第2课时 不等式的基本性质2,3

合集下载

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学对象:八年级教学课时:2课时教学目标:1. 理解不等式的基本性质,能够运用性质1、2、3解决实际问题。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

教学重难点:1. 掌握不等式的性质1、2、3。

2. 能够运用不等式的性质解决实际问题。

教学准备:1. PPT课件2. 黑板3. 教案教学过程:第一课时一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识。

2. 提问:不等式有哪些基本性质呢?二、新课讲解(15分钟)1. 讲解不等式的性质1:如果a>b,a+c>b+c(c为任意实数)。

2. 讲解不等式的性质2:如果a>b,ac>bc(c为正数)。

3. 讲解不等式的性质3:如果a>b,c>d,ac>bd(c、d为任意实数)。

三、例题讲解(10分钟)1. 举例讲解不等式性质1的应用。

2. 举例讲解不等式性质2的应用。

3. 举例讲解不等式性质3的应用。

四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

第二课时五、复习导入(5分钟)1. 复习上节课所学的不等式性质。

2. 提问:不等式的性质有哪些应用呢?六、拓展讲解(15分钟)1. 讲解不等式的性质4:如果a>b,a/c>b/c(c为正数)。

2. 讲解不等式的性质5:如果a>b,a^n>b^n(n为正整数)。

七、例题讲解(10分钟)1. 举例讲解不等式性质4的应用。

2. 举例讲解不等式性质5的应用。

八、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

1. 本节课讲解了不等式的基本性质,包括性质1、2、3、4、5。

2. 学生能够运用不等式的性质解决实际问题,提高了解决问题的能力。

3. 通过练习题的训练,巩固了所学知识,为后续学习打下了基础。

不等式性质基本性质教案

不等式性质基本性质教案

不等式性质基本性质教案一、教学目标:1. 让学生理解不等式的基本性质,掌握不等式两边同加上或减去同一个数,不等号的方向不变;不等式两边同乘以或除以同一个正数,不等号的方向不变;不等式两边同乘以或除以同一个负数,不等号的方向改变。

2. 培养学生运用不等式的性质解决问题的能力。

3. 通过不等式的性质教学,培养学生抽象思维能力,渗透转化的数学思想。

二、教学内容:1. 不等式两边同加上或减去同一个数,不等号的方向不变。

2. 不等式两边同乘以或除以同一个正数,不等号的方向不变。

3. 不等式两边同乘以或除以同一个负数,不等号的方向改变。

4. 运用不等式的性质解决问题。

三、教学重点与难点:1. 教学重点:让学生掌握不等式的基本性质,能运用不等式的性质解决问题。

2. 教学难点:不等式两边同乘以或除以同一个负数,不等号的方向改变。

四、教学方法:1. 采用启发式教学法,引导学生发现不等式的性质,培养学生抽象思维能力。

2. 采用例题教学法,让学生通过观察、分析、归纳不等式的性质。

3. 采用练习法,巩固所学的不等式性质。

五、教学过程:1. 导入新课:复习相关知识点,如不等式的概念、不等式的解集等,为学生学习不等式的性质做好铺垫。

2. 教学不等式两边同加上或减去同一个数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同加上或减去同一个数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

3. 教学不等式两边同乘以或除以同一个正数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个正数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

4. 教学不等式两边同乘以或除以同一个负数,不等号的方向改变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个负数,不等号的方向改变。

(2)让学生用语言表述这一性质。

不等式的基本性质(2)

不等式的基本性质(2)

课题:不等式的基天性质(2 课时 )教课目的:1.掌握作差比较大小的方法,并能证明一些不等式。

2.掌握不等式的性质,掌握它们的证明方法及其功能,能简单运用。

3.提升逻辑推理和分类议论的能力;培育条理思想的习惯和仔细谨慎的学习态度。

教课要点:作差比较大小的方法;不等式的性质。

教课难点:不等式的性质的运用教课过程:第1课时:问题情境:现有 A、B、 C、 D 四个长方体容器, A、 B 容器的底面积为 a2,高分别为 a、 b,C、D 容器的底面积为 b2,高分别为 a、b,此中 a≠ b。

甲先从四个容器中取两个容器盛水,乙用剩下的两个容器盛水。

问假如你是甲,能否必定能保证两个容器所盛水比乙的多剖析:依题意可知:A、B、C、 D 四个容器的容积分别为a3、 a2b、ab2、b3,甲有 6 种取法。

问题能够转变为比较容器两两和的大小。

研究比较大小的依照:我们知道,实数与数轴上的点是一一对应的。

在数轴上不一样的两点中,右侧的点表示的实数比左侧的点表示的实数大。

在右图中,点 A 表示实数 a,点 B 表示实数 b,点B A x A 在点 B 右侧,那么 a> b。

而 a-b 表示 a 减去 b 所得的差,因为 a> b,则差是一个正数,即a- b> 0。

命题:“若 a> b,则 a- b> 0”建立;抗命题“若a- b> 0,则 a> b”也正确。

近似地:若 a<b,则 a- b< 0;若 a= b,则 a- b=0。

抗命题也都正确。

结论: (1) “ a> b”?“ a- b> 0”(2)“a= b”?“ a- b= 0”(3)“a< b”?“ a- b< 0” ——以上三条即为比较大小的依照:“作差比较法” 。

正负数运算性质: (1) 正数加正数是正数; (2) 正数乘正数是正数; (3) 正数乘负数是负数; (4)负数乘负数是正数。

研究不等式的性质:性质 1:若 a> b, b> c,则 a>c (不等式的传达性)证明:∵ a> b∴ a-b>0∵b> c ∴ b- c> 0∴(a -b) + (b -c) = a- c> 0 ( 正负数运算性质 )则 a>c反省:证明要求步步有据。

