线性代数思考题

合集下载

线性代数3-6

线性代数3-6

0 −a A = 12 L − a1n
都是反对称矩阵. 都是反对称矩阵. 可逆的反对称矩阵的逆矩阵仍是反对称矩阵. (2)可逆的反对称矩阵的逆矩阵仍是反对称矩阵. 奇数阶反对称矩阵不可逆, (3)奇数阶反对称矩阵不可逆,因为奇数阶的反 对称矩阵的行列式等于零. 对称矩阵的行列式等于零. 两个反对称矩阵的乘积不一定是反对称矩阵. 注意 两个反对称矩阵的乘积不一定是反对称矩阵.
2
0 A1 0 0 A3 0
0 A2 0
2
0 A12 0 0 = A3 0
0 A2 2 0
0 0 A3 2
1 2 3 8 2 A1 = 9, A2 = = 4 11 , A3 = 25, 1 3
(2)对角矩阵的转置仍是对角矩阵,且 对角矩阵的转置仍是对角矩阵, 并且它们是可以交换的. 并且它们是可以交换的.
AT = A.
(3)任意两个同阶对角矩阵的乘积仍是对角矩阵, 任意两个同阶对角矩阵的乘积仍是对角矩阵, (4)对角矩阵可逆的充分必要条件是它的主对角元 素都不等于零. 素都不等于零.且
即主对角元都不为零. 即主对角元都不为零. 当主对角元都不为零时, 当主对角元都不为零时,有
1 a1 a1−1 O O = O an a n −1 1
于是
a1−1 −1 A = O −1 an
a11 a 21 A= L a n1
0 L 0 a22 L 0 , L L L an 2 L ann
a11−1 则 A −1 = L *
a22 −1
L
0 . L L −1 L ann

(0044)《线性代数》复习思考题及答案

(0044)《线性代数》复习思考题及答案

(0044)《线性代数》复习思考题一、填空题1.选择k , l 使a 13 a 2k a 34 a 42 a 5l 成为5阶行列式中带有正号的项 。

2.排列3712456的逆序数为 。

3.排列n (n -1)...21的逆序数为 。

4.六阶行列式中, a 15 a 23 a 32 a 44 a 51 a 66应取什么符号 。

5.已知A =(a ij )为n 阶矩阵,写出A 2的第k 行第l 列的元素 。

6.已知五阶行列式D 中第二列元素依次为-1,-2,1,0,5,它们的余子式依次为5,3,4,2,1,则D = 。

7.设矩阵A 为三阶矩阵,若已知|A |=m ,求|−m 2A |= 。

8.设3(α1-α)+2(α2+α)=5(α3+α), 其中α1=(2, 0, 1, 13), α2=(0, 2, 5, 1), α3=(4, 1, 5, 1),则α= 。

9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150421321B ,求3AB -2A 及A T B 分别为 。

10.方阵⎪⎪⎭⎫⎝⎛5221的逆阵为 。

11.方阵⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos 的逆阵为 。

12.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2110154214321的秩为 。

13.若n 阶矩阵满足A 2-2A -4I =0,则(A +I )-1= 。

14.已知向量α1=(1, 2, 3), α2=(3, 2, 1), α3=(-2, 0, 2), α4=(1, 2, 4), 则3α1+2α2-5α3+4α4= 。

15.设A 为5阶方阵,且|A |=5,则|5A |= ,|A 3|= 。

16.设n 阶矩阵A 满足A 2-2A +3E =O ,则A -1=_______________。

17.设1230,3,1,2,1,1,2,4,3,0,7,13TT Tααα⎛⎫⎛⎫⎛⎫==-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则321,,ααα的一个最大线性无关组为___________________________。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

