文库初中数学《平行四边形》教案
平行四边形优秀教案6篇
平行四边形优秀教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、演讲致辞、条据文书、合同协议、心得体会、自我鉴定、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, written documents, contract agreements, insights, self-evaluation, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形优秀教案6篇编写好教案可以帮助我们更好地理清教学思路和目标,提高教学的针对性和有效性,编写教案可以帮助教师更好地组织和安排教学材料和教学资源,以下是本店铺精心为您推荐的平行四边形优秀教案6篇,供大家参考。
初中数学《平行四边形》教案
初中数学《平行四边形》教案初中数学《平行四边形》教案作为一名无私奉献的老师,总归要编写教案,教案是教学活动的依据,有着重要的地位。
我们该怎么去写教案呢?以下是小编收集整理的初中数学《平行四边形》教案,欢迎大家分享。
初中数学《平行四边形》教案1教学建议1、重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点、2、难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、3、关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一。
1、教科书首先指出,用定义可以判定平行四边形、然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理、因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来、2、素质教育的主旨是发挥学生的主体因素,让学生自主获取知识、本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性、3、平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点、因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助。
新人教版八年级数学下册《平行四边形》教案设计(10篇)
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
《平行四边形》教案参考5篇
《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。
平行四边形教案最新3篇
平行四边形教案最新3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形教案最新3篇平行四边形(Parallelogram)是在同一个二维平面内,由两组平行线段组成的闭合图形。
初中数学平行四边形教案
初中数学平行四边形教案教学目标:知识与技能:了解平行四边形的性质、判定平行四边形的条件,学会求解平行四边形的各种参数。
过程与方法:采用多媒体辅助教学,以教师讲解和学生自主学习相结合的教学方法。
情感态度价值观:培养学生的逻辑分析能力和解决问题的能力,培养学生的合作意识和自主学习的能力。
教学重点:1.理解平行四边形的性质。
2.能够判定平行四边形的条件。
3.能够求解平行四边形的各种参数。
教学难点:1.判定平行四边形的条件。
2.解决平行四边形相关问题的能力。
教学准备:多媒体课件、活动卡片、小黑板、书籍资料等。
教学过程:Step 1 导入新知识(5分钟)教师在黑板上写下“平行四边形”,并向学生提问:“你们听到这个词想到了什么?”鼓励学生积极回答并展示他们的回答。
教师通过提问引发学生对平行四边形的认知,并预热引入后续教学。
Step 2 探究平行四边形的性质(15分钟)教师通过多媒体课件向学生展示平行四边形的性质,并讨论相关概念。
教师将学生分成小组,每组配一份活动卡片,让学生在小组内讨论并填写活动卡片上设定的问题。
教师引导学生通过小组合作,共同探究平行四边形的性质。
然后教师收集学生的回答,并给予整理总结。
Step 3 判定平行四边形的条件(15分钟)教师向学生展示判定平行四边形的条件,并逐个讲解。
教师通过多媒体课件上的例题进行讲解,并引导学生思考相关问题。
教师设置小组活动,让学生根据所学知识判定给出的图形是否为平行四边形,并给出理由。
教师引导学生整理总结判定平行四边形的条件和方法。
Step 4 求解平行四边形的参数(15分钟)教师向学生介绍如何求解平行四边形的各种参数,包括周长、面积等。
教师通过多媒体课件展示求解平行四边形参数的具体步骤,并给出相应的例题进行讲解。
教师引导学生进行练习,巩固所学知识。
教师设置小组合作活动,让学生分组进行练习,相互讨论和解答问题。
Step 5 拓展应用(10分钟)教师通过多媒体课件展示平行四边形在生活中的应用,比如建筑设计、地图测量等。
平行四边形教案(最新6篇)
平行四边形教案(最新6篇)平行四边形篇一第二课时:平行四边形面积的计算练习课教学内容:练习二1 — 5题教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。
教学过程:练习二:第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15.所画平行四边形的底和高分别为5和3、3和5或15和1.第2题:学生在测量时一定要注意底和高必须是对应的一组。
第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。
这种近似的测量和计算在实际生活中经常用到。
第5题:可以让同桌两人分别准备一样大小的长方形框架。
操作时,一个长方形不动,另一个长方形拉成平行四边形。
通过观察、比较后要明确两点:1、把长方形拉成平行四边形后,周长没变,面积变了。
2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小平行四边形篇二七、教学步骤【复习提问】图11.什么叫平行四边形?我们已经学习了它的哪些性质?2.已知:如图1,,.求证:.3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。
如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。
【讲解新课】图2(1)平行四边形的性质定理3,平行四边形的对角线互相平分。
先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。