等式性质和不等式性质(第2课时)高一上学期数学人教A版(2019)必修第一册

等式性质和不等式性质(第2课时)高一上学期数学人教A版(2019)必修第一册

a b 0,ab 0
ab 0,即 1
0
ab
又由a b 得 a 1 b 1 ,即 1 1
ab
ab
ab
c 0, c c
ab
思考1:若a b 0, 1 与 1 的大小关系如何? ab
ab0 , 1 0 ab
a 1 b 1
ab
ab
11 ba
11 ab
结论:同号的两实数,它们倒数的大小与原实数的大小相反。
ab cd
ac bc cbdb
a
c
b
d
注意:性质5可以推广到n个同向不等式两边同时相加. 即:几个同向不等式的两边分别相加,所得的不等式与原不等式同向.
练习:若-1<x<2,1<y<10,则 x+y 的范围是__(_0_,_1__2_).
拓展:你还能求出 x-y 的范围吗?
性质5: 辨析思考
课堂小结
等式的性质 a=b⇔b=a a=b,b=c⇒a=c a=b⇔a+c=b+c
a=b⇒ac=bc
不等式的性质 性质1:a>b⇔b<a 性质2:a>b,b>c⇒a>c 性质3:a>b⇔a+c>b+c
性质4:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc
a=b,c=d⇒a+c=b+d
a=b,c=d⇒ac=bd a=b≥0⇒an=bn
(a
b)
(b
c)
0
ac0 a c
类比“(3)若a b,则a c b c”得
性质3:如果a>b,那么a+c>b+c. 即 a b a c b c 可 加 性

4.2 第2课时 不等式的基本性质2,3

4.2 第2课时 不等式的基本性质2,3





3.若a<c<0<b,则abc与0的大小关系是 A.abc<0 C.abc>0 B.abc=0 D.无法确定
(
C )
【解析】 因为a<c<0<b,所以ac>0(同号两数相乘得正), 所以abc>0(不等式两边乘以同一个正数,不等号的方向不变 ). 故选C.
数学
湘教版八年级上册
课件目录



(4)若a>0,b<0,c<0,则(a-b)c____0. < 【解析】 (1)因为a>b,由不等式的性质2,有2a>2b,再由不 等式的性质1,得2a+1>2b+1;
数学
湘教版八年级上册
课件目录




5 5 (2)因为- y<10, 将不等式的两边都除以- , 由不等式的性质 3, 4 4 得 y>- 8. (3)因为 a<b, 将不等式两边都乘 c, 因为 c>0, 由不等式的性质 2, 得 ac<bc,再由不等式的性质 1,得 ac+ c<bc+ c. (4)因为 a>0, b<0,所以 a- b>0,两边都乘 c,又 c<0,由不等 式的性质 3,得 (a- b)c<0.
式两边同除以未知数x的系数a,此时必须明确a的性质符号.
数学
湘教版八年级上册
课件目录




类型之二
应用不等式的基本性质2,3变形
根据不等式的基本性质,把下列各式化为“x>a”或
“x<a”的形式. (1)5x-1<14; (2)3-2x>x; (3)5-6x<2.

