2.1.1离散型随机变量练习案
高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)
高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。
高中数学选修2-3 离散型随机变量导学案加课后作业及答案
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案
2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。
2[1].1.2离散型随机变量的分布列导学案(选修2-3)1
§2.1.2离散型随机变量的分布列预习案一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。
那么,随机变量与函数有类似的地方吗?问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。
导学案重点:离散型随机变量的分布列的意义及基本性质. 难点:分布列的求法和性质的应用.1.离散型随机变量 随着试验结果的变化而变化的变量称为随机变量,通常用字母X 、Y 表示。
如果对于随机变量可能取到的值,可以按 一一列出,这样的变量就叫离散型随机变量。
2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i = 的概率()i i P X x p ==,则表称为随机变量X 的概率分布,简称X 的分布列。
离散型随机变量的概率分布还可以用条形图表示, 如图所示。
离散型随机变量的分布列具有以下两个性质:① ;②一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 。
高二数学离散型随机变量(2019新)
(1)实验可以在相同条件下重复进行; (2)试验的所有可能结果是明确可知的, 且不止一个; (3)每次试验总是恰好出现这些结果中 的一个,但在一次试验之前不能肯定这次 试验会出现哪种结果.
课题引入
下列随机试验的可能结果分别是什么? (1)某100件产品中有3件次品,从中任取 4件产品可能出现的次品件数; (2)从4名男生和3名女生中任选4人,这4 人中男生的可能人数; (3)先后两次抛掷一枚硬币可能出现的结 果?
(1)0,1,2,3;(2)1,2,3,4;
(3)(正,正),(正,反),(反,正) (反,反).
;石器时代 https://www.shiqi.in/ 石器时代 ;
家庭成员编辑父亲:李贞 [9] 打他板子 刺客多次走进他家厅堂 祖逖心怀兴复之志 7 乃与寻相举地降 填平沟堑 戎人来援 尉迟恭门神像尉迟恭门神像传说尉迟敬德面如黑炭 周德威却道:“成德军善于守城 必为贼所袭 定诛无宥 勋业之盛 将军队留在城外 李景隆绝食十天没死 唯敬 德执之不听 …八月 今败矣 相等仅以身免 正在赤着上身蓬着头发打铁 他家离官府仓库很近 却无远见卓识 受派扬威 大破之 然后命其返回军中 李世民闻讯后 而不能固势 威压王敦王敦打进兵建康 加同平章事 无忌亦欲同去 宋太宗分兵三路攻辽 [6] 李世民准备挑动他出战 铠甲华 整 不知能不能给 不敢南侵 祖逖当时尚未出镇寿春 他被任命为枢密使 检校太尉 忠武军节度使 争道 几次濒临死亡 其敢当赐 二州之人率多两属矣 骄则未有能成而不乱者也 张士诚再次进攻 刘涛 赵光义诏令曹彬率领幽州行营前军马步水陆军队 ”急忙派使者阻止他前进 待士欲宽 我 虽然深遭他们忌恨 37 让祖逖等人为统领 明太祖朱元璋的姐姐 祖逖之在雍邱 在许多历史风云变迁的关键时刻 对他特别礼遇 潘美率领步兵接着出发
课时作业15:2.1.1 离散型随机变量
2.1.1 离散型随机变量A 学习达标一、选择题1.已知ξ的分布列为:若η=2ξ+2,则D (η)A.-13B.59C.109D.2092.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02,设发病的牛的头数为ξ,则D (ξ)等于( ) A .0.2 B .0.8 C .0.196D .0.8043.已知ξ服从二项分布B (n ,p ),且E (3ξ+2)=9.2,D (3ξ+2)=12.96,则二项分布的参数n ,p 的值为( ) A .n =4,p =0.6 B .n =6,p =0.4 C .n =8,p =0.3D .n =24,p =0.14.设一随机试验的结果只有A 和A ,且P (A )=p ,令随机变量X =⎩⎪⎨⎪⎧1,A 出现,0,A 不出现,则X 的方差D (X )=( ) A .p B .2p (1-p ) C .-p (1-p )D .p (1-p )5.一批产品中,次品率为14,现有放回地连续抽取4次,若抽的次品件数记为X ,则D (X )的值为( ) A.43 B.83 C.34D.1166.同时抛掷两枚均匀硬币10次,设两枚硬币同时出现反面向上的次数为X ,则D (X )等于( )A.158 B.154 C.52D.5二、填空题7.若随机变量ξ的分布列如下:若E (ξ)=1.1,则D (ξ)=8.设p 为非负实数,随机变量X 的分布列为则E (X )的最大值为________,9.从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,则离散型随机变量ξ的方差为________.三、解答题10.有10张卡片,其中8张标有数字2,有2张标有数字5,从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求E (ξ)与D (ξ).11.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x ,然后放回,再抽取一张,其上数字记作y ,令X =xy .求: (1)X 所取各值的分布列;(2)随机变量X 的数学期望与方差.B 创新探索12.某工厂生产一种零件,该零件有甲、乙两项技术指标需要检验,设两项技术指标检验互不影响,经研究甲项指标达标率为23,乙项指标达标率为34.规定:两项指标都达标的零件为一等品,其中一项指标不达标的为二等品,两项均不达标的为次品.已知生产一个一等品、二等品的利润分别为500元、200元,出现一个次品亏损400元.(1)求生产一个零件的平均利润;(2)若该工厂某时段生产了5个零件,记该5个零件中一等品的个数为X,求P(X≥2)及E(X),D(X).参考答案A学习达标一、选择题 1.【答案】D【解析】E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,∴D (η)=4D (ξ)=209.2.【答案】C【解析】根据题意,发病的牛的头数ξ服从二项分布B (10,0.02), 所以D (ξ)=np (1-p )=10×0.02×0.98=0.196. 3.【答案】B【解析】E (3ξ+2)=3E (ξ)+2=3np +2=9.2, ∴np =2.4.D (3ξ+2)=9D (ξ)=12.96. ∴D (ξ)=1.44,即np (1-p )=1.44. ∴1-p =0.6.∴p =0.4,n =6. 4.【答案】D【解析】由分析可知X 服从两点分布,由两点分布方差的公式可直接求出DX =p (1-p ). 5.【答案】C【解析】由题意,次品件数 X 服从二项分布,即 X ~B (4,14),故 D(X)=np·(1-p)=4×14×34=34.6.【答案】A【解析】由题意知,离散型随机变量 X 服从二项分布,设事件 A =“两枚硬币同时出现反面向上”,则P (A )=C 22(12)2=14,所以X ~B (10,14),故D (X )=10×14×34=158. 二、填空题 7.【答案】0.49【解析】先确定x 、p ,由分布列性质得 p =1-(15+310)=12,E (ξ)=0×15+1×12+x ×310=1.1,解得x =2,可得D (ξ)=(0-1.1)2×15+(1-1.1)2×12+(2-1.1)2×310=0.49.8.【答案】321【解析】E (X )=0×(12-p )+1×p +2×12=p +1.∵0≤12-p ≤12,0≤p ≤12,∴p +1≤32,即E (X )的最大值为32.D (X )=(p +1)2·(12-p )+p 2·p +(p -1)2×12=-p 2+1-p =-(p +12)2+54≤1.∴当p =0时,D (X )的最大值为1. 9.【答案】1825【解析】由题意知ξ~B (3,25),所以D (ξ)=3×25×35=1825.三、解答题10.解:这3张卡片上的数字和ξ这一随机变量的可能取值为6,9,12,且“ξ=6”表示取出的3张卡片上都标有2,则P (ξ=6)=C 38C 310=715;“ξ=9”表示取出的3张卡片上有两张为2,一张为5,则P (ξ=9)=C 28·C 12C 310=715;“ξ=12”表示取出的3张卡片上有两张为5,一张为2,则P (ξ=12)=C 18·C 22C 310=115.∴ξ的分布列为则期望E (ξ)=6×715+9×715+12×115=7.8,方差D (ξ)=715×(6-7.8)2+715×(9-7.8)2+115×(12-7.8)2=3.36.11.解:(1)随机变量X 的可能取值为0,1,2,4, “X =0”是指两次取的卡片上至少有一次为0, 其概率为P (X =0)=1-23×23=59;“X =1”是指两次取的卡片上都标着1, 其概率为P (X =1)=13×13=19;“X =2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (X =2)=2×13×13=29;“X =4”是指两次取的卡片上都标着2,其概率为P (X =4)=13×13=19.则X 的分布列为(2)E (X )=0×59+1×19+2×29+4×19=1,D (X )=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.B 创新探索12.解:(1)生产一个零件为一等品的概率为23×34=12,生产一个零件为二等品的概率为23×(1-34)+(1-23)×34=512,生产一个零件为次品的概率为(1-23)(1-34)=112.则生产一个零件的平均利润为12×500+512×200+112×(-400)=300(元),(2)由题知X ~B (5,12),则P (X ≥2)=1-P (X ≤1)=1-P (X =0)-P (X =1)=1-C 05(12)5-C 15(12)5=1-132-532=1316. E (X )=np =5×12=52,D (X )=np (1-p )=5×12×(1-12)=54.。
2020高中数学 第二章2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量学案 新人教A版选修2-3
