九台区二中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

九台区一中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区一中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区一中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( )A .a >1且b <1B .a >1且b >0C .0<a <1且b >0D .0<a <1且b <02. 双曲线的渐近线方程是( )A .B .C .D .3. 函数f (x )=()x2﹣9的单调递减区间为()A .(﹣∞,0)B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)4. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]6. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案7. ,则( )4213532,4,25a b c ===A .B .C .D .b a c <<a b c <<b c a <<c a b<<8. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣29. 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长M )1,0(M y x 22=x M ||PQ 等于( )||PQ A .2 B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10.已知全集为,集合,,则( )R {}|23A x x x =<->或{}2,0,2,4B =-()R A B = ðA .B .C .D .{}2,0,2-{}2,2,4-{}2,0,3-{}0,2,411.已知i 为虚数单位,则复数所对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限12.若实数x ,y 满足不等式组则2x+4y 的最小值是()A .6B .﹣6C .4D .213.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.14.S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=8415.设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是()A .10B .40C .50D .80二、填空题16.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .17.数列{a n }是等差数列,a 4=7,S 7= .18.已知函数,是函数的一个极值点,则实数 .32()39f x x ax x =++-3x =-()f x a =19.已知,,与的夹角为,则.||2=a ||1=b 2-a 13b 3π|2|+=a b 三、解答题20.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法? 21.如图在长方形ABCD 中,是CD 的中点,M 是线段AB 上的点,.(1)若M 是AB 的中点,求证:与共线;(2)在线段AB 上是否存在点M ,使得与垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方形ABCD 上运动,试求的最大值及取得最大值时P 点的位置.22.已知椭圆C:+=1(a>b>0)与双曲线﹣y2=1的离心率互为倒数,且直线x﹣y﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求△OMN 面积的取值范围.23.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数610121255赞成人数3610643(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.25.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.九台区一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:∵函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0,故选:B 2. 【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x .故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题. 3. 【答案】B【解析】解:原函数是由t=x 2与y=()t ﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t ﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键. 4. 【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635 人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .5. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D. 1()12201620162=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()311533212f x x x x =-+-性和的.第Ⅱ卷(非选择题共90分)6. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x ,y ,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、252. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A.B.C.D .33. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 4. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β5. 抛物线y=﹣8x 2的准线方程是( ) A .y=B .y=2C .x=D .y=﹣26. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( )A .命题p 一定是假命题B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题7. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞A .甲B .乙C .丙D .丁9. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.10.已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.11.已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )A .B .C .D .12.已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .2二、填空题13.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.14x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.15.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .16.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .17.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .三、解答题19.设p :关于x 的不等式a x >1的解集是{x|x <0};q :函数的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.20.已知向量=(x ,y ),=(1,0),且(+)•(﹣)=0.(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.21.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]22.在等比数列{a n }中,a 2=3,a 5=81. (Ⅰ)求a n ;(Ⅱ)设b n =log 3a n ,求数列{b n }的前n 项和S n .23.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;24.已知函数f (x )=x ﹣alnx (a ∈R )(1)当a=2时,求曲线y=f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.九台区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 2. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A . 【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.4.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.5.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.6.【答案】D【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又∵命题“非p”也是假命题,∴命题p为真命题.故命题q为可真可假.故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.7.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.8. 【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大, 甲、乙、丙、丁四人的射击环数的方差中丙最小, ∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛, 最佳人选是丙. 故选:C .【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.9. 【答案】B10.【答案】B【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B. 11.【答案】B【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2), 则由于指数函数是单调函数,则有a >1,由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确. 故选B .12.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.二、填空题13.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.14.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.15.【答案】.【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.16.【答案】﹣12.【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,∴==,解得x=﹣6,y=6,x﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.17.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.18.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.三、解答题19.【答案】【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;故命题p为真时,0<a<1;∵函数的定义域为R,∴⇒a≥,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,当p真q假时,则⇒0<a<;当q真p假时,则⇒a≥1,综上实数a的取值范围是(0,)∪[1,+∞).20.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k 2+1,②将②代入①得2m >m 2,解得0<m <2,由②得,解得,故所求的m 的取值范围是(,2).…(ii )当k=0时,|AM|=|AN|,∴AP ⊥MN ,m 2<3k 2+1,解得﹣1<m <1.…综上,当k ≠0时,m 的取值范围是(,2), 当k=0时,m 的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.21.【答案】(1)最大值为,最小值为32-;(2. 【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-=∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin 14A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 22.【答案】【解析】解:(Ⅰ)设等比数列{a n }的公比为q , 由a 2=3,a 5=81,得,解得.∴;(Ⅱ)∵,b n =log 3a n ,∴. 则数列{b n }的首项为b 1=0,由b n ﹣b n ﹣1=n ﹣1﹣(n ﹣2)=1(n ≥2), 可知数列{b n }是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n 项和公式,是基础的计算题.23.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分24.【答案】【解析】解:函数f (x )的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.。

