2019年高考数学试卷分析及2019年高考命题趋势
2019年全国一卷高考数学试题分析
2019年全国一卷高考数学试题分析2019年高考数学试题的一个突出特点是突出学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性和应用性。
试题贴近生活,联系社会实际,落实立德树人的根本任务。
整份试卷站在落实“五育”方针的高度进行整体设计,体现五育要求。
试题考查学生数学知识的同时,引导学生加强体育锻炼,体现了对学生的体育教育。
试题突出重点,灵活考查数学本质,将基础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和逻辑推理能力。
试题情境真实,综合考查应用能力,体现综合性和应用性的考查要求。
试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。
试题设计灵活,有助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面研究掌握重点知识和重点内容,同时有助于破解僵化的应试教育。
1.以古代典籍和社会现实为背景,体现数学应用的广阔领域和哲学思想。
2.注重基础知识的拓展和延伸,强调数学思维的培养和阅读理解能力的提升。
3.鼓励广泛覆盖各种题型,避免猜题和缩小范围。
4.概率题地位上升,数列、导数、圆锥曲线等仍是重点。
5.试题改编度适度,主要考察中学数学主干知识和主要思想方法。
建议:1.注重基础知识的巩固和拓展,多做课本和历年真题。
2.提高阅读理解能力,培养数学思维,多做应用题和综合题。
3.广泛覆盖各种题型,不要猜题和缩小范围,模拟考试时要全面模拟各种题型。
4.注意概率题和数列题的练,加强圆锥曲线的计算能力。
5.研究数学文化知识,增强文化素养,提高数学应用价值的认识。
高考数学将继续渗透数学文化,而理科概率统计解答题难度将逐渐增加。
同时,考题也将更加创新,更注重综合能力和数学基本功。
以数学基础知识为载体,对理性思维和逻辑推理能力进一步加强。
以反映我国社会主义建设的成果和优秀传统文化的真实情境为载体,增强综合性、应用性。
因此,备考时需要注意以下几点。
2019高考全国Ⅰ卷数学试卷分析
2019高考全国Ⅰ卷数学试卷分析高考数学:难度增加,但请放宽心2019年全国高考数学新课标Ⅰ卷遵循《课程标准》,严格贯彻《2019年全国统一高考考试大纲》基本要求,坚持在稳定中求创新,更加注重对基础知识、基本技能的考查,强调通性通法,注重考查学生的应用能力、数学素养和学习潜能,突出了对数学思想方法和能力的考查,考查的知识点综合性较强。
试卷结构与前几年保持一致,各题型所占分值和分值分布没有变化。
试题顺序有较大变化,难度有所增加。
对比2018年高考试题,今年的客观题中对集合、复数等常规知识考查变化不大,突出了数学文化的考查。
理科数学试题主观题中,第1题继续考查解三角形,较基础。
第2题与去年相同,考查了立体几何知识,难度相当。
第3题与去年相同,考查了圆锥曲线中抛物线的常规题型。
第4题与去年不同,以证明的形式考查导数中的极值点与零点问题,难度有所增加。
第5题与去年不同,考查概率统计与数列综合问题,难度明显增加,且综合性强。
文科数学试题主观题中,第1题考查概率统计,第2题考查数列,第3题考查立体几何,属于常规题型,难度与往年相当。
第4题考查导数中恒成立问题,难度较去年明显增加。
第5题考查解析几何中定值问题,命题形式新颖,令人耳目一新。
总体来说,客观题与去年比难度相当,主观题难易梯度明显增加。
今年高考数学试题有以下几点变化:1.更加突出对数学知识应用性的考查,联系实际,重视数学文化,凸显数学建模、数学抽象、逻辑推理、数学运算等核心素养在高考中的应用,如文理第4题、理科第6题以数学文化为背景,理科第21题考查概率统计与数列综合应用。
2.客观题知识点考查进行了微调,三视图与二项式定理没有涉及,这也体现了向新课改过渡的趋势。
3.主观题顺序变化很大,概率统计继续后移至压轴题位置,出乎意料,进一步凸显了对数学应用意识的重视。
4.文理相同试题数量有所增加,客观题中增加一个,主观题中立体几何题设条件与第一问文理相同,体现了逐步实现文理同卷的趋势。
高考数学试卷分析及命题走向
2019年高考数学试卷分析及2019年命题走向一、2019年高考试卷分析2019年普通高等学校招生全国统一考试数学试题(全国卷i)继承2019年的改革方向。
既保持了一定的稳定性,又有创新和发展;既重视考查中学数学知识掌握程度,又注重考查进入高校继续学习的潜能。
1考试内容体现了《考试大纲》的要求。
2试题结构与2019年大体相同。
全卷共22小题,选择题12道,每题5分;填空题4道,每题4 分;解答题6道,前5道每题12分,最后1道14分。
3考试要求与考点分布。
第1小题,(理)掌握复数代数形式的运算法则;(文)理解集合、子集、补集、交集、并集的概念、符号,能够正确表示简单的集合。
第2小题,掌握对数的运算性质。
第3小题,掌握实数与向量的积,平面向量的几何意义及平移公式。
第4小题,会求一些简单函数的反函数。
第5小题,掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
第6小题,(理)了解空集和全集,属于、包含和相等关系的意义,掌握充要条件的意义;(文)掌握两角和与差的正弦、余弦、正切公式。
第7小题,掌握椭圆的标准方程和简单几何性质,理解椭圆的参数方程。
第8小题,掌握直线方程的点斜式,了解线性规划的意义,并会简单的应用。
第9小题,掌握同角三角函数的基本关系式,了解正弦函数、余弦函数的图像和性质。
第10小题,能够画出空间两条直线、直线和平面各种位置关系的图形,根据图形想像它们的位置关系,了解三垂线定理及其逆定理。
第11小题,会用排列组合的基本公式计算一些等可能性事件的概率。
第12小题,掌握简单方程的解法。
第13 小题,掌握简单不等式的解法。
第14小题,(理)掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;(文)掌握等比数列的通项公式。
第15小题,(理)了解递推公式是给出数列的一种方法;(文)直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
第16小题,掌握斜线在平面上的射影。
2019高考全国卷数学试题分析(整理版)
2019高考全国卷数学试题分析高考年年有,今年换新说。
2019年的高考数学发生“巨变”,考毕场外一片哀嚎,不是被“一朵云”遮了双眼,就是被“维纳斯”晃慌了神。
这一届考生走了,下一届考生即将到来,分析高考真题有助于新一轮的教学,接下来对全国卷三套试卷文理科试题的细致分析,希望对老师们接下来的工作有帮助!2019年新课标全国卷Ⅰ理科数学试卷分析报告纵观整张试卷,理科数学难度整体有所上升.试卷梯度明显,有良好的区分度。
对考生计算能力的考查是近年来全国卷较为明显的趋势,2019年新增加了对数字估值和近似值的考查。
试卷题型和结构基本稳定,解答题经典位置再次变动,换为概率题压轴,圆锥曲线与导数应用顺序依次提前一位.21题的第二问绕过考生熟悉的同一类知识点仅仅在一道大题中加深考查的特点,第二问出其不意的考查了构造法证明等比数列及求数列特殊项,然后结合题目中所给数据进行数据处理。
