一次函数性质PPT课件

合集下载

一次函数图像课件(共14张PPT)

一次函数图像课件(共14张PPT)

(增的大图2)而象当从_减_k左_<小_到_0,时右这下,__时y_降随_函_x数.的
做一做
画出函数y=-2x+2的图象,结合图象回答 下列问题:
(2)当x取何值时,y=0? 解:((2)因3)为当yx=取0 何所值以时-,2yx>+20=?0 ,x=1
(3)因为 y>0 所以 -2x+2 > 0 ,x < 1
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升;
y x 2
y x 2
(增的大图2)而象当从_减_k左_小<_到_0,时右下这,__时y降_随_函_x数.的
y减少
x增大
概括
一次函数y=kx+b有下列性质: (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升;
一次函数的性质(1)
说一说:
1、一次函数的一般式。 y=kx+b(k,b为常数,k≠0)
2、一次函数的图象是什么?
一条直线。
1.掌握一次函数y=kx+b(k≠0)的性质。 2.能根据k与b的值说出函数的有关性质。
y 2 x 1 3
x 0 3 2
y10
y 3x 2 y 2 x 1 3
y增大 x增大
解:方法一 把两点的坐标代入函数关系式
当 x=2 时, m= 4
3
1
当 x= -3 时, n= 2
所以 m > n。
方法二因为
1
K= 6
>0,所以函数y随x增大而增大。
从而直接得到 m > n。
小结
经过本节课的学习,你有哪些收获?
(2) 当k<0时,Байду номын сангаас随x的增大而减___小__,这时函 数的图象从左到右下__降___.

一次函数图像与性质ppt课件

一次函数图像与性质ppt课件


象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是

条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .

一次函数课件ppt

一次函数课件ppt
掌握如何根据直线的方程求解一次函数,并了解直线的性质。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

一次函数图象课件

一次函数图象课件

物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题

《一次函数》PPT课件(第1课时)

《一次函数》PPT课件(第1课时)

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
求油箱的油量y(单位:升)随行驶路程x(单位:千米)变化的
函数关系式,并写出自变量的取值范围,y 是 x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:y
50
9 50
x,
自变量x的取值范围是0≤x≤
2500 9
.
函数
y
50
9x 50
,是x的一次函数.
巩固练习
如果长方形的周长是30cm,长是xcm,宽是ycm. (1)写出y与x之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.
解:(1)y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
课堂检测
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,

一次函数的性质和图像(一)课件

一次函数的性质和图像(一)课件
在物理中,许多现象可以用一次函数来描述,如速度与时间的关系、电阻与电流 的关系等。通过这些实例,可以深入理解一次函数在实际问题中的应用。
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数

一次函数的性质课件(共10张PPT)

一次函数的性质课件(共10张PPT)

1 2
x
当P点沿直线向右下方运动时,直线是下 降的.这说明当自变量x的值增大时,函数 值y随着减小.
(4)比较(2)(3)中你的发现,你能总结出一次函数y=k x +b当自变量x增加时,函数值y的变化吗?
一般地,对于一次函数;当k<0时,y随着x的增大而减小.
作业布置
课本146页 习题10.3 第1、3、4题.
当P沿直线向右上方运动时, 直线是上升的.这说明当自 变量x的值增大时,函数y 的值也随着增大.
(2)在同一直角坐标系中,分别画出直线y=x-1,y=5x,y (图10-11),你发现它们是否也具有上述性质?
4 3
x
2
它们具有上述性质
(3)在同一直角坐标系中,分别画出直线y=-3x-1,y=-x+2,y (图10-12),你又有什么发现?与同学交流.
10.3 一次函数的性质
学习目标
1.结合函数图象,理解正比例函数与一次函数 的性质.
2.加强图象与函数表达式,即“数”与“形” 的联系.
相关知识链接
1.一次函数:形如 y=k x+b(k≠0)的函数叫做x的一
次函数,其中k与b是常数.特别地,当b=0时,一次函 数y=kx也叫做正比例函数,k叫做比例系数.
解: 因为一次函数y=kx-k的y随x的增大而 增大,所以k>0.又因为x=0时,y=-k<0, 所以直线y=kx-k与y轴的交点(0,-k) 在y轴的负半轴,且当y=0时,x=1,故 直线y=kx-k与x轴的交点为(1,0).它 的图象大致如图10-13所示,这条直线 经过第一、三、四象限.
练习
2.一次函数y=k x+b(k≠0),当b≠0时,它的图象与x
轴的交点坐标是(

