圆的方程检测题

合集下载

直线与圆的方程 检测卷含答案

直线与圆的方程 检测卷含答案

直线与圆的方程检测卷一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点在直线上,则直线的倾斜角为A.B.C.D.【答案】C2.已知直线l:在轴和轴上的截距相等,则的值是A.1 B.-1C.2或1 D.-2或1【答案】C【解析】当时,直线方程为,显然不符合题意,当时,令时,得到直线在轴上的截距是,令时,得到直线在轴上的截距为,根据题意得,解得或,故选C.【名师点睛】本题主要考查了直线方程的应用及直线在坐标轴上的截距的应用,其中正确理解直线在坐标轴的截距的概念,利用直线方程求得直线的截距是解答的关键,着重考查了推理与运算能力,以及分类讨论的数学思想.3.直线截圆所得弦的长度为4,则实数的值是A.-5 B.-4C.-6 D.【答案】A【名师点睛】本题主要考查了直线与圆的位置关系以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.4.若3π2π2α<<, A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B【解析】令0x =,得sin 0y α=<,令0y =,得cos 0x α=>,直线过()()0,sin cos ,0αα,两点,因而直线不过第二象限.本题选择B 选项.5.已知直线()()1:424240l m x m y m --++-=与()()2:1210l m x m y -+++=,则“2m =-”是“12l l ∥”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B【解析】2m =-时,可得12:680,:310,l x l x --=-+=所以12l l ∥;12l l ∥时,可得()()()()422410m m m m -+++-=,解得2m =或2m =-,2m ∴=-是12l l ∥的充分不必要条件,故选B.6.若圆C 与y 轴相切于点()0,1P ,与x 轴的正半轴交于,A B 两点,且2AB =,则圆C 的标准方程是A .(()2212x y +++= B .()(2212x y +++=C .(()2212x y +-=D .()(2212x y -+=【答案】C【解析】设AB 中点为D ,则1AD CD ==,∴)1r AC C==,故选C .7.若直线过点,斜率为1,圆上恰有3个点到的距离为1,则的值为 A . B .C .D .【答案】D【名师点睛】本题主要考查了直线与圆的位置关系的应用,解答是要注意直线与圆的位置关系的合理应用,同时注意数形结合法在直线与圆问题的中应用,着重考查了分析问题和解答问题的能力,属于基础题.8.若过点()0,1A -的直线l 与圆()2234x y +-=的圆心的距离记为d ,则d 的取值范围为A .[]0,4B .[]0,3 C .[]0,2D .[]0,1【答案】A【解析】由已知,点()0,1A -在圆()2234x y +-=外,当直线l 经过圆心()0,3时,圆心到直线l 的距离最小为0,圆心到点()0,1A -的距离,是圆心到直线l 的最大距离,此时4d ==,故选A.9.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,则2211a b+的最小值为 A .49 B .109C .1D .3【答案】C【名师点睛】解答本题的关键是准确理解题设中恰有三条切线这一信息,并进一步等价转化为“在2249a b +=,即224199a b +=的前提下,求2211a b +的最小值问题”.求解时充分借助题设条件,巧妙地将2249a b +=化为224199a b +=,再运用基本不等式从而使得问题的求解过程简捷、巧妙. 10.直线2(0)x y m m +=>与圆O :225x y +=交于A ,B 两点,若||2||OA OB AB +>,则实数m 的取值范围是 A .(,2)B .(2,)C .(,5)D .(2,)【答案】B【解析】设AB 中点为D ,则OD AB ⊥,∵2OA OB AB +>2x y m +=(0m >)与22:5O x y += 交于不同的两点A B 、,∴25OD < B.二、填空题(本题共4小题,每小题5分,共20分)11.求经过圆的圆心,且与直线平行的直线的一般式方程为________________. 【答案】【名师点睛】本题主要考查了直线的位置关系的应用,以及圆的标准方程的应用,其中解答中根据两直线的位置关系,合理设出方程是解答的关键,着重考查了推理与运算能力.12.已知直线:20l x y +-=和圆22:12120C x y x y m +--+=相切,则m 的值为___________.【答案】22【解析】由题设知圆的圆心坐标与半径分别为()6,6,C r =,则圆心()6,6C 到直线20x y +-=的距离d ===,解之得22m =,应填22.13.如果圆()()228x a y a -+-=上总存在到原点的距离为的点,则实数的取值范围是__________.【答案】[3,1][1,3]-- 【解析】圆心到原点的距离为,圆()()228x a y a -+-=上总存在到原点的距离为的点,则3a ≤≤≤≤,则或.14.设直线1y kx =+与圆2220x y x my ++-=相交于,A B 两点,若点,A B 关于直线:0l x y +=对称,则AB =__________.【解析】因为点,A B 关于直线:0l x y +=对称,所以直线1y kx =+的斜率1k =,即1y x =+,圆心(−1,2m)在直线:0l x y +=上,所以2m =.所以圆心为(−1,1),圆心到直线1y x =+的距离为2d =,【名师点睛】(1)圆上两点关于直线对称,则直线过圆心;(2)两点关于直线对称,两点所在的直线与该直线垂直,且两点的中点在该直线上.三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 15.已知直线:43100l x y ++=,半径为2的圆与相切,圆心在轴上且在直线的上方.(1)求圆的标准方程;(2)过点的直线与圆交于两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.【解析】(1)设圆心()5,0()2C a a >-,则4102055a a a +=⇒==-或(舍去).所以圆C 的标准方程为224x y +=.16.斜率为的直线与抛物线交于两点,且的中点恰好在直线上.(1)求的值; (2)直线与圆交于两点,若,求直线的方程.【答案】(1)1;(2)【解析】(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由22y kx m x y=+⎧⎨=⎩得,x 2-2kx -2m =0, ∆=4k 2+8m >0,x 1+x 2=2k ,x 1x 2=-2m ,因为AB 的中点在x =1上,所以x1+x2=2.即2k=2,所以k=1.。

高二数学圆的方程练习题

高二数学圆的方程练习题

高二数学圆的方程练习题1. 某圆的半径为3,圆心坐标为(2, -1),求该圆的方程。

解析:设该圆的方程为(x-a)² + (y-b)² = r²(a为圆心横坐标,b为圆心纵坐标,r为半径)根据已知条件得到:(x-2)² + (y+1)² = 3²将方程展开得:x² - 4x + 4 + y² + 2y + 1 = 9整理得:x² + y² - 4x + 2y - 4 = 0所以该圆的方程为x² + y² - 4x + 2y - 4 = 02. 某圆的直径的两个端点分别为A(1, 2)和B(5, 6),求该圆的方程。

解析:首先求出圆心坐标:圆心的横坐标为直径的中点的横坐标,纵坐标为直径的中点的纵坐标圆心的横坐标 = (1+5)/2 = 3圆心的纵坐标 = (2+6)/2 = 4所以该圆的圆心为(3, 4)然后求出半径:半径的长度等于直径的长度的一半直径AB的长度= √[(5-1)² + (6-2)²] = 2√2所以半径等于直径的一半:r = (2√2)/2 = √2圆心坐标为(3, 4),半径为√2,所以该圆的方程为:(x-3)² + (y-4)² = (√2)²展开得:x² + y² - 6x - 8y + 13 = 0所以该圆的方程为:x² + y² - 6x - 8y + 13 = 03. 已知圆的方程为:x² + y² + 2x - 4y - 4 = 0,求该圆的圆心坐标和半径。

解析:根据已知方程可得:(x+1)² + (y-2)² = 9将方程展开得:x² + y² + 2x - 4y + 1 + 4 - 9 = 0整理得:x² + y² + 2x - 4y - 4 = 0可见,已知的方程与题目中给出的方程相同,所以该圆的圆心坐标为(-1, 2),半径为3。