2019年试卷的字数为1821,跟2018年的字数2151相比,阅读量减少,图象增多,阅读面宽度扩大,如“断臂维纳斯”、典籍《周易》的“卦”、七场四胜制的篮球比赛、白鼠试药定药效实验.突出数学源于生活用于生活,学生的应用意识和创新意识,渗透数学文化。
知识点宽度明显拓宽,“遗漏”的知识技能再次呈现。
那些看似不考的内容被一部分教师忽视,但这次给了这些教师们一个警示,所谓的“遗漏”知识技能并不是不考了,教学与高考复习中不能存在“侥幸”心理。
重视基础知识落实和数学基本技能、方法的灵活应用依然是当今新课改的主题思想。
增大了文理的共性,进一步缩小了文理数学差距。
对新课程标准中所删减的如三视图、线性规划和程序框图等内容,在试卷中逐年减少,仅在第8题考查了程序框图.但《考纲》对这几部分内容作了要求,到底考查这三部分内容的哪个或哪些,情况扑朔迷离.部分题目似曾相识,对我们十分熟悉的知识换个同源知识点再出现在高考中,考查了同一个知识点的不同的面,且在重要知识点覆盖面上起着很好的补充作用。
2019高考数学试题评价与特点分析
2019全国高考数学试题评价与特点分析一、试题总体评价特点1:考查基础知识试题(2019全国Ⅰ卷理2)设复数z 满足=1i z -,z 在复平面内对应的点为(,)x y ,则A .22+11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .22(+1)1y x +=试题(2019全国Ⅱ卷文9、理8) 若抛物线22(0)y px p =>的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8试题(2019全国Ⅰ卷理7)已知非零向量,a b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6试题(2019全国Ⅱ卷理10)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则sin α=A .15B .5C .3D .5特点2:考查重点内容试题(2019全国Ⅲ卷文12、理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A . 233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>试题(2019全国Ⅰ卷理12) 设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x -…,则m 的取值范围是A .(-∞,9]4B .(-∞,7]3C .(-∞,5]2D .(-∞,8]3试题(2019全国Ⅲ卷文、理8)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线试题(2019全国Ⅰ卷理16)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为 .试题(2019全国Ⅰ卷理17)ABC △的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin sin sin B C A B C -=-.(Ⅰ)求A ;2b c +=,求sin C .试题(2019全国Ⅱ卷理19)已知数列{}n a 和{}n b 满足111,0a b ==,1434n n n a a b +-=+,1434n n n b b a +-=-.(Ⅰ)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (Ⅱ)求{}n a 和{}n b 的通项公式.特点3:考查数学思想试题(2019全国Ⅱ卷理9)下列函数中,以2π为周期且在区间(,)42ππ上单调递增的是 A .()cos2f x x = B .()sin 2f x x = C .()cos f x x = D .()sin f x x =试题(2019全国Ⅰ卷文、理5)函数sin ()cos x+xf x x+x=2在[,]-ππ的图象大致为 A .B .C .D .特点4:考查数学应用试题(2019全国Ⅱ卷文14、理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.试题(2019北京卷文、理14)李明自主创业,在网上经营一家水果店,销售的水果有草莓、京白梨、西瓜、桃,价格依次为60元盒/、65元盒/、80元盒/、95元盒/.为了增加销售量,李明对着四种水果进行促销:依次购买达到120元,顾客就少付x 元.每笔订单顾客网上付款成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付__________元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总额的七折,则x 的最大值为__________.特点5:考查核心素养试题(2019全国Ⅲ卷理19)图 1 是由矩形ADEB ,R t ABC △和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图 2.(Ⅰ)证明:图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ; (Ⅱ)求图2中的二面角B CG A --的大小.试题(2019全国Ⅰ卷理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(Ⅰ)()f x '在区间(1,)2π-存在唯一极大值点;(Ⅱ)()f x 有且仅有2个零点.试题(2019全国Ⅱ卷理21)已知点(2,0),(2,0)A B -,动点(,)M x y 满足直线AM 与BM的斜率之积为12-.记M 的轨迹为曲线C . (Ⅰ)求C 的方程,并说明C 是什么曲线;(Ⅱ)过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .(1)证明:PQG △是直角三角形; (2)求PQG △面积的最大值.试题(2019全国Ⅰ卷理21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(1)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列; (2)求4p ,并根据4p 的值解释这种试验方案的合理性.特点6:考查创新意识 试题(2019江苏卷20(Ⅰ))定义首项为1且公比为正数的等比数列为“M -数列”.已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”.试题(2019上海卷21)数列{}n a 有100项,1a a =,对任意[]2,100n ∈,存在[],1,1n i a a d i n =+∈-,若k a 与前n 项中某一项相等,则称k a 具有性质P .(Ⅰ)若11a =,2d =,求4a 可能的值;(Ⅱ)若{}n a 不为等差数列,求证:{}n a 中存在满足性质P 的项;(Ⅲ)若{}n a 中恰有三项具有性质P ,这三项和为c ,试用,,a d c 表示12100a a a +++.