一次函数的性质PPT课件

一次函数的性质PPT课件

2
2
请谈谈:
(1)哪些函数的图像与y轴的交点在x轴的上方,哪些函数的图像与y
轴的交点在x轴的下方?
(2)函数的图像与y轴的交点在x轴的上方和函数的图像与y轴的交点
在x轴的下方,这两种函数,它们的区别与常数项有怎样的关系?
(3)正比例函数的图像一定经过哪个点?
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
4
新知导入 课程讲授 随堂练习 课堂小结ຫໍສະໝຸດ 一次函数 的性质内容
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
当k>0, b>0时,经过一、二、三象限; 当k>0 ,b<0时,经过一、三、四象限; 当k<0 ,b>0时,经过 一、二、四象限; 当k<0 ,b<0时,经过二、三、四象限.
2
(2)当2k+1=0,即k=- 1 时,函数y=(2k-1)x+(2k+1)的图像经过原点.
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
例 (3)当k满足什么条件时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在 x轴的下方?
(3)当2k+1<0时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的 下方. 解2k+1<0,得k<- 1 .
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
问题1.1 请在如图所示的直角坐标系中,画出一次函数y=2x+3和y=1 x-2的

《一次函数》优秀ppt课件

《一次函数》优秀ppt课件
ቤተ መጻሕፍቲ ባይዱ
《一次函数》优秀实用课件(PPT优秀 课件)
二、填空题(每小题 5 分,共 15 分) 12.已知一次函数 y=kx-4,当 x=2 时,y=-3,则这个一次函数的解析式 为__y_=__12_x_-__4___.
13.当 x=3 时,函数 y=x+k 和函数 y=kx-1 的值相等,那么 k 的值为__2__.
2 km 以上,每增加 1 km 1.40 元
(1)写出出租车行驶的里程数 x(x≥2 km)与费用 y(元)之间的函
数关系式;
(2)李伟同学身上仅有 9 元钱,乘出租车到科技馆车费够不够?
请说明理由.
解:(1)y=3+(x-2)×1.40=1.4x+0.2(x≥2)
(2)当 x=6 时,y=1.4×6+0.2=8.6<9,∴李伟的钱够付到科技馆的车费.
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
1.(3 分)下列函数解析式:①y=-2x;②y=-2x;③y=-2x2;
④y=x3;⑤y=2x-1.其中是一次函数的是( B )
A.①⑤ B.①④⑤
C.②⑤ D.②④⑤
2.(4 分)下列函数中,是一次函数但不是正比例函数的是( C )
四清导航 《一次函数》优秀实用课件(PPT优秀 课件)
《一次函数》优秀实用课件(PPT优秀 课件)
【综合应用】 17.(13 分)小明受《乌鸦喝水》的故事启发,利用水桶和体积相 同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题:
(1)放入一个小球后水桶中水面升高__2___cm;
(2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个)之间 的一次函数关系式;(不要求写出自变量的取值范围)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.

《一次函数的性质》PPT课件

《一次函数的性质》PPT课件
4.写出m的3个值,使相应的一次函数y = (2m-1)x+2的值都是随x的增大而减小.
K=2
可以写无数个,只要满足2m-1<0就可以了。
例如:m=0.m=-1,m=-2
小结:
本节课的主要内容有:
1.正比例函数的特点是什么?
2.一次函数及其图像的性质有哪些?
3.函数图像的位置关系有几种?
4.关于函数y=kx+b图像的大致位置跟k,b的关系。
__________
增大
(2)函数y=2x-1的图 象不经过第 象限

(3)对于函数y=5x+6,
y随x的减小而_____
减小
(4)函数y=2x-1经过 象限。
一、三、四
练一练
(2)、(4)
D
3.下列哪个图像是一次函数y=-3x+5 和y=2x-4的大致图像( )
3
1
y
3
0
X
观察分析:
自变量x由___到___
函数y的值从___到___




函数y=3x-2的图象是否也有这种现象
当k>0时,y随x的增大而增大,
结论
的图象
观察分析:
自变量x由___到___
函数y的值从___到___




当k<0时,y随x的增大而逐渐增大时,y=2x+6和y=5x哪一个的值先达到20?这说明了什么?
2已知一次函数y=x-2的大致图像为 ( )
A B C D
1.下列函数中,y的值随x值的增大而增大的函数是________.
A.y=-2x B.y=-2x+1
一,二,三