第二课时 等式性质与不等式的性质

第二课时 等式性质与不等式的性质

第二课时等式性质与不等式的性质课标要求素养要求1.掌握不等式的基本性质.2.运用不等式的性质解决有关问题.通过学习不等式的性质及运用不等式的性质解决问题,提升数学抽象及数学运算素养.新知探究在日常生活中,糖水中加些糖后就会变的更甜,也可以用不等式来表示这一现象.问题你能利用这一事实表示出糖水浓度不等式吗?提示糖水变甜这一现象对应的不等式为ab<a+cb+c,其中a<b,c>0.1.等式的性质性质1如果a=b,那么b=a;性质2如果a=b,b=c,那么a=c;性质3如果a=b,那么a±c=b±c;性质4如果a=b,那么ac=bc;性质5如果a=b,c≠0,那么ac=bc.2.不等式的性质注意这些性质是否可逆(易错点)性质1如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.性质2如果a>b,b>c,那么a>c,即a>b,b>c⇒a>c.性质3如果a>b,那么a+c>b+c.性质4 如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc . 性质5 如果a >b ,c >d ,那么a +c >b +d . 性质6 如果a >b >0,c >d >0,那么ac >bd . 性质7 如果a >b >0,那么a n >b n (n ∈N ,n ≥2).拓展深化[微判断]1.a >b ⇔ac 2>bc2.(×) 提示 当c =0时,不成立.2.同向不等式相加与相乘的条件是一致的.(×)提示 相乘需要看是否⎩⎪⎨⎪⎧a >b >0,c >d >0,而相加与正、负和零均无关系.3.设a ,b ∈R ,且a >b ,则a 3>b 3.(√) [微训练]1.已知a ,b ,m 是正实数,则不等式b +m a +m >ba成立的条件是( ) A.a <b B.a >b C.与m 有关D.恒成立解析 b +m a +m -b a =m (a -b )a (a +m ),而a >0,m >0且m (a -b )a (a +m )>0,∴a -b >0.即a >b .答案 B2.已知m >n ,则( ) A.m 2>n 2 B.m >n C.mx 2>nx 2D.m +x >n +x解析 由于m 2-n 2=(m -n )(m +n ),而m +n >0不一定成立,所以m 2>n 2不一定成立,而m ,n 不一定有意义,所以选项A ,B 不正确;选项C 中,若x 2=0,则不成立. 答案 D [微思考]1.若a>b,c>d,那么a+c>b+d成立吗?a-c>b-d呢?提示a+c>b+d成立,a-c>b-d不一定成立,但a-d>b-c成立.2.若a>b,c>d,那么ac>bd成立吗?提示不一定,但当a>b>0,c>d>0时,一定成立.题型一利用不等式的性质判断命题的真假【例1】(1)若1a<1b<0,有下面四个不等式:①|a|>|b|,②a<b,③a+b<ab,④a3>b3,则不正确的不等式的个数是()A.0B.1C.2D.3(2)给出下列命题:①若ab>0,a>b,则1a<1 b;②若a>b,c>d,则a-c>b-d;③对于正数a,b,m,若a<b,则ab<a+m b+m.其中真命题的序号是________.解析(1)由1a<1b<0可得b<a<0,从而|a|<|b|,①②均不正确;a+b<0,ab>0,则a+b<ab成立,③正确;a3>b3,④正确. 故不正确的不等式的个数为2.(2)对于①,若ab>0,则1 ab>0,又a>b,所以aab>bab,所以1a<1b,所以①正确;对于②,若a=7,b=6,c=0,d=-10,则7-0<6-(-10),②错误;对于③,对于正数a,b,m,若a<b,则am<bm,所以am+ab<bm+ab,所以0<a(b+m)<b(a+m),又1b(b+m)>0,所以ab<a+mb+m,③正确.综上,真命题的序号是①③.答案(1)C(2)①③规律方法不等式的性质常与比较大小结合考查,此类问题一般结合不等式的性质,利用作差法或作商法求解,也可以用特殊值求解.【训练1】设a>b>0,c<d<0,则下列不等式中一定成立的是()A.ac>bdB.a d< bcC.ad>bc D.ac2<bd2解析a>b>0,c<d<0,即为-c>-d>0,即有-ac>-bd>0,即ac<bd<0,故A错;由cd>0,又ac<bd<0,两边同乘1cd ,可得ad<bc,则B对,C错;由-c>-d>0,-ac>-bd>0,可得ac2>bd2,则D错.故选B.答案 B题型二利用不等式的性质证明不等式【例2】若bc-ad≥0,bd>0,求证:a+bb≤c+dd.证明∵bc-ad≥0,∴bc≥ad,∴bc+bd≥ad+bd,即b(c+d)≥d(a+b).又bd >0,两边同除以bd 得,a +b b ≤c +dd .规律方法 1.不等式证明的实质是比较两个实数(代数式)的大小;2.证明不等式可以利用不等式性质证明,也可以用作差比较法证明,利用不等式性质证明时,不可省略条件或跳步推导.【训练2】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)a <b <0,求证:b a <ab .证明 (1)因为a >b ,c >0,所以ac >bc ,即-ac <-bc . 又e >f ,即f <e ,所以f -ac <e -bc .(2)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab,∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <a b . 题型三 利用不等式的性质求范围【例3】 已知1<a <6,3<b <4,求a -b ,ab 的取值范围. 解 ∵3<b <4,∴-4<-b <-3. ∴1-4<a -b <6-3,即-3<a -b <3. 又14<1b <13,∴14<a b <63,即14<a b <2.规律方法 求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘(同正)不可除.【训练3】 已知-π2<β<α<π2,求2α-β的取值范围.解∵-π2<α<π2,-π2<β<π2,∴-π2<-β<π2.∴-π<α-β<π.又∵β<α,∴α-β>0,∴0<α-β<π,又2α-β=α+(α-β),∴-π2<2α-β<3 2π.一、素养落地1.通过学习并理解不等式的性质,培养数学抽象素养,通过运用不等式的性质解决问题,提升数学运算素养.2.利用不等式的性质证明简单的不等式是否成立,实际上就是根据不等式的性质把不等式进行适当的变形,证明过程中注意不等式成立的条件.二、素养训练1.已知a+b>0,b<0,那么a,b,-a,-b的大小关系是()A.a>b>-b>-aB.a>-b>-a>bC.a>-b>b>-aD.a>b>-a>-b解析由a+b>0知,a>-b,∴-a<b<0.又b<0,∴-b>0,∴a>-b>b>-a.答案 C2.设a,b∈R,若a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<0解析本题可采用特殊值法,取a=-2,b=1,则a-b<0,a3+b3<0,a2-b2>0,排除A,B,C,故选D.