特点7:考查传统文化试题(2019全国Ⅲ卷文4、理3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8 试题(2019全国Ⅱ卷文、理16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________. (本题第一空2分,第二空3分.)试题(2019全国Ⅰ卷理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132 C .2132D .1116特点8:体现“五育”方针试题(2019全国Ⅱ卷文5)在“一带一路”知识测试后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同,且只有一人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙试题(2019全国Ⅰ卷文、理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm试题(2019全国Ⅱ卷理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (Ⅰ)求(2)P X =;(Ⅱ)求事件“4X =且甲获胜”的概率.试题(2019全国Ⅲ卷文、理16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9 g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .。
2019年高考数学试卷分析
2019年高考数学试卷分析2019年高考数学试卷分析随着2019年高考的结束,作为一名一线教师,我们需要对今年的高考试题进行细致的研究。
陕西省是首次使用全国卷,为下一年的平稳过渡做好了铺垫。
首先,在题型设置上与全国卷保持一致,这让师生们感到很亲切,有老朋友相见的感觉。
今年的全国卷数学试题从试题结构与去年相比变化不大,严格遵守考试大纲说明,五偏题,怪题现象。
试卷难度呈阶梯型分布,试题更灵活。
入口容易出口难,有利于高校选拔新生。
一、总体分析:1.试题的稳定性:从文理试卷整体来看,考查的内容注重基础考查,又在一定的程度上进行创新。
知识覆盖全面且突出重点。
高中知识“六大板块”依旧是考查的重点。
无论大小体目90%均属于常规题型,难度适中。
是学生训练时的常见题型。
其中,5,15,18注重考查了数学在实际中的应用能力。
这就提示我们数学的教学要来源实际,回归生活,既有基础与创新的结合,又能增加学生的自信心,发挥自己的最佳水平。
2.试题的变化:有些复课中的重点“二项式定理”、“线性规划”、“定积分”、“均值不等式”等知识点并没有被纳入,而“条件概率”则出现在大题中,这也对试题的难度进行区分。
在难度方面,选择题的12题、填空题的16题对学生造成较大困扰,这也有利于对人才的选拔。
解答题中的20、21题第一问难度适中,第二问都提高了难度。
这也体现了入口易,出口难,对人才的选拔非常有利。
3.试题的详细分析:选择题部分1)考查复数,注重的是知识点的考查。
对负数的运算量则降低要求,这要求我们不仅要求对运算过关,更强调知识点的全面性。
2)集合的运算:集合的交并补三种运算应是同等对待。
在平时的教学中,出现的交集运算比较多,而并集、补集易被忽略。
(而文科考的常规是交集运算,理科更为灵活。
)3)向量的运算:俩向量的平行、垂直一直是考查重点。
(文科考平行,理科考垂直)4)直线与圆的位置关系:要求学生会用几何法判断直线与圆的位置关系,且熟记点到线的距离公式。
2019年高考数学题型分析、命题趋势研究及2020届高三复习策略
即 (Pi+1 − Pi ) = 4(Pi − Pi−1) ,因 P1 − P0 = P1 0 ,
所以 Pi+1 − Pi (i = 1, 2, 7) 是首项为 P1 ,公比为 4 的
等比数列, P8 = (P8 − P7 ) + (P7 − P6 ) + + (P1 − P0 ) =
= 47 P1 + 46 P1 +
又有三个极大值点和三个极小值点,1 成立, 2 不成立,选 (D) 。
(卷一的文、理科第 4 题著名的断臂维纳斯关于人体
的黄金分割点问题,其解答相当难。由 5 −1 0.618 ,
2
设头顶、咽喉、肚脐、足底分别为 A 、 B 、C 、 D ,人 身高为 x ,则 CD = 0.618x 105cm , AC = 0.382x , AB = 0.382AC = (0.382)2 x 26 ,解得171cm x 178cm 。)
= cos
B 2
,
故 cos B 2 = sinB = 2sin B 2 cos B 2 ,
又 cos B 2 0 , 得 sin B 2 = 1 2 , 因此 B = 60 ; (2) ABC 的面积为:
2019年全国高考数学一卷总体分析
2019年全国高考数学一卷总体分析与2019年高考备考建议株洲县第五中学阳志长2019年湖南高考数学使用新课标高考全国数学一卷.与往年相比,2019年高考全国一卷数学试题,试卷结构保持不变,考查内容基本一致,体现了高考的稳定性与延续性;注重基础知识,体现数学思想,考查数学运算、应用、创新等能力.突出对数学抽象、逻辑推理、数据分析等核心素养的重视和“回归教材”,以及文理合卷等特点.2019年高考湖南省阅卷结果:文科数学平均分55分,比2019年湖南省文科数学平均分67.96分下降12.96分;理科数学79.9,比去年78.82升了1.08分,这是预料中的事情.今结合2019年高考试题、在权衡2019年上期所做《2019-2019年全国高考数学试卷(I)总体综合分析》(以下简称《分析报告》)报告得失的基础上,我们试图为大家提供备考2019年数学高考的方略,供一线数学教师参考.一、考点分布2019年全国高考数学一卷考点分布是按照所考的主要知识点分类、有交汇,分值不能严格区分时、是按照大题分值标注的.二、考查分析(一)常考知识点在《分析报告》中,我们列出常考知识点:集合运算、复数的代数计算、函数基本性质(单调性、奇偶性、周期性等)、导数及其运用、三角函数(恒等变换、图像及性质、解三角形)、平面向量的计算、数列(等差、等比的相关知识)、线性规划、二项式定理(理)、程序框图、概率(古典概型)、统计的基本知识、立体几何(空间点、线、面的位置关系)、圆锥曲线(定义、性质)等.从上面列表可以看出,2019年高考全国一卷基本上覆盖了高中数学的所有重要的知识点,预测是准确的.2019年高考数学全国一卷命题的基本思路仍然是:以选择题、填空题“小题”的形式覆盖知识点,引导高中数学教师落实《课程标准》的基本要求,做好“保底”工作;以解答题“大题”的形式着重考查综合素养,提高区分度、强化选拔功能;文理同题(同宗题或姊妹题)略有增加,为高考数学文理合卷进一步创造条件.(二)板块分析1.三角函数该知识点在整个试卷中理科占有17分、文科占有20分,文科以四道小题、理科以一道小题一道大题的形式呈现.题目之间互补,形成纵向“问题链”,主要考查三角恒等变换、三角函数图象与性质、解三角形,估计2019年不会有大的变化.2.数列该知识点在整个试卷中理科占有10分、文科占有12分,理科以两道小题,文科以一道大题的形式呈现.以特殊数列(等差数列、等比数列)为载体,考查求解数列的通项公式、前n项和,在解答题中靠前,属于容易题,在小题中靠后,属于较难题.与三角“嵌套”,理科在解答题中考查三角、文科在解答题中考查数列.考查风格与2019年相同,估计2019年也不会有大的变化.3.