线性代数课后习题3部分答案

线性代数课后习题3部分答案
T T 1 (-1,1,1,0,0) 2 , (2,2,0,1,1) ,构成基础解系。
通解为:x k11 k2 2 ,(k1 , k2为任意常数)
17(1)解:
1 2 1 r3 r2 1 r2 ( 5) 0 1 5 0 0 0
1 1 2 3 4 4 r3 5 r2 3 r4 2 r3 0 r4 7 r2 0 1 1 1 0 0 0 2 0 12 0 0 4 8 24 0
1 0 0 0 0 0 0 8 1 0 0 3 0 1 0 6 0 0 1 0
2 3 1 2 3 1 1 1 1 1 r2 2 r1 2 4 8 4 4 r34 2 rr11 0 2 4 2 2 r 2 2 2 a 12 2 0 4 a 4 6 0 2 4 8 15 b 0 6 12 9 b 2
1
1 2 0 0 k-1
1.当k 1时向量组的秩为3等于向量的个数,所以1 , 2 , 3线性无关。
2.当k=1时向量组的秩为2等于向量的个数,所以1 , 2 , 3线性相关。
• (3) 1 , 2分量对应成比例, 部分组1 , 2线性相关,
(1) 当b 0, a 3时,系数矩阵与增广矩阵秩不等, 方程组无解. (2)当b 0时,系数矩阵与增广矩阵秩相等且等于未知量的个数, 方程组有唯一解. (3)当b 0, a 3时,系数矩阵与增广矩阵秩相等且小于未知量的个数, 方程组有无数解.
(3)解:将方程组的增广矩阵进行初等行变换:
+2 =(1,0,3,-2) +(-6,2,0,4) =(-5,2,3,2)

线性代数-线性方程组的解

线性代数-线性方程组的解
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
R(A) = R(B) < 3,方程组有无穷多解 .
其通解为
x1 x2
=1− = x2
x2

x3
x3 = x3
(x2 , x3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ
λ2
B ~ 0 1 −1 −λ
0
0
2+λ
(1
+
λ
)2
=
−2
x3

4 3
x4
,
( x3 , x4 可任意取值).
令 x3 = c1, x4 = c2,把它写成通常的参数 形式
x1
x2 x3
=
= =
2c2
+
5 3
c2
,
−2c2

4 3
c2
c1 ,
,
x4 = c2,

x1 x2 x3 x4
=
c1
2 −2 1 0
+
c2
由于原方程组等价于方程组
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5
x4 = a4 + x5
(x5为任意实数 ).
例5 设有线性方程组
1 1 2 3 1 1 1 2 3 1
B
~
0 0 0

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。

线性代数课后习题答案 (4)

线性代数课后习题答案 (4)

线性代数课后习题答案习题 1问题描述已知线性方程组:2x + y - 3z = 73x - 2y + 6z = -55x + 3y + 4z = 12求解该线性方程组。

解答利用矩阵运算,将线性方程组表示成矩阵形式:[A] [X] = [B]其中, - [A] 是系数矩阵,表示为:2 1 -33 -2 65 3 4•[X] 是未知数矩阵,表示为:xyz•[B] 是常数矩阵,表示为:7-512根据线性方程组的求解公式,我们可以使用矩阵的逆来求解未知数矩阵 [X]:[X] = [A]^{-1} [B]首先,计算系数矩阵 [A] 的逆矩阵 [A]^{-1}。

我们可以使用伴随矩阵的方法来求解逆矩阵。

计算伴随矩阵的步骤如下: 1. 计算矩阵的代数余子式 2. 将代数余子式按矩阵位置组成矩阵 3. 对矩阵进行转置根据以上方法,我们可以计算系数矩阵 [A] 的伴随矩阵 [AdjA]:2 1 -33 -2 65 3 4计算伴随矩阵的逆矩阵 [AdjA]^{-1},我们可以使用伴随矩阵的行列式的倒数来计算:[AdjA]^{-1} = \\frac{1}{det([A])} [AdjA]其中,det([A]) 表示矩阵 [A] 的行列式。

根据矩阵的行列式公式,我们可以计算 det([A]) 的值:det([A]) = 2(-2*4 - 6*3) - 1(3*4 - 6*5) - 3(3*3 - 5*(-2))= -56 + 3 + 39= -14因此,[AdjA]^{-1} = -\\frac{1}{14} [AdjA]= -\\frac{1}{14} \\begin{bmatrix}-40 & -3 & 15 \\\\-29 & 6 & 2 \\\\14 & 3 & -2 \\\\\\end{bmatrix}= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix}接下来,我们可以根据逆矩阵[AdjA]^{-1} 和常数矩阵[B] 计算未知数矩阵[X]:[X] = [AdjA]^{-1} [B]= \\begin{bmatrix}\\frac{20}{7} & \\frac{3}{14} & -\\frac{15}{14} \\\\\\frac{29}{7} & -\\frac{3}{7} & -\\frac{1}{7} \\\\-\\frac{7}{14} & -\\frac{3}{14} & \\frac{1}{7} \\\\\\end{bmatrix} \\begin{bmatrix}7 \\\\-5 \\\\12 \\\\\\end{bmatrix}= \\begin{bmatrix}18 \\\\-3 \\\\5 \\\\\\end{bmatrix}因此,线性方程组的解为:x = 18,y = -3,z = 5。