答案 D3.若8<x<10,2<y<4,则xy的取值范围为________.解析 ∵2<y <4,∴14<1y <12. 又∵8<x <10,∴2<xy <5. 答案 2<xy <54.下列命题中,真命题是________(填序号).①若a >b >0,则1a 2<1b 2;②若a >b ,则c -2a <c -2b ;③若a <0,b >0,则-a <b ;④若a >b ,则2a >2b .解析 ①a >b >0⇒0<1a <1b ⇒1a 2<1b 2;②a >b ⇒-2a <-2b ⇒c -2a <c -2b ;对③取a =-2,b =1,则-a <b 不成立.④正确.答案 ①②④5.已知c a >db ,bc >ad ,求证:ab >0.证明∵⎩⎨⎧c a >d b ,bc >ad ,∴⎩⎨⎧c a -d b >0,bc -ad >0.∴⎩⎪⎨⎪⎧bc -ad ab >0,bc -ad >0,∴ab >0.基础达标一、选择题1.已知a <b <0,则下列式子中恒成立的是( ) A.1a <1b B.1a >1b C.a 2<b 2D.a b <1解析 因为a <b <0,不妨令a =-3,b =-2,则-13>-12,可排除A;(-3)2>(-2)2,可排除C;a b =-3-2>1,可排除D;而-13>-12,即1a>1b,B正确.答案 B2.设x<a<0,则下列不等式一定成立的是()A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>ax 解析∵x<a<0,∴x2>a2.∵x2-ax=x(x-a)>0,∴x2>ax.又ax-a2=a(x-a)>0,∴ax>a2.∴x2>ax>a2.答案 B3.(多选题)设a<b<0,则下列不等式中正确的是()A.2a>2b B.ac<bcC.|a|>-bD.-a>-b解析a<b<0,则2a>2b,选项A正确;当c>0时选项B成立,其余情况不成立,则选项B不正确;|a|=-a>-b,则选项C正确;由-a>-b>0,可得-a>-b,则选项D正确.答案ACD4.已知a>b>c,则1b-c+1c-a的值是()A.正数B.负数C.非正数D.非负数解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ),∵a >b >c ,∴b -c >0,c -a <0,b -a <0, ∴1b -c +1c -a>0,故选A. 答案 A5.若1<a <3,-4<b <2,那么a -|b |的范围是( ) A.-3<a -|b |≤3 B.-3<a -|b |<5 C.-3<a -|b |<3D.1<a -|b |<4解析 ∵-4<b <2,∴0≤|b |<4,∴-4<-|b |≤0. 又∵1<a <3,∴-3<a -|b |<3. 答案 C 二、填空题6.不等式a >b 和1a >1b 同时成立的条件是________. 解析 ∵1a -1b =b -aab ,∴a >b 和1a >1b 同时成立的条件是a >0>b . 答案 a >0>b 7.若a <b <0,则1a -b与1a 的大小关系是________. 解析 1a -b -1a =a -(a -b )(a -b )a =b(a -b )a ,∵a <b <0,∴a -b <0,则b (a -b )a <0,1a -b<1a .答案1a -b <1a8.已知-π2≤α<β≤π2,则α-β2的取值范围是________.解析 ∵-π2≤α<β≤π2,∴-π4≤α2<β2≤π4. ∴-π4≤α2<π4,①-π4<β2≤π4,∴-π4≤-β2<π4.② 由①+②得-π2≤α-β2<π2.又知α<β,∴α-β<0.∴-π2≤α-β2<0. 答案 -π2≤α-β2<0 三、解答题9.判断下列各命题的真假,并说明理由. (1)若a <b ,c <0,则c a <cb ; (2)若ac 3<bc 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ; (4)若a >b ,b >c 则a -b >b -c . 解 (1)∵a <b ,不一定有ab >0, ∴1a >1b 不一定成立, ∴推不出c a <cb ,∴是假命题.(2)当c >0时,c 3>0,∴a <b ,∴是假命题.(3)当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.已知c >a >b >0,求证:a c -a >bc -b.证明 a c -a -bc -b =a (c -b )-b (c -a )(c -a )(c -b )=ac -ab -bc +ab (c -a )(c -b )=c(a -b )(c -a )(c -b ).∵c >a >b >0,∴c -a >0,c -b >0,a -b >0.∴c (a -b )(c -a )(c -b )>0.∴ac -a >bc -b .能力提升11.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是() A.xy >yz B.xz >yzC.xy >xzD.x |y |>z |y |解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 答案 C12.已知1≤a +b ≤4,-1≤a -b ≤2,求4a -2b 的取值范围.解 法一 设u =a +b ,v =a -b 得a =u +v 2,b =u -v 2,∴4a -2b =2u +2v -u +v =u +3v .∵1≤u ≤4,-1≤v ≤2,∴-3≤3v ≤6.则-2≤u +3v ≤10,即-2≤4a -2b ≤10.法二 令4a -2b =x (a +b )+y (a -b ),∴4a -2b =(x +y )a +(x -y )b .∴⎩⎪⎨⎪⎧x +y =4,x -y =-2,∴⎩⎪⎨⎪⎧x =1,y =3.又⎩⎪⎨⎪⎧1≤a +b ≤4,-3≤3(a -b )≤6.∴-2≤4a -2b ≤10. 创新猜想13.(多选题)若x >1>y ,则下列不等式一定成立的有( )A.x -1>1-yB.x -1>y -1C.x -y >1-yD.1-x >y -x解析 x -1-(1-y )=x +y -2,无法判断它与0的大小关系,任取特殊值x =2,y =-1得x -1-(1-y )<0,故选项A 中不等式不一定成立;x -1-(y -1)=x -y >0,故选项B 中不等式成立;x -y -(1-y )=x -1>0,故选项C 中不等式成立;1-x -(y -x )=1-y >0,故选项D 中不等式成立.故选BCD.答案 BCD14.(多空题)已知12<a <60,15<b <36,则a -b 的取值范围为________,a b 的取值范围为________.解析 由15<b <36得-36<-b <-15.又因为12<a <60,所以-24<a -b <45.由15<b <36得136<1b <115.又因为12<a <60,所以13<a b <4.答案 -24<a -b <45 13<a b <4。