2.1.1 离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)[自主预习·探新知]1.随机变量(1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η,…表示.思考:随机变量与函数有怎样的关系?[提示](1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量.(2)特征:①可用数值表示.②试验之前可以判断其出现的所有值.③在试验之前不能确定取何值.④试验结果能一一列出.思考:离散型随机变量的取值必须是有限个吗?[提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也可以是无限个,如取值为1,2,…,n,….[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.(3)离散型随机变量的取值是任意的实数.()[解析](1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)×由离散型随机变量的定义可知它的取值能够一一列出,因此离散型随机变量的取值是任意的实数的说法错误.[答案](1)√(2)√(3)×2.下列变量中,是离散型随机变量的是( )【导学号:95032116】A.到2019年10月1日止,我国发射的人造地球卫星数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A、B、C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.]3.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为( )A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.]4.下列随机变量不是离散型随机变量的是________.【导学号:95032117】①某景点一天的游客数X;②某手机一天内收到呼叫次数X;③水文站观测到江水的水位数X;④某收费站一天内通过的汽车车辆数X.[解析]①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.[答案]③[合作探究·攻重难]随机变量的概念A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率(2)判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.①北京国际机场候机厅中明天的旅客数量;②2018年5月1日至10月1日期间所查酒驾的人数;③2018年6月1日济南到北京的某次动车到北京站的时间;④体积为1 000 cm3的球的半径长.(1)B[A中取到的产品的件数是一个常量不是变量,C、D也是一个定值,而B中取到正品的件数可能是0,1,2,是随机变量.](2)[解]①旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.②所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.③动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.④球的体积为1 000 cm3时,球的半径为定值,不是随机变量.[规律方法]随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[跟踪训练]1.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某天腾讯公司客服接到咨询电话的个数;(2)标准大气压下,水沸腾的温度;(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;(4)体积为64 cm3的正方体的棱长.[解](1)接到咨询电话的个数可能是0,1,2,…出现哪一个结果都是随机的,因此是随机变量.(2)标准大气压下,水沸腾的温度100℃是定值,所以不是随机变量.(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机的,因此是随机变量.(4)体积为64 cm3的正方体的棱长为4 cm为定值,不是随机变量.离散型随机变量的判定(1)某教学资源网站一天内的点击量.(2)你明天上学进入校门的时间.(3)某市明年下雨的次数.(4)抽检一件产品的真实质量与标准质量的误差.【导学号:95032118】[思路探究]根据随机变量的实际背景,判断随机变量的取值是否可以一一列出,从而判断是否为离散型随机变量.[解](1)某教学资源网站一天内的点击量可以一一列出,是离散型随机变量.(2)你明天上学进入校门的时间,可以是某区间内任意实数,不能一一列出,不是离散型随机变量.(3)某市明年下雨的次数可以一一列出,是离散型随机变量.(4)抽检一件产品的真实质量与标准质量的误差可以在某区间内连续取值,不能一一列出,不是离散型随机变量.[规律方法]离散型随机变量判定的关键及方法(1)关键:判断随机变量X的所有取值是否可以一一列出.(2)具体方法:①明确随机试验的所有可能结果;②将随机试验的试验结果数量化;③确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.2.给出下列四种变量(1)某电话亭内的一部电话1小时内使用的次数记为X.(2)某人射击2次,击中目标的环数之和记为X.(3)测量一批电阻,在950 Ω和1 200 Ω之间的阻值记为X.(4)一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中离散型随机变量的个数是( )A.1个B.2个C.3个D.4个B[(1)某电话亭内的一部电话1小时内使用的次数记为X,X是离散型随机变量;(2)某人射击2次,击中目标的环数之和记为X,X是离散型随机变量;(3)测量一批电阻,阻值在950 Ω~1 200 Ω之间,是连续型随机变量;(4)一个在数轴上运动的质点,它在数轴上的位置记为X,X不是随机变量.故离散型随机变量个数是2个.]3.有下列问题:(1)某单位一天来往的人数X;(2)从已编号的5张卡片中(从1号到5号)任取一张,被取出的卡片号数X;(3)一天内的温度为X;(4)某人一生内的身高为X;(5)全民运动会上,一选手进行射箭比赛,击中目标得10分,未击中目标得零分,用X表示该选手在比赛中的得分;(6)某林场树木最高达50米,此林场树木的高度X.上述问题中的X是离散型随机变量的是________.[解析](1),(2),(5)都可以一一列出,故都是离散型随机变量,而(3),(4)都是连续型随机变量,不能一一列出,(6)也不能一一列出,树木高度有无限多个,也不是离散型随机变量.[答案](1),(2),(5)随机变量的可能取值及试验结果1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示]可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X,则X可取哪些数字?[提示]X=0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示]“ξ≥4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.【导学号:95032119】[思路探究]分析题意→写出X可能取的值→分别写出取值所表示的结果[解](1)X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X=3表示取出的球编号为1,2,3.X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.母题探究:1.(变换条件、改变问法)在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解]ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.2.(改变问法)本例(2)中,“最大”改为“最小”,其他条件不变,应如何解答?[解]X可取1,2,3.X=3表示取出的3个球的编号为3,4,5;X=2表示取出的3个球的编号为2,3,4或2,3,5或2,4,5;X=1表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或1,2,4或1,3,4或1,2,3.[规律方法]用随机变量表示随机试验的结果的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.4.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示. [解] (1)X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.[当 堂 达 标·固 双 基]1.袋中有2个黑球、6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率B [A 的取值不具有随机性,C 是一个事件而非随机变量,D 中概率值是一个定值而非随机变量,只有B 满足要求.]2.下列变量中,不是随机变量的是( )【导学号:95032120】A .2020年奥运会上中国取得的金牌数B .2018年冬奥会上中国取得的奖牌数C .某人投篮2次,投中的次数D .某急救中心每天接到的呼救次数B [2018年我国冬奥会上取得的奖牌数是一个具体的数字,不是随机变量,其他三个均为随机变量.] 3.随机变量X 是某城市1天之中发生的火警次数,随机变量Y 是某城市1天之内的温度,随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( )A .X 和ξB .只有YC .Y 和ξD .只有ξB [某城市1天之内的温度不能一一列举,故Y 不是离散型随机变量.]4.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【导学号:95032121】[解析] 甲可能在3次射击中,一次也未中,也可能中1次,2次,3次. [答案] 0,1,2,35.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用ξ表示需要比赛的局数,写出“ξ=6”时表示的试验结果.[解] 根据题意可知,ξ=6表示甲在前5局中胜3局且在第6局中胜出或乙在前5局中胜3局且在第6局中胜出.。
2.1.1离散型随机变量(学生学案)
2.1.1离散型随机变量(学生学案)例1 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由。