大连理工大学线性代数第二章习题答案

大连理工大学线性代数第二章习题答案

习题2-11. =6.32A 2. 用行列式的定义计算下面的行列式.(1)35;(2)256;(3)8;(4)29.−−思考题 2-21.若对方阵A 进行一次对调变换得到,则B =−A B ;若对方阵A 进行一次倍乘变换(假设第i 行或第i 列乘以数)得到,则k B k =B A ;若对方阵A 进行一次倍加变换得到,则B .=A B2.0.=A3.(1)不正确。

例如,设则 1112111221222122,,a a b b a a b b ⎡⎤⎡==⎢⎥⎢⎣⎦⎣A B ⎤⎥⎦1111121211121211121221212222212222212222a b a b a a b b a b a b a b a a b b a b +++++==+++++A B111211121112111211121112212221222122212221222122a a ab b a b b a b b aa a ab b a b b a b b a =+++=+++A B(2)不正确。

设A 的阶数为,则n (1)n−=−A A (3)不正确。

例如,设,则1200⎡⎤=⎢⎣⎦A ⎥0,=A 但.≠A O 4. ,,1,(),()1i j i i j k k k =−==E E E5. 性质2-2讲的是方阵A 的第行(列)的数与第i 行(列)对应的代数余子式的乘积之和等于i A 的行列式;性质2-7讲的是方阵A 的第i 行(列)的数与另一行(列)对应的代数余子式的乘积之和等于0.习题2-21. 2111231123123det()3,,39,,9,,18.c c a a a a a a a a a a a −=+−=−+=−=−A 2. 131223123233122312312323,2,3,,3,,3,,c c c c c c −+−−++=−===a a a a a a a a a a a a a a a a 63.321123211321212311223,,,,,,,,,,,,,,,n m +=+=−+=−a a a b b a a a b a a a b a a a b a a b a4.证:(1)将第2列和第3列都加到第1列,得0000a b b c c a b c c ab c c a a b c a a b c a a b b ca b b c−−−−−−−−=−−=−−−−−. (2)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++ 1111111111111111122222222222222222333333333333333332a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c a b c c b c c a a b c b c a a b c ++=+++=+=++ (3)设A 的阶数为,则为奇数.由n n A 是反称矩阵,得T=−A A .两边取行列式,得 ,(1),Tn=−=−=−,A A A A A A 故0.=A 5. 先按行提公因式,在按列提公因式,得2111121211221212222221122n n n n n n n n nn na b a b b a b b a b b a b a b b a b b a b b a b11112212112222121122n n n nn n n nn a b a b a b a ba b a b b b b a b a b a b =n1112121222222222121212n nnn n n nna a a a a ab b bb b bc a a a ==6.(1)解:先按行提公因式,在按列提公因式,得1111114111ab ac ae bd cd de abcdef abcdef bfcfef −−−=−=−−(2)103100204310043141992003951200510012520301300600130013=−−=−−=提高题2-21.,,,,,,+=++++=+−++A B ξηαββγαγξηαγβγαγ,,,,,,22,,,=+−++=+−+=+ξηαγβγαγξηαγβγγξηαβγ2(,,,,,,)2()6=+=+ξαβγηαβγA B =2.1231231231232323,24,36,3,25=++++++=++++B a a a a a a a a a a a a a a a a 1232331223123,3,,,,,=+++−=−+=−=−a a a a a a a a a a a a a 103.根据性质2-7,得41424344414243441111A A A A A A A A +++=⋅+⋅+⋅+⋅=4.(1).132343(1)(1)52(1)301(1)415D +++=−⋅−+⋅−++⋅−=− (2) 1424449(1)(1)52(1)01(1)40,2a a +++−⋅−+⋅−++⋅−==−.5.(1)对第2行和第4行分别应用性质2-2和性质2-7,得212223242521222324254()3()4,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩ 解得.2122232A A A ++=−(2)对第2行和第4行分别应用性质2-7,得313233343531323334354()3()0,2()()0A A A A A A A A A A ++++=⎧⎨++++=⎩解得=0.313233A A A ++思考题 2-31.表示第二行先乘以2,再用第二行减去第一行,22r r −12122323112012r r −=.2.对行列式进行对调变换和倍乘变换时,需要在得出的行列式的前面添加负号和系数,对行列式进行初等变换时,关心的是最后的数值;对矩阵进行初等变换时不需要添加负号和系数,对矩阵进行初等变换时,关心的是用何种变换进行化简,最后化成何种形式。