八年级数学不等式的基本性质

八年级数学不等式的基本性质

第二节不等式的基本性质1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立.等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形.一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55ba -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( ) ①4a >3a ②4+a >3+a ③4-a >3-a A.①② B.①③ C.②③ D.①②③5.下列判断中,正确的个数为( ) ①若-a >b >0,则ab <0 ②若ab >0,则a >0,b >0 ③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -c A.2 B.3 C.4 D.5二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________ab .三、解答题11.指出下列各题中不等式变形的依据. (1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x -3(3)51x <52 (4)-32x >-113.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.< 三、11.略12.(1)x >2 (2)x <-3 (3)x <2 (4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b∴a -m ________b -m ( ) (2)∵a >2b ∴2a________b ( ) (3)∵3m >5n ∴-m ________-35n( ) (4)∵4a >5a∴a ________0( ) (5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( ) (2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( ) (5)3a 一定比2a 大.( )三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( ) A.m <p <0 B.m <p C.m <0,p <0 D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( ) A.|a |>|b | B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b | 四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9 (3)x +2≤-3 (4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)× (2)√ (3)× (4)× (5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2 (4)x≥5。

高中数学不等式的基本性质课件

高中数学不等式的基本性质课件
不等式的基本性质
(第二课时)
【知识回顾】
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法:
(1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
探究!
类比等式的基本性质,不等 式有哪些基本性质呢?
不等式的基本性质
(1)a b b a(对称性); 单向性 (2)a b,b c a ( c 传递性); (3)abacb( c 可加性); 双向性 ab,cd acbd; (4)ab,c0acbc;ab,c0acbc; ab0,cd 0acbd; (5)ab0,nN,n1an bn; (6)a b 0,nN ,n 1 n a n b.
问题
上述结论是用类比的方法得到的,成立的条件,要特别注意 “符号问题”;
2、要会用自然语言描述上述基本性质;
3、上述基本性质是我们处理不等式问题 的理论基础。
例2、已知a>b>0,C<d<0,e<0,求证:
【解题回顾】在证明不等式时要依据不等式的性质进行,不能 自己“制造”性质来进行.
例3:在三角形ABC中,求A-B的取值范围.
例4、已知 1 x 2 ,求下列式子的取值范围。 33
(1)1-x (2)x(1-x)
解题回顾:同向不等式可以做加法运算,异向不等式可以 做减法运算。当同向不等式两边都为正时,可以做乘法运 算。本题常见的错误是将取值范围扩大。
变式:设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的 取值范围.
例5、已知
A、A<B<C<D; C、D<B<A<C;