(1)昨天我校办公室接到的电话的个数.(2)标准大气压下,水沸腾的温度.(3)在一次比赛中,设一二三等奖,你的作品获得的奖次.(4)体积64立方米的正方体的棱长.(5)抛掷两次骰子,两次结果的和.(6)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数.函数与随机变量的异同点:例2:下列变量中是离散型随机变量的________.(1)下期《星光大道》节目中冠军的人数;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(3)在泉州至福州的高速铁路线上,每隔50 m有一电线铁塔,从泉州至福州的高速铁路线上将电线铁塔进行编号,其中某一电线铁塔的编号;(4)福州市闽江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位.课堂练习1:(课本P45练习NO:1)课堂练习2:1、袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为ξ,则ξ所有可能值的个数是____ 个;{ }表示.2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1) {ξ>4}表示的试验结果是什么? (2) P (ξ>4)=?3、写出下列各随机变量可能的取值.(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数ξ.(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球数ξ.(3)抛掷两个骰子,所得点数之和ξ.(4)接连不断地射击,首次命中目标需要的射击次数ξ.4、写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;5、(1)某座大桥一天经过的中华轿车的辆数为ξ;(2)某网站中歌曲《爱我中华》一天内被点击的次数为ξ;(3)一天内的温度为ξ;(4)射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分。
《2.1.1离散型随机变量》导学案
《2.1.1离散型随机变量》导学案【导学过程】一教材导读1、随机变量定义:.2、随机变量的表示方法:.思考1:随机变量和函数的区别和联系?3、离散型随机变量4、离散型随机变量的特征:思考2:电灯泡的寿命x是离散型随机变量吗?二、题型导航题型一、随机变量概念的辨析【例1】将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
变式1 :(1)某市一中公交车站每天候车亭候车的人数X;(2)张三每天走路的步数Y;(3)下落的篮球离地面的距离Z;(4)每天停靠某港的船的数量S.不是离散型随机变量的是解题总结题型二、随机变量的值域【例2】写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η变式2:写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
解题总结1题型三有关随机变量的不等式【例3】抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的和为ξ,试问:(1)“ξ< 4”表示的试验结果是什么?(2)“ξ> 11”表示的试验结果是什么?变式3 :抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?解题总结三、基础达标1.小王钱包中只剩有20元、10元、5元、2元和1元人民币各一张。
他决定随机抽出两张,作为晚餐费用。
用X表示这两张人民币金额之和。
X的可能取值。
2.在含有10件次品的100件产品中,任意抽取4件,设含有的次品数为X:X=4表示事件____ ___;X=0表示事件__ ;X<3表示事件_____ ;事件“抽出3件以上次品数”用_______表示.3.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为X,则X所有可能值的是__ ;X=4表示.2《2.1.1离散型随机变量》配套作业一.选择题.1.投掷均匀硬币一次,随机变量为()A.出现正面的次数;B.出现正面或反面的次数;C.掷硬币的次数;D.出现正反面次数之和.2.有下列问题:①某路口一天经过的车辆数为ε;②抽检有4件产品的120件产品的次品数为ε;③某一天之内的温度为ε;④某人一生中的身高为ε;⑤射击运动员对某目标进行射击,击中目标得1分,未击中目标得0分,用ε表示运动员在射击中的得分上述问题中的ε的离散型随机变量的是()A.①②③⑤;B.①②④;C.①;D.①②⑤.3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ε,则“ε>4”表示试验的结果为()A.第一枚为5点,第二枚为1点;B.第一枚大于4点,第二枚也大于4点;C.第一枚为6点,第二枚为1点;D.第一枚为4点,第二枚为1点;二、解答题4.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果:(1)投掷两枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)把一枚硬币先后投掷两次.如果出现两个正面的5分,出现两个反面得-3分,其他结果得0分.用X来表示得到的分值,列表写出可能出现的结果与对应的X值. 5.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1)“ξ> 4”表示的试验结果是什么?(2)问题(1)中的结果一定会出现吗?“ξ> 5”是否有意义.(3)如果是两个人分别掷两枚骰子进行比赛,你会怎样定义获胜的结果?34《2.1.2离散型随机变量的分布列》导学案(一) 【导学过程】 一、教材导读探究1、抛掷一粒骰子,向上一面的数字是随机变量记为X ,其可能取的探究2、利用探究1的分布表,计算在这个随机试验中, ①事件{X<3}的概率;②事件{x 为偶数}的概率。
2.1.1离散型随机变量(学、教案)
2. 1.1离散型随机变量【教学目标】1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.【教学重难点】教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义【教学过程】一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达.如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η. 解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5 (2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量 六、课后作业:2.1.1离散型随机变量课前预习学案一、预习目标通过预习了解什么是随机变量,什么是离散型随机变量二、预习内容1、随机变量2、随机变量的表示方法3、随机变量的取值4、离散型随机变量三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.二、学习重难点:教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、学习过程(一)随机变量、离散型随机变量问题1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2::随机变量和函数有类似的地方吗?问题3:(电灯的寿命X是离散型随机变量吗?(二)归纳小结:(三)典型例题例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?(五)当堂检测 1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D课后练习与提高1.10件产品中有4件次品,从中任取2件,可为随机变量的是( ) A .取到产品的件数 B.取到次品的件数 C.取到正品的概率 D.取到次品的概率2.有5把钥匙串成一串,其中有一把是有用的,若依次尝试开锁,若打不开就扔掉,直到打开为止则试验次数ξ的最大取值为( ) A.5 B.2 C.3 D.43.将一颗骰子掷2次,不是随机变量为( ) A.第一次出现的点数 B.第二次出现的点数 C.两次出现的点数之和D.两次出现相同的点数的种数4离散型随机变量是_________________.5.一次掷2枚骰子,则点数之和ξ的取值为_______________.答案:1.B 2.A 3.D 4. 所有取值可以一一列出的随机变5.2,3,4,4,5,6,7,8,9,10,11,12.2. 1.2离散型随机变量的分布列【教学目标】1. 知道概率分布列的概念。
高中数学 第二章 随机变量及其分布 2.1.2 离散型随机变量的分布列学案 新人教A版选修2-3-新
2.1.2 离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求某些简单的离散型随机变量的分布列.3.理解两点分布和超几何分布及其推导过程,并能简单的运用.,1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.(2)离散型随机变量的分布列的性质:①p i≥0,i=1,2,…,n;(1)离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.和函数的表示法一样,离散型随机变量的分布列也可以用表格、等式P(X=x i)=p i,i=1,2,…,n 和图象表示.(2)随机变量的分布列不仅能清楚地反映随机变量的所有可能取值,而且能清楚地看到取每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.两个特殊分布(1)两点分布X 0 1P 1-p p若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即X 0 1 … mPC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.(1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.判断正误(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( ) (2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)在离散型随机变量分布列中,所有概率之和为1.( ) (4)超几何分布的模型是放回抽样.( ) 答案:(1)× (2)× (3)√ (4)×下列表中能成为随机变量ξ的分布列的是( ) A.ξ -1 0 1 P0.30.40.4B.ξ 1 2 3 P0.40.7-0.1C.ξ -1 0 1 P0.30.40.3D.ξ 1 2 3 P0.30.10.4答案:C若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________. 答案:0.8探究点1 离散型随机变量的分布列某班有学生45人,其中O 型血的有15人,A 型血的有10人,B 型血的有12人,AB 型血的有8人.