于计算)
结论:
① 1是幺元 。
② 有逆元仅当x和k互质。
第六章 代 数
③ (G除去幺元b,剩下a与c ) 经考察发现:
运算表中a所在行与c 所在列的交叉元素,
以及c所在行与a所在列 的交叉元素都是幺元b。
故a与c互 逆 。
*a b c aa a b ba b c cbc c
第六章 代 数
(e) 考虑在函数的合成运算下,集合A上的所有函数的集合F。
那么恒等函数IA 是幺元,每一双射函数有一逆元。 (f) 设 Nk 是前k 个自然数的集合, 这里 k ﹥ 0 ,
在运算表中, x0所在行与列的元素,分别与表头的行与
列的元素一一对应相同 。 结论2: 在运算表中,某元素 y0 ∈ A是运算*的零元
在运算表中, y0所在行与列的元素都是y0
结论3: 运算*满足交换律
运算表中的元素 关于主对角线对称

第六章 几种典型的代数系统

第六章 几种典型的代数系统
因为关于二元运算 的幺元是唯一的,所以 我们有时不再列举幺元 e,而简单地说< S, > 是幺半群。因为在幺半群中只有一个二元运 算 ,所以我们把关于 的幺元称为幺半群的 幺元。
➢ < N, + >, < Z, + >, < Q, + >,< R, + > 都 是无限交换幺半群,幺元是 0。< Z+, + > 不 是幺半群。
定理6.1 群中元素 x 的逆元 x1 的逆元是 x, 即 (x1) 1 = x。 证明 因为 xx1= x1x = e,所以 (x1) 1 = x 。 定理6.2 群中的二元运算满足消去律。 证明 群中的每个元素都有逆元。由定理5.4立 即得出结论。
定理6.3 幺元是群中唯一的幂等元。 证明 ee = e,e 是幂等元。设 a 是群中的任意 幂等元,则 aa = ae。因为群中的二元运算满 足消去律,所以 a = e。
定义6.3 若幺半群 < G, , e > 中的每个元素都有 逆元,f 是 G 上的求逆元运算,即 f(x) = x1,则 称代数系统 < G, , f, e > 为群。若群中的二元运 算是可交换的,则称它为交换群,也称为阿贝 尔群。若群中的集合是有限集,则称该群为有 限群,否则称为无限群。若有限群中的集合有 n 个元素,则称该有限群为 n 阶群。一阶群, 即幺元是群中唯一元素的群称为平凡群。
例如, < Z, +, , 0 > 是无限交换群,称其为整 数加法群。
定义实函数集 RR 上的二元运算 + 如下:
对于任意 f, gRR,(f + g)(x) = f(x) + g(x)。

6几个典型的代数系统PPT课件

6几个典型的代数系统PPT课件
例如 整数集I的加法群 <I,+>, 非零实数R—{0}的乘法群<R—{0},×>,
就是我们最熟悉的交换群。
不是所有的群都是交换群
7
有限群和无限群
Algebra 代数
设 G, 是一个群。如果 G 是一个有限集,那么称
G, 为有限群, G 中元素的个数通常称为该有限 群的阶数,记为 G ;如果 G 是无限集,则称 G, 为无限群。
14
子群
Algebra 代数
设 G, 是一个群,S 是 G 的非空子集,如果 S, 也
构成群,则称 S, 是 G, 的一个子群。
子群的判断方法
定理 6 设 G, 是一个群, S 是 G 的非空子集,如
果 x, y S, xy1 S, 则 S, 是 G, 的子群。
定理 7 设 G, 是一个群, B 是 G 的非空子集,如果 B 是
定理 5 群 G, 的运算表中的每一行或每一列都 是 G 的元素的一个置换。
13
表 5-4 是它的复合表。 表 5-4
f0
f1
f2
f3
f0
f0
f1
f2
f3
f1
f1
f2
f3
f0
f2
f2
f3
f0
f1
f3
f3
f0
f1
f2
Algebra 代数
从上表可见,它上面的任何不同的两行或两列不仅均不 相同,而且每一行或每一列中均不出现重复的元素。或 者说它的复合表的每一行或每一列都是属于群的全部元 素的一个全排列。
由此定理知:群的运算表中没有两行(或两列)是相同的。 为了进一步考察群的运算表所具有的性质,现在引进置换的 概念。