(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。
图3例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ △△,或△ △△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。
如这里可直接由定理3得出,而不再重复定理的推导过程证出。
《平行四边形的性质》数学教案
《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
初中数学平行四边形教案(优秀4篇)
初中数学平行四边形教案(优秀4篇)平行四边形教案篇一教学目标:知识技能:认识平行四边形,能在方格纸上画平行四边形。
过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。
情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。
教学过程:一、创设情境1、认识平行四边形(1)出示下图,认真观察。
94页的一组图形,让学生仔细观察,然后提出分类的要求。
(2)在交流的基础上,让学生了解什么样的图形叫做平行四边形。
(3)引导学生从自动拉门、篱笆中找出平行四边形。
2、感悟平行四边形的特征⑴学会画平行四边形。
教师掩饰在方格纸上画一个平行四边形。
⑴引导学生找到平行四边形的。
不稳定性。
二、实践与应用1.下面哪些图形是平行四边形?把它涂上色。
2.在方格纸上画一个大一点的平行四边形。
三、全课小结学生汇报本节课的收获。
平行四边形教案篇二教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。
将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的'对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。
平行四边形认识教案(汇总13篇)
平行四边形认识教案(汇总13篇)平行四边形认识教案第1篇[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力,空间观念和动手能力。
2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。
[教学关键]在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]演示法、观察法、操作法等。
[教具准备]多媒体课件、可拉动的长方形框架、钉子板,方格纸[学具准备]可拉动的长方形框架,一张长方形的纸。
[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知教学例2拉一拉:⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。
在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)
第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。
初中数学《平行四边形》教案【18篇】
初中数学《平行四边形》教案【18篇】平行四边形教案1教学内容:义务教育六年制小学《数学》第九册P64-P66教学目的:1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程:一、复习导入:1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。
(板书课题:平行四边形面积的计算)三、引导探求:(一)、复习铺垫:1、什么图形是平行四边形呢?2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
初中数学第十八章平行四边形教案人教版
目录第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)第2课时平行四边形的性质(2)18.1.2 平行四边形的判定第1课时平行四边形的判定(1)第2课时平行四边形的判定(2)18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质第2课时矩形的判定18.2.2 菱形第1课时菱形的性质第2课时菱形的判定18.2.3 正方形第十八章平行四边形标定理,并能运用这些知识进行有关的证明和计算.(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离.探索并证明三角形中位线定理.2.过程及方法通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索和证明过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力和演绎推理能力.3.情感、态度及价值观通过分析平行四边形及各种特殊平行四边形概念之间的联系及区别,使学生认识到特殊及一般的关系,体会事物间是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观.教学重难点重点:1.平行四边形、特殊平行四边形的特征.2.平行四边形、特殊平行四边形的识别方法以及彼此之间的关系.难点:发展学生进一步推理和解决问题的能力.知识结构课题平行四边形的性质课时第1课时上课时间教学目标1.知识及技能(1)理解平行四边形的定义及有关概念.(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想:平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图▱ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.续表探索新知合作探究分析:作▱ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)探究小结平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.【例】如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.教师指导1.归纳小结:(1)平行四边形:有两组对边分别平行的四边形叫做平行四边形.平行四边形用“▱”表示.(2)平行四边形的性质:①平行四边形的对边相等.②平行四边形的对角相等.2.方法规律:(1)只有一组对边平行的四边形不一定是平行四边形.(2)相关概念给出了平行四边形的一个重要性质:两组对边分别平行.(3)平行四边形具有四边形的一切性质.当堂训练1.