新版线性代数1-2章练习和参考答案

新版线性代数1-2章练习和参考答案

R ( A) _____ R ( B) ;
3.设一个 m × n 齐次线性方程组的系数矩阵为 A ,那么该方程组有无穷多个解的充分 必要条件是_______________;仅有零解的充分必要条件是 ;
x1 + 2 x 2 + x3 = 1 ⎧ ⎪ 4.已知方程 ⎨2 x1 + 3 x 2 + ( a + 2) x3 = 3 无解,则 a = ⎪ x + ax − 2 x = 4 1 2 3 ⎩
a11 a 21
a12 + a13 a 22 + a 23
=
.
二、利用行列式性质计算下列各行列式:
1 2 1. 3 4
2 3 4 1
3 4 1 2
4 1 ; 2 3
x 2. y x+ y
y x+ y x
x+ y x ; y
− ab ac − cd 3. bd bf cf
a b " b ae b a " b de ; 4. . # # % # − ef b b " a 1 9 D4 = 9 8 2 1 9 6 2 3 9 6 1 8 0 0

⎧ x1 + x 2 + x3 = 0 ⎪ 2.设方程组 ⎨ ax1 + bx 2 + cx3 = 0 , 则当 a , b , c 满足 ⎪ 2 2 2 ⎩a x1 + b x 2 + c x3 = 0
2
院(系) , 班, 姓名 练习 1.3 线性方程组解的存在性和惟一性 一、填空:
学号
1.设一个 m × n 型线性方程组的系数矩阵为 A ,增广矩阵为 B ,若 m < n ,则该方程 组或 解, 或有 解; 若 R ( A) = R ( B ) = n , 则该方程组必有 解;

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)[模版仅供参考,切勿通篇使用]感恩作文线性代数课后习题答案(一):高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?再问一下当0是特征值时对应的特征向量有什么特点么?所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则A不能满足的结论是().^T=A ^T=A^-1 ^T=E ^2=A只会证A对,不要用排除法.A²=E由A,知A^T=AAA^T=A²=(E-a^Ta)(E-a^Ta)=E-a^Ta-a^Ta+a^Taa^Ta=E-2a^Ta+a^T(aa^T)a=E-2a^Ta+a^Ta==E-a^Ta=A所以C错. 线性代数课后习题答案(八):线性代数,对称矩阵的证明题如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:因为A^3=En所以A的特征值一定是x^3=1的实根(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ^3-1=0?)所以λ1=λ2=λ3=1A相似于单位矩阵必有A=En(2.我觉得因为A是对称矩阵所以必有正交阵P,使得P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)第一问:因为A是实对称矩阵,所以存在正交矩阵PP"AP=∧∧是A的特征值构成的对角阵A=P∧P"A^3=P∧^3P"=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)所以A相似于这n个特征值构成的对角阵P"*A*P=E所以 A=PEP"=PP"=E刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解析方程组1的 k1()+k2()方程组2的:k3()+k4()然后对比,综合得出一个k()方法2:先求出方程组1的解,然后代入方程组2..方法3:做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?两个方程组的公共解,可用方法3.若是两个方程组同解,方法3就不灵了公共解是两个方程组解的交集,包含在两个方程组的解集中同解方程组,两个方程组的解集一样,即基础解系等价(可互相线性表示)这类题目一般综合性强,需根据具体情况来分析使用哪个方法比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):一道线性代数的题目题目是判断正误若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.我知道答案是错误但是请问反例怎么举拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合。