概率统计该知识点在整个试卷中文理都占有17分的分值,试题以一大一小的形式呈现.文科小题考查古典概型,大题以实际问题为背景,考查函数解析式、频率、数字特征等知识;理科小题考查几何概型,大题与文科同宗同源,考查离散型随机变量的分布列、数学期望等知识.文理均重统计,考查风格与2019年基本相同,估计2019年会有些变化,具体见后面专项分析.4.立体几何该知识点在整个试卷中文理科都占有22分的分值,试题以一大两小的形式呈现.小题考查三视图、空间线、面关系.大题分两小题设问,文科第1问证明线段相等,第2问求体积;理科第1问证明面面垂直,第二问求二面角的余弦值.理科考查风格与2019年相同,文科考查风格与2019年有点不同,大题“正投影”难住了较多考生,2019年备考还要关注折叠问题.5.解析几何该知识点在整个试卷中文理都占有22分的分值,试题以一大两小的形式呈现.小题考查圆、圆锥曲线定义、标准方程、简单几何性质.大题分两小题设问,文科第1问考查坐标法,求线段的比值;第2问为存在性问题、考查直线与抛物线的位置关系.理科第1问为定值问题,求轨迹方程;第2问考查直线与圆锥曲线的位置关系,与函数、不等式交汇在一起,属于较难题.考查风格与2019年相同,估计2019年不会有大的变化.6. 函数与导数该知识点在整个试卷中理科占有22分,试题以一大两小的形式呈现;文科占有27分,试题以一大三小的形式呈现.与导数相关的知识,小题中有一题也有涉及(理科第7题、文科第9题和12题).大题分两小题设问,文科第1问考查定义域、单调性;第2问考查函数零点的相关知识;理科题考查函数零点的相关知识;文理科都与不等式等知识交汇在一起,考查分类讨论、综合运用知识的能力,属于难题.文理科此题属于姊妹题,考查风格与2019年相同,估计2019年不会有大的变化.三、热点透视(一)三角问题三角为数学的主干知识之一,一般情况下应该得满分.纵观近5年全国卷,不确定因素较多、难度较大、综合性较强,超出考生的想象.例1(2019高考全国卷1文科第14题)已知θ是第四象限角,且3sin45πθ⎛⎫+=⎪⎝⎭,则tan ____4πθ⎛⎫-= ⎪⎝⎭ .分析1:由tan tansin cos 4tan 4sin cos 1tan tan 4πθπθθθπθθθ--⎛⎫-== ⎪+⎝⎭+,为求tan 4πθ⎛⎫- ⎪⎝⎭的值,可从题目条件出发,求出sin cos θθ+、sin cos θθ-的值.解法1:因为3sin 45πθ⎛⎫+= ⎪⎝⎭,所以sin cos 5θθ+=,且72sin cos 25θθ=- .又因为θ是第四象限角,所以sin cos 0θθ-<,且()()22sin cos sin cos θθθθ-=+-324sin cos 25θθ=,故sin cos θθ-=,结果填43-.本题考查三角函数的定义、符号和同角公式、和差角公式等知识,以及化归与转化、平方与开方等思想方法.考生的思维障碍是不知由sin cos θθ+的值可以求出sin cos θθ-的值;错点是sin cos θθ-的符号.其实,sin cos θθ+、sin cos θθ-、sin cos θθ“知一求二”;由单位圆和三角函数线容易判断sin cos θθ+或sin cos θθ-的符号.单位圆是三角函数的“原点”,“能力立意”的基本点是回归“原点”,按照数学家当初建构数学概念那样广开思路,备考时需要重建、理解三角公式体系:利用单位圆定义三角函数的坐标表示(数)和几何表示(形);由它的坐标表示可以概括得到符号规律、特殊角的三角函数值;由它的几何表示可以简单推出同角公式;由单位圆的对称性和它的坐标表示可以直接得到诱导公式;由向量的数量积和它的坐标表示可以简单推导和差角公式、二倍角公式的“母公式”()cos cos cos sin sin αβαβαβ-=+.抓住了单位圆,就等于抓住了三角公式的“命门”:公式记不清时,可以利用单位圆简单推出;符号拿不准时,可以利用单位圆作出判断;特别是由单位圆推导公式的思路和方法,是解决相关问题的思想武器.分析2 :由()444πππθθ-=+-,为求tan 4πθ⎛⎫- ⎪⎝⎭的值,可从题目条件出发,求出tan 4πθ⎛⎫+ ⎪⎝⎭的值.解法2:因为()222k k k Z ππθπ-<<∈ ,所以22444k k ππππθπ-<+<+.又因为3sin 45πθ⎛⎫+= ⎪⎝⎭,所以4cos 45πθ⎛⎫+= ⎪⎝⎭,且3tan 44πθ⎛⎫+= ⎪⎝⎭ .故tan 4πθ⎛⎫-= ⎪⎝⎭tan 42ππθ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=tan 24ππθ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦=1tan 4πθ-⎛⎫+ ⎪⎝⎭,结果填43-. 这种解法明显优于第一种,更能体现命题者的意图.课本在章头指出:“三角变换包括变换的对象,变换的目标,以及变换的依据和方法等要素”.另解盯住角,从未知与已知关系中寻求突破,用已知角表示未知角、从中寻求三角变换的依据和方法,获得题目的更优解法.“角”是自变量,是三角变换的根本所在,因此三角变换思维起点是角:盯住未知与已知角的关系(互余、互补、和、差、倍、分),以及角的取值范围;三角变换的基本思想是转化与化归思想;三角变换的基本策略是:找“差异”,立足“化异为同”、消除差异找方法,正用、逆用、变用、联用以至活用公式.备考时,要结合具体题目的解答过程,回归课本,把握三角变换的特点和本质,实行方法创新,以“不变”驭“变”.例2 (2019高考全国卷1理科第12题)已知函数()()sin f x x ωϕ=+(0ω> ,2πϕ≤),4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭ 单调,则ω的最大值为A.11B. 9C. 7D. 5分析:为求ω的最大值,可从题目条件出发,得到关于ω、ϕ的方程和不等式,再从特殊值、一个周期内的图象特征出发筛选答案.解法1:因为4,42m m n πωϕπππωϕπ⎧-+=⎪⎪⎨⎪+=+⎪⎩、n Z ∈,所以()()1242n m n m ωππϕ⎧=+-⎪⎨=++⎪⎩.由2πϕ≤得 10n m -≤+≤.由0ω>得,0n m -≥且ω为奇数.当0n m +=即4πϕ=时,取11ω=,这时()sin 114f x x π⎛⎫=+⎪⎝⎭,由311242x πππ<+<得,54444x ππ<<.因为55184436πππ<<,所以()f x 在区间5,1844ππ⎛⎫⎪⎝⎭上是单调递减函数、在区间55,4436ππ⎛⎫ ⎪⎝⎭上是单调递增函数,不合题意.同理,ω=7、5不合题意,只有9ω=符合题意. 当1n m +=-即4πϕ=-时,验算知11ω=、9、7不合题意,只有5ω=符合题意.综上所述,ω的最大值为9,结果选B .解法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z .()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤.接下来用排除法若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减,故选B .本题考查正弦函数图象和零点、对称性、单调性等性质,以及数形结合、函数与方程、化归与转化等思想方法.