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程一、选择题1.两圆x 2+y 2-4x +6y =0和x 2+y 2-6x =0的圆心连线方程为( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案:C解析:两圆的圆心分别为(2,-3)、(3,0),直线方程为y =0+33-2(x -3)即3x -y -9=0,故选C. 2.圆C :x 2+y 2+x -6y +3=0上有两个点P 和Q 关于直线kx -y +4=0对称,则k =( )A .2B .-32C .±32D .不存在 答案:A解析:由题意得直线kx -y =4=0经过圆心C (-12,3),所以-k 2-3+4=0,解得k =2.故选A. 3.当a 取不同的实数时,由方程x 2+y 2+2ax +2ay -1=0可以得到不同的圆,则( )A .这些圆的圆心都在直线y =x 上B .这些圆的圆心都在直线y =-x 上C .这些圆的圆心都在直线y =x 或y =-x 上D .这些圆的圆心不在同一条直线上答案:A解析:圆的方程可化为(x +a )2+(y +a )2=2a 2+1,圆心为(-a ,-a ),在直线y =x 上.4.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D解析:圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b ), 则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-b a>0,所以直线不经过第四象限,故选D.5.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为( )A .5 2B .102C .15 2D .202答案:B解析:圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM |2-|ME |2=210-[(1-0)2+(3-1)2]=2 5.从而四边形ABCD 的面积为12|AC ||BD |=12×210×25=10 2. 6.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π答案:B解析:设点P 的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹是以(2,0)为圆心,2为半径长的圆,故面积为π×22=4π.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为________.答案:x 2+y 2+6x -8y -48=0解析:只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________. 答案:x 2+y 2-4x +2y +1=0解析:设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.9.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.答案:-2解析:由题意可知直线l :x -y +2=0过圆心,∴-1+a 2+2=0,∴a =-2. 三、解答题10.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.解析:解法一:由方程x 2+y 2-4mx +2my +20m -20=0,可知D =-4m ,E =2m ,F =20m -20,∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D 2+E 2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点,当m ≠2时,原方程表示圆的方程.此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.[点评] (1)形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D 2+E 2-4F 是否为正.若D 2+E 2-F >0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r =5(m -2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.11.自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.解析:方法1:(直接法)设P (x ,y ),连接OP ,则OP ⊥BC ,当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0. ①当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).方法2:(定义法)由方法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2, 由圆的定义知,P 的轨迹方程是(x -2)2+y 2=4(在已知圆内的部分).12.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的方程.解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(4,2)和(-2,-6),代入圆的一般方程,得⎩⎪⎨⎪⎧4D +2E +F +20=0, ①2D +6E -F -40=0. ②设圆在x 轴上的截距为x 1、x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1、y 2,它们是方程y 2+Ey +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0. ③由①②③联立解得D =-2,E =4,F =-20.∴所求圆的方程为x 2+y 2-2x +4y -20=0.。