在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360°2.在▱ABCD中,如果EF∥AD,GH∥CD,EF及GH相交于点O,那么图中的平行四边形一共有( )(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.板书设计平行四边形的性质(1)1.平行四边形的定义2.平行四边形的性质3.应用平行四边形的性质解决线段或角的问题教学反思课题平行四边形的性质课时第2课时上课时间教学目标1.知识及技能(1)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入复习提问:1.什么样的四边形是平行四边形?四边形及平行四边形的关系是:2.平行四边形的性质:(1)具有一般四边形的性质(内角和是360°).(2)角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究请学生在纸上画两个全等的▱ABCD和▱EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将▱ABCD绕点O旋转180°,观察它还和▱EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O及AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.续表探索新知合作探究【例2】已知四边形ABCD是平行四边形,AB=10 cm,AD=8 cm,AC⊥BC,求BC,CD,AC,OA的长以及▱ABCD的面积.分析:由平行四边形的对边相等,可得BC,CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积公式计算.教师指导1.易错点:平行四边形的对角线互相平分,但不一定相等.2.归纳小结:平行四边形的对角线互相平分.3.方法规律:(1)利用平行四边形的对角线互相平分可以解决对角线或边的取值范围问题;(2)平行四边形被对角线分成的四个小三角形,相邻的两个小三角形周长之差等于邻边之差.当堂训练1.在四边形ABCD中,AC=6,BD=4,则AB的范围是.2.在平行四边形ABCD中,已知AB,BC,CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 cm,AD=12 cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计平行四边形的性质(2)1.平行四边形对角线互相平分探究小结:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形判定方法3 对角线互相平分的四边形是平行四边形.2.取两根等长的木条AB,CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.续表探索新知合作探究【例1】已知:如图,A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C';(2)△ABC的顶点分别是△B'C'A'各边的中点.【例2】已知:如图,▱ABCD中,E,F分别是AD,BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.教师指导1.归纳小结:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.(4)两组对边分别相等的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.方法规律:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.当堂训练1.下列条件中能判断四边形是平行四边形的是( )(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等 (D)对角线互相平分2.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.已知:如图,△ABC中,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF.板书设计平行四边形的判定(1)1.平行四边形的判定方法2.平行四边形性质和判定的应用教学反思课题平行四边形的判定课时第2课时上课时间教学目标1.知识及技能理解三角形中位线的概念,掌握它的性质定理;会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算.2.过程及方法经过探索三角形中位线定理的过程,理解它及平行四边形的内在联系,感悟几何学的推理方法.3.情感、态度及价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点重点:三角形的中位线定理.难点:(1)作出简单平面图形关于直线的轴对称图形. (2)三角形的中位线定理的证明中添加辅助线的思想方法.教学活动设计二次设计课堂导入如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?探索新知合作探究自学指导实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?合作探究【例1】如图,点D,E分别为△ABC的边AB,AC的中点,求证:DE∥BC且DE=BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.定义:连接三角形两边中点的线段叫做三角形的中位线.探究讨论:(1)一个三角形的中位线共有几条?(2)三角形的中位线及中线有什么区别?(3)三角形的中位线及第三边有怎样的关系?【拓展】利用这一定理,你能证明在自学指导所设情境中分割出来的四个小三角形全等吗?续表探索【例2】新知合作探究已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.教师指导1.归纳小结:三角形的中位线(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.2.方法规律:(1)中位线不是中线.(2)三角形中位线定理的特点:在同一题设下,有两个结论,一个结论表示位置关系,另一个结论表示数量关系.(3)三角形中位线定理的作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍数关系.当堂训练1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点的距离是 m,理由是.2.已知:三角形的各边分别为8 cm,10 cm和12 cm,求连接各边中点所成三角形的周长.3.