考生的思维障碍不是列方程组、求ω和ϕ的表述式,而是处理整数n m +、n m -,以及验算()f x 在5,1836ππ⎛⎫⎪⎝⎭上的单调性.其实,确定n m +的取值后,取ω的值验算时,为了减少字母运算带来的不便,可以考查函数在一个周期内的单调增区间或减区间,按照周期进行拓展、作出判断;作为一个选择题,本题只需对0n m +=取11ω=、9和对1n m +=-取11ω=三种情况作出判断就可以作出选择.无论是正弦型函数,还是余弦型、正切型函数,无论是奇偶性、单调性、对称性,还是求最值、解方程、不等式,都可以按照三角函数曲线、从一个周期出发按照周期进行拓展.课本是按照从一个周期出发进行拓展的思路探讨三角函数图象的,但是在后续例题列式、求解中带入了“k ”,备考时,要进行两种解题方式的比照,把握其共性,明确从三角函数图象出发、从一个周期出发思考解决问题的道理,化解难点,达到必要的复习深度.理科第17题考查三角形的内角和、周长、面积和正弦定理、余弦定理、诱导公式等知识,以及配方、函数与方程、化归与转化等思想方法.属于中低档题,思路不是问题,影响考生得分主要是表述规范和隐含条件运用等问题.其实,在三角形中常隐含了“内角和为π”、“两边之和大于第三边”、“大边对大角”等条件,解三角形时要特别注意发掘这些隐含条件,建构相应的“条件反射”.备考时,建议还要关注向量与三角的结合问题,以及建构三角函数模型解决“测量”、“潮汐”等问题.不管是哪一类问题,最终往往归结为“化一”、求三角函数在给定区间的最值问题,而隐含在其中的条件“给定区间”,测量着备考高度.模拟训练 1.已知点33sin,cos 44P ππ⎛⎫⎪⎝⎭是以x 轴正半轴为始边的角α的终边上一点,且[)0,2απ∈,则α=A.4πB. 34πC. 54πD. 74π2. 要得到函数)42sin(3π+=x y 的图象,只需将函数x y 2sin 3=的图象A.向左平移4π个单位B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位3.在ABC ∆中,已知︒=45B ,22=c ,334=b ,则=C _____. 4. 设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.5.如图,平面四边形ABCD中,AB =AD =CD =,30CBD ∠=,120BCD ∠=.求(Ⅰ)ADB ∠;(Ⅱ)四边形ABCD 的面积S . (二)数学思想数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.1. 数形结合的思想方法 (1)具体特征从“形”入手,直观助思;从“数”突破,验证直觉. (2)考题解析例 3 (2019高考全国卷1文理科第11题)平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为ABDCA.2B.2C.3D.13解法1:如图所示:因为//α平面11CB D ,设平面11CB D 平面1ABCD m =,则1//m m .又因为平面//ABCD 平面1111A B C D , 平面11B D C平面111111A B C D B D =,所以111//B D m ,故11//B D m .同理,1//CD n .故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==,因此113CD B π∠=,即11sin CD B ∠. 解法2:如图,在正方体ABCD -1111A B C D 的下方补两个相同的正方体.因为11//AR B D ,1//AF D C ,可得平面ARF //平面11B CD .由题设可知AR 、AF 分别为m 、n .故m 、n 所成的角即为1B C 、11B D 所成的角,其角度为60.故m 、n 所本题考查线线、线面、面面关系,两异面直线所成角等知识,以及数形结合、化归与转化等思想方法.考生的思维障碍在于根据题意作出图形助思.显然,解2的图形更有利于考生思考、解决问题.求空间角包括求两条异面直线所成角、线面角和面面角,求解的基本路径是:“找(作)——说——求”.“找”是关键,没有现成的就需要“作”,作线线角重点是“平移直线”;作线面角重点是“线面垂直”;作面面角重点也是“线面垂直”.(3)基本类型与学生问题按照题目问题状态,可以分为“题给图形”和“自构图形”两种基本类型.学生的主要问题是:一是没有想到数形结合;二是构图马虎,不能达到“助思”效果;三是构图不够“常态”,产生误导.(4)方法分析数形结合是高中数学的核心思想方法之一.从“形”入手、用数形结合的思想方法,是解答选择、111nm SQ PR H G FE D 1C 1B 1A 1DCBA填空题的重要策略;而由“数”联想到“形”,是一种创造、创新,对学生本身是一个“坎”.建议高三复习时选用恰当的问题进行数形结合的思想立意;同时,结合距离、斜率等数式的几何意义,创造机会让学生思“形”,增长数形结合、由“数”思“形”的见识,激活学生的创新思维.(5)模拟训练① 一个棱锥的三视图如图,则该棱锥的表面积为 ( ) A.722cm B. 482cm C. ()248122cm + D. ()235122cm +② 将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,则二面角A -BC -D 的正切值为______.③函数()222548f x x x x x =-++++的最小值为 .④已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,5sin()0142()1()14x x x f x x π⎧≤≤⎪⎪=⎨⎪>⎪⎩ ,若关于的方程2[()]()0f x af x b ++=(,a b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( ) A .59(,)24-- B .9(,1)4-- C .59(,)24--9(,1)4-- D .5(,1)2-- 2. 转化与化归的思想方法 (1)具体特征归是归宿、目标,转化是为了达到目标所调用的一切手段和方法. (2)考题解析例4 (2019年文科12题)若函数()1sin 2sin 3f x x x a x =-+在(),-∞+∞上单调递增,则a 的取值范围是A.[]1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C.11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦解法1:()21cos 2cos 3f x x a x '=-+=245cos cos 033x a x -++≥在(),-∞+∞上恒成立.令cos t x =,则()[]245,1,133h t t at t =-++∈-,只需()h t 的最小值不小于0即可.因为抛物线开口向下,对称轴为38t a =,当308a <时,最小值为()1103h a =+≥,解得103a -≤<;同理可得103a ≤≤.x综上,a 的取值范围是11,33⎡⎤-⎢⎥⎣⎦.解法2:同解法1,因为抛物线()y h t =开口向下,所以()()1010h h -≥⎧⎪⎨≥⎪⎩,解得1133a -≤≤,故选C.