圆的标准方程 练习题

圆的标准方程 练习题

(一) 第四章 4.1 4.1.1A 级 基础巩固一、选择题1.圆心是(4,-1),且过点(5,2)的圆的方程是 ( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=102.已知圆的方程是(x -2)2+(y -3)2=4,则点P(3,2)满足 ( )A .是圆心B .在圆上C .在圆内D .在圆外3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为 ( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),44.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y +2)2=1D .(x +1)2+(y +2)2=15.(2016·全国卷Ⅱ)圆x2+y2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = () A .-43B .-34C .3D .26.若P(2,-1)为圆(x -1)2+y2=25的弦AB 的中点,则直线AB 的方程是 ( A )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0二、填空题7.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是.8.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是三、解答题9.圆过点A(1,-2)、B(-1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x -y -4=0上的圆的方程.10.已知圆N 的方程为(x -5)2+(y -6)2=a2(a>0).(1)若点M(6,9)在圆上,求a 的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N 有且只有一个公共点,求a 的取值范围.B 级 素养提升一、选择题1.(2016~2017·宁波高一检测)点⎝ ⎛⎭⎪⎫12,32与圆x2+y2=12的位置关系是 ( )A .在圆上B .在圆内C .在圆外D .不能确定2.若点(2a ,a -1)在圆x2+(y +1)2=5的内部,则a 的取值范围是 ( )A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞)3.若点P(1,1)为圆(x -3)2+y2=9的弦MN 的中点,则弦MN 所在直线方程为 ( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=04.点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为 ( )A .9B .8C .5D .2二、填空题5.已知圆C 经过A(5,1)、B(1,3)两点,圆心在x 轴上,则C 的方程为____.6.以直线2x +y -4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C 级 能力拔高1.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在的直线上.求AD 边所在直线的方程.2.求圆心在直线4x +y =0上,且与直线l :x +y -1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆x2+y2-4x +6y =0的圆心坐标是 ( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)2.(2016~2017·曲靖高一检测)方程x2+y2+2ax -by +c =0表示圆心为C(2,2),半径为2的圆,则a ,b ,c 的值依次为 ( )A .-2,4,4B .-2,-4,4C .2,-4,4D .2,-4,-43.(2016~2017·长沙高一检测)已知圆C 过点M(1,1),N(5,1),且圆心在直线y =x -2上,则圆C 的方程为 ( )A .x2+y2-6x -2y +6=0B .x2+y2+6x -2y +6=0C .x2+y2+6x +2y +6=0D .x2+y2-2x -6y +6=04.设圆的方程是x2+y2+2ax +2y +(a -1)2=0,若0<a<1,则原点与圆的位置关系是 ( )A .在圆上B .在圆外C .在圆内D .不确定5.若圆x2+y2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为 ( ) A .-2或2 B .12或32C .2或0D .-2或0 6.圆x2+y2-2y -1=0关于直线y =x 对称的圆的方程是 ( )A .(x -1)2+y2=2B .(x +1)2+y2=2C .(x -1)2+y2=4D .(x +1)2+y2=4二、填空题7.圆心是(-3,4),经过点M(5,1)的圆的一般方程为____.8.设圆x2+y2-4x +2y -11=0的圆心为A ,点P 在圆上,则PA 的中点M 的轨迹方程是_三、解答题9.判断方程x2+y2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点A(-1,0)、B(3,0)和C(0,1)的圆的方程.B 级 素养提升一、选择题1.若圆x2+y2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在圆x2+y2-2x -6y =0内,过点E(0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为 ( )A .52B .102C .152D .2023.若点(2a ,a -1)在圆x2+y2-2y -5a2=0的内部,则a 的取值范围是 ( )A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞) 4.若直线l :ax +by +1=0始终平分圆M :x2+y2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( )二、填空题5.已知圆C :x2+y2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a6.若实数x 、y 满足x2+y2+4x -2y -4=0,则x2+y2的最大值是___.C 级 能力拔高1.设圆的方程为x2+y2=4,过点M(0,1)的直线l 交圆于点A 、B ,O 是坐标原点,点P 为AB 的中点,当l 绕点M 旋转时,求动点P 的轨迹方程.2.已知方程x2+y2-2(m +3)x +2(1-4m2)y +16m4+9=0表示一个圆.(1)求实数m 的取值范围;(2)求该圆的半径r 的取值范围;(3)求圆心C 的轨迹方程.第四章 4.2 4.2.1A 级 基础巩固一、选择题1.若直线3x +y +a =0平分圆x2+y2+2x -4y =0,则a 的值为 ( )A .-1B .1C .3D .-32.(2016·高台高一检测)已知直线ax +by +c =0(a 、b 、c 都是正数)与圆x2+y2=1相切,则以a 、b 、c 为三边长的三角形是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不存在3.(2016·北京文)圆(x +1)2+y2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C .2D .22[4.(2016·铜仁高一检测)直线x +y =m 与圆x2+y2=m(m>0)相切,则m = ( )A .12B .22C .2D .25.圆心坐标为(2,-1)的圆在直线x -y -1=0上截得的弦长为22,那么这个圆的方程为 ( )A .(x -2)2+(y +1)2=4B .(x -2)2+(y +1)2=2C .(x -2)2+(y +1)2=8D .(x -2)2+(y +1)2=166.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有 ( )A .1个B .2个C .3个D .4个二、填空题7.(2016·天津文)已知圆C 的圆心在x 轴的正半轴上,点M(0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____. 8.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为____.三、解答题9.当m 为何值时,直线x -y -m =0与圆x2+y2-4x -2y +1=0有两个公共点?有一个公共点?无公共点10.(2016·潍坊高一检测)已知圆C :x2+(y -1)2=5,直线l :mx -y +1-m =0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于A 、B 两点,当|AB|=17时,求m 的值.B 级 素养提升一、选择题1.过点(2,1)的直线中,被圆x2+y2-2x +4y =0截得的弦最长的直线的方程是 ( )A .3x -y -5=0B .3x +y -7=0C .3x -y -1=0D .3x +y -5=02.(2016·泰安二中高一检测)已知2a2+2b2=c2,则直线ax +by +c =0与圆x2+y2=4的位置关系是 ( )A .相交但不过圆心B .相交且过圆心C .相切D .相离3.若过点A(4,0)的直线l 与曲线(x -2)2+y2=1有公共点,则直线l 的斜率的取值范围为 ( )A .(-3,3)B .[-3,3]C .(-33,33)D .[-33,33] 4.设圆(x -3)2+(y +5)2=r2(r>0)上有且仅有两个点到直线4x -3y -2=0的距离等于1,则圆半径r 的取值范围是 ( )A .3<r<5B .4<r<6C .r>4D .r>5二、填空题5.(2016~2017·宜昌高一检测)过点P(12,1)的直线l 与圆C :(x -1)2+y2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为____.6.(2016~2017·福州高一检测)过点(-1,-2)的直线l 被圆x2+y2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为____.C 级 能力拔高1.求满足下列条件的圆x2+y2=4的切线方程:(1)经过点P(3,1);(2)斜率为-1;(3)过点Q(3,0).2.设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.第四章 4.2 4.2.2A级基础巩固一、选择题1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是 ( )A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=252.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为 ( ) A.x+y-1=0 B.2x-y+1=0C.x-2y+1=0 D.x-y+1=03.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是 ( ) A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=04.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是 ( )A.(x-5)2+(y+7)2=25B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15D.(x+5)2+(y-7)2=255.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=A.5 B.4 C.3 D.226.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为 ( )A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36二、填空题7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是____.8.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=____.三、解答题9.求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.10.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.B 级 素养提升一、选择题1.已知M 是圆C :(x -1)2+y2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN|的最小值为 ( )A .4B .42-1C .22-2D .22.过圆x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=03.已知两圆相交于两点A(1,3),B(m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是 ( )A .-1B .2C .3D .04.(2016·山东文)已知圆M :x2+y2-2ay =0(a>0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y-1)2=1的位置关系是 ( )A .内切B .相交C .外切D .相离[二、填空题5.若点A(a ,b)在圆x2+y2=4上,则圆(x -a)2+y2=1与圆x2+(y -b)2=1的位置关系是____.6.与直线x +y -2=0和圆x2+y2-12x -12y +54=0都相切的半径最小的圆的方程是____.C 级 能力拔高1.已知圆M :x2+y2-2mx -2ny +m2-1=0与圆N :x2+y2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.2.(2016~2017·金华高一检测)已知圆O :x2+y2=1和定点A(2,1),由圆O 外一点P(a ,b)向圆O 引切线PQ ,切点为Q ,|PQ|=|PA|成立,如图.(1)求a ,b 间的关系;(2)求|PQ|的最小值.第四章 4.2 4.2.3A 级 基础巩固一、选择题1.一辆卡车宽1.6 m ,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过 ( )A .1.4 mB .3.5 mC .3.6 mD .2.0 m2.已知实数x 、y 满足x2+y2-2x +4y -20=0,则x2+y2的最小值是 ( )A .30-105B .5-5C .5D .253.方程y =-4-x2对应的曲线是 ( )4.y =|x|的图象和圆x2+y2=4所围成的较小的面积是 ( )A .π4B .3π4C .3π2D .π 5.方程1-x2=x +k 有惟一解,则实数k 的范围是 ( )A .k =- 2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k<16.点P 是直线2x +y +10=0上的动点,直线PA 、PB 分别与圆x2+y2=4相切于A 、B 两点,则四边形PAOB(O 为坐标原点)的面积的最小值等于 ( )A .24B .16C .8D .4二、填空题7.已知实数x 、y 满足x2+y2=1,则y +2x +1的取值范围为____ 8.已知M ={(x ,y)|y =9-x2,y ≠0},N ={(x ,y)|y =x +b},若M ∩N ≠∅,则实数b 的取值范围是__]__.三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)1.(2016·葫芦岛高一检测)已知圆C 的方程是x2+y2+4x -2y -4=0,则x2+y2的最大值为 ( )A .9B .14C .14-65D .14+652.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1:ax +3y +6=0,l2:2x +(a +1)y +6=0与圆C :x2+y2+2x =b2-1(b>0)的位置关系是“平行相交”,则实数b 的取值范围为 ( )A .(2,322)B .(0,322) C .(0,2)D .(2,322)∪(322,+∞) 3.已知圆的方程为x2+y2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( )A .106B .206C .306D .4064.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为 ( )A .4π5B .3π4C .(6-25)πD .5π4二、填空题5.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 ____.6.设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},若存在实数t,使得A∩B≠∅,则实数a的取值范围是___.C级能力拔高1.如图,已知一艘海监船O上配有雷达,其监测范围是半径为25 km的圆形区域,一艘外籍轮船从位于海监船正东40 km的A处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)。

圆的方程 习题含答案

圆的方程 习题含答案

圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程1.已知两直线x-2y=0和x+y-3=0的交点为M,则以点M 为圆心,半径长为1的圆的方程是 ( )A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x+2)2+(y+1)2=1D.(x-2)2+(y-1)2=12.圆心在直线2x+y=0上,并且经过点A(1,3)和B(4,2)的圆的半径为 ( )A.3B.4C.5D.63.点(5√a +1,√a )在圆(x-1)2+y 2=26的内部,则a 的取值范围是 ( )A.0<a<1B.0≤a<1C.a>1D.a=14.圆E 经过点A(0,1),B(2,0),且圆心在x 轴的正半轴上,则圆E 的标准方程 为 ( )A.(x -32)2+y 2=254 B.(x +34)2+y 2=2516 C.(x -34)2+y 2=2516 D.(x -34)2+y 2=254 5.若圆心在x 轴上,半径为√的圆C 位于y 轴左侧,且与直线x+2y=0相切,则圆C 的方程是____________.6.圆C:(x-1)2+(y+2)2=4,点P(x 0,y 0)在圆C 内部,且d=(x 0-1)2+(y 0+2)2,则d 的取值范围是____________.7.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x-3y-6=0,点T(-1,1)在AD 边所在的直线上.(1)求AD 边所在直线的方程.(2)求矩形ABCD 外接圆的方程.8.已知点A(-2,-2),B(-2,6),C(4,-2),点P 在圆x 2+y 2=4上运动,求PA 2+PB 2+PC 2的最值.参考答案1.D2.C3.B4.C5. (x+5)2+y2=56. 0≤d<47.【解析】(1)因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1),即3x+y+2=0.(2)由{x-3y-6=0,3x+y+2=0,解得点A的坐标为(0,-2).因为矩形ABCD两条对角线的交点为M(2,0),所以M为矩形ABCD外接圆的圆心.又AM=√(2-0)2+(0+2)2=2√2,从而矩形ABCD外接圆的方程为(x-2)2+y2=8.8.【解析】设P点坐标为(x,y),则x2+y2=4.PA2+PB2+PC2=(x+2)2+(y+2)2+(x+2)2+(y-6)2+(x-4)2+(y+2)2=3(x2+y2)-4y+68=80- 4y.因为-2≤y≤2,所以72≤PA2+PB2+PC2≤88.即PA2+PB2+PC2的最大值为88,最小值为72.。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。