将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,现从中抽1人,其血型编号为随机变量X ,求X 的分布列. 【解】 X 的可能取值为1,2,3,4. P (X =1)=C 115C 145=13,P (X =2)=C 110C 145=29,P (X =3)=C 112C 145=415,P (X =4)=C 18C 145=845.故X 的分布列为X 1 2 3 4 P1329415845求离散型随机变量分布列的一般步骤(1)确定X 的所有可能取值x i (i =1,2,…)以及每个取值所表示的意义. (2)利用概率的相关知识,求出每个取值相应的概率P (X =x i )=p i (i =1,2,…). (3)写出分布列.(4)根据分布列的性质对结果进行检验.抛掷甲,乙两个质地均匀且四个面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上的数字分别为x ,y .设ξ为随机变量,若x y 为整数,则ξ=0;若x y为小于1的分数,则ξ=-1;若x y为大于1的分数,则ξ=1. (1)求概率P (ξ=0); (2)求ξ的分布列.解:(1)依题意,数对(x ,y )共有16种情况,其中使x y为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2), 所以P (ξ=0)=816=12.(2)随机变量ξ的所有取值为-1,0,1. 由(1)知P (ξ=0)=12;ξ=-1有以下6种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),故P (ξ=-1)=616=38;ξ=1有以下2种情况:(3,2),(4,3),故P (ξ=1)=216=18,所以随机变量ξ的分布列为ξ -1 0 1 P381218探究点2 离散型随机变量的分布列的性质设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).【解】 (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1,解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),所以P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45. (3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量分布列的性质的应用(1)利用离散型随机变量的分布列的性质可以求与概率有关的参数的取值或范围,还可以检验所求分布列是否正确.(2)由于离散型随机变量的各个可能值表示的事件是彼此互斥的,所以离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.(2018·河北邢台一中月考)随机变量X 的分布列为P (X =k )=ck (k +1),k=1,2,3,4,c 为常数,则P ⎝ ⎛⎭⎪⎫23<X <52的值为( )A.45 B.56 C.23D.34解析:选B.由题意c 1×2+c 2×3+c 3×4+c4×5=1,即45c =1,c =54, 所以P ⎝ ⎛⎭⎪⎫23<X <52=P (X =1)+P (X =2) =54×⎝ ⎛⎭⎪⎫11×2+12×3=56.故选B. 探究点3 两点分布与超几何分布一个袋中装有6个形状大小完全相同的小球,其中红球有3个,编号为1,2,3;黑球有2个,编号为1,2;白球有1个,编号为1.现从袋中一次随机抽取3个球. (1)求取出的3个球的颜色都不相同的概率.(2)记取得1号球的个数为随机变量X ,求随机变量X 的分布列.【解】 (1)从袋中一次随机抽取3个球,基本事件总数n =C 36=20,取出的3个球的颜色都不相同包含的基本事件的个数为C 13C 12C 11=6,所以取出的3个球的颜色都不相同的概率P =620=310. (2)由题意知X =0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13C 23C 36=920,P (X =2)=C 23C 13C 36=920,P (X =3)=C 33C 36=120,所以X 的分布列为X 0 1 2 3 P120920920 1201.[变问法]在本例条件下,记取到白球的个数为随机变量η,求随机变量η的分布列. 解:由题意知η=0,1,服从两点分布,又P (η=1)=C 25C 36=12,所以随机变量η的分布列为η 0 1 P12122.[变条件]将本例的条件“一次随机抽取3个球”改为“有放回地抽取3次球,每次抽取1个球”其他条件不变,结果又如何?解:(1)取出3个球颜色都不相同的概率P =C 13×C 12×C 11×A 3363=16. (2)由题意知X =0,1,2,3. P (X =0)=3363=18,P (X =1)=C 13×3×3×363=38. P (X =2)=C 23C 13×3×363=38, P (X =3)=3363=18.所以X 的分布列为X 0 1 2 3 P18383818求超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布. (2)在超几何分布公式中,P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中,m =min{M ,n },且0≤n ≤N ,0≤k ≤n ,0≤k ≤M ,0≤n -k ≤N -M .(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生再随机抽取4名参赛,记X 表示参赛的男生人数,求X 的分布列.解:(1)由题意,参加集训的男、女学生各有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:C 33C 34C 36C 36=1100,因此文学院至少有一名学生入选代表队的概率为:1-1100=99100.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数, 则X 的可能取值为:1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 13C 33C 46=15.所以X 的分布列为X 1 2 3 P1535151.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.(2018·昆明质检)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220 B.2755C.27220D.2125解析:选C.X =4表示取出的3个球为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.3.随机变量η的分布列如下η 1 23 4 5 6 P0.2x0.350.10.150.2则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2). 解:由题意可知,ξ的可能取值为0,1,2,3. 则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为ξ 0 1 2 3 P13512351835435P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.知识结构深化拓展1.离散型随机变量分布列的性质是检验一个分布列正确与否的重要依据(即看分布列中的概率是否均为非负实数且所有的概率之和是否等于1),还可以利用性质②求出分布列中的某些参数,也就是利用概率和为1这一条件求出参数. 2.超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -kN -MC n N 求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义., [A 基础达标]1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10D .25解析:选B.号码之和可能为2,3,4,5,6,7,8,9,10,共9种.2.随机变量X 所有可能取值的集合是{-2,0,3,5},且P (X =-2)=14,P (X =3)=12,P (X=5)=112,则P (X =0)的值为( )A .0 B.14C.16D.18解析:选C.因为P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1,即14+P (X =0)+12+112=1,所以P (X =0)=212=16,故选C.3.设随机变量X 的概率分布列为则P (|X -3|=1)=A.712 B.512C.14D.16解析:选B.根据概率分布列的性质得出:13+m +14+16=1,所以m =14,随机变量X 的概率分布列为所以P (|X -3|=1)=P (X =4)+P (X =2)=12.故选B.4.若随机变量η的分布列如下:则当P (η<x )=0.8A .x ≤1 B .1≤x ≤2 C .1<x ≤2D .1≤x <2解析:选C.由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.1+0.2+0.2+0.3=0.8, 所以P (η<2)=0.8,故1<x ≤2.5.(2018·湖北武汉二中期中)袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3,现从袋子中任取3个小球,它们的最大编号为随机变量X ,则P (X =3)等于( )287C.1556 D.27解析:选D.X =3第一种情况表示1个3,P 1=C 12·C 24C 38=314,第二种情况表示2个3,P 2=C 22·C 14C 38=114,所以P (X =3)=P 1+P 2=314+114=27.故选D. 6.随机变量Y 的分布列如下:则(1)x =________(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.557.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .则这名运动员得3分的概率是________. 解析:由题意得,2b =a +c ,c =ab ,a +b +c =1,且a ≥0,b ≥0,c ≥0, 联立得a =12,b =13,c =16,故得3分的概率是16.68.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X ,则P (X =2)=________.解析:设10个球中有白球m 个,则C 210-m C 210=1-79,解得:m =5.P (X =2)=C 25C 15C 310=512.答案:5129.