17.勾股定理(教师版)
勾股定理复习-- 教师版
举一反三【变式1】如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。他们仅仅少走了__________步路(假设2步为1m),却踩伤了花草。
思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m,小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。
【答案】:连结AC
∵∠B=90°,AB=3,BC=4
∴AC2=AB2+BC2=25(勾股定理)
∴AC=5
∵AC2+CD2=169,AD2=169
∴AC2+CD2=AD2
∴∠ACD=90°(勾股定理逆定理)
【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.
∵(a-3)2≥0, (b-4)2≥0, (c-5)2≥0。
∴a=3,b=4,c=5。
∵32+42=52,
∴a2+b2=c2。
由勾股定理的逆定理,得ΔABC是直角三角形。
总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。
举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
(二)方程的思想方法
2、如图所示,已知△ABC中,∠C=90°,∠A=60°, ,求 、 、 的值。
人教版八年级下册数学教学课件 第17章 勾股定理17.1 勾股定理(第2课时)
检测反馈
1.小明用火柴棒摆直角三角形,已知他摆两条直角边 分别用了6根和8根火柴棒,他摆完这个直角三角形共
用火柴棒 ( C )
A.20根 B.14根 C.24根 D.30根
解析: ∵摆两直角边分别用了6根、8根长度相同的火 柴棒,∴由勾股定理,得摆斜边需用火柴棒=10(根62),∴8他2 摆完这个直角三角形共用火柴棒6+8+10=24(根).故 选C.
解析:将圆柱平均分成五段,将最下边一 段圆柱的侧面展开,并连接其对角线,即 为每段的最短长度,为 42 32 5 ,所以葛藤的最短长度为5×5=25(尺).
5.如图(1)所示,两点A,B都与平面镜CD相距4米,且 A,B两点相距6米,一束光由A点射向平面镜,反射之后恰 好经过B点,求B点与入射点间的距离.
解:如图(2)所示,作出B点关于CD的对称点B',连接AB',交CD于点O,则O点就
是光的入射点,连接OB.因为AC=BD,∠ACO=∠BDO=90°,∠AOC=∠BOD, 所以△AOC≌△BOD.所以OC=OD= 1 AB=3米.
2 在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=25,所以OB=5米.
离为
2.5(2米 2)..4故2 选 0A.7.
3.已知A,B,C三地的位置如图所示,∠C=90°, A,C两地相距4 km,B,C两地相距3 km,则A,B两地 的距离是 5 km.
解析: C 90, A,C两地的距离是4km,
B, C两地的距离是3km,
AB AC 2 BC 2 42 32 5km.
上课期间离开教室须经老师允许后方可离开。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗、墙壁上涂写、刻划。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师关好门窗、关闭电源。
第十七章勾股定理教案
第十七章勾股定理17. 1勾股定理第 1课时勾股定理(1)认识勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.要点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创建情境,引入新课让学生画一个直角边分别为 3 cm和 4 cm的直角△ ABC,用刻度尺量出斜边的长.再画一个两直角边分别为 5 和 12 的直角△ ABC,用刻度尺量出斜边的长.你能否发现了32+42与 52的关系, 52+ 122与 132的关系,即32+ 42= 52,52+ 122= 132,那么就有勾2+股2=弦2.关于随意的直角三角形也有这个性质吗?由一学生朗诵“毕达哥拉斯察看地面图案发现勾股定理”的传说,指引学生察看身旁的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,研究新知1.多媒体课件演示教材第22~ 23 页图 17.1 - 2 和图 17.1 - 3,指引学生察看思虑.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.指引学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这不过猜想,一个数学命题的成立,还要经过我们的证明.概括考证,得出定理(1) 猜想:命题1:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.(2)能否是全部的直角三角形都有这样的特色呢?这就需要对一个一般的直角三角形进行证明.到当前为止,对这个命题的证明已有几百种之多,下边我们就看一看我国数学家赵爽是如何证明这个定理的.①用多媒体课件演示.②小组合作研究:a.以直角三角形ABC的两条直角边a, b 为边作两个正方形,你能经过剪、拼把它拼成弦图的样子吗?b.它们的面积分别如何表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验先人赵爽的证法.想想还有什么方法?师:经过拼摆,我们证明了命题 1 的正确性,命题 1 与直角三角形的边相关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题解说【例 1】填空题.(1)在 Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在 Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在 Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5) 已知等边三角形的边长为 2 cm,则它的高为________cm,面积为2________cm.【答案】 (1)17(2) 7 (3)68 (4)6 , 8, 10 (5) 33【例 2】已知直角三角形的两边长分别为 5 和 12,求第三边.剖析:已知两边中,较大边 12 可能是直角边,也可能是斜边,所以应分两种状况分别进行计算.让学生知道考虑问题要全面,领会分类议论思想.【答案】119或 13三、稳固练习填空题.在 Rt△ABC中,∠C=90°.(1)假如 a= 7,c= 25,则 b= ________;(2)假如∠ A= 30°, a= 4,则 b= ________;(3)假如∠ A= 45°, a= 3,则 c= ________;(4)假如 c= 10, a- b= 2,则 b= ________;(5)假如 a, b,c 是连续整数,则 a+ b+ c= ________;(6)假如 b= 8,a∶ c= 3∶ 5,则 c= ________.