在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。

本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。

练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。

解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。

代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。

2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。

解析:首先求得半径,半径的长度等于圆心到过点的距离。

利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。

然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。

练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。

将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。

因此,这个方程是圆的标准方程。

2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。

因此,这个方程不是圆的标准方程。

高中数学第四章圆与方程检测试题含解析新人教A版必修2

高中数学第四章圆与方程检测试题含解析新人教A版必修2

第四章圆与方程检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( C )(A)x+y+1=0 (B)x+y-1=0(C)x-y+1=0 (D)x-y-1=0解析:易知点C为(-1,0),因为直线x+y=0的斜率是-1,所以与直线x+y=0垂直直线的斜率为1,所以要求直线方程是y=x+1,即x-y+1=0.2.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为( A )(A)(1,2,0) (B)(0,0,3)(C)(1,0,3) (D)(0,2,3)解析:因为空间直角坐标系Oxyz中,点P(1,2,3)在xOy平面内射影是Q,所以点Q的坐标为(1,2,0).3.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是( A )(A)m< (B)m>(C)m<0 (D)m≤解析:由题意得1+1-4m>0,得m<.4.圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0的位置关系是( D )(A)相交 (B)相离 (C)内含 (D)内切解析:把圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0分别化为标准式为(x-2)2+(y-3)2=1和(x-4)2+(y-3)2=9,两圆心间的距离d==2=|r1-r2|,所以两圆的位置关系为内切,故选D.5.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为,则a的值为( C )(A)-2或2 (B)或(C)2或0 (D)-2或0解析:圆x2+y2-2x-4y=0的圆心是(1,2).点(1,2)到直线x-y+a=0的距离是=,所以|a-1|=1,所以a=2或a=0.选C.6.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( D )(A)-,4 (B),4(C)-,-4 (D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.7.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1 (D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.8.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是( A )(A) (B)1 (C) (D)解析:如图所示,当直线l上恰好只存在一个圆与圆C相切时,直线l的斜率最大,此时,点C(4,0)到直线l的距离是2.即=2.解得k=或k=0.所以k的最大值是.9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A )(A)x+y-2=0 (B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.10.过点P(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A,B两点,若|AB|=8,则直线l的方程为( C )(A)5x+12y+20=0(B)5x-12y+20=0(C)5x+12y+20=0或x+4=0(D)5x-12y+20=0或x+4=0解析:x2+y2+2x-4y-20=0可化为(x+1)2+(y-2)2=25,当直线l的斜率不存在时,符合题意;当直线l的斜率存在时,设l的方程为y=k(x+4),由题意得==3,得k=-.所以直线l的方程为y=-(x+4),即5x+12y+20=0,综上,符合条件的直线l的方程为5x+12y+20=0或x+4=0.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.圆x2+y2-4x+6y=0的圆心坐标是,半径是.解析:圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径为.答案:(2,-3)12.如图所示,在单位正方体ABCDA1B1C1D1中,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1C和A1C1的长度分别为, .解析:易得A1(1,0,1),C(0,1,0),C1(0,1,1),所以|A1C|==,|A1C1|==.答案:13.圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D= ,E= .解析:由题设知直线l1,l2的交点为已知圆的圆心.由得所以-=-3,D=6,-=1,E=-2.答案:6 -214.若直线mx+2ny-4=0(m,n∈R)始终平分圆x2+y2-4x-2y-4=0的周长,则m+n的值等于,mn的取值范围是.解析:圆心(2,1),则m×2+2n×1-4=0,即m+n=2,m=2-n,于是mn=(2-n)n=-n2+2n=-(n-1)2+1≤1,故mn的取值范围是(-∞,1].答案:2 (-∞,1]15.若直线y=x+b与曲线x=恰有一个公共点,则实数b的取值范围是.解析:将曲线x=变为x2+y2=1(x≥0).如图所示,当直线y=x+b与曲线x2+y2=1相切时,则满足=1,|b|=,b=±.观察图象,可得当b=-,或-1<b≤1时,直线与曲线x=有且只有一个公共点.答案:(-1,1]∪{-}16.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是.解析:A∩B=B等价于B⊆A.当a>1时,集合A和B中的点的集合分别代表圆x2+y2=16和圆x2+(y-2)2=a-1的内部,如图,容易看出当B对应的圆的半径小于2时符合题意.由0<a-1≤4,得1<a≤5;当a=1时,满足题意;当a<1时,集合B为空集,也满足B⊆A,所以当a≤5时符合题意.答案:(-∞,5]17.已知直线l1:x+y-=0,l2:x+y-4=0,☉C的圆心到l1,l2的距离依次为d1,d2且d2=2d1,☉C与直线l2相切,则直线l1被☉C所截得的弦长为.解析:当圆心C在直线l1:x+y-=0与l2:x+y-4=0之间时,d1+d2=3且d2=2d1,☉C与直线l2相切,此时r=d2=2,d1=1,则直线l1被☉C所截得的弦长为2=2=2;同理,当圆心C不在直线l1:x+y-=0与l2:x+y-4=0之间时,则d2-d1=3且d2=2d1,☉C与直线l2相切,此时r=d2=6,d1=3,则直线l1被☉C所截得的弦长为2=2=6.故直线l1被☉C所截得的弦长为2或6.答案:2或6三、解答题(本大题共5小题,共74分)18.(本小题满分14分)一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.(1)求直线 l 的方程;(2)若直线 l 与圆 C:(x-a)2+y2=8 (a>0)相切,求 a.解:(1)由解得P(1,1),又直线l与直线l3:x-y+1=0垂直,故l的斜率为-1,所以l:y-1=-(x-1),即直线l的方程为x+y-2=0.(2)由题设知C(a,0),半径r=2,因为直线l与圆C:(x-a)2+y2=8(a>0)相切,所以C到直线l的距离为2,所以=2,又a>0,得a=6.19.(本小题满分15分)已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2),所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①又直径|CD|=4,所以|PA|=2,所以(a+1)2+b2=40,②由①②解得或所以圆心P(-3,6)或P(5,-2),所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.20.(本小题满分15分)已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.(1)当a=时,直线l与圆C相交于A,B两点,求弦AB的长;(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C′的方程.解:(1)因为圆C:(x+2)2+(y-2a)2=()2,又a=,所以圆心C为(-2,3),直线l:3x+2y+6=0,圆心C到直线l的距离d==,所以|AB|=2=.(2)将y=-ax-2a代入圆C的方程化简得(1+a2)x2+4(1+2a2)x+16a2+1=0,(*)所以Δ=[4(1+2a2)]2-4(1+a2)(16a2+1)=4(3-a2)=0,因为a>0,所以a=,所以方程(*)的解为x=-,所以切点坐标为(-,),根据圆关于切线对称的性质可知切点为CC′的中点,故圆心C′的坐标为(-5,),所以圆C′的方程为(x+5)2+(y-)2=3.21.(本小题满分15分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.解:(1)由方程x2+y2+2x-4y+3=0知,圆心为(-1,2),半径为.当切线过原点时,设切线方程为y=kx,则=.所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=.所以a=-1或a=3,即切线方程为x+y+1=0或x+y-3=0.所以切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)设P(x1,y1).因为|PM|2+r2=|PC|2,即|PO|2+r2=|PC|2,所以++2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(-,).22.(本小题满分15分)圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求AB的长;(2)当弦AB被点P平分时,写出直线AB的方程;(3)若圆C上的动点M与两个定点O(0,0),R(a,0)(a≠0)的距离之比恒为定值λ(λ≠1),求实数a的值.解:(1)由题意知,圆心C(-1,0),半径r=2,直线AB的方程为x+y+1=0,直线AB过圆心C,所以弦长AB=2r=4.(2)当弦AB被点P平分时,AB⊥PC,k AB·k PC=-1,又k PC=-1, 所以k AB=1,直线AB的方程为x-y+3=0.(3)设M(x0,y0),则满足++2x0-3=0, ①由题意得,=λ,即=λ.整理得+=λ2[-2ax0+a2+], ②由①②得,3-2x0=λ2[3-2x0-2ax0+a2]恒成立,所以又a≠0,λ>0,λ≠1,解之得a=3.。

