电磁场与电磁波第一章复习

合集下载

电磁场与电磁波公式总结

电磁场与电磁波公式总结

电磁场与电磁波复习第一部分 知识点归纳 第一章 矢量分析1、三种常用的坐标系 (1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++= 面积元:⎪⎩⎪⎨⎧===dxdy dS dxdz dS dydzdS zyx ,体积元:dxdydz d =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dz rdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r z z r y r x arctan,sin cos 22ϕϕϕ (2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ (3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x ∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r ∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:zA A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1 (3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(122 5、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。

电磁场与电磁波期末复习知识点归纳

电磁场与电磁波期末复习知识点归纳

自由空间

0

1
36 109
F
/m
0 4 107 H / m
得自由空间中电磁波的速度
v c 3108m / s
★ 理想介质中的均匀平面波的传播特点为:
● 电场和磁场在空间相互垂直且都垂直于传播方向。E、H、en
(波的传播方向)呈右手螺旋关系,是横电磁波(TEM波);
电力线起始于正电荷,终止于负电荷。
2、 B磁场0 没有散度源。磁场是无散场。磁力线是无头无
尾的闭合。磁通连续性原理表明时变场中无磁荷存在。 3、 E 变化B的磁场是涡旋电场的旋涡源。与电荷产生的
t
无旋电场不同,涡旋电场是有旋场,其电力线是无头无尾的闭 合曲线,并与磁力线相交链。
第一章 矢量分析
标量场:梯度描述
静态场(稳态场):不随t变

场 矢量场:散度和旋度描述 时变场:随t变化
单位矢量:模为1的矢量
与矢量 A同方向的单位矢量:
eA



A A
A eAA
坐标单位矢量:与坐标轴正向同方向的单位矢量
如:ex
ey
ez或者xˆ


A Axex Ayey Azez
x
E
H
z
y
均匀平面波
无界理想介质中的均匀平面波
周期: T 2
频率: f 1 T 2
2 →波长
k
k 2 →波数(2内包含的波长数)
相速 v 1 k
k
注意,电磁波的相速有时可以超过光速。因此,相速不一定代表 能量传播速度。定义群速:包络波上一恒定相位点 推进的速度。

电磁场与电磁波第一章

电磁场与电磁波第一章

在直角坐标系中,两矢量的叉积运算如下:
z y
ˆ ˆ ˆ ˆ ˆ ˆ A B ( Ax ax Ay ay Az az ) (Bx ax By ay Bz az )
x ˆ ˆ ˆ ( Ay Bz Az By )ax ( Az Bx Ax Bz )ay ( Ax By Ay Bx )az
(2)矢量与矢量乘积分两种定义 a. 标量积(点积):
AB | A | | B | cos

B
A
两矢量的点积含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘积, 其结果是一标量。
电磁场与电磁波
第1章 矢量分析
推论1:满足交换律 推论2:满足分配律
A BA B
1 ˆ ˆ ˆ ˆ an (3ax 2a y 6az ) 7
电磁场与电磁波
第1章 矢量分析
例3: 已知点A和B对于原点的位置矢量为
a
z
a
和b,

求:通过A和B点的直线方程。
解:在通过A和B点的直线方程上,
A
c
任取一点C,对于原点的位置
矢量为
,则 c
C
b
B
c a k (b a )
A
推论2:服从分配律: A ( B C ) A B A C
推论3:不服从结合律: A ( B C ) ( A B) C
推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
电磁场与电磁波
第1章 矢量分析
ˆ ˆ ˆ 解: 3ax 2ay 5az ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ a(2ax ay az ) b(ax 3ay 2az ) c(2ax ay 3az )

电磁场与电磁波第一章复习题练习答案

电磁场与电磁波第一章复习题练习答案

电子信息学院电磁场与电磁波第一章复习题练习姓名学号班级分数1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。