【答案】 (1)24(2)4 3 (3)3 2 (4)6(5)12(6)10四、讲堂小结1.本节课学到了什么数学知识?2.你认识了勾股定理的发现和考证方法了吗?3.你还有什么疑惑?本节课的设计关注学生能否踊跃参加研究勾股定理的活动,关注学生可否在活动中踊跃思虑、能够研究出解决问题的方法,可否进行踊跃的联想( 数形联合 ) 以及学生可否有条理地表达活动过程和所获取的结论等.关注学生的拼图过程,鼓舞学生联合自己所拼得的正方形考证勾股定理.第 2 课时勾股定理(2)能将实质问题转变为直角三角形的数学模型,并能用勾股定理解决简单的实质问题.要点将实质问题转变为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实质问题.一、复习导入问题 1:欲登 12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,起码需要多长的梯子?师生行为:学生疏小组议论,成立直角三角形的数学模型.教师深入到小组活动中,聆听学生的想法.生:依据题意,( 如图 )AC 是建筑物,则AC= 12 m, BC= 5 m, AB 是梯子的长度,所以在Rt△ ABC222222m.中, AB= AC+BC= 12 + 5 = 13,则 AB= 13所以起码需 13长的梯子.m师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就能够求出斜边 c 的长.由勾股定理可得2=ac2-b2或 b2=c2- a2,由此可知,已知斜边与一条直角边的长,就能够求出另一条直角边的长,也就是说,在直角三角形中,已知两边便可求出第三边的长.问题 2:一个门框的尺寸以下图,一块长 3 m、宽 2.2 m的长方形薄木板可否从门框内经过?为何?学生疏组议论、沟通,教师深入到学生的数学活动中,指引他们发现问题,找寻解决问题的门路.生 1:从题意能够看出,木板横着进,竖着进,都不可以从门框内经过,只好试一试斜着可否经过.生 2:在长方形 ABCD中,对角线 AC是斜着能经过的最大长度,求出 AC,再与木板的宽比较,就能知道木板能否能经过.师生共析:解:在 Rt△ABC中,依据勾股定理22222= 5. AC= AB+ BC=1+ 2所以 AC=5≈ 2.236.因为 AC>木板的宽,所以木板能够从门框内经过.二、例题解说【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是米,水平距离是________米.剖析:由∠ CAB= 30°易知垂直距离为 2 3米,水平距离是 6 米.【答案】2 36【例 2】教材第25 页例 2三、稳固练习________1.如图,欲丈量松花江的宽度,沿江岸取B, C 两点,在江对岸取一点BC= 50 米,∠ B= 60°,则江面的宽度为________.A,使AC垂直江岸,测得【答案】 50 3米2.某人欲横渡一条河,因为水流的影响,登岸地址 C 偏离欲抵达地址 B 200 米,果他在水中游了520 米,求河流的度.【答案】480 m四、堂小1.自己在的收有哪些?会用勾股定理解决的用;会结构直角三角形.2.本是从出,化直角三角形,并用勾股定理达成解答.是一用,程中要充足学生的主性,鼓舞学生手、,将化直角三角形的数学模型的程,激了学生的学趣,了学生独立思虑的能力.第 3勾股定理(3)1.利用勾股定理明:斜和一条直角相等的两个直角三角形全等.2.利用勾股定理,能在数上找到表示无理数的点.3.一步学将化直角三角形的数学模型,并能用勾股定理解决的.要点在数上找表示2,3,5,⋯的表示无理数的点.点利用勾股定理找直角三角形中度无理数的段.一、复入复勾股定理的内容.本研究勾股定理的合用.:在八年上册,我曾通画获取:斜和一条直角相等的两个直角三角形全等.你能用勾股定理明一?学生思虑并独立达成,教巡指,并.先画出形,再写出已知、求以下:已知:如,在Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求:△ ABC≌△ A′ B′ C′ .22明:在 Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,依据勾股定理,得BC=AB-AC,B′C′=A′ B′2- A′C′2. 又 AB= A′ B′, AC= A′ C′,∴ BC= B′ C′,∴△ ABC≌△ A′ B′C′ ( SSS) .:我知道数上的点有的表示有理数,有的表示无理数,你能在数上表示出13所的点?教可指学生找像度2,3,5,⋯的包括在直角三角形中的段.:因为要在数上表示点到原点的距离2, 3 ,5,⋯,所以只要画出2,3,5,⋯的段即可,我不如先来画出2,3,5,⋯的段.生:2的段是直角都 1 的直角三角形的斜,而5的段是直角 1 和 2 的直角三角形的斜.:13的段可否是直角正整数的直角三角形的斜呢?生: c=13,两直角分a, b,依据勾股定理a2+ b2= c2,即 a2+ b2=13. 若 a, b 正整数,13 必分解两个平方数的和,即13=4+9,a2=4,b2=9,a=2,b=3,所以13的段是直角分2, 3 的直角三角形的斜.:下边就同学在数上画出表示13的点.生:步以下:1.在数上找到点A,使 OA= 3.2.作直l 垂直于 OA,在 l 上取一点B,使 AB= 2.3.以原点O心、以OB半径作弧,弧与数交于点C,点 C 即表示13的点.二、例解【例 1】机在空中水平行,某一刻好到一个男孩正上方 4800 米,了 10 秒后,机距离个男孩 5000 米,机每小行多少千米?剖析:依据意,能够画出如所示的形, A 点表示男孩的地点,C, B 点是两个刻机的地点,∠ C 是直角,能够用勾股定理来解决这个问题.解:依据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得2=AB22222AC+ BC,即 5000= BC+ 4800 ,所以 BC= 1400 米.飞机飞翔 1400 米用了 10 秒,那么它 1 小时飞翔的距离为 1400× 6×60= 504000( 米 ) =504( 千米 ) ,即飞机飞翔的速度为504千米/时.【例 2】在沉静的湖面上,有一棵水草,它超出水面 3 分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草挪动的水平距离为 6 分米,问这里的水深是多少?解:依据题意,获取上图,此中D是无风时水草的最高点, BC为湖面, AB 是一阵风吹过水草的位22222置, CD= 3 分米, CB= 6 分米, AD= AB, BC⊥ AD,所以在Rt△ACB中, AB =AC+ BC,即 (AC+ 3)=AC 222分米.+ 6 , AC+ 6AC+ 9= AC+36,∴ 6AC= 27, AC= 4.5 ,所以这里的水深为【例 3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为 4 和 1 的直角三角形的斜边,所以,在数轴上画出表示17的点,以以下图:师生行为:由学生独立思虑达成,教师巡视指导.