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB= cm;若BC=9 cm,则DE= cm;(2)中线AF及DE中位线有什么特殊的关系?证明你的猜想.板书设计平行四边形的判定(2)1.平行四边形的判定方法2.平行四边形判定方法的选择3.中位线以及中位线定理教学反思课题矩形课时第1课时上课时间教学目标1.知识及技能(1)掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系.(2)会初步运用矩形的概念和性质来解决有关问题.2.过程及方法经历探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法.3.情感、态度及价值在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的性质.难点:矩形的性质的灵活应用.教学活动设计二次设计课堂导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何动,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形.探索新知合作探究自学指导1.请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?2.试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?3.观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角;矩形的对角线;矩形是轴对称图形,它的对称轴是.合作探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?【例1】已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:△AOB是等边三角形.(注意表达格式完整性及逻辑性)续表探索新知合作探究拓展及延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?【例2】在矩形ABCD中,两条对角线AC,BD相交于O,∠ACD=30°,AB=4.(1)判断△AOD的形状;(2)求对角线AC,BD的长.教师指导1.归纳小结:(1)矩形的概念有一个角是直角的平行四边形叫做矩形,也就是长方形.(2)矩形的性质①矩形的四个角都是直角.②矩形的对角线相等.③直角三角形斜边上的中线等于斜边的一半.(推论)2.方法规律:(1)矩形的概念是研究矩形的基础,既可以看做是矩形的性质,又可以视为矩形的判别方法.(2)矩形具有平行四边形的一切性质.(3)矩形既是中心对称图形,又是轴对称图形.对称中心为对角线的交点,对称轴为对边中点所在的直线.当堂1.下列说法错误的是( )(A)矩形的对角线互相平分训练(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形2.已知矩形的一条对角线长为10 cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm,cm, cm.3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.板书设计矩形的性质1.矩形的定义2.矩形的性质及推理教学反思课题矩形课时第2课时上课时间教学目标1.知识及技能理解并掌握矩形的判定方法.2.过程及方法使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学活动设计二次设计课堂导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?探索新知合作探究1.矩形是轴对称图形,它有条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10 cm,边BC=8 cm,则△ABO的周长为.3.想一想:矩形有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线思考:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?(得到矩形的一个判定)做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由.(探索得到矩形的另一个判定)合作探究下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角是直角的四边形是矩形.( )(3)四个角都相等的四边形是矩形.( )续表探索新知合作探究(4)对角线相等的四边形是矩形.( )(5)对角线相等且互相垂直的四边形是矩形.( )(6)对角线互相平分且相等的四边形是矩形.( )(7)对角线相等,且有一个角是直角的四边形是矩形.( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形.( )(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【例1】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.【例2】已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.学重难点难点:菱形的性质及菱形知识的综合应用.教学活动设计二次设计课堂导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.探索新知合作探究自学指导我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.合作探究已知,如图:四边形ABCD是菱形.(1)AB及CD,AD及BC有怎样的关系?(2)∠ABC及∠ADC相等吗?∠BAD及∠BCD呢?菱形ABCD相邻的两个角又有怎样的关系呢?(3)OA及OC相等吗?OB及OD呢?对角线AC及BD有怎样的位置关系?(4)有人说∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,你认为正确吗?(5)菱形是轴对称图形吗?它有几条对称轴?分别是什么?通过解决以上5个问题引导学生总结出菱形的性质(学生自主推导及老师点拨相结合,先做出来的教教还没做出来的同学,增加同学之间的交流及沟通,最后由老师点评一下)续表探索新知合作探究教师指导1.归纳小结:(1)菱形:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形的四条边都相等.②菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.