一次函数的图像(1)PPT课件

合集下载

一次函数的图象ppt课件

一次函数的图象ppt课件

3
探究新知
正比例函数的图象
知识点
探究1:画出正比例函数y=2x的图象
怎样画出给定函数的图象?一般可以分为哪几个步骤?
“描点法”,分成“列表、描点、连线”三个步骤.
(1) 列表:
x
… -3
-2
-1
0
1
2
3

y=2x
… -6
-4
-2
0
2
4
6

4
4
探究新知
探究1:画出正比例函数y=2x的图象
y=-2x
交点的坐标:y=3x 和y=-3x+2.
解:对于函数y=3x,取x=0,得y=0,
得到点(0,0);取x=1,得y=3,
得到点(1,3).
过点(0,0),(1,3)画直线,
就得到函数y=3x的图象,它与坐标
轴的交点是原点(0,0).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
பைடு நூலகம்-3
-4
2
它与x轴的交点是( 3 ,0),与y轴
的交点是(0,2).
y
5
4
3
2
1
y=3x
-3 -2 -1 O1 2 3 x
-1
-2
-3
-4
y=-3x+2
-5
15
15
探究新知
例3 画出一次函数y=2x-1与y=-0.5x+1的图象,并求出它们与
坐标轴的交点坐标.
y
y=2x-1
解:列表:
x
y=2x-1
y=-0.5x+1

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

一次函数图像课件(共14张PPT)

一次函数图像课件(共14张PPT)

(增的大图2)而象当从_减_k左_<小_到_0,时右这下,__时y_降随_函_x数.的
做一做
画出函数y=-2x+2的图象,结合图象回答 下列问题:
(2)当x取何值时,y=0? 解:((2)因3)为当yx=取0 何所值以时-,2yx>+20=?0 ,x=1
(3)因为 y>0 所以 -2x+2 > 0 ,x < 1
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升;
y x 2
y x 2
(增的大图2)而象当从_减_k左_小<_到_0,时右下这,__时y降_随_函_x数.的
y减少
x增大
概括
一次函数y=kx+b有下列性质: (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升;
一次函数的性质(1)
说一说:
1、一次函数的一般式。 y=kx+b(k,b为常数,k≠0)
2、一次函数的图象是什么?
一条直线。
1.掌握一次函数y=kx+b(k≠0)的性质。 2.能根据k与b的值说出函数的有关性质。
y 2 x 1 3
x 0 3 2
y10
y 3x 2 y 2 x 1 3
y增大 x增大
解:方法一 把两点的坐标代入函数关系式
当 x=2 时, m= 4
3
1
当 x= -3 时, n= 2
所以 m > n。
方法二因为
1
K= 6
>0,所以函数y随x增大而增大。
从而直接得到 m > n。
小结
经过本节课的学习,你有哪些收获?
(2) 当k<0时,Байду номын сангаас随x的增大而减___小__,这时函 数的图象从左到右下__降___.

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

一次函数的图像课件苏科版数学八年级上册

一次函数的图像课件苏科版数学八年级上册
(-2,7),则下列点在该函数图像上的是(
A. (0,-3)
B. (2,5)
C. (-3,10)
D. (-1,-2)
)
感悟新知
解题秘方:本题考查的是判断点是否在一次函数图像上,
先把点(-2,7)的坐标代入一次函数y=-3x+m中得出m
的值,从而得到函数表达式,再将各选项中点的横坐标代
入函数表达式求出相应的y 值看与点的纵坐标是否相等.
感悟新知
解:列表如下:
x
y1
0
-1
1
1
x
y2
0
0
1
2
x
y3
0
2
描点、连线,即可得到它们的图像,如图6.3-1.
从图像中我们可以看出:它们是一组互相
平行的直线,因为这组函数的表达式中k
的值都是2. 结论:一次函数中的k 值相等
(b 值不相等)时,其图像是一组互相平行的直线.
1
4
感悟新知
易错警示
画函数图像时要考虑自变量的取值范围. 在
D 选项中,∵当x=-1 时,y=3+1=4 ≠ -2,
∴此点不在函数图像上. 答案:C
感悟新知
方法点拨
判断点是否在函数图像上的基本方法是将横
坐标代入函数表达式中,看函数值是否与纵坐标
相等,若相等,则该点在函数图像上;若不相等,
则该点不在函数图像上.
感悟新知
知识点
2
一次函数的图像与性质
一次函数y=kx+b(k、b为常数,且k ≠ 0)的图像与性质和k、
正半轴 负半轴
原点
一、
一、
二、
经过的 一、
一、三
二、四
象限 二、三 三、四

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500

一次函数的图像ppt课件

一次函数的图像ppt课件

取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=


②对于函数y= -
x,若x2>x1,则y2


x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的

《一次函数》PPT课件(第1课时)

《一次函数》PPT课件(第1课时)

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
求油箱的油量y(单位:升)随行驶路程x(单位:千米)变化的
函数关系式,并写出自变量的取值范围,y 是 x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:y
50
9 50
x,
自变量x的取值范围是0≤x≤
2500 9
.
函数
y
50
9x 50
,是x的一次函数.
巩固练习
如果长方形的周长是30cm,长是xcm,宽是ycm. (1)写出y与x之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.
解:(1)y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
课堂检测
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,