此活动中,教师应要点关注以下两个方面:①学生可否踊跃主动地思虑问题;②可否找到斜边为17,此外两条直角边为整数的直角三角形.三、讲堂小结1.进一步稳固、掌握并娴熟运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理获取一些无理数,并理解数轴上的点与实数一一对应.本节课的教课中,在培育逻辑推理的能力方面,做了仔细的考虑和精心的设计,把推理证明作为学生察看、实验、研究得出结论的自然持续,着重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到讲堂教课中间,很好地激发了学生学习数学的兴趣,培育了学生擅长提出问题、敢于提出问题、解决问题的能力.勾股定理的逆定理第 1 课时勾股定理的逆定理( 1)1.掌握直角三角形的鉴别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的研究方法.要点研究勾股定理的逆定理,理解并掌握互抗命题、原命题、抗命题的相关观点及关系.难点概括猜想出命题 2 的结论.一、复习导入活动研究(1)总结直角三角形有哪些性质;(2)一个三角形知足什么条件时才能是直角三角形?生:直角三角形有以下性质: (1) 有一个角是直角; (2) 两个锐角互余; (3) 两直角边的平方和等于斜边的平方; (4) 在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么一个三角形知足什么条件时,才能是直角三角形呢?生 1:假如三角形有一个内角是90°,那么这个三角形就为直角三角形.生 2:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 与斜边 c 拥有必定的数目关系即 a2+ b2=c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:听说古埃及人用以下图的方法画直角:把一根长绳打上等距离的 13 个结,而后以 3 个结、 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边长分别为3, 4, 5,有下边的关系:2223+ 4=5 ,那么围成的三角形是直角三角形.画画看,假如三角形的三边长分别为, 6,,有下边的关系: 2.5 2+ 62= 6.5 2,画cm cm cm出的三角形是直角三角形吗?换成三边分别为4cm,cm, cm,再试一试.生 1:我们不难发现上图中,第 1 个结到第 4 个结是 3 个单位长度即 AC=3;同理 BC=4, AB=5.因为 32+ 42= 52,所以我们围成的三角形是直角三角形.生 2:假如三角形的三边长分别是 2.5 cm, 6 cm, 6.5 cm. 我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5 cm的边所对的角是直角,而且222 2.5 +6 = 6.5 .再换成三边长分别为 4 cm, 7.5 cm, 8.5 cm的三角形,能够发现 8.5 cm的边所对的角是直角,且有 42+ 7.5 2=8.5 2.师:很好!我们经过实质操作,猜想结论.命题 2假如三角形的三边长a, b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.再看下边的命题:命题 1假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.它们的题设和结论各有何关系?师:我们能够看到命题 2 与命题 1 的题设、结论正好相反,我们把像这样的两个命题叫做互抗命题.假如把此中的一个叫做原命题,那么另一个叫做它的抗命题.比如把命题 1 当作原命题,那么命题 2 是命题 1 的抗命题.二、例题解说【例 1】说出以下命题的抗命题,这些命题的抗命题成立吗?(1)同旁内角互补,两条直线平行;(2)假如两个实数的平方相等,那么这两个实数相等;(3)线段垂直均分线上的点到线段两头点的距离相等;(4)直角三角形中 30°角所对的直角边等于斜边的一半.剖析: (1) 每个命题都有抗命题,说抗命题时注意将题设和结论调动即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,抗命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、稳固练习教材第 33 页练习第 2题.四、讲堂小结师:经过这节课的学习,你对本节内容有哪些认识?学生讲话,教师评论.本节课的教课方案中,将教课内容精简化,推行分层教课.依据学生原有的认知结构,让学生更好地领会切割的思想.设计的题型前后响应,使知识有序推动,有助于学生理解和掌握;让学生经过合作、沟通、反省、感悟的过程,激发学生研究新知的兴趣,感觉研究、合作的乐趣,并从中获取成功的体验,真实表现学生是学习的主人.将目标分层后,知足不一样层次学生的做题要求,达到稳固讲堂知识的目的.第 2 课时勾股定理的逆定理( 2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的观点.要点勾股定理的逆定理的证明及互逆定理的观点.难点理解互逆定理的观点.一、复习导入师:我们学过的勾股定理的内容是什么?生:假如直角三角形的两条直角边长分别为a, b,斜边长为c,那么 a2+b2= c2.师:依据上节课学过的内容,我们获取了勾股定理抗命题的内容:假如三角形的三边长 a ,b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的抗命题,命题 1 我们已证明过它的正确性,命题 2 正确吗?如何证明呢?师生行为:让学生试着找寻解题思路,教师可指引学生理清证明的思路.师:△ ABC的三边长a, b, c 知足 a2+ b2=c2. 假如△ ABC是直角三角形,它应与直角边是a, b 的直角三角形全等,实质状况是这样吗?我们画一个直角三角形A′ B′ C′,使 B′ C′= a, A′ C′= b,∠ C′= 90° ( 如图 ) ,把画好的△A′ B′ C′剪下,放在△ABC上,它们重合吗?22222222生:我们所画的 Rt△A′B′C′,(A′B′)=a+ b,又因为 c = a + b ,所以 (A′ B′ ) =c,即 A′B′= c.△ABC 和△ A′ B′C′三边对应相等,所以两个三角形全等,∠ C=∠ C′= 90°,所以△ ABC 为直角三角形.即命题 2 是正确的.师:很好!我们证了然命题2 是正确的,那么命题 2 就成为一个定理.因为命题 1 证明正确此后称为勾股定理,命题2 又是命题 1 的抗命题,在此,我们就称定理 2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:可能否是原命题成立,抗命题必定成立呢?生:不必定,如命题“对顶角相等”成立,它的抗命题“假如两个角相等,那么它们是对顶角”不行立.师:你还可以举出近似的例子吗?生:比如原命题:假如两个实数相等,那么它们的绝对值也相等.抗命题:假如两个数的绝对值相等,那么这两个实数相等.明显原命题成立,而抗命题不必定成立.