大连理工大学线性代数第一章习题答案

大连理工大学线性代数第一章习题答案

思考题1-11. 不成立。

因为()222A ,+=+++B A AB BA B AB 不一定等于. BA 2. 成立。

因为22(),A +=+++E A AE EA E =AE EA . 3. 成立。

因为22()(),+−=−+−=−A E A E A AE EA E A E2()()−+=−A E A E A E .4. 不成立。

因为矩阵的乘法不满足消去律,由22()=2AB A B ,得不出=AB BA .5. 不成立。

反例,。

1111⎡⎤=⎢⎥−−⎣⎦A 6. 不成立。

反例,。

1000⎡⎤=⎢⎥⎣⎦A 7. 不成立。

反例,。

1001⎡⎤=⎢⎥−⎣⎦A 8. 成立。

因为,()().Tk TT k===kA A A A A9. 不成立。

因为,()()()(1),Tk TT kkk=−==−=−kA A A A A A 结论与的奇偶性有关。

k 10. 成立。

由对称阵的定义可知结论成立。

习题1-11. 2.111100−⎡⎤=⎢⎣⎦X ⎥1,2x y ==3.正确,依次为5BA ABC ABABC 、、5×矩阵、41×矩阵、41×矩阵。

4.(1);(2);(3)3-3-5-7915⎡⎤⎢⎥⎢⎢⎥⎣⎦⎥10530100⎡⎤⎢⎥−⎣⎦32659110-4⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(4)1432321211⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5);222111222333121213132323222a x a x a x a x x a x x a x x +++++(6);(7) 157063004⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦050505050−⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5.(1),在矩阵111112221222331332k a k a k a k a k a k a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A 的左边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各行;(2),在矩阵111212313121222323k a k a k a k a k a k a ⎡⎤⎢⎥⎣⎦A 的右边乘以对角矩阵时,其乘积等于用该对角矩阵的对角元分别乘以矩阵A 的各列。

线性代数与解析几何 课后答案 (代万基 廉庆荣)第4章习题答案

线性代数与解析几何 课后答案 (代万基 廉庆荣)第4章习题答案

5.解:该平面的法向量为
i n a b 2
j 1
k 1 i j 3k ,
1 1 0
所求平面方程为 ( x 1) ( y 0) 3( z 1) 0, 即 x y 3z 4. 6.略 7.解法 1 设所求平面方程为 By Cz D 0


1
2
1
13.解: (1) AB i j 4k , BC 3i 2 j 4k . 因为 AB 与 BC 不成倍数,所以 AB 与 BC 不平行,这三点不共线. (2) AB i 2 j k , BC 2i 4 j 2k . 因为 BC 是 AB 的 2 倍,所以 AB 与 BC 平行,这三点共线. 14. 证: AB i 4 j 5k , AC 2i j k , AD 5i 2 j 7k .
16.证:设 a b 与 c 的夹角为 1 , a 与 b 的夹角为 2 .
2 2 2 2 2 2
2
2
2
2
2
2
a b a
2
2
2
2 bs i n 2 a
2
2
b.
2 2 2 2 2 2 2
2
a, b, c (a, b, c)2 [(a b) c]2 a b c cos2 1 a b c a b c .
i
j k
n 1 1 9 9jk 1 0 0
该平面的方程为 9( y 0) ( z 2) 0, 即 9 y z 2 0 8.解:设所求平面方程为 Ax By 0 ,代入所过点的坐标,得
a b b

18 6. . 3
(2) a b c a b c 2a b 2a c ; (3) 2a b 3a b 5(a b).