(完整版)圆的一般方程练习题

(完整版)圆的一般方程练习题

(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。

高二数学直线和圆的方程综合测试题

高二数学直线和圆的方程综合测试题

高二数学直线和圆的方程综合测试题一、选择题1. 直线的斜率为-2,过点(3,4),则直线的方程为()。

A. y = -2x + 10B. y = -2x - 2C. y = 2x + 10D. y = 2x - 2答案:B2. 已知直线的斜率为1/3,过点(-1,2),则直线的方程为()。

A. y = 1/3x + 5/3B. y = -1/3x + 5/3C. y = 1/3x - 5/3D. y = -1/3x - 5/3答案:C3. 已知点(2,3)和(-1,4)在直线上,则直线的方程为()。

A. y = -x + 5B. y = -x + 1C. y = x + 5D. y = x + 1答案:A4. 直线y = 2x - 1与直线y = kx + 4平行,则k的值为()。

A. 2B. -2C. 1D. -1答案:A5. 直线y = -3x + 2与直线y = kx + 1垂直,则k的值为()。

A. 1/3B. -1/3C. 3D. -3答案:B二、填空题1. 过点(1,2)且与直线y = 3x + 1垂直的直线方程为__________。

答案:y = -1/3x + 7/32. 过点(2,-1)且与直线y = -2x + 5平行的直线方程为__________。

答案:y = -2x + 33. 过点(4,3)和(-2,1)的中点坐标为__________。

答案:(1, 2)4. 过点(-1,2)且与直线y = -3x + 4垂直的直线方程为__________。

答案:y = 1/3x + 7/35. 过点(3,-2)且与直线y = 2x - 1平行的直线方程为__________。

答案:y = 2x - 8三、解答题1. 已知直线L1过点(1,2)且与直线y = 2x + 3垂直,直线L2过点(-1,4)且与直线L1平行,求直线L2的方程。

解析:首先求出直线L1的斜率,由于直线L1与y = 2x + 3垂直,所以斜率为-1/2。

圆的标准方程试题(含答案)

圆的标准方程试题(含答案)

(一)选择题1、若直线(m 2-1)x-y+1-2m=0不过第一象限,则实数m 取值范围是A 、-1<m ≤21B 、21-≤m ≤1C 、21<m<1D 、21≤m ≤1 2、已知直线2x+y-2=0和mx-y+1=0的夹角为4π,则m 值为 A 、31-或-3 B 、-3或31 C 、-3或3 D 、31或3 3、点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值是A 、2B 、6C 、22D 、104、过点A (1,4),且横纵截距的绝对值相等的直线共有A 、1条B 、2条C 、3条D 、4条5、圆x 2+y 2-4x+2y+C=0与y 轴交于A 、B 两点,圆心为P ,若∠APB=900,则C 的值是A 、-3B 、3C 、22D 、86、若圆(x-3)2+(y+5)2=r 2上有且只有两个点到直线4x-3y-2=0距离等于1,则半径r 取值范围是A 、(4,6)B 、[4,6)C 、(4,6]D 、[4,6]7、将直线x+y-1=0绕点(1,0)顺时针旋转2π后,再向上平移一个单位,此时恰与圆x 2+(y-1)2=R 2相切,则正数R 等于A 、21B 、22C 、1D 、28、方程x 2+y 2+2ax-2ay=0所表示的圆A 、关于x 轴对称B 、关于y 轴对称C 、关于直线x-y=0对称D 、关于直线x+y=0对称(二)填空题9、直线ax+by+c=0与直线dx+ey+c=0的交点为(3,-2),则过点(a ,b ),(d ,e )的直线方程是___________________。

10、已知{(x ,y)|(m+3)x+y=3m-4}∩{(x ,y)|7x+(5-m)y-8=0}=φ,则直线(m+3)x+y=3m+4与坐标轴围成的三角形面积是__________________。

11、已知x ,y满足⎪⎩⎪⎨⎧≥+-≤-+≥++010y 5x 206y 3x 5015y 8x 3,则x-y 的最大值为________,最小值为________。

圆的标准方程-练习题

圆的标准方程-练习题

一、选择题1. 圆心是(4, -1),且过点(5.2)的圆的标准方程是( )Λ. α-4)2+(y+l)2=10 B. (A ^+4)2+(y-l)2=10 C. (χ-4)2+(y÷l)2=100D. (%-4)2÷ (y+1)2=√W2. 已知圆的方程是(χ-2)2+(y-3)2=4,则点P(3,2)满足() A.是圆心B.在圆上C.在圆内3. 圆(A -+1)2+(7-2)2=4的圆心坐标和半径分别为() Λ. (-1,2), 2B. (1, -2), 2C. (-1,2), 44. (2016 •锦州高一检测)若圆C 与圆(x+2)2÷(y-l)2= 1关于原点对称,则圆C 的方程是()Λ. α-2)2+(y+l)2=l B. (χ-2)2+(y-l)2=l C. U-l)2+(y+2)2=lD. (A ÷1)2÷(7+2)2=15. (2016 •全国卷II)圆√+∕-2χ-8y+13=0的圆心到直线ax+y-1 =0的距离为1,则日=()6. 若Pa 一1)为圆(χ-l)2+y=25的弦/矽的中点,则直线/矽的方程是(Λ )二、 填空题7. 以点(2, — 1)为圆心且与直线x+y=6相切的圆的方程是8. 圆心既在直线x —y=0上,又在直线x+y —4=0上,且经过原点的圆的方程是三、 解答题9. 圆过点 Atl 9 一2)、B(-l,4).求 (1) 周长最小的圆的方程;⑵圆心在直线2x —y —4 = 0上的圆的方程.10. 已知圆川的标准方程为(%-5)2+(y-6)2=a 2(a>0).Λ.B.C. √3D. 2 D.在圆外D. (h -2), 4A. X —y —3=0B ・ 2x+ y — 3 = 0C ・ x+ y — 1 =0D. 2%—y —5=0(1)若点M6.9)在圆上,求。