二、新课教授【例 1】教材第 32 页例 1【例 2】教材第 33 页例 2【例 3】一个部件的形状以下图,按规定这个部件中∠A 和∠ DBC 都应为直角.工人师傅量出了这个部件各边的尺寸,那么这个部件切合要求吗?剖析:这是一个利用直角三角形的判断条件解决实质问题的例子.2 2 =9+16 2A 是直角.解:在△ ABD 中, AB + AD = 25= BD ,所以△ ABD 是直角三角形,∠2 2 2 2DBC 是直角.在△ BCD 中,BD +BC = 25+ 144= 169=13 = CD ,所以△ BCD 是直角三角形,∠ 所以这个部件切合要求.三、稳固练习1.小强在操场上向东走80 m 后,又走了 60 m ,再走 100 m 回到原地.小强在操场上向东走了80 m 后,又走 60 m 的方向是 ________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海疆,我海军甲、乙两艘巡逻艇立刻从相距 13 海里的 A , B 两个基地前往拦截, 6 分钟后同时抵达 C 地将其拦截.已知甲巡逻艇每小时航行 120 海 里,乙巡逻艇每小时航行 50 海里,航向为北偏西 40°,求甲巡逻艇的航向.11222【答案】解:由题意可知:AC= 120× 6×60= 12, BC= 50× 6×60= 5, 12+ 5=13 . 又 AB=13,222ACB=90°,∴∠ CAB= 40°,航向为北偏东 50° .∴ AC+ BC= AB,∴△ ABC是直角三角形,且∠四、讲堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采纳以学生为主体,指引发现、操作研究的教课方案,切合学生的认知规律和认知水平,最大限度地调动了学生学习的踊跃性,有益于培育学生着手、察看、剖析、猜想、考证、推理的能力,确实使学生在获取知识的过程中获取能力的培育.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。
最新人教版八年级数学第17章勾股定理教案
最新人教版八年级数学第17章勾股定理教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新人教版八年级数学第17章勾股定理教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新人教版八年级数学第17章勾股定理教案的全部内容。
第十七章勾股定理教案课题:17。
1勾股定理(1) 课型:新授课【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.2.培养在实际生活中发现问题总结规律的意识和能力.【学习重点】:勾股定理的内容及证明。
【学习难点】:勾股定理的证明。
【学习过程】一、课前预习1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边:2、(1)、同学们画一个直角边为3cm 和4cm 的直角△ABC ,用 刻度尺量出AB 的长。
(2)、再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长问题:你是否发现+与,+和的关系,即+ ,+ , 二、自主学习 思考:(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B,C 的面积之间有什么关系吗?图1-2中的呢? (3)你能发现图1-1中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(4)你能发现课本图1-3中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1。
6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c,那么__________________ _____________________________________________________________________。
勾股定理及两点间距离公式C(教师版)
学科教师辅导讲义【答案】144【例10】如图,在一块用边长为cm20的正方形的地砖铺设的广场上,一只飞来的鸽子落在A点处,,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?【答案】360厘米【例11】欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?【答案】13米【例12】如图,有一个高是1.5米、半径是1米的圆柱形油桶,在上地面靠边的地方有一小孔,从孔中插入一根铁CBA棒,已知铁棒在油桶外的部分最短是0.5米,这根铁棒有多长?【答案】3米【例13】有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面点A处有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,需要爬行的最短路程是多少?( 的值取3)【分析】圆柱的侧面展开图是一个长方形.最短路线为展开图中的线段AB.【答案】15cm【例14】中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。
赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。
你能根据这幅“勾股圆方图”证明勾股定理吗?(图中4个直角三角形全等)【答案】在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。
于是便可得如下的式子:【借题发挥】1.飞机在空中水平飞行,某一时刻刚好飞到一个男孩的头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【答案】540千米2.如图,每个小方格都是边长为1的正方形,C(1)求图中格点四边形ABCD的面积和周长。
(2)求∠ADC的度数。