8:解:不总等于,讨论合理即可9. 已知直角坐标系中的点P1(-3,1,4)和P2(2,-2,3):(1)在直角坐标系中写出点P1、P2的位置矢量r1和r2;(2)求点P1到P2的距离矢量的大小和方向;(3)求矢量r1在r2的投影;解:(1)r1=-3a x+a y+4a z;r2=2a x-2a y+3a z(2)R=5a x-3a y-a z(3) [(r1•r2)/ │r2│] =(17)½10.用球坐标表示的场E=a r 25/r2,求:(1)在直角坐标系中的点(-3,4,-5)处的|E|和E z;(2)E与矢量B=2a x-2a y+a z之间的夹角。

解:(1)0.5;2½/4;(2)153.611.试计算∮s r·d S的值,式中的闭合曲面S是以原点为顶点的单位立方体,r为空间任一点的位置矢量。

解:学习指导书第13页12.从P(0,0,0)到Q(1,1,0)计算∫cA·d l,其中矢量场A的表达式为A=ax 4x-ay14y2.曲线C沿下列路径:(1) x=t,y=t2;(2)从(0,0,0)沿x轴到(1,0,0),再沿x=1到(1,1,0);(3)此矢量场为保守场吗?解:学习指导书第14页13.求矢量场A =a x yz+a y xz+a z xy 的旋度。

A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。

u ∇=x a u x ∂∂+y a u y ∂∂+z a u z ∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)15.求矢量场A =a x x 2y+a y yz+a z 3z 2在点P (1,1,0)的散度。

电磁场与电磁波课程主要知识点总复习

电磁场与电磁波课程主要知识点总复习

第1章 三种坐标系与场
概念:
| lim u
u u cos u cos u cos
l M0 l0 l x
y
z
Байду номын сангаас
2. 标量场的梯度
3. 矢量场的通量
d S F dS S F endS
F(x, y, z)
en
dS
面积元矢量
电磁场与电磁波
第1章 三种坐标系与场
4. 矢量场的散度
divF lim S F (x, y, z) dS
(1)式称为真空中的高斯定律。它表明在闭合面S的的通量 就等于闭合曲面S所包含自由电荷的总量。
(2)式称为静电系统的守恒定理,说明静电场是一种守恒性 的矢量场---保守场
电磁场与电磁波
第1章 三种坐标系与场
作用:
(1)已知 时根据高斯定理积分方程,求
(2)已知两微分方程,根据亥姆霍兹定理,在给定矢量场的散 度方程与旋度方程确定的条件下,该静电场唯一地确定。
IP R
R x
I
图2 磁介质1的镜 像线电流
2 h 2
z
I I R
x
P
图3 磁介质2 的镜像线电流
电磁场与电磁波
第1章 三种坐标系与场
1、法拉第电磁感应定律
2、位移电流
电磁场与电磁波
第1章 三种坐标系与场
32
3、 麦克斯韦方程组
磁场沿任意闭合回路的环流 ,等于穿过该闭合回路C包 围的任意曲面S的传导电流 与位移电流之和。
第1章 三种坐标系与场 静电场( 区域) 恒定电场(电源外)
本构关系 位函数
边界条件
电磁场与电磁波
第1章 三种坐标系与场
第五章恒定磁场分析