触发点:①为求a 的取值范围,需要将条件化归为不等式、转化为不等式恒成立问题;②为求函数的导数,需要将sin 2x 转化为2sin cos x x 、运用积的导数法则求导;③可将问题转化为求函数的最小值;④为求函数()y h t =的最小值,运用两种手段:分类讨论、各个击破;“同时限制”、转化为解不等式组.先有化归方向,再有化归方法.(3)基本类型与学生问题为了将生疏问题化归为熟悉问题,常用转化方法有数形转化法,数列中有并项公式法求和、裂项相消法求和、错位相减法求和,恒成立、能成立有更替主元法、分离参变法,转化为求函数的最值等等.学生的主要问题是:一是缺少积累,以致常规的转化方法能够达到什么目标不够清晰;二是审题意识不强,不能预测到目标、找不到方向,转化方法失灵.(4)方法分析转化与化归也是高中数学的核心思想方法之一.归根结底,数学解题就是转化与化归,由题目的初始状态向目标状态转化.转化与化归的思想方法是解答“小题”的利器,特别是一些较难的“小题”,常常转化为利用图形直观去考察,即转化与化归思想方法常与其他数学思想方法结合运用.建议高三复习时,加强预测、估算方面的训练.(5)模拟训练①已知函数12,1()tan(),13x x f x x x π-⎧>⎪=⎨≤⎪⎩,则1()(2)f f =A .3-3②已知各项均为正数的等比数列}{n a 中,465=⋅a a ,则数列{}2log n a 的前10项和为 (A)5 (B)6 (C)10 (D)12③若向量b a ,的夹角为3π11==,则向量a 与向量b a -的夹角为( ) A.6π B.3πC.32πD.65π④由不等式组⎪⎩⎪⎨⎧≤≤≥-≥+1001x y e y x x确定的平面区域为M ,由不等式组⎩⎨⎧≤≤≤≤e y x 010确定的平面区域为N ,在N 内随机的取一点P ,则点P 落在区域M 内的概率为( )A.e 231-B. 231e- C. e 11- D. e 21-3. 函数与方程的思想方法: (1)具体特征函数思想集中体现在变量思想、对应与依存关系、运动与变化观点、数形结合观点,函数是特殊的方程;方程不一定是函数,但是大多数方程问题可以转化为函数问题、利用其图象直观求解.(2)考题解析例5 (2019理科21题)已知函数()()2()21xf x x e a x =-+-有两个零点.(I )求a 的取值范围;(II )设12,x x 是()f x 的两个零点,证明:122x x +<.解析:(Ⅰ)当1x =时,()10f e =-<,所以1x =不是函数零点.当1x ≠时,由()0f x =得()()221x x e a x -=-.设()()()221x x e g x x -=-,则()()()23451x e x x g x x --+'=-. 当1x <时,()0g x '>;当1x >时,()0g x '<.故函数()g x 在(),1-∞上单调递增、在()1,+∞上单调递减.在同一坐标系中画出函数()y g x =、y a =的图象可知,当0a >时两函数图象必有两个交点,故所求a 的取值范围为()0,+∞.(Ⅱ)设()()()11F x f x f x =+--,则()()()1111x x F x x xex e --=-++,且()()11x x F x x e e --'=-.当0x >时,110x x e e --->,()0F x '>.故函数()F x 在()0,+∞上单调递增.又()00F =,所以当0x >时,()()00F x F >=,即当0x >时,()()11f x f x +>-.设12x x <,由(I )知函数()f x 的极值点为1,则有121,1x x <>.又()20f a =>,所以212x <<.因为()()()()()1222112f x f x f x f x ==+->-.又121,21x x <-<,由(I )知函数()f x 的单调递减区间为(),1-∞,所以122x x <-,即122x x +<.触发点:第(I )中,在函数与方程思想的导引下,“一分为二”、将一个函数分解为两个函数,在同一坐标系中画出函数()y g x =、y a =的图象,通过函数图象直观助思,将图形关系转化为数量关系,得到a 的取值范围为()0,+∞.第(II )中,由()()112x x ++-=、与所要证明结果结构相似,构造函数()()()11F x f x f x =+--,按照函数单调性的定义,沟通函数值大小与自变量大小的关系, 实现“方程(不等式)——函数——图象——方程(不等式)”的相互转化.(3)基本类型与学生问题学生在学习指、对、幂函数的图象和性质的过程中,利用函数的单调性比较相关函数值的大小,使学生第一次接触到构造函数;在学习“函数与方程”时,为了解决函数零点的相关问题,常需要将一个复杂函数的零点问题,通过方程转化为两个较简单函数图象交点的问题,或将两个函数交点的问题,通过方程转化为一个函数的零点问题;在解答恒成立、能成立、最值等问题时,常需要将问题转化为求函数的最值,函数思想、运用构造函数的方法将问题转化为考查函数的最值就成为常态的方法.学生的主要问题:一是缺少函数思想、看不到问题的本质;二是不能把“方程——函数——不等式”联系起来,缺少解决相关问题的经验积累;三是转化的方向感不强,有时甚至将问题复杂化.(4)方法分析函数与方程的思想方法也是高中数学的核心思想方法之一.既常态又习以为常,建议高三复习时,结合具体问题,从易到难,开展小专题研究,对学生进行函数与方程的思想立意,并且与数形结合、化归与转化等数学思想融会,提高学生运用函数与方程思想的水平.至于其他的思想方法,教师可以根据学生的需求、进行合理提升.(5)模拟训练 ①若函数)()(R b xbx x f ∈+=的导函数在区间(1,2)上有零点,则)(x f 在下列区间上单调递增的是A.(]1,-∞-B. ()0,1-C. ()1,0D. ()+∞,2②定义一种新运算:a ⊗b=,已知函数f (x )=(1+)⊗x 2log,若函数g (x )=f (x )﹣k 恰有两个零点,则k 的取值范围为( )A .(1,2]B .(1,2)C .(0,2)D .(0,1) ③已知函数()()()=,ln 24x aa x f x x eg x x e --+=+-,其中e 为自然对数的底数,若存在实数0x ,使()()00-3f x g x =成立,则实数a 的值为( )A. -ln 21-B. -1+ln2C. -ln 2D. ln 2④已知函数x e e x f x 2)(-=,方程01)()(2=-++a x af x f 有四个不同的实数根,则a 的取值范围为( )A. )1,(2ee +--∞ B. )1,1(2e - C. ),(2e -∞ D. )1,2(22e e -- (三)应用意识与应用能力 1. 考查情况2019年高考数学全国一卷很明显带有注重实际运用的特征.文理的第16题线性规划,以生产利润为模型,考查线性规划;文理的第19题,以成本控制为模型,考查概率统计(分布列)和决策问题;理科的第4题,以乘车上班为模型,考查几何概型.从2019年的全国新课标一卷来看,在数学的应用问题上,试题体现的应用意识大幅增强,除概率统计问题这个常见的实际问题外,在若干个小题中,也都能见到它实际应用的这种意识,在很多的问题中多有体现,考查考生的应用意识,这一点也充分地体现了新课程的理念.