3.如图:设甲到岛上去探宝,登陆后先往东走8千米,又往北走2千米,遇到障碍后又向西走3千米,再折向北走6千米处往东一拐,仅1千米找到宝藏,问登陆点到探宝点的距离是多少?4.△ABC三边a,b,c为边向外作正方形,正三角形,以三边为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?5.你能用下面的图形也来验证一下勾股定理吗?试一试!6.在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池中央有一根新生的芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.这个水池的深度和这个芦苇的长度各为多少?A BCabcS1S3S2ACabcS2S3BS1【答案】214尺;294尺 7.求四个水平放置的正方形的面积的和.(即求1234S S S S +++)题型四:两点间距离公式【例14】求下列两点间的距离:(1)()2,8A -和()3,4B -(2)()2,1C和()2,3D -(3)()3,2P -和()23,1Q(4)()5,2M -和()2,5N (5)()1,2E 和()3,2F -(6)()5,4G -和()5,9H -【答案】略【方法总结】利用公式【例15】已知三角形三个顶点的坐标,判断三角形的形状.(1)()1,1A --、()3,1B -、()3,2C(2)()2,1A -、()2,3B --、()4,1C -(3)()3,1A -、()3,3B --、()233,1C --(4)()2,5A 、()5,1B -、()2,1C --(5)()1,3A -、()1,2B -、()4,5C(6)()1,2A --、()2,1B -、()2,1C -【答案】略【例16】3.在角坐标平面内,已知A 、B 两点的坐标分别为()1,3-、()6,4,线段AB 的垂直平分线交x 轴于点P ,求点P 的坐标【答案】(3,0)【借题发挥】在直角坐标平面内,已知△OAB 是等边三角形,且O 、B 两点的坐标分别为()0,0、()4,0.(1)求点A 的坐标.(2)如果△OAB 内一点P 到三角形三边的距离都相等,求点P 的坐标.【答案】(1)()()2,23,2,23-;(2)22,33⎛⎫ ⎪⎝⎭,22,33⎛⎫- ⎪⎝⎭ 【随堂练习】填空题:1.在直角三角形中,两条直角边分别为5,12,则斜边上的高为 .2.若长方形的一条对角线与一边的差为1cm ,另一条边长3cm ,则这个长方形的面积等于 平方厘米.3.若3是关于x 的方程()22120x a x -++=的解,那么以3,a 为边的等腰三角形的面积为 . 4.如图所示,在△ABC 中,AD 是BC 边上的中线,且AD ⊥AB 于A ,10,8AC AB ==,如果将△ABD 绕点旋转180°,将交点A 转到点A '的位置,那么AA '= .5.如图,△ABC 为等边三角形,边长为4cm ,D 为BC 中点,DE ⊥AB ,垂足为E ,EF ∥BC 交AC 于F ,则△AEF 的周长是 .【答案】1.6013;2.12;3.3914或5114;4.6;5.12. 选择题:1.在△ABC 中,∠C =90°,∠A =30°,6BC cm =,则此三角形的周长为( )A.63;B.1263+;C.183;D.1863+.2.已知Rt △ABC 的三边都是整数,两条直角边长度的比是3:4,则斜边的长可能是( )A.9;B.10;C.12;D.14.3.已知()2,4P -,()4,2Q -下列各点中在线段PQ 垂直平分线上的点有( )①()1,1A ②()2,2B -③()1,1C --④()0,0DA.1个;B.2个;C.3个;D.4个.4.三角形三个内角的度数比为3:2:1,那么它的三条边的长度之比为( )A.3:2:1;B.3:2:1;C.2:3:1;D.9:4:1.5.已知直角三角形有一条直角边长11厘米,另外两条边的长度都是自然数,那么这个三角形的周长为( )A.120厘米;B.132厘米;C.144厘米;D.156厘米.【答案】DBB CB解答题:1.如图,在△ABC 中,,∠A =90°,AB AC =,BD 平分∠ABC 交AC 于点D ,若2AB cm =.求:AD 的长,2.在Rt △ABC 中,∠C =90°,中线AD 的长为7,中线BE 的长为4.求:AB 的长3.已知()2,3A -和()1,4B 在y 轴上找一点C ,使△ABC 为直角三角形.4.四边形中,∠A =60°,∠B =∠D =90°,2,1AB CD ==.(1)求BC 、AD 的长;(2)求四边形ABCD 的面积.【答案】1.(222)cm -;2.213;3.()()()()0,3,0,7,0,2,0,5-;4.332; 【课堂总结】【课后作业】1.如图所示,在平行四边形ABCD 中,BE ⊥CD 于E ,BF ⊥AD 于F ,∠ABC =120°,2,23BE cm BF cm ==,则平行四边形ABCD 的面积为 平方厘米.2.在△ABC 中,5,8AB cm AC cm ==,∠BAC =60°,则BC 的长为 cm .3.如图所示,在扇形AOB 中,4OA =,∠AOB =120°,那么阴影部分的面积等于 .4.已知弓形的高为4cm ,弦长为12cm ,则弓形所在圆的半径为 .5.在直角坐标平面内有()()()0,6,0,2,4,2A B C -三个点,则以这三个点为顶点的△ABC 是 三角形.【答案】1.8;2.7;3.163π-43;4.132;5.等腰直角; 选择题:1.以下列各组数为三边长的三角形中,不能组成三角形的是( )A.31,31,22+-;B.3.5,4.5,5;C.4,7.5,8.5;D.()221,2,11n n n n -+>.2.在直角三角形中,若斜边上的中线是奇数,一条直角边是偶数,则另一条直角边一定是( )A.偶数;B.奇数;C.自然数;D.以上结论都不对.3.在下列命题中,真命题有( )①有一个角等于另外两个角的差的三角熊是直角三角形;②有一条边的平方等于另外两条边的平方和的三角形是直角三角形;③三条边长分别为10,20,30的三角形是直角三角形;④三个外角的度数之比为3:4:5的三角形是直角三角形.A.4个;B.3个;C.2个;D.1个.4.在Rt △ABC 中,斜边上的中线17CD =,直角边16AC =,则直角边BC 的长等于( )A.30;B.32;C.33;D.34.5.若直角三角形三边a 、b 、c 满足整式3222230a a b ab ac bc b ++--+=则的形状为( )A.等腰三角形;B.等边三角形;C.等腰直角三角形;D.直角三角形.【答案】BDAAD解答题:1.如图,已知Rt △ABC 中,∠C =90°,点D 为AC 的中点,DE ⊥AB 于E .求证:222BE BC AE =+.2.如图,在△ABC 中,∠C =90°,6,8AC cm BC cm ==,以点C 为圆心,CA 的长为半径作弧,交斜边AB 于D .求AD 的长.3.如图,某船向正东航行,在A 处望见某岛C 在北偏东60°方向,前进6海里到B 点,此时又测得岛C 在北偏东30°方向,已知在该岛周围6海里内有暗礁,问若船继续向东航行,有无触礁危险,请说明理由.4.给出一组式子:32+42=52,82+62=102,152+82=172,242+102=262.…(1)你能发现上面式子的规律吗?请你用发现的规律,给出第5个式子;(2)请你证明你所发现的规律.5.在直角坐标平面内,已知△ABC 是直角三角形,且∠C =90°,点C 在x 轴上,A 、B 两点的坐标分别是()2,6、()10,2,求点C 的坐标.6.在直角坐标系内,已知△OAB 是等腰三角形,O 、A 两点的坐标分别为(0,0)、(3,4),点B 在x 轴上,求点B 的坐标.【答案】1.略;2.7.2cm ;3.有危险;4.略;5.()()4,0,8,0;6.()()()255,0,,0,5,0,6,06⎛⎫- ⎪⎝⎭二、综合提高练习1.如图甲是第七届国际数学教育大会(简称ICME ~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中18732211=====A A A A A A OA Λ,如果把图乙中的直角三角形继续作下去,细心观察图形,认真分析各式,然后解答问题:A 1OA 2A 3A 4A 5A 6A 7A 8ICME-7 图甲 图乙;2121112==+S ,)( ;22,31)2(22==+S ;23,41)3(32==+S …… (1) 请用含有n (n 是正整数)的等式表示上述变化规律;(2) 推算出OA 10的长;(3) 求出210232221S S S S ++++Λ的值。