《离散数学》课件第6章 (2)

《离散数学》课件第6章 (2)

〈SS, , 〈Σ*, τ〉不是可交换半群。
定义 6.1.3 含有关于*运算的幺元的半群〈S, *〉, 称
它为独异点(monoid), 或含幺半群, 常记为〈S, *, e〉(e是
幺元)。
第六章 几个典型的代数系统
【例6.1.4】
〈Z, +〉是独异点, 幺元是0, 〈Z, +, 0〉;
〈Z, ×〉是独异点, 幺元是1, 〈Z, ×, 1〉;
(4) A≠ , 〈P(A), ∩〉是半群, 幺元为A, 非空集合无逆
元, 所以不是群。
(5) A≠ , 〈P(A), 是S, 所以是群。
S∈P(A), S的逆元
(6) 〈Q+, ·〉(正有理数与数乘)为一群, 1为其幺元。 〈Q, ·〉不是群, 因为数0无逆元。
因为零元无逆元, 所以含有零元的代数系统就不会是群。
逻辑关系见图6.1.1。
第六章 几个典型的代数系统
图6.1.1
第六章 几个典型的代数系统
定义 6.1.1 设〈S, *〉是代数系统, *是二元运算, 如果*运算满足结合律, 则称它为半群(semigroups)。
换言之, x, y, z∈S, 若*是S上的封闭运算且满足 (x*y)*z=x*(y*z), 则〈S, *〉是半群。
设半群〈S, *〉中元素a(简记为a∈S)的n次幂记为an, 递 归定义如下:
a1=a an+1=an*a1 n∈Z+ 即半群中的元素有时可用某些元素的幂表示出来。
因为半群满足结合律, 所以可用数学归纳法证明
am*an=am+n, (am)n=amn。
第六章 几个典型的代数系统
普通乘法的幂、 关系的幂、 矩阵乘法的幂等具体的代 数系统都满足这个幂运算规则。

离散数学第六章代数系统

离散数学第六章代数系统

6.2 代数系统的基本性质
性质4 吸收率
给定<S,⊙,*>,则 ⊙对于*满足左吸收律:(x)(y)(x,y∈S→x⊙(x*y)=x) ⊙对于*满足右吸收律:(x)(y)(x,y∈S→(x*y)⊙x=x) 若⊙对于*既满足左吸收律又满足右吸收律,则称⊙对于*满足吸收律或
者可吸收的。
*对于⊙满足左、右吸收律和吸收律类似地定义。 若⊙对于*是可吸收的且*对于⊙也是可吸收的,则⊙和*是互为吸收的或
代数﹝Algebra﹞是数学的其中一门分支,可大致分为初等代数学和抽象 代数学两部分。
代数的由来
初等代数学:是指19世纪中期以前发展的方程理论,主要研究某一方程﹝ 组﹞是否可解,如何求出方程所有的根﹝包括近似根﹞,以及方程的根有 何性质等问题。
抽象代数:是在初等代数学的基础上产生和发展起来的。它起始于十九世 纪初,形成于20世纪30年代。在这期间,挪威数学家阿贝尔(N.H. Abel)、 法国数学家伽罗瓦(E′. Galois)、英国数学家德·摩根(A. De Morgan) 和布尔(G. Boole)等人都做出了杰出贡献,荷兰数学家范德瓦尔登(B.L. Van Der Waerden)根据德国数学家诺特(A.E. Noether)和奥地利数学家阿 廷(E. Artin)的讲稿,于1930年和1931年分别出版了《近世代数学》一卷 和二卷,标志着抽象代数的成熟。
同态与同构
PART 同余、商代数、积代数
04
PART 05
代数系统实例
6.1 代数系统的定义
定义6.1 设S是个非空集合且函数f: Sn→S ,则称f为S上的一个 n元运算。其中n是自然数,称为运算的元数或阶。
当n = 1时,称f为一元运算,当n = 2时,称f为二元运算,等等。 定义6.2 如果对给定集合的成员进行运算,从而产生了象点,而

离散数学 几个典型的代数系统-1(群)

离散数学  几个典型的代数系统-1(群)