线性代数与解析几何 课后答案 (代万基 廉庆荣)第三章书后习题

线性代数与解析几何 课后答案 (代万基 廉庆荣)第三章书后习题

A 不可逆。
将 AB=O 转置,得 B A O 。同理可证,B 不可逆
T T
(4)证:由 A AB B O ,得 ( A B) B A2 , A B B A2 .由 A 可逆,
2 2
得 A 0, A ( 1) A 0, 所以 A B 0, B 0 ,因而 A B 和 B 都可逆.
1
1
A, ( A1 ) A1 ( A1 )1 A
1
A, 结论正确。
(10)证: ( AB) AB ( AB)
A B B1 A1 ( B B1 )( A A1 ) B A .
(11)注:在本题中,没告诉 A 可逆。 证:记 B kA,
ka11
因为 Bij ( 1)
i j
ka1, j 1
ka1, j 1
ka1n kai 1,n kai 1,n kann
kai 1,1 kai 1,1 kan1
kai 1, j 1 kai 1, j 1 kai 1, j 1 kai 1, j 1 kan , j 1 kan , j 1
0 2 1 ( E B) ( E A ) 2 2 2 0 2
1
1
0 . 0 3
1
(2)解:由已知,得 ( A E ) BA 4 E , B 4( A E ) A ,
6 0 0 B 4 6 0 . 4 2 5
B 将 A 分块为 A T 0
a1n C , 其中 B 为 A 的左上角 n 1 阶子矩阵,C . ann an 1,n
由 A 可逆知, B 也可逆, ann 0. 由归纳法假设可知,B 为上三角形矩阵.因为 A 为上三角形矩阵,结论正确.

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数各章思考题

线性代数各章思考题

《线性代数》思考题线性代数第一章思考题1.余子式与代数余子式有什么特点?它们之间有什么联系?2.行列式有哪些性质?3.计算行列式通常采用的方法有哪些?4.克莱姆法则的适用条件是什么?线性代数第二章思考题1.为什么矩阵乘法不满足交换律?2.矩阵的转置运算有哪些规律?3.什么是对称矩阵?4.方阵的行列式有哪些运算规律?5.什么是伴随矩阵?它有哪些主要性质?6.判断矩阵可逆的常用方法有哪些?7.怎样解矩阵方程?线性代数第三章思考题1.一个非零矩阵的行最简形与行阶梯形有什么区别和联系?2.矩阵的初等变换与初等矩阵有什么关系?3.矩阵的初等行(列)变换有哪些?它有哪些重要的应用?4.在求解有关矩阵的问题时,何时只须化为阶梯形,何时宜化为行最简形?5.求逆矩阵有哪些常用的方法?6.什么是矩阵的秩?求矩阵的秩有几种方法?7.矩阵的秩有哪些重要性质?有哪些主要应用?8.n 元齐次线性方程组0=Ax 有非零解的充要条件是什么?n 元非齐次线性方程组b Ax =有解的充要条件是什么?n 元非齐次线性方程组b Ax =有唯一解,无穷多解的充要条件分别是什么? 9.用初等行变换法求解线性方程组的主要步骤是什么?线性代数第四章思考题1.对于向量组的线性相关、线性无关的概念,给出一些几何上的解释.2.两个矩阵的等价与两个向量组的等价有什么区别和联系?3.向量组的最大无关组有什么重要意义?求向量组的最大无关组有哪些方法?4.证明或判断一个向量组线性相关或线性无关的常用方法有哪些?5.何为齐次线性方程组的基础解系?如何求法?6.齐次线性方程组0=Ax 的通解结构是什么?7.非齐次线性方程组b Ax =的通解结构是什么?线性代数第五章思考题1.什么是正交矩阵?它有哪些重要性质?2.正交变换的重要特性是什么?3.将线性无关向量组正交规范化的施蜜特(Schimidt )正交化过程是什么?4.何为矩阵的特征值、特征向量?矩阵的特征值有哪些主要性质?5.如何求方阵A 的特征值与特征向量?6.何为矩阵相似?相似矩阵有哪些主要性质?7.n 阶矩阵A 可相似对角化的充分必要条件是什么?8.判断矩阵A 是否可对角化的基本方法有哪些?9.实对称矩阵的特征值与特征向量有哪些性质?10.已知n 阶方阵A 可对角化, 如何求可逆矩阵P , 使得),,,(211n AP P λλλ=- diag ?11.实对称矩阵正交相似对角化的步骤是什么?12.用正交变换化二次型Ax x f T =为标准形的主要步骤是什么?13.如何判别二次型Ax x f T =的正定性?2 0 0 6年3月。