第二章 2.1 第二课时等式性质与不等式的性质

第二章 2.1 第二课时等式性质与不等式的性质

第二课时 等式性质与不等式的性质课标要求素养要求1.掌握不等式的基本性质;2.运用不等式的性质解决有关问题.通过学习不等式的性质及运用不等式的性质解决问题,提升数学抽象及数学运算素养.教材知识探究在日常生活中,糖水中加些糖后就会变的更甜,也可以用不等式来表示这一现象.问题 你能利用这一事实表示出糖水浓度不等式吗?提示 糖水变甜这一现象对应的不等式为a b <a +c b +c,其中a <b ,c >0.1.等式的性质性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0,那么a c =b c .2.不等式的性质 注意这些性质是否可逆(易错点) 性质1 如果a >b ,那么b <a ;如果b <a ,那么a >b .即a >b b <a .性质2 如果a >b ,b >c ,那么a >c ,即a >b ,b >c a >c . 性质3 如果a >b ,那么a +c >b +c .性质4 如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc . 性质5 如果a >b ,c >d ,那么a +c >b +d . 性质6 如果a >b >0,c >d >0,那么ac >bd . 性质7 如果a >b >0,那么a n >b n (n ∈N ,n ≥2).教材拓展补遗[微判断] 1.a >bac 2>bc 2.(×)提示 当c =0时,不成立.2.同向不等式相加与相乘的条件是一致的.(×)提示 相乘需要看是否⎩⎨⎧a >b >0,c >d >0,而相加与正、负和零均无关系.3.设a ,b ∈R ,且a >b ,则a 3>b 3.(√) [微训练]1.已知a ,b ,m 是正实数,则不等式b +m a +m >ba 成立的条件是( )A.a <bB.a >bC.与m 有关D.恒成立解析b +m a +m -b a =m (a -b )a (a +m ),而a >0,m >0且m (a -b )a (a +m )>0,∴a -b >0.即a >b . 答案 B2.已知m >n ,则( ) A.m 2>n 2 B.m >n C.mx 2>nx 2D.m +x >n +x解析 由于m 2-n 2=(m -n )(m +n ),而m +n >0不一定成立,所以m 2>n 2不一定成立,而m ,n 不一定有意义,所以选项A ,B 不正确;选项C 中,若x 2=0,则不成立. 答案 D [微思考]1.若a >b ,c >d ,那么a +c >b +d 成立吗?a -c >b -d 呢?提示 a +c >b +d 成立,a -c >b -d 不一定成立,但a -d >b -c 成立. 2.若a >b ,c >d ,那么ac >bd 成立吗?提示 不一定,但当a >b >0,c >d >0时,一定成立.题型一 利用不等式的性质判断命题的真假【例1】 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3,则不正确的不等式的个数是( ) A.0 B.1 C.2D.3解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2. 答案 C规律方法 不等式的性质常与比较大小结合考查,此类问题一般结合不等式的性质,利用作差法或作商法求解,也可以用特殊值求解.【训练1】 设a >b >0,c <d <0,则下列不等式中一定成立的是( ) A.ac >bd B.a d <b c C.a d >b cD.ac 2<bd 2解析 a >b >0,c <d <0,即为-c >-d >0, 即有-ac >-bd >0,即ac <bd <0,故A 错;由cd >0,又ac <bd <0,两边同乘1cd ,可得a d <bc ,则B 对,C 错; 由-c >-d >0,-ac >-bd >0, 可得ac 2>bd 2,则D 错.故选B. 答案 B题型二 利用不等式的性质证明不等式解决此类问题一定要记准,记熟不等式的性质,并注意在解题中灵活地加以应用 【例2】 若bc -ad ≥0,bd >0,求证:a +b b ≤c +dd . 证明 ∵bc -ad ≥0,∴bc ≥ad ,∴bc +bd ≥ad +bd , 即b (c +d )≥d (a +b ).又bd >0,两边同除以bd 得,a +b b ≤c +dd .规律方法 1.不等式证明的实质是比较两个实数(代数式)的大小;2.证明不等式可以利用不等式性质证明,也可以用作差比较法证明,利用不等式性质证明时,不可省略条件或跳步推导.【训练2】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)a <b <0,求证:b a <ab .证明 (1)因为a >b ,c >0,所以ac >bc ,即-ac <-bc . 又e >f ,即f <e ,所以f -ac <e -bc .(2)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab ,∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <a b . 题型三 利用不等式的性质求范围同向可加性,同向同正可乘性是解这类问题的常用性质 【例3】 已知1<a <6,3<b <4,求a -b ,ab 的取值范围. 求解范围时,不可两式直接相减 解 ∵3<b <4,∴-4<-b <-3. ∴1-4<a -b <6-3,即-3<a -b <3. 又14<1b <13,∴14<a b <63, 即14<a b <2.规律方法 求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘(同正)不可除.【训练3】 已知-π2<β<α<π2,求2α-β的取值范围.解 ∵-π2<α<π2,-π2<β<π2, ∴-π2<-β<π2.∴-π<α-β<π. 又∵β<α,∴α-β>0,∴0<α-β<π, 又2α-β=α+(α-β),∴-π2<2α-β<32π.一、素养落地1.通过学习并理解不等式的性质,培养数学抽象素养,通过运用不等式的性质解决问题,提升数学运算素养.2.利用不等式的性质证明简单的不等式是否成立,实际上就是根据不等式的性质把不等式进行适当的变形,证明过程中注意不等式成立的条件. 二、素养训练1.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A.M >N B.M =N C.M <ND.与x 有关解析 M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0.∴M >N . 答案 A2.设a ,b ∈R ,若a +|b |<0,则下列不等式中正确的是( ) A.a -b >0 B.a 3+b 3>0 C.a 2-b 2<0D.a +b <0解析 本题可采用特殊值法,取a =-2,b =1,则a -b <0,a 3+b 3<0,a 2-b 2>0,排除A ,B ,C ,故选D. 答案 D3.若8<x <10,2<y <4,则xy 的取值范围为________. 解析 ∵2<y <4,∴14<1y <12.又∵8<x <10,∴2<xy <5. 答案 2<xy <54.下列命题中,真命题是________(填序号).①若a >b >0,则1a 2<1b 2;②若a >b ,则c -2a <c -2b ;③若a <0,b >0,则-a <b ;④若a >b ,则2a >2b . 解析 ①a >b >00<1a <1b1a 2<1b 2;②a >b-2a <-2bc -2a <c -2b ;对③取a=-2,b =1,则-a <b 不成立.④正确. 答案 ①②④5.已知c a >db ,bc >ad ,求证:ab >0.证明 ∵⎩⎪⎨⎪⎧c a >d b ,bc >ad ,∴⎩⎪⎨⎪⎧c a -d b >0,bc -ad >0.∴⎩⎪⎨⎪⎧bc -ad ab >0,bc -ad >0,∴ab >0.基础达标一、选择题1.已知a <b <0,则下列式子中恒成立的是( ) A.1a <1b B.1a >1b C.a 2<b 2D.a b <1解析 因为a <b <0,不妨令a =-3,b =-2, 则-13>-12,可排除A ; (-3)2>(-2)2,可排除C ; a b =-3-2>1,可排除D ; 而-13>-12,即1a >1b ,B 正确. 答案 B2.设x <a <0,则下列不等式一定成立的是( ) A.x 2<ax <a 2 B.x 2>ax >a 2 C.x 2<a 2<axD.x 2>a 2>ax解析 ∵x <a <0,∴x 2>a 2. ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2. ∴x 2>ax >a 2. 答案 B3.设a <b <0,则下列不等式中不正确的是( ) A.2a >2b B.ac <bc C.|a |>-bD.-a >-b 解析 a <b <0,则2a >2b ,选项A 正确;当c >0时选项B 成立,其余情况不成立,则选项B 不正确;|a |=-a >-b ,则选项C 正确;由-a >-b >0,可得-a >-b ,则选项D 正确,故选B. 答案 B4.已知a <0,b <-1,则下列不等式成立的是( ) A.a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2D.a b >a b 2>a解析 由题意知ab >0,b 2>1, 则a b 2>a ,且a b 2<0,所以a b >a b 2>a . 答案 D5.若1<a <3,-4<b <2,那么a -|b |的范围是( ) A.-3<a -|b |≤3 B.-3<a -|b |<5 C.-3<a -|b |<3D.1<a -|b |<4 解析 ∵-4<b <2,∴0≤|b |<4,∴-4<-|b |≤0. 又∵1<a <3,∴-3<a -|b |<3. 答案 C二、填空题6.若a >b >0,则a +1b ________b +1a (用“<”,“>”,“=”填空). 解析 法一 ∵a >b >0,∴0<1a <1b , 即1b >1a >0,∴a +1b >b +1a .法二 a +1b -(b +1a )=(a -b )(1+ab )ab ,∵a >b >0,∴a -b >0,ab >0,1+ab >0, 则a +1b >b +1a . 答案 > 7.若a <b <0,则1a -b与1a 的大小关系是________. 解析1a -b -1a =a -(a -b )(a -b )a =b (a -b )a, ∵a <b <0,∴a -b <0,则b (a -b )a <0,1a -b <1a.答案1a -b <1a8.已知-π2≤α<β≤π2,则α-β2的取值范围是________. 解析 ∵-π2≤α<β≤π2,∴-π4≤α2<β2≤π4. ∴-π4≤α2<π4,①-π4<β2≤π4,∴-π4≤-β2<π4.② 由①+②得-π2≤α-β2<π2.又知α<β,∴α-β<0.∴-π2≤α-β2<0. 答案 -π2≤α-β2<0 三、解答题9.判断下列各命题的真假,并说明理由. (1)若a <b ,c <0,则c a <cb ; (2)若ac 3<bc 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ; (4)若a >b ,b >c 则a -b >b -c . 解 (1)∵a <b ,不一定有ab >0, ∴1a >1b 不一定成立, ∴推不出c a <cb ,∴是假命题.(2)当c >0时,c 3>0,∴a <b ,∴是假命题.(3)当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题. 10.已知c >a >b >0,求证:a c -a >b c -b. 证明a c -a -bc -b =a (c -b )-b (c -a )(c -a )(c -b )=ac -ab -bc +ab (c -a )(c -b )=c (a -b )(c -a )(c -b ). ∵c >a >b >0,∴c -a >0,c -b >0,a -b >0. ∴c (a -b )(c -a )(c -b )>0.∴a c -a >b c -b. 能力提升11.已知a >b >0,c <d <0,求证:⎝ ⎛⎭⎪⎫a d 3<⎝ ⎛⎭⎪⎫b c 3.证明 ∵c <d <0,∴-c >-d >0, ∴0<-1c <-1d .∵a >b >0,∴-a d >-bc >0,∴⎝ ⎛⎭⎪⎫-a d 3>⎝ ⎛⎭⎪⎫-b c 3,即-⎝ ⎛⎭⎪⎫a d 3>-⎝ ⎛⎭⎪⎫b c 3,∴⎝ ⎛⎭⎪⎫a d 3<⎝ ⎛⎭⎪⎫b c 3. 12.已知1≤a +b ≤4,-1≤a -b ≤2,求4a -2b 的取值范围. 解 法一 设u =a +b ,v =a -b 得a =u +v 2,b =u -v2, ∴4a -2b =2u +2v -u +v =u +3v . ∵1≤u ≤4,-1≤v ≤2,∴-3≤3v ≤6. 则-2≤u +3v ≤10,即-2≤4a -2b ≤10. 法二 令4a -2b =x (a +b )+y (a -b ), ∴4a -2b =(x +y )a +(x -y )b . ∴⎩⎨⎧x +y =4,x -y =-2,∴⎩⎨⎧x =1,y =3. 又⎩⎨⎧1≤a +b ≤4,-3≤3(a -b )≤6. ∴-2≤4a -2b ≤10.。