独异点 V 记作 V = <S, , e>
4
独异点的幂
6.1 独异点的幂运算定义

x0 = e

xn+1 = xn x,


幂运算规则
n∈N
xn xm = xn+m (xn)m= xnm
m, n∈N
5
交换半群和独异点的实例
6.1
例1 (1)<N,+,0>,<Z,+,0>,<Q,+,0>,<R,+,0>都是交 换半群,也是独异点,+ 是普通加法.
半 群
(2)设 n 是大于 1 的正整数,<Mn(R),+>和<Mn(R),·>都是 独异点,其中+和 ·分别表示矩阵加法和矩阵乘法. 加
与 群
法构成交换半群,乘法不是交换半群. (3)<P(B),,>为交换半群和独异点,其中为集合的对
称差运算.
(4)<Zn, ,0>为交换半群与独异点,其中 Zn = {0, 1, …, n1}, 为模 n 加法.
(4) <Zn,>是群. Zn={ 0,1, …, n1},为模 n 加.
11
Klein四元群
设G = { e, a, b, c },G上的运算由下表给出,
6.1 称为 Klein四元群
半 群 与 群
e a b c 运算表特征: • e为G中的幺元
e e a b c • 对称性---运算可交换
若群G中的二元运算是可交换的,则称G为交 换群 或 阿贝尔(Abel)群.

a 0

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.

离散数学第六章

离散数学第六章

第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。

画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。

注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。

(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。

先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。

利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。

由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。

关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。

(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。

直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。

可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。

3.群在其它方面的应用:如编码理论、计算机等。

一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。

几个典型的代数系统

几个典型的代数系统

本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.半群定义称代数结构<S,>为半群(semigroups),如果运算满足结合律.当半群<S,>含有关于运算的么元,则称它为独异点(monoid),或含么半群.例 <I+,+>,<N,·>,< ,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理设<S,>为一半群,那么(1)<S,>的任一子代数都是半群,称为<S,>的子半群.(2)若独异点<S,,e>的子代数含有么元e,那么它必为一独异点,称为<S, , e>的子独异点.证明简单,不赘述.定理设<S,>,<S’,’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),’>为一半群.(2)当<S,>为独异点时,则<h(S),’>为一独异点.定理设<S,>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a Sh(a)= f af a:S→S 定义如下: 对任意x S,f a(x)= a x现证h为一同态.对任何元素a,b S.h(a b)=f a b (l1-1)而对任何x S,f a b(x)= a b x = f a(f b(x))= f a○f b (x)故f a b = f a○f b ,由此及式(l1-1)即得h(a b)= f a b = f a○f b =h(a)○ h(b)本定理称半群表示定理。

它表明,任一半群都可以表示为(同态于)一个由其载体上的函数的集合及函数合成运算所构成的半群。

离散数学 第四章 4

离散数学  第四章 4

(3)
S={1,2,3,…,n}到自身的双射称为 元置换, 到自身的双射称为n元置换 到自身的双射称为 元置换 记为σ 记为σ,可表示为
2 n 1 σ = σ (1) σ (2) σ ( n )
上的双射即置换的个数共n!个 上置换 注:S上的双射即置换的个数共 个,S上置换 上的双射即置换的个数共 的全体记作S 的全体记作 n
2 设f是含有格中元素以及符号 是含有格中元素以及符号=,≤,≥,∨和∧ 是含有格中元素以及符号 , 的公式, 是将f中的符号分别替换成 的公式,令f*是将 中的符号分别替换成 , 是将 中的符号分别替换成=, ≥ ,≤, ∧与∨所得到的公式,则称 为f的对偶 所得到的公式,则称f*为 的对偶 命题。 命题。 3 对偶原理:f* f 对偶原理:
第六章
几个典型的代数系统
半群与群
格与布尔代数
6.1 半群与群
是一个代数系统, 设V=(G, )是一个代数系统 是一个代数系统 上的二元运算, 是G上的二元运算 上的二元运算 1 若 在G上成立结合律 则称 为半群。 上成立结合律 则称V为半群。 上成立结合律,则称 如:〈Z+, +〉, 〈N, +〉, 〈Z,+〉 〉 〉 〉 2 若 在G上成立结合律 且有单位元,则称 为 上成立结合律 上成立结合律, 有单位元,则称V为 独异点(含幺半群) 独异点(含幺半群)。 如: N, +〉, 〈Z,+〉 〈 〉 〉
轮换其乘法
例 设f=(15342), g=(125)(34) 求fg, g f, f-1, g-1
(4) 设M是非空集合 有n个元素 上所有置换 是非空集合,有 个元素 个元素,M上所有置换 是非空集合
的集合关于置换的乘法(函数的复合运算 构成 的集合关于置换的乘法 函数的复合运算)构成 函数的复合运算 一个群,称为 元对称群, 称为n元对称群 一个群 称为 元对称群, 它的任何子群称为n元置换群 元置换群。 它的任何子群称为 元置换群。 例题: 元对称群。 例题 S3是3元对称群。 元对称群