一次函数的性质PPT课件精选全文

一次函数的性质PPT课件精选全文
(来自教材)
30
解:(1)y=10 000-3.6x(1 500≤x≤2 000). (2)函数图像如图所示. (3)2 800≤y≤4 600.
知2-练
(来自教材)
31
知2-练
4 若正比例函数y=kx(k≠0)的函数值y随x的增大而减小, 则一次函数y=kx+k的图像大致是( D )
(来自《典中点》)
(来自教材)
14
解:图像如图所示. (1)减小;下降 (2)当y<0时,x>1. (3)当0<x<1时, 0<y<3.
知1-练
(来自教材)
15
知1-练
5
已知P1(x1,y1),P2(x2,y2)是一次函数y=-
1 3
x+2
图像上的两点,下列判断中,正确的是( D )
A.y1>y2 B.y1<y2 C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
知识点 1 一次函数的性质
知1-导
在下图所示的两个坐标系中,分别画出一次函数
y=2x+3、
1 y=
2
x-2和y=-2x+4、y=-
1 2
x+2的图
像,并回答以下问题:
4
y=2x+3 y
4
3
2
y
1
-4 -3 -2 -1 O 1 2 3 4 x
-1
-2
-3
1x 2 2
知1-讲
5
y 1x 2 2
y=-2x+4 y
4
3
2
1
-4 -3 -2 -1 O 1 2 3 4 x
-1
-2
-3
知1-讲
6
哪些函数,y的值是随x的值的增大而增大的?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
平移 _3____ 个单位得到.
3.直线y x 2与x轴的交点坐标是_(2_,_0_) __
与y轴的交点坐标是__(0_,_2_) ___.
一次函数的性质(1)
x
…0 -1…
y=x+1 … 1 0 …
x
… 0 3/2…
y=2x-3 … - 3 0 …
y
5
4 3
y xy12x3
2 1
-4 -3 -2 -1O-1 1 2 3 4 5 x
一次函数的性质(1)
一、作业讲评:
1.求下列直线与x轴和y轴的交点,并在同一直
角坐标系中画出它们的图象:
(1) y=4x-1;
(2)y=
2
x
2
3
4. 填空:
(1)直线y=4x-3过点(__ ,0)(0,___);
(2)直线
y 1x2 3
过点(___,0)、
(0,___).
6. 画出直线y=-2x+3,借助图象找出: (1) 直线上横坐标是2的点; (2) 直线上纵坐标是-3的点; (3) 直线上到y轴距离等于2的点.
y 5
(3):(-2,7) 4
3
2 1
-4 -3 -2 -1 O
-1 -2
(3):(-2,7) -3
-4
(1):(2,-1)
12345 x
(2):(3,-3)
5分钟小测:
1.将直线y 2x向下平移3个单位得:____
___y___2_x___3______
2.直线y 1 x 3可由直线y 1 x向__下____
4 3 2 1
-4 -3 -2 -1O-1
-2 -3 -4
12345 x
y 1 x 1 2
作一次函数y = -2x+5的图象
y
(-1,7) 7
k<0时函数
6
值y随自变
5(0,5) 量x的增大
4 3
(1,3)
而减小
2
1
(2,1)
-3 -2 -1 0 1 -1
2
(3 34,5-1)6 x
-2
• 概括 • 一次函数y=kx+b有下列性质: • (1) 当k>0时,y随x的增大而_增__大__,
增大而 __减___小___ 。 (2)写一个 y随 x的增大而增大的一次
函数 y___2 __x_1。 (注 :k只 0就 要可 (3)若一次函数 y kx 3从左到右是
上升,则 k ___0___ 。
-2
-3
-4
作一次函数y = 2x+1的图象
y
7
k>0时,函
6
数值y随自
5
(2,5) 变量x的增
4
3 (1,3)
大而增大
2
(0,-1)1
-3 -2 -1 0 1
(-1,-1)-1
2
3
4… x
…0 2 …
y=-2x-2 … -2 0 …
1
y= - x+1
2

1
0…
y
y2x2 5
这时函数的图象从左到右_上__升____; • (2) 当k<0时,y随x的增大而_减__小__,
这时函数的图象从左到右_下__降__.
例:如果一y次 (m函 1)数 x2随 着x的增大而减m小 的, 取求 值范 解: 因为函数y随 值着x的增大而减
所:以 m10
即:m 1
课堂检测: (1)一次函数 y 3 x 2中, y随 x的
相关文档
最新文档