方法规律:①菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.②菱形是特殊的平行四边形,其面积求法及平行四边形求法相同,其面积等于底乘以相应底上的高.而且菱形的两条对角线互相垂直平分,将菱形分成4个全等的直角三角形,因此菱形面积为4×××两条对角线长之积=×两条对角线长之积.当堂训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形ABCD的周长为20 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.板书设计菱形的性质1.菱形定义2.菱形的性质3.菱形的面积计算教学反思课题菱形课时1课时上课时间教学目标1.知识及技能(1)理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.(2)在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.2.过程及方法(1)尝试从不同角度寻求菱形的判定方法,并能有效地解决问题.(2)尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.3.情感、态度及价值观启发引导学生理解探索结论和证明结论的过程,掌握合情推理及演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.教学重难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求和方法.难点:明确推理证明的条件和结论,能用数学语言正确表达.教学活动设计二次设计课堂导入什么样的四边形是平行四边形?它有哪些判定方法?边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?探索新知合作探究自学指导自学课本,回答以下问题1.有一组的平行四边形是菱形.2.对角线的平行四边形是菱形.3. 的四边形是菱形.合作探究1.由菱形的定义判定明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.2.除了运用菱形的定义,类比平行四边形的性质定理和判定定理,小组讨论能否找出判定菱形的其他方法?【做一做】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.续表探索新知(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想1:当木条互相垂直时,平行四边形的一组邻边相等,此时四边。
平行四边形教学方案
平行四边形教学方案平行四边形教学方案9篇为了确保工作或事情能高效地开展,往往需要预先制定好方案,方案可以对一个行动明确一个大概的方向。
那么大家知道方案怎么写才规范吗?下面是店铺整理的平行四边形教学方案,仅供参考,欢迎大家阅读。
平行四边形教学方案1考点要求:1、掌握平行四边形的概念和性质及它们之间的关系2、以下定理可以作为证明和计算的依据:平行四边形的对边相等、对角相等、对角线互相平分;一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形.一、预习准备:1.完成《导学式》P76-78,了解平行四边形的判定和性质。
2.记录下你的问题和其他同学交流。
二、例题精讲:例1、将下列图形(1)(2)(3)分别剪一刀后拼成平行四边形、梯形、平行四边形。
例2、如图1,有一张菱形纸片ABCD,, .(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长。
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形。
(注:上述所画的平行四边形都不能与原菱形全等)周长为__________ 周长为__________例3、如图,四边形ABCD是平行四边形,AE⊥BD,CF⊥BD,垂足分别为E、F,连结AF、CE。
求证:AF=CE巩固案1.下面几组条件中,能判断一个四边形是平行四边形的是()A.一组对边相等 B.两条对角线互相平分C.一组对边平行 D.两条对角线互相垂直2.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形3.平行四边形四内角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形4.在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .5.以三角形的三个顶点及三边中点为顶点的平行四边形共有个6.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是 cm.7.如图,在□ABCD中,已知AD=8?,AB=6?,DE平分∠ADC交BC边于点E,则BE等于8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=9.在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC 和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为10.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.(1)证明:当旋转角为时,四边形是平行四边形;(2)试说明在旋转过程中,线段与总保持相等;(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.平行四边形教学方案2教学目标:1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。
平行四边形教案 (12)
平行四边形教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!平行四边形教案关于平行四边形教案三篇作为一位无私奉献的人·民教师,常常需要准备教案,教案是教学活动的依据,有着重要的地位。
认识平行四边形数学教案设计
认识平行四边形數學教案設計一、课程目标:1. 让学生理解平行四边形的基本性质和特征。
2. 学会如何识别和绘制平行四边形。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容:1. 平行四边形的定义2. 平行四边形的性质:对角线互相平分,两组对边分别平行且相等。
3. 平行四边形的种类:普通平行四边形,矩形,菱形,正方形。
三、教学方法:1. 直观教学法:通过实物模型或几何画板演示平行四边形的特性。