代数系统

代数系统

6.1.1 代数运算
例6.2 分析下列哪些是代数运算。 不是 (1)f(x,y)=1/(x-y), x∈R, y∈R; (2)g={<1,1>,<2,2>,<3,3>},集合A={1,2,3}; 是A上的一元运算 (3)h(x,y)=x· y-y, x∈R, y∈R; 是R上的二元运算 (4)f1={<x,y>| x∈R, y∈R,|x|=|y|}; 不是 (5)f2={<a,b>,<b,b>,<b,c>},集合A={a,b,c}; 不是 (6)w(x)=x2,x∈N。 是N上的一元运算
6.1.1 代数运算
二元运算的运算表:对于具有n个元素的有限集合A上 的二元运算“#”,可以通过一个n×n表格来表示。 表格的上方、左侧依次列出A中元素,表格中第i行、 第j列元素列出A中第i个元素和第j个元素在运算“#” 下的结果。
4 0
0 1 2 3 0 1 2 3
1
2
3
4 0
0 1 2 3 0 0 0 0
6.1.2 代数系统
例6.6 分析如下数学结构是否构成一个代数系统。 (1)N7,模7加法 7 ,模7乘法 7 ; (2)N7,模4加法 4 ,模4乘法 4 ; (3)N4,模7加法 7 ,模7乘法 7 ; (4)N,模7加法 7 ,模4乘法 4 。
解:(1)<N7, 7, 7 >是一个代数系统。 (2)<N7, 4, 4>是一个代数系统。 (3)<N4, 7, 7 >不是一个代数系统。 (4)<N , 7, 4>是一个代数系统。
6.1 代数系统的基本概念
代数结构也叫抽象代数,主要研究抽象的代数系 统。抽象的代数系统也是一种数学模型,可以用它来 表示实际世界中的离散结构。 构成一个抽象代数系统有三方面的要素:集合、 集合上的运算以及说明运算性质或运算之间关系的公 理。 为了研究抽象的代数系统,需先定义一元、二元 代数运算以及n元运算的性质,并通过选择不同的运 算性质来规定各种抽象代数系统的定义,在此基础上 再深入研究这些抽象代数系统的内在特性和应用。

几个典型的代数系统

几个典型的代数系统
可交换半群:如果半群V = < S, >中的二元运算 是 可交换的,则称V为可交换半群。
2020/4/24
离散数学
一、半群的概念(续)
含幺半群(独异点):如果半群V = < S, >的二元 运算 含有幺元,则称V为含幺半群(独异点)。 即 eS,使得对 xS都有e x = x e = x。 独异点亦可记为< S, , e>。
如:<Z, +>, <R–{0}, >, <P(S), >, <Zn, >都是 阿贝尔群。
2020/4/24
离散数学
二、群的概念(续)
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x -n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x -1)-1 = x, (2) x, yG,(x y)-1 = y -1 x –1, (3) xG,xm xn = xm + n ,m, n为整数 (4) xG,(xm)n = xmn , m, n为整数
如:群<Z6, >, <0> = {0}, <1> = {0, 1, 2, 3, 4, 5} = Z6 , <2> = {0, 2, 4}, <3> = {0, 3}, <4> = <2>, <5> = <1> 。
2020/4/24
离散数学
四、两种常用的群
1、循环群: 元素的阶(周期):设群<G, >,aG,使ak = e 成立
2020/4/24