的值;(2)已知点A3,3)和点0(5.3),线段図(不含端点)与圆再有且只有一个公共点,求臼的取值范围.B级素养提升一、选择题1. (2016〜2017-宁波高一检测)点与圆√+∕=j的位置关系是Λ.在圆上 B.在圆内 C.在圆外 D.不能确定2.若点(2o, a-l)在圆√÷(y+l)2=5的内部,则&的取值范围是( )Λ. (一8, 1] B. (一1・1) C. (2.5) D・(1, +∞)3.若点P(l, 1)为圆α-3)2+72=9的弦的中点,则弦聽V所在直线方程为( )Λ. 2x+y—3=0 B・X—2y+l=0 C. x+2y—3=0 D・(IX—y—1=04.点"在圆(Λ--5)2+(7-3)2=9上,则点J/到直线3x+4y-2=0的最短距离为( )Λ. 9B・8 C・5 D・2二、填空题5.已知圆C经过力(5∙1). 0(1∙3)两点,圆心在才轴上,则C的方程为6.以玄线2x+y-4 = 0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为C级能力拔高1・如图,矩形力仇0的两条对角线相交于点M2,0), /矽边所在直线的方程为χ-3y-6=0, 边所在的直线上•求力〃边所在直线的方程・2.求圆心在直线4x+y=0上,且与直线才+y—l =0切于点Λ3, 一2)的圆的方程,并找出圆的圆心及半径.一、选择题1・圆z÷√-4x+6y= O的圆心坐标是( )Λ. (2.3) B. (-2,3) C. (一2, -3) D. (2, -3)2・(2016〜2017 •曲靖高一检测)方程√+∕÷2^r-Λy÷c= 0表示圆心为67(2,2),半径为2的圆,则血b、C 的值依次为( )Λ. —2,4.4 B. —2, —4,4 C. 2, —4,4 D. 2, —4, —43.(2016〜2017 •长沙高一检测)已知圆C过点J∕(l,l), A r(5,1),且圆心在直线y=x~2上,则圆C的方程为 ( )A・ X ÷y-6A r-2y÷6 = 0 B. x ÷y÷6%-2y÷6=0[C・ x'÷y ÷6x÷2y÷6=0 D・ A r÷y —2χ-6y÷6=04.设圆的方程是Y÷y2+2ax÷2y+(a-l)2=0,若O<X1,则原点与圆的位置关系是( )Λ.在圆上 B.在圆外 C.在圆内 D.不确定5・若圆√+∕-2χ-4y= 0的圆心到直线AT-y÷5= 0的距离为专,则日的值为( )1 3A. —2 或2B. §或O C・ 2 或0 D. —2 或06.圆Z÷∕-2y-l =O关于直线y=x对称的圆的方程是( )Λ. (X—1)^+y =2 B. (x+l)'+y i=2C. (A-I)2+y =4D. (^+l)2+y=4二、填空题7.圆心是(-3,4),经过点.f∕(5,l)的圆的一般方程为______________________ .8.设圆√+y-4,r+2y-ll= 0的圆心为儿点P在圆上,则刊的中点〃的轨迹方程是一三、解答题9.判断方程X + y -4^+ 2my+ 20/»-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点J(-l,0). g(3∙0)和C(0.1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax÷36y= 0的圆心位于第三象限,那么直线x+ay+b =0—定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2•在圆√+y2-2-γ-6y =0内,过点F(OJ)的最长弦和最短弦分别为和加,则四边形/处9的面只为( )Λ. 5√2 B. 10√5 C. 15√2D・20√23.若点(2o, a— 1)在圆x2÷y2—(Iy-5a'=0的内部,则日的取值范围是( )4 4 4 Q QΛ. ( — 8, -] B. (―-, ξ) C. (―[, +∞) D. (丁,+∞)4.若直线7:乩γ+by+l=O始终平分圆J/: z+y+4x÷2y÷l=0的周长,则(a-2)2+(Z,-2)2的最小值为)二、填空题5.已知圆C: √+∕+2,γ+ay-3 = 0U为实数)上任意一点关于直线/:χ-y+2=0的对称点都在圆C上,则。

圆的方程习题附答案

圆的方程习题附答案

1.方程y =1-x 2表示的曲线是( ) A .上半圆 B.下半圆 C .圆D .抛物线解析:选A .由方程可得x 2+y 2=1(y ≥0),即此曲线为圆x 2+y 2=1的上半圆. 2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B.(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A .因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=22.所以所求圆的方程为:(x -1)2+y 2=8.故选A .3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B.(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B .圆C 1的圆心坐标为(-1,1),半径为1,设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1.4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B.(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D .由题意知x -y =0和x -y -4=0之间的距离为|4|2=22,所以r =2. 又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由y =-x 和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.在平面直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足|P A |2-|PB |2=4且在圆x 2+y 2=4上的点P 的个数为( )A .0 B.1 C .2D .3解析:选C .设P (x ,y ),则由|P A |2-|PB |2=4,得(x +1)2+y 2-x 2-(y -1)2=4,所以x +y -2=0.求满足条件的点P 的个数即为求直线与圆的交点个数,圆心到直线的距离为|0+0-2|2=2<2=r ,所以直线与圆相交,交点个数为2.故满足条件的点P 有2个,选C . 6.已知动点M (x ,y )到点O (0,0)与点A (6,0)的距离之比为2,则动点M 的轨迹所围成的区域的面积是________.解析:依题意可知|MO ||MA |=2,即x 2+y 2(x -6)2+y 2=2,化简整理得(x -8)2+y 2=16,即动点M 的轨迹是以(8,0)为圆心,半径为4的圆. 所以其面积为S =πR 2=16π. 答案:16π7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ 为直角三角形,所以圆心为斜边PQ 的中点(2,1), 半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=59.已知以点P 为圆心的圆经过A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410,所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:将圆C 化为标准方程可得(x -2)2+(y -7)2=8, 所以圆心C (2,7),半径r =22.(1)设m +2n =b ,则b 可看作是直线n =-12m +b2在y 轴上截距的2倍,故当直线m +2n=b 与圆C 相切时,b 有最大或最小值.所以|2+2×7-b |12+22=22,所以b =16+210(b =16-210舍去),所以m +2n 的最大值为16+210. (2)设n -3m +2=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率, 所以当直线n -3=k (m +2)与圆C 相切时,k 有最大、最小值,所以|2k -7+2k +3|1+k 2=22,解得k =2+3或k =2-3.所以n -3m +2的最大值为2+3,最小值为2-3.1.直线l :ax +by =0和圆C :x 2+y 2+ax +by =0在同一坐标系的图形只能是( )解析:选D .圆C 的圆心坐标为⎝⎛⎭⎫-a 2,-b2,半径为a 2+b 22,圆心到直线的距离为d =⎪⎪⎪⎪a 22+b 22a 2+b2=a 2+b 22, 所以直线与圆相切,故选D .2.已知P (x ,y )是圆x 2+(y -3)2=a 2(a >0)上的动点,定点A (2,0),B (-2,0),△P AB 的面积的最大值为8,则a 的值为( )A .1 B.2 C .3D .4解析:选A .要使△P AB 的面积最大,只要点P 到直线AB 的距离最大.由于AB 的方程为y =0,圆心(0,3)到直线AB 的距离为d =3, 故P 到直线AB 的距离的最大值为3+a .再根据AB =4,可得△P AB 面积的最大值为12·AB ·(3+a )=2(3+a )=8,所以a =1,故选A .3.设曲线x =2y -y 2上的点到直线x -y -2=0的距离的最大值为a ,最小值为b ,则a -b 的值为( )A .22 B. 2 C .22+1 D .2解析:选C .由x =2y -y 2得y 2-2y +x 2=0(x ≥0),即x 2+(y -1)2=1(x ≥0),表示以(0,1)为圆心,1为半径的右半圆,如图.圆心(0,1)到直线x -y -2=0的距离为32=322.结合图形可知曲线x =2y -y 2上的点到直线x -y -2=0的距离的最小值为322-1,最大值为点P (0,2)到直线x -y -2=0的距离42=22,因此a =22,b =322-1.因此a -b =22+1.故选C .4.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ). 若p 是q 的充分不必要条件,则k 的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件.实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝⎛⎭⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6. 答案:(0,6]5.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.解:法一:(代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎪⎨⎪⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.法二:(几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9. 6.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.。

高二圆的方程练习题

高二圆的方程练习题

高二圆的方程练习题在高二数学中,圆是一个重要的几何形状。

了解圆的方程和性质是解决与圆相关问题的基础。

下面是一些高二圆的方程练习题,帮助你巩固和应用这方面的知识。

1. 已知圆C的半径为r,圆心坐标为(h, k)。

写出圆C的标准方程和一般方程。

解答:圆C的标准方程为:(x - h)² + (y - k)² = r²圆C的一般方程为:x² + y² - 2hx -2ky + h² + k² - r² = 02. 试写出过坐标原点的圆,半径为r的标准方程和一般方程。