2. 探究式教学法:让学生自己动手操作,探索并发现平行四边形的性质。
3. 问题导向教学法:设置一系列的问题引导学生思考和讨论。
四、教学过程:第一步:导入新课教师展示一些常见的平行四边形形状的物品(如门、窗户、黑板等),引发学生对平行四边形的兴趣。
第二步:学习新知1. 定义:教师解释平行四边形的定义,并举例说明。
2. 性质:教师通过实物模型或几何画板演示平行四边形的性质,然后让学生自己尝试证明这些性质。
3. 种类:介绍各种类型的平行四边形,强调它们之间的关系和区别。
第三步:实践操作让学生自己动手绘制不同类型的平行四边形,并标出其重要的属性(如边长、角度、对角线等)。
第四步:课堂总结回顾本节课所学的内容,强调平行四边形的重要性质和分类。
第五步:课后作业布置一些关于平行四边形的问题,以巩固和深化学生的学习成果。
五、教学评价:1. 进行课堂小测验,检查学生对平行四边形的理解程度。
2. 观察学生的课堂表现,了解他们对知识的掌握情况。
3. 检查学生的课后作业,评估他们的独立解决问题的能力。
初中数学-平行四边形教案
初中数学-平⾏四边形教案初中数学-平⾏四边形教案教学⽬标:1、能够熟练掌握平⾏四边形的判定和性质定理,并能够应⽤数学符号语⾔表述证明过程。
2、掌握三⾓形中位线的定义和性质,明确三⾓形中位线与中线的不同并能运⽤它进⾏有关的论证和计算。
3、掌握多边形内⾓和、外⾓和定理,进⼀步了解转化的数学思想。
教学重点:会熟练应⽤所学定理进⾏证明。
体会证明中所运⽤的归类、类⽐、转化等数学思想,通过复习课对证明的必要性有进⼀步的认识。
教学难点:学会对证明⽅法的总结,通过讨论交流,进⼀步发展学⽣的合作交流意识。
课时安排:⼀课时教学过程:本节课设计了五个教学环节:第⼀环节:教师和学⽣⼀起回顾本章的主要内容;第⼆环节:随堂练习,巩固提⾼;第三环节:回顾⼩结,共同提升;第四环节:分层作业,拓展延伸;第五环节:课后反思。
第⼀环节:教师和学⽣⼀起回顾本章的主要内容。
⼀、“平⾏四边形性质、平⾏四边形的判定定理”内容:从边、⾓、对⾓线三个⾓度对平⾏四边形的性质、判定进⾏复习回顾。
学⽣⽤“问答”的形式带领其他学⽣将表格完成。
应⽤性质和判定完成例题:例1.如图,在平⾏四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,且BE ∥DF 。
求证:BE =DF 。
教师在这⾥将这道题进⾏开放处理:例2、如图,在平⾏四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,连接DE 、BF ,_________,求证:四边形BEDF 是平⾏四边形。
由学⽣来填加适当的条件,使得命题成⽴并证明。
学⽣可以在证明的过程中找到针对条件最简单的判定定理。
⼆、“三⾓形的中位线” 内容:这⼀章节中,除学习了平⾏四边形相关的性质和判定定理,还学习了三⾓形中位线的定义和性质定理。
所以,这个环节上,⽼师选取了学⽣总结出的⼏道⽐较有代表性的例题,帮助学⽣加深对定理理解,增强恰当应⽤定理的意识。
例3.如图2,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动⽽点R 不动时,那么下列结论成⽴的是( )A.线段EF 的长逐渐增⼤B.线段EF 的长逐渐减⼩C.线段EF 的长不变D.线段EF 的长与点P 的位置有关解析:由三⾓形中位线定理可知线段EF 的长在P 点的运动过程中,EF ⼀定等于AR 的⼀半,⼜由于AR 的长不变,所以可做出正确的判断应选C.DRP DCAEF图2例4. 如图3,在四边形AB C D 中,点E 是线段AD 上的任意⼀点(E 与A D ,不重合),G F H ,,分别是B E B C C E ,,的中点.请证明四边形E G F H 是平⾏四边形;分析:(1)根据三⾓形中位线定理得GF ∥EC,GF=21EC=EH,⼀组对边平⾏且相等的四边形是平⾏四边形,所以EG F H 是平⾏四边形. 证明:(1)在B E C △中,G F Q ,分别是B E B C ,的中点G F E C ∴∥且12GF EC =⼜H Q 是E C 的中点,12EH EC =,G F E H ∴∥且G F E H = ∴四边形EG F H 是平⾏四边形三、“多边形的内⾓和与外⾓和公式”多边形的内⾓和、外⾓和公式主要是多边形边数和内⾓度数之间的互化:由多边形的边数得内⾓的度数,由多边形的内⾓和的度数得变数。
《平行四边形的认识》数学说课稿(通用7篇)
《平行四边形的认识》数学说课稿《平行四边形的认识》数学说课稿 (通用7篇)作为一位杰出的老师,就难以避免地要准备说课稿,借助说课稿可以有效提高教学效率。
说课稿应该怎么写才好呢?下面是小编精心整理的《平行四边形的认识》数学说课稿,仅供参考,欢迎大家阅读。
《平行四边形的认识》数学说课稿 1一、说课内容:苏教版数学四年级下册第43~45页。
二、教学内容的地位、作用和意义:这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。
通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。
教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。
在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。
第二个例题认识平行四边形的底和高,并揭示高和底的意义。
“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。
三、说目标1、知识与技能目标 :(1)理解平行四边形的概念及其特征。
(2)认识平行四边形的底和高,会画高。
(3)培养学生实践能力,观察能力、分析能力。
2、过程与方法目标:让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、情感态度与价值观目标:让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。
四、教学重点、难点:教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《平行四边形》教案
课题:《平行四边形》(第一课时)
课型:新授课
教学目标:
1.知识与技能目标
(1)理解平行四边形的定义及有关概念
(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质
(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明
2.过程与方法目标
(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维
(2)在进行性质探索的活动过程中,发展学生的探究能力.