一次函数的图象(第1课时)课件

一次函数的图象(第1课时)课件
上的点(x,y)都满足关系式y=–2x+5吗?
y
9 8 7 6 5 4 3 2 1
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8
x
–1
A
–2
–3
B
–4
–5
–6
–7
答:(1)点B坐标(4,-3) 当x=4时,y=-2x4+5=-3
故(4,-3)满足关系式 y=-2x+5
(2)一次函数y=–2x+5的 图象上的点(x,y)满足关系 式y=–2x+5
北师大版 八年级 上册(第四章)
3.一次函数的图象
(第1课时)
引例
已知一次函数y=2x , <1> 当x= 1 时,y = 2
当x= 2 时,y = 4 <2> 当x= –3时,y = – 6
当x= –4时,y = – 8 <3>以x为点的横坐标,相应的y的值为点 的纵坐标,可得点
(1, 2) ;(2,4) ;(-3,-6);(-4,-8) <4>再找一些满足同样要求的点
<4>作函数的一般步骤应怎样?
答: A:一次函数y=-3x的图象应是一条直线
B:作函数的一般步骤:列表,描点,连线
例 作出一次函数y=-3x的图象
解: x … -2 -1 0 1 2 … y
y=2x+1 … 6 3 0 -3 -6 … 5
4
作函数图象的一般步骤: 列表:找到一些满足条件的点。 描点:以表中各组对应值作为点的坐
1 2 34567 8
A
B
答: (1)当x=3, y=–2x3+5=-1 所对应的点(3,–1)在一次函数 y=–2x+5的图象上。

第8课 一次函数的图象与性质(1)

第8课 一次函数的图象与性质(1)

19. 一等腰三角形的周长为20 cm,底边长为y cm,腰长 为x cm. (1)求出底边长y(cm)与腰长x(cm)的函数关系式. (2)求出自变量x的取值范围.
解:(1)y=20-2x (2)∵x-x<y<2x ∴x-x<20-2x<2x ∴5<x<10 ∴自变量x的取值范围为5<x<10
谢谢!
2. (例1)在同一直角坐标系中画出y=2x,y=2x+1和
y=2x-1的图象
解: x
-2 -1 0 1 2
y=2x -4 -2 0 2 4
y=2x+1 -3 -1 1 3 5
y=2x-1 -5 -3 -1 1 3
发现: y=2x 的图象向___上____平移___1___个单位得到 y=2x+1 的 图象,向___下____平移_______个单位得到 y=2x-1 的图象.
(1)y=12x+3 和 y=12x-5:__平__行____ (2)y=-5x+2 和 y=4x+1:__相__交____
11. (1)直线y=8x-4和y=8x+3的位置关系是__平__行____.
(2)若直线y=-4x+5和y=kx+7平行,则k=___-__4___.
三、过关检测
第1关 12.(1)一次函数y=- 1 x+5中,y随x的增大而___减__小___;
PPT课程 第8课 一次函数的图象与性质(1) 主讲老师:
一、知识储备
1. (1)正比例函数y=2x的图象从左到右__上__升____,即 y随x的增大而__增__大____. (2)正比例y=-2x的图象从左到右__下__降____,即y 随x的增大而___减__小___.
二、新课学习
提出问题:正比例函数y=kx的图象是一条经过____原____ 点的直线,且k决定直线的升降,那一般的一次函数y=kx +b中的b有什么作用呢?一次函数y=kx+b的图象与正比 例函数y=kx的图象有什么关系呢?

一次函数的图像(1) 课件

一次函数的图像(1) 课件
1 (A) m 3
1 (B) m 3
(C) m > 1
(D)m < 1
4、若函数 y 2 x
m 2
为正比例函数,则m=(
-1
),
5、在正比例函数y=4x中, y随x的增大而( 增大 )。在 正比例函数
1 y x 3
中, y随的增大而( 减小 )。
6、任意写一个图象经过二、四象限的正比例函数的解 析式为 ( y=-6x )。
例函数的解析式为 y = 2x 。
达标测试 1.函数y=kx的图象经过点P(3,-1),则k的值为 (D) A .3 B.-3
1 C. 3 1 D.3
2.下列函数中,图象经过原点的为( C ) A.y=5x+1
x C.y=- 5
B.y=-5x-1
x 1 D.y= 5
3.如果函数y=(3m-1)x是正比例函数,且y随x的增 大而增大,那么m的取值范围是( A )
x y=-3x 0 0 -1 3 (-1.5,4.5) 满足

5 4

(-0.5,1.5)
3

• 0
2 1
-3
-2
-1
-1 1
2
3
x
议一议 ( 1 ) 满足关系式y=-3x的x,y所对应的点(x,y)是 否都在它的图象上? 在
( 2 ) 正比例函数y=-3x的图象上的点(x,y)都满足 它的关系式吗? 满足
y=3x增加的更快,因为 |k|值更大 1
2 • (2)正比例函数y=-0.5x和y=-4x中,随着x值的增
大y的值都减小了,其中哪一个减小得更快?你是
如何判断的? y=-4x减小的更快,因为|k|值更大