解答:过坐标原点的圆的圆心坐标为(0, 0)。

标准方程为:x² + y² = r²一般方程为:x² + y² - r² = 03. 已知圆C过点A(2, 3)和B(4, 1),且圆心在y轴上。

写出圆C的方程。

解答:设圆C的圆心坐标为(0, k)。

由于圆心在y轴上,所以圆C的方程为x² + (y - k)² = r²。

将点A(2, 3)代入方程得:2² + (3 - k)² = r²。

将点B(4, 1)代入方程得:4² + (1 - k)² = r²。

由此可求得圆C的方程。

4. 已知圆C的直径的两个端点分别为A(3, 5)和B(-1, -2),写出圆C的方程。

解答:直径的中点坐标为[(3 + (-1))/2, (5 + (-2))/2] = (1, 1)。

由于直径的中点即为圆心,所以圆C的圆心坐标为(1, 1)。

圆C的半径为AB的一半,即√[(3 - (-1))² + (5 - (-2))²] / 2。

将圆心坐标和半径代入圆的标准方程可求得圆C的方程。

5. 已知圆C的方程为2x² + 2y² + 4x - 6y + 9 = 0,写出圆C的圆心坐标和半径。

圆的方程测试题及答案.doc

圆的方程测试题及答案.doc

圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。

高中数学 阶段质量检测(四)圆与方程 新人教A版必修2

高中数学 阶段质量检测(四)圆与方程 新人教A版必修2

阶段质量检测(四) 圆与方程(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2C .2D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y -a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ­ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2. 则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点, 所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3kk 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题在解决圆的问题时,我们经常使用到的一个重要工具就是圆的标准方程。

通过掌握圆的标准方程的用法,我们可以更方便地进行圆的解析几何运算。

接下来,我将为大家提供一些圆的标准方程练习题,帮助大家加深对这一概念的理解。

练习题一:给定圆心和半径,求标准方程1. 已知圆心为 (2, 3),半径为 5,求圆的标准方程。

解析:设圆的标准方程为 (x-a)² + (y-b)² = r²,其中 (a, b) 为圆心坐标,r 为半径。

将已知数据代入方程,得到:(x-2)² + (y-3)² = 5²,即 (x-2)² + (y-3)² = 25。

练习题二:给定标准方程,求圆心和半径1. 已知圆的标准方程为 x² + y² - 6x + 8y + 9 = 0,求圆的圆心和半径。

解析:观察标准方程可得出:(x-3)² + (y+4)² = 16。

由此可知圆的圆心为 (3, -4),半径为 4。

练习题三:给定圆上一点,求标准方程1. 已知圆上一点为 (5, 2),圆心为 (3, 4),求圆的标准方程。

解析:设圆的标准方程为(x-a)²+ (y-b)²= r²。

将已知数据代入方程,可得到:(x-3)² + (y-4)² = r²。

由于圆上一点为 (5, 2),代入方程得到 (5-3)² + (2-4)² = r²,化简得 4 + 4 = r²,即 8 = r²。

所以圆的标准方程为 (x-3)² + (y-4)² = 8。

通过以上几道练习题,我们对圆的标准方程的应用有了更深入的了解。

掌握了圆的标准方程的求解方法,我们在解决与圆相关的数学问题时,就能更加得心应手。

不过,还需要注意的是,在使用圆的标准方程时,我们需要确保给定的数据准确无误。

第四章 圆与方程 章末检测(人教A版必修2)

第四章 圆与方程 章末检测(人教A版必修2)