不等式的基本性质教案

不等式的基本性质教案

不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

3. 通过对不等式的学习,培养学生的逻辑推理和运算能力。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的运算规则。

三、教学重点与难点:1. 教学重点:不等式的概念、表示方法、基本性质及运算规则。

2. 教学难点:不等式基本性质的理解和应用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 利用实例分析,让学生感受不等式在实际问题中的应用。

3. 运用小组合作学习,培养学生之间的交流与协作能力。

五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感知不等式的存在。

2. 新课讲解:讲解不等式的表示方法,阐述不等式的基本性质,引导学生理解和记忆。

3. 例题解析:分析典型例题,让学生运用不等式的基本性质解决问题。

4. 课堂练习:设计相关练习题,巩固学生对不等式基本性质的掌握。

5. 总结与拓展:对本节课内容进行总结,布置课后作业,鼓励学生深入研究不等式的应用。

6. 教学反思:根据学生课堂表现和作业情况,对教学效果进行评估,为下一步教学提供调整依据。

六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对不等式基本性质的理解和应用能力。

2. 关注学生在解决问题时的思维过程,考察其逻辑推理和运算能力。

3. 结合学生的小组合作学习和课堂参与度,评价其协作和沟通能力。

七、教学资源:1. 教学PPT:展示不等式的定义、表示方法和基本性质。

2. 练习题库:提供不同难度的练习题,用于巩固所学内容。

3. 实例素材:收集与不等式相关的实际问题,用于课堂讨论和练习。

八、教学进度安排:1. 第1-2课时:介绍不等式的概念和表示方法。

2. 第3-4课时:讲解不等式的基本性质。

3. 第5-6课时:通过例题解析和练习,巩固不等式的基本性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学目标:1. 理解不等式的概念及基本性质;2. 学会解简单的不等式问题;3. 能够应用不等式的基本性质解决实际问题。

教学内容:第一章:不等式的概念1.1 不等式的定义1.2 不等式的表示方法1.3 不等式的性质第二章:不等式的基本性质2.1 性质1:不等式的两边加上或减去同一个数,不等号的方向不变;2.2 性质2:不等式的两边乘以或除以同一个正数,不等号的方向不变;2.3 性质3:不等式的两边乘以或除以同一个负数,不等号的方向改变。

第三章:解简单的不等式3.1 解一元一次不等式;3.2 解一元二次不等式;3.3 解不等式组。

第四章:不等式的应用4.1 实际问题转化为不等式;4.2 解不等式得到答案;4.3 检验答案的合理性。

第五章:不等式的综合练习5.1 填空题;5.2 选择题;5.3 解答题。

教学方法:1. 采用讲解、示例、练习、讨论等方式进行教学;2. 通过引导学生发现不等式的基本性质,培养学生的思维能力;3. 结合实际问题,培养学生的应用能力。

教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生掌握情况;2. 课后作业:布置相关作业,巩固所学知识;3. 期中考试:检查学生对不等式的基本性质的掌握程度。