另外,对于概率统计的应用问题,全国新课标一卷着重考核统计方面的知识,有注重考查学生“用数据说话”的倾向,这与我们已经进入大数据时代有关.2.考题解析例6(2019高考全国卷1理科第19题)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得柱状图(如图).以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?解析:(I )每台机器更换的易损零件数为8,9,10,11,记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i =,记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =,由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==.设2台机器共需更换的易损零件数为X ,则X 的可能的取值为16,17,18,19,20,21,22,且()()()11160.20.20.04P X P A P B ===⨯=,()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=,()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=,()()()()()()()()()14233241190.20.20.20.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯0.40.2+⨯0.20.40.24+⨯=,()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=,()()()()()3443210.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=, ()()()44220.20.20.04P X P A P B ===⨯=.所以X 的分布列为(II )因为0.04)0.5X n ≤≥知n 的最小值为19.(III )购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用.当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯=; 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯=. 综上所述,应选用19n =比较恰当.本试题为“概率统计”类型,属于中档试题,考查频率、概率、分布列、数学期望等基础知识,以及统计思想的应用和数据处理、分析等方面的能力.本试题背景公平,叙述简明易懂;情境新颖,不落俗套,由文字语言和“柱状图”共同提供数据和信息,考查应用意识和解决实际问题的能力.本试题分小题设问,前问的数据既是解答本问的依据,又是解答后问的依据;密切结合教材,既在情理之中,又有意料之外,考查数学的重点内容,以及基本的数学思想方法.本试题问题所涉及的数学知识和方法有一定的深度和广度.对于随机变量X 的每个取值,事件可以分解为独立事件的“积事件”,以及互斥事件的“和事件”,考生的错误在于缺少“基本事件”意识,概率计算公式列错,考查考生提取有价值数据的意识,以及化繁为简的解题策略;对于费用的期望,考生的错误在于按照思维惯性、列出费用的分布列后按照通常求期望的方法求解,考查考生挖掘数据价值、按照数学期望的本质含义求解的创新意识和能力.本试题立意深刻,突出数学在解决实际问题时的价值取向和应用价值.试题中以“现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图”诱导考生的数据思维,向他们传递面对实际问题时的基本做法、基本态度和基本观点,进行“数学育人”;试题中“以频率代替概率”、“以购买易损零件所需费用的期望值为决策依据”导引考生的价值取向,引导他们按照数据处理的结果展开分析,用“数学的方式”,用数据说话、作出统计推断、进行科学决策.3.考纲解读应用意识体现在:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.象前面的题目一样,核心在“建模”、“说明”上.应用能力不但强调“建模”、“说明”,而且强调“解模”:如湖南2019年理科第20题“L 路径”问题,建立的函数模型含有多个绝对值,对考生分类整合、解模能力要求相当高,令绝大多数考生望而止步 .4.备考建议:(1)顺应心理诉求,建构数据相关知识.近年来,随着互联网、云计算、手持及移动技术等现代信息技术的飞速发展及应用,人类进入大数据时代.数学高考按照“数学考试的内容和形式都应当有利于中学数学课程改革”的命题思路,2019年高考数学全国新课标试卷加大了“数据分析”的考查力度.上述试题,300多个字符,另加“柱状图”,要求考生能够从给定的大量信息材料中提取有用、有价值的数据,运算求解,分类整合,分析概括一些结论,并能将其应用于解决问题或做出新的判断.“数据分析”是我国高中数学课程标准在修订中提出的六大核心素养(数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析)之一,它包括“数据获取、数据分析、知识建构”三个维度.“数据”不仅指数字,而且指事实或观察的结果,是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等;数据和信息是不可分离的,数据是信息的表达,信息是数据的内涵.“大数据”是从信息量考虑的,具有规模大 (大量:Volume)、类型多 (多样:Variety)、速度快 (高速:Velocity)、价值密度低 (价值:Value)的“4V”特征.尽管新授课关注不够,但在高考复习中,教师还是应该顺应大数据时代学生的心理诉求,关注象上述试题那样“背景新颖、信息量大”的试题或模考题,让学生有机会经历“从大量数据中抽取对研究问题有用的信息”的全过程,建构数据的相关知识.(2)搭建互动平台,培养数据分析能力.数据分析能力集中体现在会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断等方面.其中收集、存储数据是基础,抽取、。
2019年高考试题分析
七、给新一届高三的复习建议
高考是选拔性考试,近两年来,概率题的难度逐步加强,并开始 与其它知识点结合考查,新一届高三学生要加强对知识点的理解, 加强综合题目的训练,要更加注重知识点之间的联系。在备考方 面,我个人认为:近年来,新课标Ⅰ卷的题目稳中有新,逐步过 渡,新一届高三学生应加强逻辑推理、数学建模、运算能力、数 据分析等数学核心素养的培养。
4、综合考查数学学科素养
本次试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴, 体现数学原理和方法在解决问题中的价值和作ห้องสมุดไป่ตู้。比如,理科Ⅰ 卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦” 为背景设置了排列组合试题,体现了中国古代的哲学思想。进一 步体现中华传统文化博大精深、有利于在中学数学教育中激发学 生学习数学的热情,提高对数学史的认识,对中学的素质教育有 很好的导向和促进作用。
谢谢大家!欢迎大家批评指正!