人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)
这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为
人教版八年级数学下册第17章勾股定理小结和复习教学设计
4.借助勾股定理这一数学工具,引导学生发现数学与生活、艺术的紧密联系,培养他们的审美情趣和跨学科素养。
二、学情分析
八年级学生在学习勾股定理之前,已经具备了平面几何的基础知识,掌握了三角形的基本概念和性质,能够识别直角三角形,并对直角三角形的边长关系有初步的了解。在此基础上,他们对勾股定理的学习将更加深入和系统。然而,学生在运用勾股定理解决问题时,可能会遇到以下困难:对勾股定理的理解不够深刻,不能灵活运用定理解决实际问题;对勾股数的性质掌握不牢固,容易混淆;在解决复杂问题时,缺乏解题思路和方法。因此,在教学过程中,教师应关注学生的个体差异,因材施教,引导他们通过合作学习、自主探究等方式,逐步克服困难,提高解决问题的能力。同时,注重激发学生的学习兴趣,使他们主动参与到勾股定理的学习中,为后续数学知识的学习打下坚实基础。
-设计意图:巩固学生的基础知识,为解决复杂问题打下基础。
4.例题解析:选择不同类型的例题,包括简单应用和综合应用,逐步引导学生掌握勾股定理的运用。
-设计意图:通过梯度性练习,使学生在解决问题的过程中逐步提高解题能力。
5.课堂互动:鼓励学生主动提问,开展小组讨论,分享解题思路,促进师生之间、生生之间的互动交流。
-设计意图:激发学生的学习兴趣,增强他们对数学知识实用性的认识。
2.新课呈现:采用探究式教学方法,引导学生通过观察、猜想、验证等步骤,发现并理解勾股定理。
-设计意图:培养学生的逻辑思维能力和探索精神,加深对勾股定理的理解。
3.课堂讲解:结合教材,详细讲解勾股定理的证明过程,以及勾股数的性质和判定方法。
人教版八年级数学下册第17章勾股定理小结和复习教学设计
《勾股定理》数学教学PPT课件(10篇)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
勾股定理 讲义
勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2与c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理与其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B.C.D.22. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC 的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2nD.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A.B.C.D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米B.2×()9厘米C.2×()10厘米D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B.C.80cm或D.60cm练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B.C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定B.C.17D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米B.15厘米C.12或15厘米D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B.C.5或D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cmD.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18 5.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理与其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米 C.12米 D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC是直角三角形,则满足条件的点共有()A.1个B.2个C.4个D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,32.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=50 3.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、254.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B.C.80cm或D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米B.40厘米C.50厘米D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A点爬行到C点,那么,最近的路程长为()A.7 B.C.D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A 端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD中,AB=6,BC=8。
第17章勾股定理-含30°、60°的三角形的计算与证明(教案)
在讲授过程中,我特别注意了将理论知识与学生的日常生活联系起来,用实际案例来说明勾股定理的应用。这种教学方法似乎很受学生欢迎,他们能够更积极地参与到课堂讨论中。例如,在讨论含30°、60°直角三角形的应用时,学生们提出了许多有趣的例子,如建筑设计中的斜坡、桥梁的斜拉索等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、含30°、60°直角三角形的性质及其应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动和小组讨论环节也取得了不错的效果。学生们在分组讨论中积极交流,通过实验操作加深了对勾股定理的理解。但在这一过程中,我也注意到有些学生过于依赖小组其他成员,自身的思考不够独立。为此,我计划在未来的教学中,增加一些个人思考的环节,鼓励每个学生都能独立分析和解决问题。