几个典型的代数系统

几个典型的代数系统

第六章几个典型的代数系统本章讨论几类重要的代数结构:半群、群、环、域、格与布尔代数等.我们先讨论最简单的半群.6.1 半群定义 6.1称代数结构<S,*>为半群(semigroups),如果*运算满足结合律.当半群<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群.例6.1 <I+,+>,<N,·>,<∑*,并置>都是半群,后两个又是独异点.半群及独异点的下列性质是明显的.定理6.1设<S,*>为一半群,那么(1)<S,*>的任一子代数都是半群,称为<S,*>的子半群.(2)若独异点<S,*,e>的子代数含有么元e,那么它必为一独异点,称为<S,*, e>的子独异点.证明简单,不赘述.定理6.2设<S,*>,<S’,*’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),*’>为一半群.(2)当<S,*>为独异点时,则<h(S),*’>为一独异点.定理6.3设<S,*>为一半群,那么(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.证(l)是显然的.为证(2)定义函数h:S→S S:对任意a∈Sh(a)= f af a:S→S 定义如下: 对任意x∈S,f a(x)= a*x现证h为一同态.对任何元素a,b∈S.h(a*b)=f a*b (l1-1)而对任何x∈S,f a*b(x)= a*b*x = f a(f b(x))= f a○f b (x)故f a*b = f a○f b ,由此及式(l1-1)即得h(a*b)= f a*b = f a○f b =h(a)○h(b)本定理称半群表示定理。

离散数学 ch6.1半群与单元半群

离散数学 ch6.1半群与单元半群

练习5-2
1 判断下述论断正确与否,在相应的括号中键入“Y”或“N”, (1)在实数集R上定义二元运算 为:对于任意的 a,b ∈R a*b=a+b+ab (a) (R ; )是一个代数系统; (b) (R ; )是一个半群; ( Y ) ( Y)
(c) (R ; )是一个独异点。 ( Y ) (2) 在实数集R上定义二元运算为,对任意 a, b ∈ R , a b=|a|· b(其中· 表示通常数的乘法运算)
例如: 判断(I,+),(R,+) ,(P(E), ), (R,×) 及(P(E), ∩)是否为群?请说明理由。 解:(I,+),(R,+)幺元是 0,每个x的逆元是 -x 。 (P(E), )幺元是Φ ,因任何X∈P(E) XX=Φ ∴X-1=X, ∴(I,+),(R,+),(P(E), )是群。 而 (R,×) ,(P(E), ∩)都有幺元,但不是群。
(a) (R ; )是一个代数系统; (b) (R ; )是一个半群; ( Y ) ( Y ) ( N )
(c) (R ; )是一个独异点。
6-2.1 群 Group
群是抽象代数中最重要的,所以对它的研究也比较多。 一. 概念 半群: 1.群的定义:设(G, * )是个
封闭
代数系统,如果*满足 独异点: 结合 有幺元 可结合、有幺元且每个元素 群 可逆,则称它是个群。 可逆 即群定义: 设(G, * )是代数系统, (1) (a * b)* c=a * (b * c) (结合律) (2)幺元 e∈S, (有幺元) (3)任何a∈S 有a-1∈S, (可逆) 则称(G, * )是个群。
运算由下表定义,容易验证 a b a q p 运算满足结合律,如 b b b a (b p)= a b= p p p p q a b (a b ) p= p p= p, 同理结合律对于任意三个元素都成立