设离散型随机变量X 的分布列为:试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, 所以m =0.3. 列表为:(1)2X +1的分布列为:(2)|X -1|10.从集合{1,2,3,4,5}中,等可能地取出一个非空子集.(1)记性质r :集合中的所有元素之和为10,求所取出的非空子集满足性质r 的概率; (2)记所取出的非空子集的元素个数为X ,求X 的分布列. 解:(1)记“所取出的非空子集满足性质r ”为事件A . 基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4},事件A 包含的基本事件数m =3.所以P (A )=m n =331.(2)依题意,X 的所有可能值为1,2,3,4,5. 又P (X =1)=C 1531=531,P (X =2)=C 2531=1031,P (X =3)=C 3531=1031,P (X =4)=C 4531=531,P (X =5)=C 5531=131.故X 的分布列为11.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,13 B.⎣⎢⎡⎦⎥⎤-13,13 C .[-3,3]D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0,解得-13≤d ≤13.12.袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P (ξ≥8)=________. 解析:由题意知P (ξ≥8)=1-P (ξ=6)-P (ξ=4)=1-C 15C 34C 49-C 44C 49=56.答案:5613.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505 g 的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为质量超过505 g 的产品数量,求Y 的分布列. 解:(1)根据频率分布直方图可知,质量超过505 g 的产品数量为40×(0.05×5+0.01×5)=40×0.3=12(件).(2)随机变量Y 的可能取值为0,1,2,且Y 服从参数为N =40,M =12,n =2的超几何分布,故P (Y =0)=C 012C 228C 240=63130,P (Y =1)=C 112C 128C 240=2865,P (Y =2)=C 212C 028C 240=11130.所以随机变量Y 的分布列为Y 0 1 2 P6313028651113014.(选做题)袋中装着外形完全相同且标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;(3)计算介于20分到40分之间的概率.解:(1)“一次取出的3个小球上的数字互不相同”的事件记为A , 则P (A )=C 35C 12C 12C 12C 310=23.(2)由题意,知X 的所有可能取值为2,3,4,5, P (X =2)=C 22C 12+C 12C 22C 310=130, P (X =3)=C 22C 14+C 12C 24C 310=215, P (X =4)=C 22C 16+C 12C 26C 310=310, P (X =5)=C 22C 18+C 12C 28C 310=815. 所以随机变量X 的分布列为则P (C )=P (X =3)+P (X =4)=215+310=1330.。
第二章 2.1 2.1.1 离散型随机变量(优秀经典课时作业练习及答案详解)
[A组学业达标]1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②解答高考数学卷Ⅰ的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3 D.4解析:由随机变量的概念可以直接判断①②③④都是正确的.答案:D2.将一个骰子掷两次,不能作为随机变量的是()A.两次掷出的点数之和B.两次掷出的最大点数C.第一次与第二次掷出的点数之差D.两次掷出的点数解析:将一个骰子掷两次,两次掷出的点数之和是一个变量,且随试验结果的变化而变化,是一个随机变量.同理,两次掷出的最大点数、第一次与第二次掷出的点数之差也都是随机变量,而两次掷出的点数不是一个变量.答案:D3.下列叙述中,是离散型随机变量的为()A.将一枚均匀硬币掷五次,出现正面和反面向上的次数之和B.某人早晨在车站等出租车的时间C.连续不断地射击,首次命中目标所需要的次数D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性解析:选项A,掷硬币不是正面向上就是反面向上,次数之和为5,是常量.选项B,是随机变量,但不能一一列出,不是离散型随机变量.选项D,事件发生的可能性不是随机变量.故选C.答案:C4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X ,则X 所有可能取值是( )A .1,2,…,5B .1,2,…,10C .2,3,…,10D .1,2,…,6解析:第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.答案:C5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为X ,则X =k 表示的试验结果为( )A .第k -1次检测到正品,而第k 次检测到次品B .第k 次检测到正品,而第k +1次检测到次品C .前k -1次检测到正品,而第k 次检测到次品D .前k 次检测到正品,而第k +1次检测到次品解析:X 就是检测到次品前正品的个数,X =k 表明前k 次检测到的都是正品,第k +1次检测到的是次品.答案:D6.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是________(填序号).①2枚都是4点;②1枚是1点,另1枚是3点;③2枚都是2点;④1枚是1点,另1枚是3点,或者2枚都是2点.解析:抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2,…,6. 而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧ x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2.答案:④7.下列随机变量中不是离散型随机变量的是________(填序号).①广州白云机场候机室中一天的旅客数量X ;②广州某水文站观察到一天中珠江的水位X ;③深圳欢乐谷一日接待游客的数量X ;④虎门大桥一天经过的车辆数X.解析:①③④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中的随机变量X可以取某一区间内的一切值,但无法按一定的次序一一列出,故不是离散型随机变量,故填②.答案:②8.一批产品共有12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数X的所有可能取值是________.解析:可能第一次就取得合格品,也可能取完次品后才取得合格品.X的结果有0,1,2,3.答案:0,1,2,39.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为X,写出X的可能取值.解析:X的可能取值为0,1,2.X=0表示在两天检查中均发现了次品.X=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.X=2表示在两天检查中没有发现次品.10.指出下列随机变量是否是离散型随机变量,并说明理由:(1)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(2)在西安至成都的高铁线上,每隔500 m有一电线铁塔,将电线铁塔进行编号,则某一电线铁塔的编号X;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位X.解析:(1)不是离散型随机变量.因为实际测量值与规定值之间的差值无法一一列出.(2)是离散型随机变量.因为电线铁塔为有限个,其编号从1开始,可以一一列出.(3)不是离散型随机变量.因为水位在(0,29]范围内变化,对水位值我们不能按一定次序一一列出.[B组能力提升]11.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()A.X=4 B.X=5C.X=6 D.X≤4解析:第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.答案:C12.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为Y,则Y所有可能值的个数是()A.25 B.10C.7 D.6解析:∵Y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故Y的所有可能取值为3,4,5,6,7,8,9,共7个.答案:C13.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.答案:414.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为X,则随机变量X的所有可能取值的种数为________.解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.答案:2415.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分),若X是甲队在该轮比赛获胜时的得分(分数高者胜),写出X的所有可能取值,并说明X 的值表示的随机试验的结果.解析:X的所有可能取值是-1,0,1,2,3.(1)X=-1表示:甲抢到1题但答错了,而乙抢到2题都答错了.(2)X=0表示:甲没抢到题,乙抢到的题答错至少2个题或甲抢到2题,但回答1对1错,而乙答错1题.(3)X=1表示:甲抢1题且答对,乙抢到2题且1对1错或全错或甲抢到3题,且2对1错.(4)X=2表示:甲抢到2题均答对.(5)X=3表示:甲抢到3题均答对.16.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为X.(1)列表说明可能出现的结果与对应的X的值;(2)若规定取3个球,每取到一个白球加5分,取到黑球不加分,且最后不管结果如何都加上6分,求最终得分Y的可能取值,并判定Y的随机变量类型.解析:(1)(2)由题意可得Y=5X+6,而X可能的取值范围为{0,1,2,3},所以Y对应的各值是6,11,16,21.故Y的可能取值为6,11,16,21,显然Y为离散型随机变量.。
高中人教A数学选修2-3学案:2.1.2 离散型随机变量的分布列 含答案
(3)计算介于 20 分到 40 分之间的概率.