第四章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.圆x 2+y 2+2x -4y =0的圆心坐标和半径分别是( )A .(1,-2),5B .(1,-2), 5C .(-1,2),5D .(-1,2), 52.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =03.直线l :x -y =1与圆C :x 2+y 2-4x =0的位置关系是( )A .相离B .相切C .相交D .无法确定4.点M(-3,-2,4)关于坐标平面xOz 对称点的坐标是( )A .(3,-2,4)B .(-3,2,4)C .(-3,-2,-4)D .(3,2,-4)5.设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( )A .±1B .±12C .±33D .±36.点P 在圆x 2+y 2=1上变动时,它与定点Q(3,0)的连线段PQ 的中点M 的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(2x +3)2+4y 2=17.已知A(1,1,1),B(3,3,3),点P 在x 轴上且|PA|=|PB|,则P 点的坐标为( )A .(6,0,0)B .(6,0,1)C .(0,0,6)D .(0,6,0)8.圆x 2+y 2=1与圆(x -1)2+y 2=1的公共弦所在直线方程为( )A .x =1B .x =12C .y =xD .x =329.设r>0,两圆(x -1)2+(y +3)2=r 2与x 2+y 2=16不可能( )A .相切B .相交C .内切或相交或内含D .外切或相离10.过点(2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦长最大的直线方程是( )A .3x -y -5=0B .3x +y -7=0C .x +3y -5=0D .x -3y +5=011.已知圆C:(x-a)2+(y-2)2=4 (a>0)及直线l:x-y+3=0,当直线l被圆C截得的弦长为23时,a等于()A. 2 B.2- 2C.2-1D.2+112.若方程16-x2-x-m=0有实数解,则实数m的取值范围是()A.-42≤m≤4 2 B.-4≤m≤4 2C.-4≤m≤4 D.4≤m≤4 2二、填空题(本大题共4小题,每小题5分,共20分)13.直线l与圆x2+y2+2x-4y+a=0 (a<3)相交于两点A、B,弦AB的中点为(0,1),则直线l的方程为______.14.已知圆C:(x+5)2+y2=r2 (r>0)和直线l:3x+y+5=0,若圆C与直线l没有公共点,则r的取值范围是______________.15.与圆x2+(y+5)2=3相切,且纵横截距相等的直线共有________条.16.设实数x,y满足x2+y2-2y=0,则x2+y2的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)求经过两点A(-1,4),B(3,2)且圆心在y轴上的圆的方程.18.(12分)求直线2x-y-1=0被圆x2+y2-2y-1=0所截得的弦长.19.(12分)圆与两平行线x+3y-5=0,x+3y-3=0相切,圆心在直线2x+y+1=0上,求这个圆的方程.20.(12分)等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么?21.(12分)试求与圆C1:(x-1)2+y2=1外切,且与直线x+3y=0相切于点Q(3,-3)的圆的方程.22.(12分)已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点M(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.第四章 章末检测1.D [化为标准方程为(x +1)2+(y -2)2=5,则圆心坐标为(-1,2),半径为 5.]2.C [直线方程变为(x +1)a -x -y +1=0,由⎩⎪⎨⎪⎧ x +1=0-x -y +1=0得⎩⎪⎨⎪⎧x =-1y =2 ∴C(-1,2).∴所求圆的方程为(x +1)2+(y -2)2=5.即x 2+y 2+2x -4y =0.]3.C [圆心C(2,0),半径为2,C 到直线l 的距离d =|2-1|2=22<2,所以相交.] 4.B5.C [设y =k(x +2),则由d =r 得|2k|k 2+1=1, 解得k =±33.] 6.C [设M(x ,y)、P(x 0,y 0),则x 0=2x -3,y 0=2y ,代入x 20+y 20=1得,(2x -3)2+4y 2=1.]7.A [设P(x,0,0),由(x -1)2+12+12=(x -3)2+32+32,得x =6.]8.B [两圆的方程相减得2x -1=0,即x =12, ∴公共弦所在直线方程为x =12.] 9.D [两圆圆心距为10,所以10<r +4,选D.]10.A [过(2,1)及圆心的直线即为所求.]11.C [圆心C(a,2)到直线l 的距离d =|a -2+3|2=|a +1|2, 依题意有⎝⎛⎭⎪⎫|a +1|22+(3)2=22,解得a =2-1.] 12.B[(如图)y 1=16-x 2,y 2=x +m ,当y 2=x +m 运动到l 2时,m 取最小值-4,当运动到l 1时m 取最大值,由d =r 得|m|2=4,m =42(-42舍).] 13.x -y +1=0解析 设圆心为C ,则中点Q(0,1)与C 的连线斜率为-1,∴k l =1,∴y =x +1. 14.0<r<10解析 由圆心(-5,0)到l 的距离d>r 解得.15.4解析 ①当截距为0时,设直线方程为y =kx ,由d =r 得,5k 2+1=3,解得k =± 223. ②当截距不为0时,设方程为x +y =a , 由|-5-a|2=3得,a =-5±6. ∴共4条.16.4解析 设P(x ,y),方程x 2+y 2-2y =0表示圆心为C(0,1),半径为1的圆,x 2+y 2=((x -0)2+(y -0)2)2=|OP|2,画图可得|OP|≤|OC|+1=1+1=2,所以x 2+y 2的最大值是4.17.解 AB 的中点是(1,3),k AB =4-2-1-3=-12, ∴AB 的垂直平分线方程为y -3=2(x -1),即2x -y +1=0.令x =0,得y =1,即圆心C(0,1).∴半径r =|AC|=(-1-0)2+(4-1)2=10.∴圆的方程为x 2+(y -1)2=10.18.解 圆的方程可化为x 2+(y -1)2=2,圆心C(0,1),半径r =2,设直线与圆交于A 、B ,由圆的性质,半弦长、弦心距与半径构成直角三角形.∵圆心C 到直线的距离d =|-1-1|22+12=25, d 2+⎝⎛⎭⎫|AB|22=r 2,即45+|AB|24=2, ∴|AB|=2530,即所求弦长为2530. 19.解 两平行线间的距离d =|-3+5|1+32=210为所求的圆的直径,∴圆的半径为110. 又由⎩⎪⎨⎪⎧ x +3y -5=02x +y +1=0和⎩⎪⎨⎪⎧x +3y -3=0,2x +y +1=0,得两交点A ⎝⎛⎭⎫-85,115,B ⎝⎛⎭⎫-65,75, 则AB 的中点⎝⎛⎭⎫-75,95即为所求圆的圆心, 因此,所求圆的方程为⎝⎛⎭⎫x +752+⎝⎛⎭⎫y -952=110. 20.解设另一端点C 的坐标为(x ,y).依题意,得|AC|=|AB|.由两点间距离公式,得 (x -4)2+(y -2)2=(4-3)2+(2-5)2, 整理得(x -4)2+(y -2)2=10.这是以点A(4,2)为圆心,以10为半径的圆,如图所示,又因为A 、B 、C 为三角形的三个顶点,所以A 、B 、C 三点不共线.即点B 、C 不能重合且B 、C 不能为圆A 的一直径的两个端点.因为点B 、C 不能重合,所以点C 不能为(3,5).又因为点B 、C 不能为一直径的两个端点,所以x +32≠4,且y +52≠2,即点C 不能为(5,-1). 故端点C 的轨迹方程是(x -4)2+(y -2)2=10(除去点(3,5)和(5,-1)),它的轨迹是以点A(4,2)为圆心,10为半径的圆,但除去(3,5)和(5,-1)两点.21.解 如图所示,设所求圆的圆心坐标C(a ,b),半径r ,由于所求圆C 与直线x +3y =0相切于点Q(3,-3),则CQ 垂直于直线x +3y =0,∴k CQ =b +3a -3=3,即有b =3a -43, 圆C 的半径r =|CQ|=(a -3)2+(b +3)2 =(a -3)2+(3a -43+3)2=2|a -3|,由于圆C 与已知圆C 1:(x -1)2+y 2=1外切,则有|CC 1|=(a -1)2+b 2=1+r =1+2|a -3|, 即有(a -1)2+3(a -4)2=1+2|a -3|,对该式讨论:①当a ≥3时,可得a =4,b =0,r =2,∴圆的方程为(x -4)2+y 2=4.②当a<3时,可得a =0,b =-43,r =6, ∴圆的方程为x 2+(y +43)2=36,以上两方程即为所求圆的方程.22.解 (1)由题意 ,得|M 1M||M 2M|=5. (x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0.即(x -1)2+(y -1)2=25.∴点M 的轨迹方程是(x -1)2+(y -1)2=25, 轨迹是以(1,1)为圆心,以5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段的长为252-32=8, ∴l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k(x +2),即kx -y +2k +3=0,圆心到l 的距离d =|3k +2|k 2+1, 由题意,得⎝ ⎛⎭⎪⎫|3k +2|k 2+12+42=52. 解得k =512. ∴直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2,或5x -12y +46=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的方程检测题
一、选择题(本大题共12个小题,每小题5分,共60分)
1、已知两圆的方程是x²+y²=1和x²+y²-6x-8y+9=0,那么这两个圆
的位置关系是( )
A.相离 B.相交 C.外切 D.内切
2.过点(2,1)的直线中,被圆x²+y²-2x+4y=0截得的最长弦所在的直线方程为( )
A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3、若直线(1+a)x+y+1=0与圆x²+y²-2x=0相切,则a的值为( )
A.1,-1 B.2,-2 C.1 D.-1
4、经过圆x²+y²=10上一点M(2,6)的切线方程是( )
A.x+6y-10=0 B.6x-2y+10=0
C.x-6y+10=0 D.2x+6y-10=0
5、垂直于直线y=x+1且与圆x²+y²=1相切于第一象限的直线方程是( )
A.x+y-2=0 B.x+y+1=0 C.x+y-1=0 D.x+y+2=0
6、关于空间直角坐标系O-xyz中的一点P(1,2,3)有下列说法:
①点P到坐标原点的距离为13;②OP的中点坐标为12,1,32;
③与点P关于x轴对称的点的坐标为(-1,-2,-3);
④与点P关于坐标原点对称的点的坐标为(1,2,-3);
⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).
其中正确的个数是( )
A.2 B.3 C.4 D.5
7、已知点M(a,b)在圆O:x²+y²=1处,则直线ax+by=1与圆O的位置关系是( )
A.相切 B.相交 C.相离 D.不确定
8、与圆O1:x²+y²+4x-4y+7=0和圆O2:x²+y²-4x-10y+13=0都
相切的直线条数是( )
A.4 B.3 C.2 D.1
9、直线L将圆x²+y²-2x-4y=0平分,且与直线x+2y=0垂直,则直线L
的方程是( )
A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0 10、圆x²+y²-(4m+2)x-2my+4m²+4m+1=0的圆心在直线x+y-4=0
上,那么圆的面积为( )
A.9π B.π C.2π D.由m的值而定
11、当点P在圆x²+y²=1上变动时,它与定点Q(3,0)的连结线段PQ的中点
的轨迹方程是( )
A.(x+3)²+y²=4 B.(x-3)²+y²=1
C.(2x-3)²+4y²=1 D.(2x+3)²+4y²=1
12、曲线(y-1) ²=4-x ²(y ≥1)与直线y =k(x -2)+4有两个交点,则实数k
的取值范围是( )
A .(0,512)
B .(512,+∞)
C .(13,34]
D .(512,34]
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13、圆x ²+y ²=1上的点到直线3x +4y -25=0的距离最小值为____________. 14、已知实数y x ,满足122=+y x ,求12++x y 的取值范围是________. 15、方程x ²+y ²+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直
线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.
16、直线x -2y -3=0与圆(x -2) ²+(y +3) ²=9相交于A ,B 两点,则△AOB(O
为坐标原点)的面积为________.
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明
过程或演算步骤)
17、(10分)自A(4,0)引圆x ²+y ²=4的割线ABC ,求弦BC 中点P 的轨迹方程.
18、(12分)已知圆M :x ²+y ²-2mx +4y +m ²-1=0与圆N :
x ²+y ²+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.
19、(12分)点M 在圆心为C1的方程x ²+y ²+6x -2y +1=0上,点N 在圆心
为C2的方程x ²+y ²+2x +4y +1=0上,求|MN|的最大值.
20、(12分)已知圆C :x ²+y ²+2x -4y +3=0,从圆C 外一点P 向圆引一条切
线,切点为M ,O 为坐标原点,且有|PM|=|PO|,求|PM|的最小值.
21、(12分)已知圆C :x ²+y ²-4x -14y +45=0及点Q(-2,3),
(1)若点P(m ,m +1)在圆C 上,求PQ 的斜率;
(2)若点M 是圆C 上任意一点,求|MQ|的最大值、最小值;
(3)若N(a ,b)满足关系:a ²+b ²-4a -14b +45=0,求出t =b -3a +2的最大值.
22、(12分)已知曲线C :x ²+y ²+2kx +(4k +10)y +10k +20=0,
其中k ≠-1.
(1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上;
(2)证明曲线C 过定点;
(3)若曲线C 与x 轴相切,求k 的值.。

相关文档
最新文档