此外,我也在思考如何更好地在课堂上进行差异化教学,以满足不同学生的学习需求。对于那些对几何证明感到吃力的学生,我可能会设计一些更为基础的练习,让他们逐步建立信心。而对于那些对数学有更高兴趣和能力的学生,我则会提供一些更具挑战性的问题,以激发他们的潜力。
-学会运用勾股定理和三角函数解决含30°、60°的直角三角形问题;
-能够将所学知识应用于解决实际问题。
人教版八下数学17.1 课时1 勾股定理教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
初中数学同步训练必刷题(人教版八年级下册 第十七章 勾股定理 全章测试卷)(教师版)
初中数学同步训练必刷题(人教版八年级下册第十七章勾股定理全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·邻水期末)一个直角三角形的两条边的长分别为8,10,则第三条边的长为()A.6B.12C.2√41D.6或2√41【答案】D【知识点】勾股定理【解析】【解答】解:当直角边为10和8时斜边长为√102+82=2√41;当10为斜边时另一条直角边为√102−82=6∴第三边长为6或2√41.故答案为:D.【分析】分情况讨论:当直角边为10和8时;当10为斜边时;分别利用勾股定理求出第三边的长. 2.(2022八下·韩城期末)下列各组数中,是勾股数的是()A.1,√5,3B.0.3,0.4,0.6C.9,12,15D.5,6,7【答案】C【知识点】勾股数【解析】【解答】解:A、√5不是正整数,故此选项不合题意;B、0.3,0.4,0.6三个数不是正整数,故此选项不合题意;C、9,12,15都是正整数,且92+122=225=152,故此选项符合题意;D、5,6,7都是正整数,但52+62≠72,故此选项不合题意.故答案为:C.【分析】勾股数是正整数,可排除选项A,B;再利用各选项中较小两数的平方和等于较大数的平方,可得到是勾股数的选项.3.(2022八下·台江期末)在边长为1的小正方形组成的网格中,A,B,C,D、E在格点上,长度是√10的线段是()A.AB B.AC C.AD D.AE【答案】B【知识点】勾股定理的应用【解析】【解答】解:AB=√12+22=√5,AC=√12+32=√10,AD=√22+22=√8,AE=√22+32=√13,综上,只有B选项符合题意,故答案为:B.【分析】由网格图的特征和勾股定理可求得AB、AC、AD、AE的值,再结合各选项可求解. 4.(2022八下·交口期末)如图,某公园的一块草坪旁边有一条直角小路,公园管理处为了方便群众,沿AC修了一条近路,已知AB=40米,BC=30米,则走这条近路AC可以少走()米路A.30B.20C.50D.40【答案】B【知识点】勾股定理的应用【解析】【解答】解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC=√AB2+BC2=√402+302=50(米),30+40-50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故答案为:B.【分析】在Rt△ABC中,AB=40米,BC=30米,根据勾股定理可得AC=√AB2+BC2=√402+302=50(米),则30+40-50=20(米),即走这条近路AC可以少走20米路。
人教版八年级数学下册17.1勾股定理(第3课时)教学设计
-运用勾股定理解决实际问题的方法。
-勾股定理与之前几何知识的联系。
2.强调勾股定理在实际问题中的重要性,激发学生学习数学的兴趣。
3.教师针对学生的课堂表现进行点评,鼓励学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固学生对勾股定理的理解和应用,布置以下作业:
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生探索数学奥秘的热情,使学生在学习勾股定理的过程中,体验到数学的乐趣。
2.培养学生勇于探索、积极思考的良好习惯,提高学生对数学问题的求解欲望。
3.通过勾股定理的学习,使学生了解数学在人类历史和文化中的重要地位,认识到数学在科学技术发展中的价值,增强学生的民族自豪感和爱国情怀。
-对勾股定理公式的深入理解,尤其是对定理中“勾”、“股”、“弦”的概念及其关系的理解。
-在实际问题中,如何判断和运用勾股定理。
-对于一些特殊的直角三角形,如等腰直角三角形,如何运用勾股定理。
(二)教学设想
1.教学策略:
-采用启发式教学,引导学生通过观察、实践、讨论等方式,发现和掌握勾股定理。
-利用多媒体教学资源,如动画、图片等,形象展示勾股定理的原理和应用,增强学生的直观感受。
2.鼓励学生通过勾股定理解决实际问题,提高学生的数学素养。
六、教学反思
1.教师应及时总结教学过程中的优点和不足,为下一节课做好准备。
2.关注学生的学习情况,针对学生的掌握程度,调整教学策略,提高教学质量。
二、学情分析
八年级学生经过前两年的数学学习,已经具备了一定的数学基础和逻辑思维能力。他们对直角三角形有一定的了解,掌握了其基本性质。在此基础上,学习勾股定理,学生能够更好地理解直角三角形三边之间的关系,从而提高解决问题的能力。
第十七章 勾股定理(单元总结)(解析版)-2020-2021学年八年级数学下册(人教版)
第十七章 勾股定理单元总结【思维导图】【知识要点】知识点一 勾股定理勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=变式:1)a ²=c ²- b ²2)b ²=c ²- a ²适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.c ba HG FEDC BA方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证222a b c += a b ccb a E DCB A知识点二 勾股定理的逆定理勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数:如3,4,5;6,8,10;5,12,13;7,24,25等扩展:用含字母的代数式表示n 组勾股数:1)221,2,1n n n -+(2,n ≥n 为正整数);2)2221,22,221n n n n n ++++(n 为正整数)3)2222,2,m n mn m n -+(,m n >m ,n 为正整数)注意:每组勾股数的相同整数倍,也是勾股数。
五年级几何勾股定理教师版
知识要点勾股定理:直角三角形中的两直角边的平方和等于斜边的平方。
222a b c += 关键词:直角三角形勾股定理的逆定理:若一个三角形的某两条边的平方和等于剩余的一条边的平方,则这个三角形一定是直角三角形。
关键词:判定直角三角形直角三角形的性质:hcbaDCBA在直角三角形ABC 中,AB 为斜边,AC 为直角边,BC 为直角边,CD 是斜边上的高。
a 、b 、c 分别是边BC 、AC 、AB 的边长。
勾股定理:222a b c +=。