(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力
3.情感、态度与价值观目标
在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。
教学重点:
(1)平行四边形的性质
(2)平行四边形的概念、性质的应用
教学难点:平行四边形的性质的探究
教学过程:
一、设置疑问,导入新课
教师活动:介绍四边形与我们生活的密切联系,指出长方形、正方形、梯形都是特殊的四边形。
提出问题(1)四边形与平行四边形(教材91页章前图)(2)四边形与平行四边形有怎样的从属关系?学生活动:(1)利用章前图寻找四边形
(2)说说四边形与平行四边形的关系
【设计意图】指明学习任务,理清四边形与特殊的四边形之间的关系,引出课题
二、问题探究
(1)教师活动:教师用多媒体展示图片,庭院的竹篱笆,电动伸缩门,活动衣架等学生活动:欣赏图片并举例结合小学已有的知识以及对图片的观察和思考,归纳:两组对边分别平行的四边形是平行四边形,再动手根据定义画出平行四边形
【设计意图】由现实生活入手,使学生获得平行四边形的感性认识,同时能调动学生的主观能动性,激发好奇心和求知欲,发展学生的抽象思维能力
(2)教师活动:提出问题根据定义画一个平行四边形,观察这个四边形,除了“两组对边分别平行以”外它的边角之间还有其他的关系吗?度量一下,是否和你的猜想一致?然后深入到小组中参与活动与指导
学生活动动手画图,猜想,度量,验证,得出
①平行四边形的对边相等
②平行四边形的对角相等,邻角互补
(3)教师活动:你能证明你发现的结论吗?
学生活动:小组内交流,并与前面所学知识联系,证明线段和角相等的办法是三角形全等,而四边形问题转化成三角形问题是作对角线
学生活动:独立完成证明,一名同学板演
【设计意图】经历猜想—实践---验证的过程,从中体会亲自动手实践学到知识的乐趣,获得成功得体验在寻找证明线段和角相等的办法---三角形全等,一方面体会知识的前后连贯性,另一方面意在培养学生良好的学习习惯完成证明,培养学生的推理能力以及严谨的学习态度
三、讲解例题,巩固练习
教师活动:例1.小明用一根36米长的绳子围成一个平行四边形场地,其中一边长16米,其它三边长多少?引导学生审题
学生活动:弄清题意,自己尝试
教师活动:示范解题过程
强调平行四边形性质的几何表达
在xx
①ab∥cd ad∥bc
②ab=cd ad=bc
③∠a=∠c∠b=∠d
学生活动:生练习课后习题
【设计意图】引导学生学会审题,这是解题的关键,同时体会生活中处处有数学训练学生能清晰有条理的表达自己的思考过程,做到“言之有理,落笔有据”
四、小结
教师提出问题:
1.通过学习,本节课你学到了那些知识?
2.在对平行四边形性质的探究过程中,你有那些认识?
3.在应用平行四边形性质解题时,应注意哪些问题?
学生活动:交流获得的知识和得到的感受
【设计意图】通过整理,一方面让学生理清本节课的知识结构,另一方面感受探究过程的乐趣,体验克服困难的勇气树立自信心。
布置作业:教材99页第1题,第2题,第6题
板书设计:
1.平行四边形的定义:两组对边分别平行的四边形
2.平行四边形的表示:
3.平行四边形的性质:①平行四边形的对边相等
②平行四边形的对角相等,邻角互补。