几个典型的代数系统

几个典型的代数系统

编辑课件
17
例5、证明 G 是阿贝尔群当且仅当对a,bG, (ab)2 a2b2。
证明:设 G 为阿贝尔群,
则 a,bG,有 abba ,
故 (ab)2(ab)(ab)a(ba)b a (a b )b(a a )(b b )a 2 b 2
编辑课件
18
例5、证明 G 是阿贝尔群当且仅当对a,bG, (ab)2 a2b2。
x y(xy)m o dn, x y(xy)m odn。
编辑课件
36
二、域。
定义:环 F , , 满足:
(1) F 至少两个元素,
(2) F , 含有幺元, (3) F , 是可交换的, (4) F , 除加法幺元外,其余元素均有逆元, 则称 F , , 为域。
编辑课件
37
例2、 Q , , , R , , 都是域,但 Z , , 不是域,
证明:反之,设 a,bG,(ab)2 a2b2 , 即 (ab)(ab)(aa)(bb), 即 a(ba)ba(ab)b, 由消去律,得 ba ab ,
故G 为阿贝尔群。
编辑课件
19
例6、如果 G 中的每一个元素 a 都满足 a 2 e ,
则 G 是阿贝尔群。
证明:a,bG , 由题设知,a 1 a ,b1 b,(ab)1 ab 从而 ab(ab) 1b 1a 1ba,
编辑课件
41
下图给出了格 S 8 , D , S 6 , D ,S30 , D ,S36 , D
6 8
4
2
3
2
1
1
S 8,D
S6,D
编辑课件
42
下图给出了格 S 8 , D , S 6 , D ,S30 , D ,S36 , D

第一讲代数系统

第一讲代数系统
θl,则称θl为A中关于运算*的左零元。
右零元:如果有一个元素θr∈A,对于任意的元素 x∈A都有x*θr= θr,则称θr为A中关于运算*的右零元。
零元:如果A中的一个元素θ,它既是左零元,又是 右零元,则称θ为A中关于运算*的零元。 θ* x=x*θ=θ
23
6.1代数结构
【例题10】 设“浅”表示不易褪色的浅色衣服,“深”表示易褪 色的深色衣服,集合S={浅,深},定义S的一个二元 运算“混洗”,记为“ * ”,则*的运算表如下表所示。 求S中关于*运算的幺元和零元。
解答:∪和∩运算是可交换的。 ∀ A,B∈ρ(S),有
A∩(A∪B)=A A∪(A∩B)=A
所以∪和∩满足吸收律。又有
A ∩A=A
A ∪A=A
所以∪和∩满足等幂律。
17
6.1代数结构—代数运算性质
性质六 可约律(消去律)
设*是定义在集合上的一个二元运算,元素a∈A, 如果对于任意x,y ∈A,都有
证明思路:先证el =er=e,再证e的唯一性。
证明:设el 和er分别是A中关于运算*的左幺元和右 幺元,则有
el= el *er= er=e
假设另有幺元e’∈A, 则有e’=e’*e=e,结论得证。
22
6.1代数结构
零元 左零元:设*是定义在集合A上的一个二元运算,如
果有一个元素θl∈A,对于任意的元素x∈A都有θl*x=
问☆是否是可交换的?
10
6.1代数结构—代数运算性质
性质二 结合律
设*是定义在集合A上的一个二元运算,如果对于任意 x,y,z∈A ,都有
x*(y*z)=(x*y)*z
则称该二元运算是可结合的。
【例题6】
设A是一个非空集合,*是A上的一个二元运算,对于任意 a,b ∈A ,有a*b=b,证明运算*是可结合的。