线性代数279个问与答

线性代数279个问与答

线性代数279个问与答第一章行列式1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。

答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。

2.《线性代数》的前导课程。

答:初等代数。

3.《线性代数》的后继课程。

答:高等代数,线性规划,运筹学,经济学等。

4.如何学习《线性代数》?答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。

在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。

在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。

第一章行列式5.什么是一个n阶全排列?【知识点】:n阶全排列。

答:由n个数1,2,… ,n 组成的一个有序数组。

6.什么是标准排列?【知识点】:n阶全排列。

答:按数字由小到大的自然顺序排列的n阶排列123…n。

7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。

答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。

例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。

数4与5,数1与2不构成逆序。

8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。

答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。

例如:上问中的排列45312的逆序数为8。

9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。

例如:排列45312为偶排列。

10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。

答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。

新版线性代数1-2章练习和参考答案

新版线性代数1-2章练习和参考答案


10.设 A = ( a ij ) 3×3 , | A |= 2, Aij 表示 | A | 中元素 a ij 的代数余子式 (i, j = 1,2,3) ,则
( a11 A21 + a12 A22 + a13 A23 ) 2 + (a 21 A21 + a 22 A22 + a 23 A23 ) 2 + ( a 31 A21 + a 32 A22 + a 33 A23 ) 2 =
R ( A) _____ R ( B) ;
3.设一个 m × n 齐次线性方程组的系数矩阵为 A ,那么该方程组有无穷多个解的充分 必要条件是_______________;仅有零解的充分必要条件是 ;
x1 + 2 x 2 + x3 = 1 ⎧ ⎪ 4.已知方程 ⎨2 x1 + 3 x 2 + ( a + 2) x3 = 3 无解,则 a = ⎪ x + ax − 2 x = 4 1 2 3 ⎩

1 0 2 4 −1 x 3.行列式 2 2 −1 1 5 −2

4.设有行列式 D =
a1 − b1 a 2 − b1 # a n − b1
a1 − b2 " a1 − bn a 2 − b2 " a 2 − bn ,当 n = 1 时, D = # % # a n − b2 " a n − bn
⎧ λx1 + x 2 + x3 = 1 ⎪ 三、 λ 取何值时,非齐次线性方程组 ⎨ x1 + λx 2 + x3 = λ ⎪ x + x + λx = λ2 2 3 ⎩ 1
1.有唯一解;2.无解;3.有无穷多个解.

线性代数01-思考题_69

线性代数01-思考题_69

思考题行列式的性质1. 行列式和转置行列式之间什么关系?2. 用数 k 乘以某行列式相当于行列式的某一行(列)中所有的元素都乘以数 k , 还是此行列式中所有元素都乘以数 k?3. 把某一行列式分裂成两个行列式相加,如何分裂?4. 对行列式进行各种运算时,运算次序能改变吗?5. 计算行列式 D ,其中0 0 a b 0 00 a 0 0 b 0D = a 0 0 0 0 b . c 0 0 0 0 d0 c 0 0 d 00 0 c d 0 06. 计算行列式 D ,其中D = 012 0 1 2 0 2 1 . 234 1 4 37. 计算四阶行列式 D ,其中 a 2 + 1 a 2b 2 + 1 D = b 2c 2 + 1 c 2d 2 + 1 d 2a 11 a b 1 1 b c 1 1 c d 1 1 d , 且已知a b c d = 1. 8. 计算行列式 x a 1 a 1 x a2 a3 a 2 a 3. . . a n. . . a nD n +1 = a 1 a 2 x a 1 a 2 a 3 a 3 . . . a n . x . . . a n. . . a 1 . . . a 2 . . . a 3 . . . a 4 . . . . . . . . . x1 行列式按行(列)展开1. 经过两周的学习,总结一下你都掌握了哪些求行列式的方法.2. 余子式和代数余子式有什么特点?它们之间有什么联系?3. 证明 = a 3 x 3 + a x 2 + a x + a范德蒙行列式11 11. 设 a , b , c 是互异的实数, 证明 a b c =0的充分必要条件是a + b + c = 0。