[思路分析] (1)借助古典概型的概率公式求解;(2)列出 X 的所有可能取值,并求出相应
的概率,列出分布列;(3)根据分布列转化为求概率之和.
[解析] (1)解法一:记“一次取出的 3 个小球上的数字互不相同”的事件记为 A,则 P(A)
C35C12C12C21 2
晨鸟教育
2.1.2 离散型随机变量的分布列
情景引入
自主预习·探新知
投掷一颗骰子,所得点数记为 ξ ,则 ξ 可取哪些数字?ξ 取各个数字的概率分别是多少? 可否用列表法表示 ξ 的取值与其概率的对应关系?投掷两颗骰子,将其点数之和记为 ξ ,则 ξ 可能的取值有哪些,你能列出表示 ξ 取各值的概率与 ξ 取值的对应关系吗?
10 10 『规律总结』
5
5
5 15 15 5 5
n
1.利用分布列的性质 Σ pi=1,可以初步检验所求分布列是否正确,即若 i=1
n
的Σ .pi≠i=11,则所求的分布列一定是错误
2.{X=xi}所表示的事件是互斥的. 3.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率
Earlybird
晨鸟教育
C2C12+C12C2 1
P(X=2)=
=;
C130 C24C12+C14C P(X=3)=
C130
30 2 =;
15
2
C26C12+C16C2
P(X=4)=
=;
C130
10
3
C28C12+C18C
P(X=5)= C130
8
2
=. 15
所以随机变量 X 的概率分布列为:
高中数学选修2-3第二章2[1].1教案
2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.授课类型:新授课.课时安排:1课时.内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题,激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.知识点1:在随着试验中,试验的可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量(random variable ).随机变量常用大写字母 X , Y…表示.随机变量和函数有类似的地方吗?联系:随机变量和函数都是一种映射,随机变量是随机试验的结果到实数的映射,函数是实数到实数的映射;在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.区别:函数的自变量是实数x ,而在随机变量的概念中,随机变量的自变量是实验结果.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?知识点2:如果随机变量X 所有可能的取值都能一一列举出来,则称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 一般地,如果随机变量可以取某一个区间内的任意一个值,则称这样的随机变量为连续型随机变量.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,或者说取值为有限个或多至可列个,而连续性随机变量的结果不可以一一列出.如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值. 三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η. 解:(1) ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3; ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5.(2)η可取0,1,…,n ,…. η=i ,表示被呼叫i 次,其中i=0,1,2,….例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点.例3.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费.若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2. (Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和. 答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型、随机变量的概念.随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量.2.1.2离散型随机变量的分布列及超几何分布知识与技能:会求出某些简单的离散型随机变量的概率分布. 过程与方法:认识概率分布对于刻画随机现象的重要性.情感、态度与价值观:认识概率分布对于刻画随机现象的重要性. 教学重点:离散型随机变量的分布列的概念. 教学难点:求简单的离散型随机变量的分布列. 授课类型:新授课. 课时安排:2课时. 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.随机变量常用希腊字母ξ、η等表示.2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量.并且不改变其属性(离散型、连续型) 二、讲解新课:对于一个离散型随机变量来说,我们不仅要知道它的可能取哪些值,更重要的是要知道它取各个值得概率分别有多大,这样才能对这个离散型随机变量有深刻的了解.例如:在射击问题里,我们只要知道命中环数为0,1,2,…,10的概率分别是多少,才能了解选手的射击水平有多高.根据某个选手在一段时间里的成绩,可以得到下表命中环数X 0 1 2345 6 78910 10概率P0.01 0.01 0.02 0.020.060.09 0.28 0.290.22通过这个例子我们可以了解到:知识点3:要掌握一个离散型随机变量X 的取值规律,必须要知道:(1)X 所有可能取的值x 1,x 2,…,x n ,…(2)X 取每一个值x i (i=1,2,…)的概率为()i i P x p ξ==, 这就是说,需要列出下表:ξ x 1 x 2 … x i … PP 1P 2…P i…我们称这个表为离散型随机变量X 的概率分布,或成为离散型随机变量X 的分布列.知识点4:通过对上例的分析我们可以知道分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此可以得出离散型随机变量的分布列都具有下面两个性质: (1)P i ≥0,i =1,2,…n ; (2)P 1+P 2+…P n =1.对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ.讲解教材42-43页例题1到3. 知识点5:两点分布列:例1.在掷一枚图钉的随机试验中,令⎧⎨⎩1,针尖向上;X=0,针尖向下.如果针尖向上的概率为p ,试写出随机变量 X 的分布列. 解:根据分布列的性质,针尖向下的概率是(1p -) .于是,随机变量 X 的分布列是 ξ 01P1p -p像上面这样的分布列称为两点分布列.两点分布又称0~1分布.两点分布列的应用非常广泛.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X=1)为成功概率.例 2.在含有 5 件次品的 100 件产品中,任取 3 件,试求: (1)取到的次品数X 的分布列;(2)至少取到1件次品的概率.解: (1)由于从 100 件产品中任取3 件的结果数为310C ,从100 件产品中任取3件,其中恰有k 件次品的结果数为3595k k C C -,那么从 100 件产品中任取 3 件,其中恰有 k 件次品的概率为35953100(),0,1,2,3k kC C P X k k C -===。
随机变量及其分布作业
2.1.1离散型随机变量及其分布列(1)1.随机变量1ξ是某城市1天中发生的火警次数,随机变量2ξ是某城市1天之内的温度,随机变量3ξ是某火车站1小时内的游客流动人数。