代数系统PPT教学讲义

代数系统PPT教学讲义

例:运算可看作是一个具有输入端与输出端的黑盒
子,图4.1a表示为一元运算而图4.1b则表示为二元
运算.一元运算中对应的是一个输入端与一个输出
端.
输出
输出
二元运算中则对应两个
输入端与一个输出端.
输入
输入
(a)
(b)
图4.1运算是一个黑盒子
10
第4章 代数系统概论
定 义 4.2 代 数 系 统 : 非 空 集 合 S 上 的 K 个 运 算 1, 2,…,k一元或二元运算所构成的封闭系统称为代
练习
设V1=<R,+>, V2=<R,·>,其中R和R分别为实数集与非 零实数集,+ 和 ·分别表示普通加法与乘法.令 f : R→R,f x= ex 则 f 是V1到V2的单同态.
若令g: R →R,gx= ex,则g是V2到V1的 _______
31
第4章 代数系统概论
对三种同态作详细的分析: 1.同构 定理4.3:代数系统A与B同构则系统中的六个性质结 合律、交换律、分配律及单位元、零元、逆元的 存在能双向保持. 2.满同态 定理4.4:代数系统A与B满同态则系统中的六个性质 结合律、交换律、分配律及单位元、零元、逆元 的存在能单向保持.
那么 3∗4 = 3, 0.5∗3 = 0.5
6
运算表
运算表:表示有穷集上的一元和二元运算
aa11 aa22 …… aann
aa11 aa11aa11 aa11aa22 …… aa11aann
aa22 aa22aa11 aa22aa22 …… aa22aann
..
……
..
……
..
……
aann aannaa11 aannaa22 …… aannaann
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15
群的性质
例3 设群G=<P({a,b}), >,其中是集合的对称差运 算,解下列方程:
(1){a} x= Φ
(2)y {a,b}={b} 解:(1) x={a} -1 Φ ={a} Φ ={a} (2) y = {b} {a,b}-1={b} {a,b}={a}
16
置换的乘法有下述一些性质:
群的性质
1. 消去律
设<G,◦>是群,则对任何a,b,c∈G, 如果有
⑴ a◦b=a◦c 则 b=c 。 ⑵ b◦a= c◦a 则 b=c 。
14
群的性质
2. 群方程的可解性
设<G,◦>是群,则对任何a, b∈G, 方程 a◦x=b 或 y◦a=b 在G中存在唯一解,且解的形 式分别为 x=a-1 ◦b , y = b ◦ a-1
群的性质
6.群中元素的阶
定义 元素的阶: 设<G,◦>是群,a∈G, 使ak=e的最小正整数k称为a的阶,记作|a| 。 如果这样的k不存在,则称a的阶是无限的。
注: (1) |a| = |a-1|
(2) |e| = 1
20
群的性质
例6 设群〈Z6,6〉,其中Z6={0,1,2,3,4,5}, 6是模6
32
循环群
关于循环群的两个问题: (1)如何求取循环群的所有生成元? (2)如何求取循环群的所有(循环)子群?
33
循环群
定理 设G=<a>, (1)若|G|= ∞,则G的生成元只有a与a-1。 (2)若|G|=n,则G的生成元是ak,其中k是与n互素的正整 数。
34
循环群
定理 设G=<a>, (1)若|G|= ∞ ,则G的循环子群有无限个,即为 <a0>,<a>,<a2>,<a3>, ....... (2)若|G|=n,则G的循环子群为<an/d>,其中d是n的所有正 因子,即G的循环子群的个数为n的正因子个数。且
43
置换群
例14设σ=
1 2 3 4 , τ= 1 2 3 4 , 2 1 3 4 3 4 1 2
1 2 3 4 则σ◦τ= ? , τ◦σ= 1 2 3 4 ? 3 4 2 1 4 3 1 2
44
置换群
am(al)1 = amal = aml∈H
根据判定定理可知H≤G.
26
典型子群
例8 生成子群举例:
<Z,+>:<2>={2k | k∈Z}=2Z
<Z6, >:<2>={0,2,4} Klein四元群 G = {e,a,b,c}的所有生成子群是: <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}.
在伽罗瓦理论中起关键作用的就是置换群,它 是有限群的特例,是群的典型代表。
40
置换群
几个概念: n元对称群<Sn, ◦>的子群称为n元置换群。
n元对称群<Sn, ◦ >, 其中Sn为n元置换的集合, “◦”为n元置换的复合运算。
n元置换——集合S上的双射函数,S={1,2,...,n}。 n元置换的复合运算——函数的复合运算。

3) 存在幺元: 若幺元e存在,则对任意a∈S,满足
a e a e * a a
a e ae a 即 e a ea a
得 e = 0 ,即幺元存在且为0。

4) 每个元素存在逆元: 对于任意a∈S,设a-1存在且a-1 ∈S ,则
a a 1 0 1 a * a 0
练习 求群<Z,+>, <Zn, n>及<P(S), >中各元素的阶。
<Z,+>
<Zn, n>
<P(S), >
|x|
1, x 0 1, x 1, x 0 | x | | x | | x | [n, x] 2, x ,x 0 , x 0 x
典型子群
例9 群的中心 设G为群,令C={a| a∈G∧x∈G(ax=xa)},则C是G的子 群,称为G的中心.
证明 e∈C. C是G的非空子集. 任取a,b∈C,只需证明ab1 与G中所有的元素都可交换. x∈G,有 (ab1)x = ab1x = ab1(x1)1 = a(x1b)1 = a(bx1)1 = a(xb1) = (ax1)b1 = (xa)b1 = x(ab1) 由判定定理二可知C≤G.
22