2、体现“德育”渗透和引导
2019年高考数学科命题结合学科特点,站在落实“五育”方针的 高度进行整体设计,理科Ⅰ卷第(15)题引入了非常普及的乒乓 球运动,以其中普遍存在的比赛结果的预估和比赛场次的安排提 出问题,要求考生应用数学方法分析、解决体育问题。文科Ⅰ卷 第(6)题设置了学校对学生体质状况进行调查的情境,考查学 生的抽样调查知识。这些试题在考查学生数学知识的同时,引导 学生加强体育锻炼,体现了对学生的体育教育。此外,文科Ⅰ卷 第(17)题以商场服务质量管理为背景设计,体现对服务质量的 要求,倡导高质量的劳动成果,引导学生关注劳动、尊重劳动、 参加劳动,体现了劳动教育的要求。
3、考查考生灵活应变的能力
2019年高考数学试题,重点考查考生的理性思维和逻辑推理能力。 试卷注重对高中主干知识的考查,在试题排列顺序上依然是由易到 难,循序渐进。在整体平稳基础上,对主观题的设计进行了适当 的调整。主观题在各部分内容的布局和考查难度上进行动态设计, 打破了过去压轴题的惯例。这些改革释放了一个明显的信号:对 重点内容的考查,在整体符合《考试大纲》和《考试说明》要求 的前提下,在各部分内容的布局和考查难度上都可以进行调整和 改变,这在一定程度上有助于考查考生灵活应变的能力和主动调 整适应的能力,有助于学生全面学习掌握重点知识和重点内容, 同时有助于破解僵化的应试教育。
2019年高考全国二卷数学试题评析
四、说模考
--有的放矢,循序渐进
这是一个信号,必修5的19题数列题和以往变 化较大,证明及求数列通项,没有数列求和。 试题分布较往年有很大变化。解答题20题是必 修1的函数单调性及零点问题结合选修2-2的导 数与应用,第21题为必修2的平面解析几何初 步和选修2-1的圆锥曲线综合题,涉及不等式 的知识点,第22题极坐标与参数方程单单只考 求极坐标方程。23题的不等式选讲,这样的解 答题顺序似乎更吻合教材的编排次序,层层推 进,循序渐进。
3、重视通性通法,注重数学思想
试题谈化特殊技巧,注重通法解决问题, 例如11题双曲线中圆与圆相交的弦长和半焦距 相等,求离心率,12题函数考察了函数图像平 移和伸缩变换等问题,整个试卷考查函数与方 程思想,分类讨论思想,化归思想等重要数学 思想。
4、贴近实际生活,旨在数学应用
试题中很多与时代发展相结合,第4题嫦 娥四号探测器,文科第5题以“一带一路”为 情境进行设计,第13题高铁列车发展成果为背 景,理科16题以非常普及的乒乓球运动提出问 题,文科19题以企业生产为背景,引导学生关 注数学的社会价值。
二、试题特点
1、试题整体稳定, 结构略有调整
1、试题整体稳定,结构略有调整
今年高考数学试卷延续了全国数学新课标卷稳 中求变的风格,在大题部分题目次序上有很大 改变,但是立体几何,概率,数列的难度和考 察方向与往年还是有变化的,导数与往年相比 运算量减小,但选择是考点是讨论单调性和证 明零点和切线问题,需要学生掌握“隐零点替 换”技巧,对学生思维要求较高,体现了函数 与方程、整体代换思想,感觉本题入手困难, 想得满分困难,
(一)、2019届高考复习的得与失
3、2018年高考中体现出的题序变化认识不到位 题序变化实际是难度变化,原以为只是立体几何
2019年高考数学试题评析
2019年高考全国卷Ⅰ理科数学试卷点评一、总体评价2019年高考数学命题严格依据考试大纲,重点考察数学的基础知识和应用,试题稳中求新,稳中求变,较2018年压轴题有较大变化,整体难度合理。
二、试题特点1.突出主干,强调本质2019年高考全国卷Ⅰ理科数学试卷突显了主干知识的价值,强化了对三角函数和函数与导数(39分)、数列(10分)、立体几何(17分)、解析几何(22分)、统计与概率(17分)等核心主干知识的考查力度。
这与新高考改革所倡导“突出独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力的考查,突出对数学思想方法的理解,重视数学核心素养考查”的思想是契合的。
2.强化思维,有效区分不同思维层次的考生今年试题非常侧重对逻辑推理能力、分析问题和解决问题的能力的考查。
命题从知识立意到能力立意,再从能力立意发展到学科素养立意,目的就是以数学知识为载体,培养学生的理性思维和数学精神,考查考生理性思维的广度和深度,满足了高校对人才选拔的需求(如压轴题20和21题)。
3. 强调数学理论与实践相结合通过设置真实的问题情境,引导学生从“解题”到“解决问题”能力的培养,使得学生能灵活应用所学知识进行分析问题与解决问题,提高学生学习数学兴趣(如21题)。
同时增强数学文化浸润,试题注意吸收世界数学文化的精华,引导学生热爱数学文化。
4. 注重基础,突出能力2019年高考数学卷Ⅰ理科数学命题严格遵循了《考试大纲》和《数学课程标准》的要求。
试题总体难度平缓,背景公平,容易题、中档题和难题的比例基本是3:5:2。
试卷注重基础,解题思路常规,大多数试题都是以往高考和课本作业题适度拓展改编,即使是高区分度试题也是以中学数学主干知识和主要思想方法为载体的,较对比2018,选填变换增加:1道数学文化,1道概率;减少:排列组合和二项式定理模块,三视图;解答题压轴题由以往的导数调整为概率数列综合,而导数作为第二压轴题;选做题由解绝对值调整为不等式的证明。
2019届高考数学全国卷近五年试题评析及命题趋势分析预测
2013
[命题分析] 1.高考对导数的几何意义的考查,多在选择、填空题中出现, 难度较小. 2.高考重点考查导数的应用,即利用导数研究函数的单调性、 极值、最值问题,多在选择、填空的后几题中出现,难度中等.有时 也会作为压轴题出现,属于综合性问题,难度中等偏上. 3.近几年全国课标卷对定积分及其应用的考查极少,题目一般比 较简单,但也不能忽略.
(三)平面向量
年份 2018 卷别 具体考查内容及命题位置
Ⅰ卷 ห้องสมุดไป่ตู้面向量的线性运算·T6
Ⅱ卷 平面向量数量积的运算·T4 Ⅲ卷 平面向量的坐标运算及共线问题·T13
2017
2016
Ⅰ卷 向量模的运算·T13
甲卷 向量垂直的应用·T3 乙卷 向量模的运算·T13
丙卷 向量的夹角问题·T3
2015 2014 Ⅰ卷 平面向量的线性运算·T7 Ⅱ卷 平面向量共线定理的应用·T13
(七)统计与统计案例
年份 2018 2017 卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅲ卷 统计图表·T3 回归分析及应用·T18 茎叶图及独立性检验·T18 折线图·T3 统计图表的应用·T4 折线图、相关性检验、线性回归方程及其应用·T18 散点图、求回归方程、回归分析·T19 条形图、两变量间的相关性·T3 频率分布直方图、用样本的数字特征估计总体的数 字特征、正态分布、数学期望·T18 线性回归方程及其应用、最小二乘法·T19 具体考查内容及命题位置
(二)函数的图象与性质
年份 2018 卷别 Ⅰ卷 Ⅱ卷 具体考查内容及命题位置 函数图象的判断·T3 函数的奇偶性、对称性、周期性·T11