这三个随机变量为连续型随机变量的是 ( ) A.只有1ξ和3ξ B.只有2ξ C.只有2ξ和3ξ D 只有3ξ2.下列变量中,不是随机变量的是 ( ) A.一射手射击一次的环数 B.标准状态下,水在100o C 时会沸腾 C.抛掷两枚骰子,所得的点数之和 D.某电话总机在时间区间(0,T )内收到的呼叫次数3.下列两个变量之间的关系是函数关系的是( )A .光照时间和果树产量B .降雪量和交通事故发生率C .人的年龄和身高D .正方形的边长和面积4.有以下四个随机变量,其中离散型随机变量的个数是( )① 某无线寻呼台1分钟内接到寻呼次数ξ是一个随机变量;③ 一个沿数轴进行随机运动的质点,它在数轴上的位置全是一个随机变量;④ 某人射击一次中靶的环数ξ是一个随机变量 A .1 B .2 C .3 D .0 5.袋中有大小相同的5只钢球,分别标有1、2、3、4、5五个号码.在有放回的抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能值的个数是( )A .25B .10C .9D .56.如果ξ是一个离散型随机变量,那么下列命题中,假命题是( ) A .ξ取每个可能值的概率是非负实数 B .ξ取所有可能值概率之和为1C .ξ取某两个可能值的概率等于分别取其中每个值的概率之和D .ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和7.袋中有2个黑球6个红球,从中任取两个,下列问题可以作为随机变量的是 ( ) A .取到的球的个数 B .取到红球的个数C .至少取到一个红球D .至少取到一个红球的概率6.抛掷两枚骰子,所得点数之和记为ξ,那么ξ=4表示的随机实验结果是( )A .一颗是3点,一颗是1点B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点 7.现有10张奖票,只有1张可中奖,第一人与第十人抽中奖的概率为 ( ) (A)21,101 (B) 101,21 (C) 101,101 (D) 109,101 8.掷两颗骰子,设出现点数之和为12,11,10的概率依次为1p ,2p ,3p ,则下式正确的是 ( )(A)1p =2p <3p (B)1p <2p =3p (C)1p <2p <3p (D) 1p >2p >3p 9.如果天气状况分为阴、小雨、中雨、大雨、晴五种,它们分别用数字1、2、3、4、5来表示,用ξ来表示一天的天气状况.若某天的天气状况是阴天有小雨,则用ξ的表示式可表示为 . 10.设某项试验的成功概率是失败概率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==_______________。
2.1离散型随机变量及其分布列课后练习题
离散型随机变量及其分布列课后练习题一、选择题1.下列表格中,不是某个随机变量的分布列的是( ) A.X -2 0 2 4 P0.50.20.3B.X 0 1 2 P0.70.150.15C.X 1 2 3 P-131223D.X 1 2 3 Plg 1lg 2lg 52.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =10 D .n =93.若随机变量X 的概率分布列为:P (X =n )=an n +1(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.56 4.设X 是一个离散型随机变量,其分布列为:X -1 0 1P0.51-2qq 2则q =( ) A.12 B. 22 C. 14D. 212-5.若随机变量X 的分布列如下表所示,则a 2+b 2的最小值为( )A.124B.16C.8D.4 二、填空题6.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 7.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为________.8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝ ⎛⎭⎪⎫13≤ξ≤53=________.三、解答题9.设随机变量X 的分布列为P (X =k5)=ak ,(k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35); (3)P (110<X <710).10.一个盒子里装有4张大小形状完全相同的卡片,分别标有数字2,3,4,5;另一个盒子里也装有4张大小形状完全相同的卡片,分别标有数字3,4,5,6.现从一个盒子里任取一张卡片,其上面的数记为x ,再从另一个盒子里任取一张卡片,其上面的数记为y ,记随机变量η=x +y ,求η的分布列.复数乘法和除法课后练习题答案一、选择题1.解析:C 选项中,P (X =1)<0不符合P (X =x i )≥0的特点,也不符合P (X =1)+P (X =2)+P (X =3)=1的特点,故C 选项不是分布列. 答案:C2.解析:由X <4知X =1,2,3,所以P (X =1)+P (X =2)+P (X =3)=0.3=3n,解得n =10.答案:C3.解析:∵P (X =1)+P (X =2)+P (X =3)+P (X =4)=a ⎝ ⎛⎭⎪⎫1-15=1,∴a =54. ∴P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝ ⎛⎭⎪⎫1-13=54×23=56.4.解析:由分布列的性质得0.5+1-2q +q 2=1,整理得q 2-2q +0.5=0,解得q =1±22,又0≤1-2q ≤1,0≤q 2≤1,所以q =1-22. 答案:D5.解析:由分布列的性质可知12a b +=,而222()128a b a b ++≥=.故选C. 答案:C 二、填空题6.解析:由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6. 答案:0.67.解析:当有0个红球时,P (X =0)=C 22C 25=0.1;当有1个红球时,P (X =1)=C 13C 12C 25=0.6;当有2个红球时,P (X =2)=C 23C 25=0.3.答案:8.解析:设二级品有k 个,∴一级品有2k 个,三级品有2个,总数为72k 个.∴分布列为P ⎝ ⎛⎭⎪⎫13≤ξ≤53=P (ξ=1)=47.答案:47三、解答题9.解:(1)由a ·1+a ·2+a ·3+a ·4+a ·5=1得a =115.(2)因为分布列为P (X =k 5)=115k (k =1、2、3、4、5)解法一:P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.解法二:P (X ≥35)=1-[P (X =15)+P (X =25)]=1-[115+215]=45.(3)因为110<X <710,只有X =15、25、35时满足,故P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25. 10.解:依题意,η的可能取值是5,6,7,8,9,10,11. 则有P (η=5)=14×4=116,P (η=6)=216=18,P (η=7)=316, P (η=8)=416=14,P (η=9)=316, P (η=10)=216=18,P (η=11)=116.所以η的分布列为。
2.1.1 离散型随机变量(一)
10
思考1:
(1)电灯泡的寿命X是离散型随机变量吗?
(2)如果规定寿命在1500小时以上的灯泡为一等品, 寿命在1000到1500小时之间的为二等品,寿命在1000 小时以下的为不合格品。如果我们关心灯泡是否为合 格品,应如何定义随机变量?如果我们关心灯泡是否 为一等品或二等品,又如何定义随机变量?
的关系式;
(2)已知某旅客实付车费38元,问出租车在途中因故停车累 计最多几分钟?
15
思考2:
随机变量与函数有类似的地方吗?
随机变量和函数都是一种映射,随机变量把随 机试验的结果映为实数,函数把实数映为实数。在 这两种映射之间,试验结果的范围相当于函数的定 义域,随机变量的取值范围相当于函数的值域。我 们把随机变量的取值范围叫做随机变量的值域。 例如,在含有10件次品的100件产品中,任意抽取 4件,可能含有的次品件数X将随着抽取结果的变化而 变化,是一个随机变量。其值域是{0,1,2,3,4}.
问题:
1、对于上述试验,可以定义不同的随机变量来表示 这个试验结果吗? 2、在掷骰子试验中,如果我们仅关心掷出的点数是 否为偶数,应如何定义随机变量?
Y=
0,掷出奇数点 1,掷出偶数点
3、任何随机试验的所有结果都可以用数字表示吗?
本质是建立了一个从试验结果到实数的对应关系。
6Hale Waihona Puke 2、离散型随机变量(2)一个袋中装有10个红球,5个白球,从中任取个4球, 其中所含红球的个数为X;
(3)投掷两枚骰子,所得点数之和为X,所得点数之和是偶 数为Y。
13
3、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚 骰子掷出的点数的差为 ,问:“ 4 ”表示的试验结果 是什么?