2. 计算 b + c c + a a + ba bc 。

a 3 b 3 c 3 a 2b 2c 23. 计算 。

1 1 114. 计算D n 2 22 23 = 3 32 332n 3n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数
3、设A为 n阶可逆矩阵,将A的第 i 行与第 j 行对换后,得矩 阵B ,1)求证B可逆 2)求 AB−1 。
1 1 −1
4、A
=
−1 1
1 −1
1 1
,矩阵 X满足
A* X
=
A−1
+ 2 X( A*
为A的
伴随矩阵),求X。
线性代数
1 0 0 0
5、设矩阵A 的伴随矩阵
A∗
=
0
(1)记P = (X , AX , A2 X ) ,求三阶矩阵B,使A = PBP−1;
(2)计算行列式 A + E 。
线性代数
8、设B 是秩为2的5× 4 阶矩阵,α1 = (1 1 2 3)T , α2 = (−1 1 4 −1)T ,α3 = (5 −1 − 8 9)T 为齐次线性方程组
BX = 0的解向量,求BX = 0 的解空间的一个标准正交基。
,求 A。
13、二次型 f (x1 x2 x3 ) = 5x12 + 5x22 + cx32 − 2x1x2 + 6x1x3 − 6x2 x3
的秩为2, 1)求参数c 及此二次型对应矩阵的特征值。
2)指出方程 f (x1 x2 x3 ) = 1 表示何种二次曲面。
线性代数
14、已知二次曲面方程x2 + ay2 + z2 + 2bxy + 2xz + 2 yz = 4 可以
1 0
1 0 −3
0 1 0
0
0 8

且 ABA−1 = BA−1 + 3E ,其中E为4阶单位矩阵,求矩阵B。
6、已知 n阶实矩阵A满足 AAT = I 且 A < 0 ,求:A + I 。
7、已知三阶矩阵 A与三维向量 X,使得向量组 X , AX , A2 X 线性无关,且满足 A3 X = 3AX − 2A2 X 。
经过正交变换
x y
z
=
Pζηξ
化为椭圆柱面方程 η2 + 4ζ 2 = 4
求:a,b 的值及正交矩阵P 。
9、已知ξ
=
−111
为矩阵
A
=
2 5 −1
−1 a b
2 3 −2
的一个特征向量,
1)试确定参数 a,b 及特征向量ξ 所对应的特征值。
2)问 A 能否相似于对角形矩阵?说明理由。
线性代数
a −1 c
10、设矩阵A = 1−5 c
b 0
3 −a
且 A = −1,又A的伴随矩阵A*
有特征值λ0 ,属于特征值λ0 的特征向量 α = (−1 −1 1)T ,
求 a,b, c 及λ0 的值。
11、设矩阵
A
=
3 −k 4
2 −1 2−2 k −3源自,问当 k为何值时,存在可逆
矩阵P使 P−1AP 为对角矩阵,并求出P和相应的对角矩阵。
线性代数
12、设三阶实对称矩阵A的特征值为λ1 = −1, λ2 = λ3 = 1 ,对
0
应于λ1
的特征向量为ξ
=
1 1
性无关,说明理由。
2、设 α1,α2 ,,αs 为线性方程组 AX = 0 的一个基础解
系,β1 = t1α1 + t2α2 , β2 = t1α2 + t2α3,, βs = t1αs + t2α1 ,其中
t1, t2
为实常数,试问 t1,t2
满足什么条件时,β1
,
β
2
,,
β

s
为 AX = 0的一个基础解系。
5、A为n 阶矩阵,A ≠ 0, A 有特征值λ ,则 (A* )2 + I 必有特
征值

线性代数
6、设矩阵 A 满足 A2 + A − 4E = 0 ,其中E 为单位矩阵,
则 (A − E)−1 =

7、设方程 a 1 1 x1 1 有无穷多解,则a = 。
1 1
a 1
1 a
x2 x3
=
1 − 2
8、已知方程组
1 2 1
2 3 a
1 a+2 −2
x1 x2 x3
=
1 3 0
无解,则a =

9、A
=
1 0 1
0 2 0
110
且 n ≥ 2 为正整数,则An − 2 An−1 =

线性代数
1、已知向量组α1,α2 ,,αs 线性无关,设 β1 = α1 +α2 , β2 = α2 + α3,, βs = αs + α1, 问向量组 β1, β2 ,, βs 是否仍线
线性代数
1、设A
=
1 4 3
2 t −1
−2 3 1
,
B为三阶非零矩阵,且AB
=
0
,则t
=

1 0 2
2、设
A为4
×
3矩阵,r ( A)
=
2,
B
=
0 −1
2 0
03
,则r(AB) =
1

3
3、设三阶方阵A、B满足A−1BA = 6A + BA ,且A =
1

4
则B=

1
7
4、设n 阶矩阵A的元素全为1,则A的 n个特征值为 。
相关文档
最新文档