222h BD a +=;222h AD b += 其他性质:a b c h ⨯=⨯,DCB A ∠=∠,ACD B ∠=∠勾股定理面积计算【例1】如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为1S ,2S ,3S ,且14S =,28S =,则3S =?S 3S 2S 1CBA【分析】 根据勾股定理,222AB AC BC =+,所以31212S S S =+=。
【例2】证明:两条直角边上的正方形面积之和等于斜边上的正方形的面积,即:A B C S S S +=C BA【分析】 方法一:正方形C 如图所示四个相等的直角三角形和一个小正方形。
14431252C S =⨯⨯⨯+=(单位面积) 16925A B S S +=+=,所以有A B C S S S +=方法二:利用皮克公式112S a b =+-(其中a 表示多边形边界上的格点数,b 表示多边形内部的格点数)正方形C 周边上的格点数4a =,内部的格点数24b =,所以正方形C 的面积为14241252⨯+-=(单位面积)。
【例3】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为2______cm 。
【分析】 反复利用勾股定理,直角三角形斜边的平方等于两直角边的平方和。
249cm【例4】如图,大正方形由四个相同的直角三角形与中间的小正方形拼成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习旧知:二次根式
(答案:1、1; 2、29+512;3、3423+;4、22-5-;5、3;6、-2+3;7、2458+;8、235+- ) )23()23.(1-⨯+ )52)(103.(46)223(3. )523.(22
-+⨯++ 353135.82445854.7)62()62.(62)850.(5--+++-+÷-÷-
勾股定理
1.勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、 b ,斜边为c ,那么一定有222c b a =+. 等腰直角三角形:a:b:c=1:1:√2 ; 含30度角的直角三角形:a:b:c=1:√3:2 (知一求二)
2.勾股定理逆定理:直角三角形的判定:如果三角形的三边长a 、 b 、 c 有关系:222c b a =+,那么这个三角形是直角三角形。
例题:在Rt △ABC 中,∠A =90°,则△ABC 三边满足的关系式为 b2+c2= a2 .
3.勾股数:①能够构成直角三角形的三边长的三个正整数称为勾股数,即222c b a =+中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。
②记住常见的勾股数可以提高解题速度,如3,4,5; 6,8,10; 5,12,13; 7,24,25;等
例题解析:
1.一个三角形的三边分别是,1,2,122-+m m m ,则此三角形是 直角三角形
2.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 6 cm
3.在直角三角形中,如果有两边为3,4,那么另一边为 5或7
4.一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移了 0.8米
5.如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE
重合,你能求出CD 的长吗?答案:CD=3cm
6.已知等边三角形ABC 的边长是6cm ,(1)求高AD 的长;(2)S △
ABC. 答案:cm AD 3327936==-=∴
AD BC S ABC ⋅⋅=∆21)2()(39336212cm =⨯⨯=
6.如图,用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,
此时EC 有多长?•
答案:EC=3cm
7.在矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按图所示方式折叠,使点
B 与点D 重合,折痕为EF ,求DE 的长。
答案:DE=5.8cm
C B A
D
E F
8.∠ACB=∠ABD=90°,CA=CB ,∠DAB=30°,AD=8,求AC 的长。
答案:62=∴AC
8.如图,受台风影响,一棵高18m 的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高? 答案:8)18(62
22=∴-=+x x x
勾股定理的逆定理
1.在直角△ABC 中AB=4cm,BC=5cm,则AC 的长度是 3或39
2. 若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是 直角三角形 .
3.直角三角形两直角边长分别为6和8,则它斜边上的高为___
4.8_______
4.小颍同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知AC=10cm ,BC=6cm,你能求出CE 的长吗?
答案:设CE=x,由222BE BC CE =+,222)10(6x x -=+∴,x=3.2cm
5.等腰△ABC ,AB =AC =13cm ,BC=10cm,求△ABC 的面积和AC 边上的高。
答案:AD=12cm,602
1=⋅⋅=∴∆AD BC S ABC , 1312013602=⋅=BH cm
6.已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 2-b 2,试判断△ABC 的形状.
解:∵a 2c 2-b 2c 2=a 4-b 4, ∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2). ∴ 022=-b a 或c 2=a 2+b 2
∴△ABC 为等腰三角形或直角三角形.
课堂小测 1.在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是 ( D )
A 、a=9,b=41,c=40
B 、a=b=5,25=c
C 、a:b:c=3:4:5
D 、a=11 b=12 ,c=15
2.在Rt △ABC 中,∠C =90°,a=5,c=13,则△ABC 的面积为 30 .
3.已知等腰三角形的一条腰长是5,底边长是6,那么此三角形的面积是__12______
4.若△ABC 的三边a 、b 、c ,满足(a -b )(222c b a -+)=0,则△ABC 是 等腰三角形或直角三角形
5.直角三角形两直角边分别为5cm 、12cm ,那么斜边上的高是 60/13cm
6.已知一个Rt △的两边长分别为3和4,则第三边长的平方是 7或25
7.如图,一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?
答案:m OD OB 8715,
1522520-25,74924-2522222222=-∴======
8.
如图,在四边形ABCD 中,∠BAD =90度,∠DBC = 90度, AD = 3,
AB = 4
,BC = 12,求CD ; 答案:13
C A B
D
E D
A
B C。