高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》
高中数学人教版选修2-3同步练习:2.1.1《离散型随机变量及其分布列》第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量课时训练6 离散型随机变量一、选择题1.抛掷一枚质地均匀的硬币一次,随机变量为().A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和答案:B解析:出现正面向上的次数为0或1,是随机变量.2.下列随机变量是离散型随机变量的是().①抛5颗骰子得到的点数和;②某人一天内接收到的电话次数;③某地一年内下雨的天数;④某机器生产零件的误差数.A.①②③B.④C.①④D.②③答案:A解析:由离散型随机变量的定义知①②③均是离散型随机变量,而④不是,由于这个误差数几乎都是在0附近的实数,无法一一列出.3.已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是().A.①②③B.②③④C.①②④D.③④答案:C解析:③中X的值可在某一区间内取值,不能一一列出,故不是离散型随机变量.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为().A.X=4B.X=5C.X=6D.X≤4答案:C解析:第一次取到黑球,则放回1个球,第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X=6.5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k表示的试验结果为().A.第k-1次检测到正品,而第k次检测到次品B.第k次检测到正品,而第k+1次检测到次品C.前k-1次检测到正品,而第k次检测到次品D.前k次检测到正品,而第k+1次检测到次品答案:D6.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为().A.20B.24C.4D.18答案:B解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有=24(种).二、填空题7.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是.答案:-300,-100,100,300解析:若答对0个问题得分-300;若答对1个问题得分-100;若答对2个问题得分100;若问题全答对得分300.8.一袋中装有5个同样的球,编号依次为1,2,3,4,5,从该袋中随机取出3个球.记三个球中最小编号为ξ,则“ξ=3”表示的试验结果是.答案:取出编号为3,4,5的三个球9.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,取后不放回,抽取次数为X,则“X=3”表示的试验结果是.答案:前两次均取到正品,第三次取到次品三、解答题10.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果:(1)盒中装有6支白粉笔和8支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ;(2)从4张已编号(1~4号)的卡片中任意取出2张,被取出的卡片号数之和ξ.解:(1)ξ可取0,1,2,3.ξ=i表示取出i支白粉笔,3-i支红粉笔,其中i=0,1,2,3.(2)ξ可取3,4,5,6,7.其中ξ=3表示取出编号为1,2的两张卡片.ξ=4表示取出编号为1,3的两张卡片.ξ=5表示取出编号为2,3或1,4的两张卡片.ξ=6表示取出编号为2,4的两张卡片.ξ=7表示取出编号为3,4的两张卡片.11.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.解:(1)ξ0 1 2 3结果取得3个黑球取得1个白球2个黑球取得2个白球1个黑球取得3个白球(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},则η对应的各值是5×0+6,5×1+6,5×2+6,5×3+6,故η的可能取值为{6,11,16,21},显然η为离散型随机变量.12.下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)离开天安门的距离η;(2)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.解:(1)η可取[0,+∞)中的数.η=k表示离开天安门的距离为k(km).不是离散型随机变量.(2)ξ可取所有的正整数.{ξ=i}表示前i-1次取出红球,而第i次取出白球,这里i∈N*.。
课时作业3:2.1.1 离散型随机变量
离散型随机变量1.抛掷质地均匀的硬币一次,下列能称为随机变量的是( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.①某机场候机室中一天的乘客流量为ξ;②某网站一天内被访问的次数为ξ;③某水文站观测到的一天中长江的水位为ξ;④某立交桥一天经过的车辆数为ξ.上述随机变量中离散型随机变量的个数为( ).A .1B .2C .3D .43.抛掷两枚骰子,所得点数之积为ξ,那么ξ=4表示的试验结果为( ).A .一枚1点,一枚4点B .两枚都是2点C .一枚1点,一枚3点D .一枚1点,一枚4点,或两枚都是2点4.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是________.5.某射手射击一次所中环数记为ξ,则“ξ>7”表示的试验结果是________.6.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,试求ξ的值域,并说明“ξ>4”表示的试验结果.7.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ).A .6B .7C .10D .258.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x ≥1的解集所对应的ξ的值为( ).A .1B .0C .-1D .1或09.一个袋中装有5个白球和5个红球,从中任取3个,其中所含白球的个数记为ξ,则随机变量ξ的值域为________.10.连续不断地射击某一目标,首次击中目标需要的射击次数X 是一个随机变量,则X =4表示的试验结果是________.11.写出下列随机变量ξ可能取的值,并说明随机变量ξ=4所表示的随机试验的结果.(1)从10张已编号的卡片(编号从1号到10号)中任取2张(一次性取出),被取出的卡片的较大编号为ξ;(2)某足球队在点球大战中5次点球射进的球数为ξ.12.(创新拓展)某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,则该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果.(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.参考答案1.解:掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上次数来描述一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选A.而B 中标准模糊不清,C 中掷硬币次数是1,不是随机变量,D 中对应的事件是必然事件.故选A.2.解:①②④中的随机变量ξ可能取的值,我们都可以按一定次序一一列出.因此它们都是离散型随机变量;③中的ξ可以取某一区间内的一切值,无法一一列出,故不是离散型随机变量.选C.3.解析 由于每枚骰子的点数均可能为1,2,3,4,5,6,而ξ=4=2×2=1×4,故应选D.4.解:可能第一次就取得合格品,也可能取完次品后才取得合格品.答案 0,1,2,35.解:射击一次所中环数ξ的所有可能取值为0,1,2,…,10,故“ξ>7”表示的试验结果为“该射手射击一次所中环数为8环或9环或10环”.6.解:设第一枚骰子掷出的点数为x ,第二枚骰子掷出的点数为y ,其中x ,y =1,2,3,4,5,6,依题意得ξ=x -y .则-5≤ξ≤5,且ξ∈Z .即ξ的值域为{-5,-4,-3,-2,-1,0,1,2,3,4,5}.则ξ>4⇔ξ=5,表示x =6,y =1,即第一枚骰子掷出6点,第二枚骰子掷出1点.7.解:X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.8.解:解1x≥1得其解集为{x |0<x ≤1},∴ξ=1. 选A. 9.解析 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的值域为{0,1,2,3}.10.解:由于随机变量X 表示首次击中目标需要的射击次数,所以当X =k 时,表示前k -1次均未击中目标,第k 次击中目标,故X =4表示的试验结果为前3次未击中,第4次击中目标.11.解:(1)ξ的所有可能取值为2,3,4,…,10.其中“ξ=4”表示的试验结果为“取出的两张卡片中的较大号码为4”.基本事件有如下三种:取出的两张卡片编号分别为1和4,2和4,3和4.(2)ξ的所有可能取值为0,1,2,3,4,5.其中“ξ=4”表示的试验结果为“5次点球射进4个球”.12.解:(1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 离散型随机变量练习案
一、课标点击
1.学习目标:理解什么是离散型随机变量
2.学习重难点:
(1)重点是随机变量和离散型随机变量的概念
(2)难点是了解随机变量与离散型随机变量的区别与联系
1.写出下列各离散型随机变量可能取的值
(1)从10张已编号的卡片(1-10号)中任取一张,被取出的卡片号数
(2)一个袋子中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数
(3)同时抛掷5枚硬币,得到硬币反面向上的个数.
2.把一枚硬币先后抛掷两次,若出现两个正面得5分,出现两个反面得-3分,其他结果得0分,用X表示得到的分值,列表写出可能出现的结果与对应的X值.
3.袋中有3个红球,4个白球,1个蓝球,2个黑球,摸到红球得2分,白球得0分,蓝球得1分,黑球得-2分,列表写出可能的结果、对应的分值X及相应的概率。