电磁场与电磁波复习重点

电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。

:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。

散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。

斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。

3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S

电磁场与电磁波-第1章

电磁场与电磁波-第1章

z o x
v v ˆ ˆ ˆ ˆ ˆ ˆ A × B = ( Ax ax + Ay a y + Az az ) × ( Bx ax + By a y + Bz az )
y
ˆ ˆ ˆ = ( Ay Bz − Az By )ax + ( Az Bx − Ax Bz )a y + ( Ax By − Ay Bx )az
第1章 矢量分析
主要内容 矢量代数、常用坐标系、 梯度、散度、旋度、亥姆量
标量:只有大小而没有方向的物理量。如温度、高度、时间等。 标量:只有大小而没有方向的物理量。如温度、高度、时间等。 矢量:不但有大小而且有方向的物理量。如力、速度、电场强度等。 矢量:不但有大小而且有方向的物理量。如力、速度、电场强度等。 矢量的数学符号用黑斜体字母表示,如A、B、E,或斜体字母上 矢量的数学符号用黑斜体字母表示, 黑斜体字母表示
两矢量的叉积又可表示为: 两矢量的叉积又可表示为:
ˆ ax v v A × B = Ax Bx
ˆ ay Ay By
ˆ az Az Bz
2、矢量运算法则
(3)乘法: 乘法: 乘法 ③ 三重积 三个矢量相乘有以下几种形式: 三个矢量相乘有以下几种形式:
v v v ( A ⋅ B)C
矢量,标量与矢量相乘。 矢量,标量与矢量相乘。
v v v v v v v v b.满足结合律 满足结合律: b.满足结合律: ( A + B ) + (C + D) = ( A + C ) + ( B + D)
矢量加法是几个矢量合成问题,反之, 矢量加法是几个矢量合成问题,反之,一个矢量也可分解为几个矢量
2、矢量运算法则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 10 6 A // B
山东轻工业学院
10
1.6 解: (1)divA│M A│M
[ x
x3
y
y3
z
z3│] M
(3x 2 3 y 2 3z 2│) M (1,0,1)
3 03
6
(2)divA│M A│M
[
x
(4
x)
y
(2
xy)
z
(z
2
)│] M
(4 2 x 2z│) M (1,2,3)
已知散度和旋度代表产生矢量场的源,可见唯一性定理 表明,矢量场被其源及边界条件共同决定的。
山东轻工业学院
8
1.6.6 亥姆霍兹定理
若矢量场 F(r) 在无限区域中处处是单值的, 且其导数连 续有界,源分布在有限区域 V 中,则当矢量场的散度及旋度 给定后,该矢量场 F(r) 可以表示为
F (r) (r) A(r)
此外,格林定理说明了两种标量场或矢量场之间应该满足的关系。 因此,如果已知其中一种场的分布特性,即可利用格林定理求解另一种 场的分布特性。
格林定理广泛地用于电磁理论。
山东轻工业学院
7
1.6.5 矢量场的唯一性定理
位于某一区域中的矢量场,当其散度、旋度以及边界上场 量的切向分量或法向分量给定后,则该区域中的矢量场被惟 一地确定。
式中S 为包围V 的闭合曲面,面元 dS 的方向为S 的外法线方向,上式称 为矢量第一格林定理。
山东轻工业学院
6
基于上式还可获得下式:
V [Q (
P)
P (Q]dV
[P Q
S
Q P]dS
此式称为矢量第二格林定理。
无论何种格林定理,都是说明区域 V 中的场与边界 S 上的场之间的 关系。因此,利用格林定理可以将区域中场的求解问题转变为边界上场 的求解问题。
山东轻工业学院
2
§1.6 三种常用坐标系
1.6.1 直角坐标系
直角坐标(x, y , z)
1.6.2 柱坐标系
圆柱坐标(r, , z)
x=x0
x
z
ex
O
z=z0
ez ey
P0
y=y0
y
z
r = r0
ez