群的基本概念及性质 子群 特殊群
子群
定义 子群:
群G的非空子集H如果对于G的运算也构成一个群,则称H为 G的子群,记作H≤G。即: 设<G,◦>是群, H是G的非空子集,如果<H,◦>满足: ⑴ 任何a,b∈S 有a◦b∈H, (封闭)
⑵幺元 e∈H,
⑶任何a∈H 有a-1∈H, 则 H≤G
群的性质
练习 设群<Z8, 8 >, 8是模8加法,在群中解下列方 程: (1)x 8 6 =5; (2)2 8 y = 3. 解:(1)x=5 8 6-1=5 8 2=7
(2)y=2-1 8 3=6 8 3=1
17
群的性质
3. 群中无零元。
4. 有限群的运算表的特征。
<G,◦>是个有限群,则G中每个元素在◦运算表中的每一 行(列)必出现且仅出现一次。 5.群中元素的幂运算 设G是群,a ∈G,则

a a 1 aa 1 0 1 1 a a a a 0
得a-1 =(-a)/(1+a) ∈S。 综上知<S,*>是群。
群的性质
群的性质包括: 1)消去律
2)群方程的可解性(重点)
3)群中无零元 4)有限群运算表的特性 5) 群中元素的幂运算(重点) 6) 元素的阶
1
<P(S), > Φ x

例1 几个典型的群(续): Klein 四元群:
◦ e a b c e a b c
特征: 1. 满足交换律 2. 每个元素都是自己的逆元 3. a, b, c中任何两个元素运算结 果都等于剩下的第三个元素
e a a e b c c b
b c c b e a a e

例2 设S=R-{-1},S上定义运算*: a*b=a+b+ab,试证明<S,*>是群。 证明 从以下几方面进行证明: 1) 运算*在S上封闭;2) 运算*满足结合律;
3)存在幺元;
4) 每个元素存在逆元。

1)运算*在S上封闭: 任意a,b∈S,有a*b=a+b+ab∈R,且a≠ -1,b≠ -1。 若a*b= -1即a+b+ab= -1,则a= -1或b= -1,与题设矛盾 ,故a*b≠ -1. 所以a*b∈S,即运算*在S上封闭。
离散数学
Discrete Mathematics
主讲:陈哲云
青岛理工大学计算机工程学院 2013.09
1
第6章 几个典型的Байду номын сангаас数系统
代数系统
半群与群 环与域 格与布尔代数 子集
子代数
分类 代数系统 成分:集合+运算 的构成 公理:运算性质 映射
代数系统 间的关系
代数系统的 同构与同态
新 的 生成 积代数 代 笛卡儿积 数 系 商代数 统 等价关系
42
置换群
例13 集合S={1,2,3}上共有6个不同的置换, 它们的集合记 为S3 = {σ1,σ2,σ3,σ4,σ5,σ6}。
1 2 3 1 1 2 3 1 2 3 3 3 1 2 1 2 3 5 3 2 1 1 2 3 2 2 3 1 1 2 3 4 1 3 2 1 2 3 6 2 1 3

2) 运算*满足结合律: 任意a,b,c∈S,有 (a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c =a+b+c+ab+ac+bc+abc,且 a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc) =a+b+c+ab+ac+bc+abc, 所以,(a*b)*c=a*(b*c),即*满足结合律。
<18/8>=<1>=Z8
38
循环群
例12 设G=<A,*>,A={a,b,c},*的运算表为: (1)找出G的单位元; (2)找出G的幂等元; (3)求b的逆元b-1和c的逆元c-1. (4)G是否为阿贝尔群? (5)求G的生成元和所有子群.
* a b
a a b
b b c
c c a
c
c
a
b
39
置换群
30
循环群
例10 循环群举例: (1)无限阶循环群:<Z,+> , Z=<1>=<-1> (2)n阶循环群:<Zn, n >, Zn=<1>=<n-1>
31
循环群
定理 设循环群G=<a>,则 |a| = |G|,即循环群的阶与生 成元的阶是相同的。 当|G|=∞时,G=<a>={…, a-2,a-1,e, a1,a2,…} 当|G|=n时, G=<a>={a0,a1,a2,…,an-1}
相关文档
最新文档