教学资源:1. PPT课件;2. 教案;3. 练习题;4. 实际问题案例。

教学进度安排:1. 第一章:2课时;2. 第二章:3课时;3. 第三章:4课时;4. 第四章:3课时;5. 第五章:2课时。

第六章:不等式的扩展性质6.1 不等式的传递性质:如果a < b且b < c,a < c。

6.2 不等式的对称性质:如果a < b,则b > a。

6.3 不等式的多变量性质:解涉及多个变量的不等式。

第七章:不等式的图形表示7.1 直线与不等式的关系:直线y = mx + c与不等式y > mx + c的关系。

7.2 平面区域与不等式组:不等式组的图形表示及解集的确定。

第2课时 不等式的基本性质

第2课时 不等式的基本性质

第2课时 不等式的基本性质【教学目标】掌握不等式的基本性质,能正确运用不等式的基本性质将不等式变形. 【教学重点】不等式的性质及不等式的变形. 【教学难点】不等式的性质3及其在不等式变形中的运用;正确分析实际问题中的不等关系并用不等式表示. 教学过程一、组织教学,复习提问1.等式的基本性质(在师生问答的过程中,多媒体同步演示). 师:等式有哪几条基本性质?生:等式有两条基本性质:(1)等式两边都加上(或减去)同一个数(或式子),结果仍是等式.如果a =b ,那么a±c =b±c.(2)等式两边都乘以同一个数,或除以同一个不等于0的数,结果仍是等式.即:如果a =b ,那么ac =bc ;如果a =b(c ≠0),那么a c =b c .2.填空.师:如果x =y ,在等式两边都________,得x +5=y +5,根据是________.生:加上5,等式的基本性质1.师:如果x =y ,在等式两边都________,得5x =5y ,根据是________.生:乘以5,等式的基本性质2.师:如果x =y ,在等式两边都________,得x 5=y5,根据是________. 生:除以5,等式的基本性质2.师:依据等式的基本性质,可以把一个等式两边变形,所得结果仍然是一个等式,等式的基本性质是解一元二次方程的依据. 二、创设情境,引入新课师:类比等式的基本性质,我们可以得到不等式的基本性质,不等式的基本性质是研究不等式的重要依据.1.探究不等式的基本性质1. (1)创设情境.多媒体演示课本第24页图形,引导学生观察图形,思考问题1. 问题1:如果将倾斜的天平看成不等式,类比等式的基本性质.对于不等式a >b ,从上图中你能得出什么结论?师:图中两个天平上砝码的质量分别满足怎样的关系? 生:左图中满足a >b ;右图中满足a +c >b +c.师:类比等式的基本性质1,对于不等式a >b ,你从图中能得出什么结论?生:如果a >b ,那么a +c >b +c ,a -c >b -c. (2)引入新课.不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.即:如果a >b ,那么a±c >b±c.2.探究不等式的基本性质2. (1)创设情境.多媒体演示课本第24页图形,引导学生观察图形,思考问题2. 问题2:对于倾斜的天平,如果两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平的倾斜方向会改变吗?生:不改变.师:我们利用下面的计算来验证一下这个结论. 7>3,那么7×5________3×5,15×7________15×3; -7<3,那么-7×5________3×5,15×(-7)________15×3. 生:7>3,那么7×5>3×5,15×7>15×3; -7<3,那么-7×5<3×5,15×(-7)<15×3;师:由此,我们验证了问题2的结论.类比等式的基本性质2,可以得出不等式的基本性质2.(2)引入新课.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即:如果a >b ,c >0,那么ac >bc ,a c >bc .3.探究不等式的基本性质3. (1)创设情境.问题3:多媒体演示课本第25页探究.如果a >b ,那么它们的相反数-a 与-b 哪个大?你能用数轴上的点的位置关系和具体的例子加以说明吗?师:如图,请同学们依据相反数的意义,在图中标出a 、b 的相反数-a 和-b ,再依据实数的大小比较法则,判断-a 与-b 的大小关系.生:(在上图标出-a ,-b)-a <-b. 师:请同学们再举几个具体的例子加以验证. 生:如果5>3,那么-5<-3.师:如果a >b ,那么-a <-b ,这个式子可理解为: a ×(-1)<b ×(-1)师:对于不等式a >b ,两边同乘以-3,会得到什么结果呢? 我们来进行逐步分析:因此,对于不等式a >b ,那么a ×(-3)<b ×(-3).师:如果a >b ,c <0,那么ac 与bc 有怎样的大小关系? 生:ac <bc. (2)引入新课.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向前改变,即如果a >b ,c <0,那么ac <bc ,a c <bc4.探究不等式的另外两条基本性质.师:请同学们举例验证:如果a >b ,那么b <a. 生:如果8>-2,那么-2<8;如果3>x ,那么x <3. 师:不等式的对称性:如果a >b ,那么b <a. 请同学们举例验证:如果a >b ,b >c ,那么a >c. 生1:如13>0,0>-5,那么13>-5.生2:因为∠A >∠B ,∠B >30°,那么∠A >30°. 师:不等式的同向传递性:如果a >b ,b >c ,那么a >c. 三、巩固练习1.课本第26页练习1,2,3题.教师让学生完成课本第26页练习1,2,3题.在完成练习1时,要让学生分别说说每个不等式的变形分别依据了不等式的哪一条基本性质.2.交流与思考.师:请同学们思考下面的问题并相互交流各自的看法. 问题4:等式与不等式的基本性质有哪些相同和不同的地方?生:等式的基本性质与不等式的基本性质1、2相同,即对于a 、b 两数,都加上或减去同一个数,都乘以或除以同一个正数,所得结果的大小关系与a 、b 两数的大小关系一样.不同点是:当都乘以或除以同一个负数时,所得结果的大小关系与a 、b 两数的大小关系相反.师:在不等式的两边能同乘以0吗?为什么?生:不能.若在不等式的两边都乘以0,那么不等式就变成了等式. 四、提升练习师:将下列不等式化为“x>a”或“x<a”的形式. 1.8-x >0 2.x >12x -6 解:x <8解:x >-12 3.2x +5<0 4.-13x <-4 解:x <-52解:x >12 5.12x ≥12(5-x) 6.-0.3x <-1.5 解:x ≥52解:x >5五、课堂小结1.不等式的基本性质有哪些,运用哪一条性质时,要改变不等号的方向?2.等式的基本性质与不等式的基本性质有哪些异同?。

不等式的性质二(篇三)

不等式的性质二(篇三)

不等式的性质(二)第二课时教学目标1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法。

教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:这一节课,我们将利用比较实数的方法,来推证不等式的性质。

二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念。

1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式。

异向不等式:两个不等号方向相反的不等式。

例如:是异向不等式。

2.不等式的性质:定理1:若,则定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向。

在证明时,既要证明充分性,也要证明必要性。

证明:∵ ,∴ 由正数的相反数是负数,得说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用。

定理2:若,且,则。

证明:∵ ∴ 根据两个正数的和仍是正数,得∴ 说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数。

定理3:若,则定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向。

证明:∵ ∴ 说明:(1)定理3的证明相当于比较与的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即。

定理3推论:若。

证明:∵ ,∴ ①∵ ∴ ②由①、②得说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档