e P0
er
z=z0
O
=0
山东轻工业学院
x
0
y
3
1.6.3 球坐标系
球坐标(r, , )
=0 r=r0
散度处处为零的矢量场称为无散场,旋度处处为零的 矢量场称为无旋场。
两个重要公式:
( A) 0
() 0
左式表明,任一矢量场 A 的旋度的散度一定等于零 。 因此,任一无散场可以表示为另一矢量场的旋度,或者说, 任何旋度场一定是无散场。
右式表明,任一标量场 的梯度的旋度一定等于零。因
此,任一无旋场一定可以表示为一个标量场的梯度,或者 说,任何梯度场一定是无旋场。
式中
(r) 1 F (r) dV
4π V r r
A(r) 1 F (r)dV
4π V r r
可见,该定理表明任一矢量场均可表示为一个无旋场与 一个无散场之和。矢量场的散度及旋度特性是研究矢量场的 首要问题。
山东轻工业学院
9
▪习题解答
1.1 解:
(1)利用A B 0,证明A // B。
1
24
v(
A)dv
s
A
ds
1 24
, 故验证了散度定理。
山东轻工业学院
13
1.12
解:r
(ax
x
ay
y
az
z
)r
ax
r x
ay
r y
az
5
基于上式还可获得下列两式:
(2 2 )dV V
S
dS
(2 2 )dV dS
V
S n
n
上两式称为标量第二格林定理。
设任意两个矢量场 P 与 Q ,若在区域 V 中具有连续的二阶偏导数, 那么,可以证明该矢量场 P 及 Q 满足下列等式
V [( P) (Q) P Q]dV S P QdS
x
z
0
er
P0
e
O e
0
=0
y
已知矢量 A 在圆柱坐标系和球坐标系中可分别表示为
A A
aer aer
be be
cez ce
式中 a, b, c 均为常数,A 是常矢量吗?
柱坐标系和球坐标系内▽算子及梯度、散度、旋度的表达式,请参 阅附录1。
山东轻工业学院
4
1.6.4 格林定理
设任意两个标量场 及,若在区域 V 中具有连续的二阶偏导数,
如下图示。
那么,可以证明该两个标量场
S ,
V
及 满足下列等式
en
V (
2 )dV
S
n
dS
式中S 为包围V 的闭合曲面, 为标量
n
场 在 S 表面的外法线 en 方向上的偏
导数。
根据方向导数与梯度的关系,上式又可写成
V ( 2)dV S () dS
上两式称为标量第一格林定理。
山东轻工业学院
▪ 内容复习
标量场的梯度: 矢量场的散度:
矢量场的旋度: 高斯散度定理: 斯托克斯定理:
u
ax
u x
ay
u y
az
u z
A
Ax
Ay
Az
x y z
ax ay az A
x y z
Ax Ay Az
V ( A)dV S AdS
(
S
A) dS
l
A dl
山东轻工业学院
1
▪ 无散场和无旋场
426
12
山东轻工业学院
11
1.8 解: (1)divA A
x2 ( xy)2 24( x2 y2z3 )
x y
z
2 x 2 x2 y 72 x3 y2z2
111
(2)
v
Adv
2 1
2 1
2 1
(2x
2x2
y
72 x2
y2z3 )dxdydz
222
008111 3444
1 24
山东轻工业学院
12
(3)
A
ds
s
s前
A| x
1 2
s右
A
| y
1 2
a axdysdss左s上AA|x|z121(2 azadsxds)s下
s后
A|
y
1 2
ayds
A
|
z
1 2
(az
)ds
(1)2 2
1
2 1
2
1
2 1
2
dydx
(
1 2
)2
1
2 1
2
1
2 1
A
B
(2ax
5ay
3az
) (4ax
10ay
6az )
20az
12a y
20az
30a x
12a y
30a x

(2)若 l1 m1 n1 ,则A// B。 l2 m2 n2
l1 2, m1 5, n1 3 l2 4, m2 10, n2 6 2 5 3 2
2
dydz
(
1 2
)2
1
2 1
2
1
2 1
x 2dxdz
2
(1)2 2
1
2 1Hale Waihona Puke 212 1
2
x 2dxdz
24 (
1 2
)3
1
2 1
2
1
2 1
x2
y 2dxdy
2
24 ( 1 )3 2
1
2 1
2
1
2 1
x2
y 2dxdy
2
1 3
x3
1
|2
1
2
1
y3 |21 2
1 3
x3
1
|2
1
2
1
y3 |21 2
相关文档
最新文档