一次函数的图象和性质(第1课时)PPT课件

一次函数的图象和性质(第1课时)PPT课件

7.若一次函数y=kx+4的图像经过点(1,2).
(1)求k的值;
(2)在所给直角坐标系中画出此函数的图像;
(3)根据图像回答:当x
时,y>0.
解析:(1)把点(1,2)代入函数解析式,利用方程来求得k的值;(2)由 两点确定一条直线进行作图;(3)根据图像解答即可.
解:(1)依题意,得2=k+4,解得k=-2,即k的值是-2.
A.x<-2
B.x>-2
C.x<2
D.x>2
解析:由图像可得一次函数的图像与x轴的 交点为(-2,0),当y<0时,x<-2.故选A.
6.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若
该水库的蓄水量v(万米3)与降雨的时间t(天)的关系如图所示,
则下列说法正确的是
( B)
A.降雨后,蓄水量每天减少5万米3
达成共识. 1.图像为一条直线. 2.由画图过程,知一次函数y=2x-1的图像是由所有满足关系式y=2x-1 的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所对应 的点都在一次函数y=2x-1的图像上.

因为一次函数的图像是一条直线,所以也把一次函数y=kx+b 的图像称为直线y=kx+b.
为(0,2),与x轴的交点为
2 3
,0
.故选C.
4.函数
yk x
的图像经过点(1,-1),则函数y=kx-2的图像是
图中的
(A)
解析:∵
y
k x
的图像经过点(1,-1),∴k=xy=-1,∴函数解析式
为y=-x-2,所以函数图像经过(-2,0)和(0,-2).故选A.

一次函数的图像课件

一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) y 1 x 2
(2)y 1 X 2 2
(3) y 1 X 2 2
的图象
2020年10月2日
8
1、函数y=3x-2,当y=1时,x= 1; 当x=-2时,y= -8
2、一次函数Y=kx+b(k≠0)的图象是一条经过(

点的0,直b线
正比例函数Y=kx(k≠0)的图象是一条经过(

点的0直,线0
3、作函数图象的一般步骤是
列表、描点、连线
2020年10月2日
9
1. 函数 Y= -2X 的图象在第
象限. 经过点(0, )
与点(1, )
2. 直线 Y=3X+2 与X轴交点坐标是(
)
与Y轴交点坐标是(
)
直线与坐标轴交点和原点构成三角形的面积是( )
3. 直线Y=(2K+1) X+3K-1
分析:因为一次函数的图象是一条直线,根据两点 确定一条直线,只要画出图象上的两个点,就可以 画出一次函数的图象. Y=-3X+2 Y
对于函数Y=3X,取x=0,y=0,得到点(0, 0)取x=1,y=3,得到点(1,3)
Y=3X

对于函数Y=-3X+2,取x=0,y=2,得到点

(0,2)取x=1,y=-1,得到点(1,-1)

在坐标系里描出各组点,分别过两 点做直线就得到函数图象.
-2 -1
O1 2 3X
-1
2020年10月2日
6
小结:
一次函数y=kx+b 的图象是一条直线 作一次函数图象时,只要确定两个点 再经过两个点作直线就可以了。 一次函数y=kx+b的图象也称为直线y=kx+b
2020年10月2日
7
分别作出下列一次函数
若直线过原点,则K取何值?
若直线过(-2, 3) 点,则K取何值?
2020年10月2日
10
2020年10月2日
11
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
回顾与思考 1
1.什么叫一次函数?
若两个变量x,y间的关系式可以表示成 y=kx+b(k,b为常数,k不为零)的形式,则称y
是x的一次函数x为自变量,y为因变量.
特别地,当b=0时, y=kx 称y是x的正比 例函数.
2020年10月2日
2
把一个函数的自变量x与对应的因 变量y的点,所有这些点组成的图
形叫做函数的图象。
2020年10月2日
3
作出一次函数y=2x和Y=2X+1的图象
1、列表:分别选取若干对自变量与函数的对应 值,列成下表.
X
…. -2 -1 0 1
Y=2X
…. -4 -2
02
Y=2X+1 …. -3 -1 1 3
2 ….
4 …. 5 ….
2、描点:分别以表中的X作为横坐标,Y作为纵坐 标,得到两组点,写出这些点(用坐标表示).再画 一个2020平年10面月2日直角坐标系,并在坐标系中画出这些点.4
3. 连线
由此可见,一次函数
-10
-5
Y=kx+b(k≠0,b为常数)
的图象的是一条直
线.一次函数Y=kx+b的
图象也常称为直线
Y=kx+b. 2020年10月2日
YY=2X+1
8
6
Y=2X
4
2
O
-2 -4 -6 -8
5
X
5
例1:在同一坐标系作出下列函数 的图象,并求它们与坐标轴的交点坐标.
Y=3x, y=-3x+2
汇报人:XXX 汇报日期:20XX年10月10日
12
相关文档
最新文档