九台区高中2018-2019学年上学期高二数学12月月考试题含解析

九台区高中2018-2019学年上学期高二数学12月月考试题含解析

第 5 页,共 17 页
(Ⅰ)求出 f(5); (Ⅱ)利用合情推理的“归纳推理思想”归纳出 f(n+1)与 f(n)的关系式,并根据你得到的关系式求 f(n) 的表达式.
第 6 页,共 17 页
九台区高中 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案) 一、选择题
1. 【答案】A 【解析】解:∵f(0)=﹣2<0,f(1)=1>0, ∴由零点存在性定理可知函数 f(x)=3x+x﹣3 的零点所在的区间是(0,1). 故选 A 【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属 于基础题. 2. 【答案】C 【解析】解 : 观察可得各式的值构成数列 1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项 的和,所求值为数列中的第十项. 继续写出此数列为 1,3,4,7,11,18,29,47,76,123,…,第十项为 123,即 a10+b10=123,. 故选 C. 3. 【答案】B 【解析】解:对于 A,函数 f′(x)=﹣3sin(2x﹣ 对于 B,当 x= 时,f( )=3cos(2× )•2=﹣6sin(2x﹣ ﹣ ),A 错误;
21.(本小题满分 12 分)一直线被两直线 l1 : 4 x y 6 0, l2 : 3 x 5 y 6 0 截得线段的中点是 P 点, 当 P 点为 0, 0 时, 求此直线方程.
第 4 页,共 17 页
22.已知数列{an}满足 a1=a,an+1= (1)求 a2,a3,a4;
)=﹣3 取得最小值,
所以函数 f(x)的图象关于直线 对于 C,当 x∈(﹣ , )时,2x﹣
对称,B 正确; ∈(﹣ , ),

九台区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣12.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.1993.若向量=(3,m),=(2,﹣1),∥,则实数m的值为()A.﹣B.C.2 D.64.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A.y=x+2 B.y=C.y=3x D.y=3x35.若函数f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣2)f(x)<0的解集是()A.(﹣3,0)∪(2,3) B.(﹣∞,﹣3)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,0)∪(2,+∞)6.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >7. 抛物线y=4x 2的焦点坐标是( )A .(0,1)B .(1,0)C .D .8. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .49. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.10.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=511.特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥012.已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数a 的取值范围是( )A .B .C .D .二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.15.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力. 16.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .17.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .18.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .三、解答题19.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.20.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.21.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.22.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.23.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7}, (1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.24.已知f (x )是定义在[﹣1,1]上的奇函数,f (1)=1,且若∀a 、b ∈[﹣1,1],a+b ≠0,恒有>0,(1)证明:函数f (x )在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x ∈[﹣1,1]及∀a ∈[﹣1,1],不等式f (x )≤m 2﹣2am+1恒成立,求实数m 的取值范围.九台区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.2.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.3.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥,所以﹣3=2m,解得m=﹣.故选:A.【点评】本题考查向量共线的充要条件的应用,基本知识的考查.4.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.5.【答案】A【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.6.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.7.【答案】C【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C.【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.8.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,∴,∴n=8,r=6.故选:B.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.9.【答案】C【解析】考点:几何体的结构特征.10.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.11.【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.12.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a 的取值范围是,故选:A .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.二、填空题13.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题. 14.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。

九台区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .122. 函数f (x )=kx +b x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .43. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .4. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q5. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)6. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.7. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限8. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .9. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==10.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A,若,则实数a 的取值范围是( )A.B.C.D.11.已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直 12.已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2 B.C.D .13二、填空题13.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ . 15.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.16.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)17.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.18.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .三、解答题19.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.20.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?21.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?22.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.23.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.24.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.九台区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 2. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b-1-m,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 3. 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错; 故答案为:B 4. 【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l , 显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.5. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5]. ∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2]. 故选:C .6. 【答案】B 【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.7. 【答案】C【解析】解:z====+i ,当1+m >0且1﹣m >0时,有解:﹣1<m <1; 当1+m >0且1﹣m <0时,有解:m >1; 当1+m <0且1﹣m >0时,有解:m <﹣1; 当1+m <0且1﹣m <0时,无解; 故选:C .【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.8. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.9. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1 10.【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x ﹣)|x ﹣|+1>x|x|,(1)x <0时,解得﹣<x <0;(2)0≤x ≤时,解得0;(3)x >时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B 、D ; 取a=1时,f (x )=x|x|+x ,∵f (x+a )<f (x ),∴(x+1)|x+1|+1<x|x|,(1)x <﹣1时,解得x >0,矛盾; (2)﹣1≤x ≤0,解得x <0,矛盾; (3)x >0时,解得x <﹣1,矛盾; 综上,a=1,A=∅,不合题意,排除C ,故选A .【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.11.【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A12.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.二、填空题13.【答案】63【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.14.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值 15.【答案】62+ 【解析】16.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键..17.【答案】[3,6]【解析】18.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.三、解答题19.【答案】【解析】解:(Ⅰ)∵g (x )=log a x (a >0,且a ≠1)的图象过点(4,2),∴log a 4=2,a=2,则g (x )=log 2x .…∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,∴.…(Ⅱ)∵f (x ﹣1)>f (5﹣x ),∴,即,解得1<x <3,所以x 的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.20.【答案】【解析】解:(1)依题意得: 当0<x ≤4时,y=10;…(2分)当4<x ≤18时,y=10+1.5(x ﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.21.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.22.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.23.【答案】【解析】解:(1)由已知得:f′(x)=.要使函数f(x)在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a>0可知,只需a,x∈[1,+∞)即可.易知,此时=1,所以只需a≥1即可.(2)结合(1),令f′(x)==0得.当a≥1时,由(1)知,函数f(x)在[1,e]上递增,所以f(x)min=f(1)=0;当时,,此时在[1,)上f′(x)<0,在上f′(x)>0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1﹣lna﹣;当时,,故此时f′(x)<0在[1,e]上恒成立,所以f(x)在[1,e]上递减,所以f(x)min=f(e)=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.24.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.。

2018-2019学年高二数学上学期期末考试试题(含解析)_2

2018-2019学年高二数学上学期期末考试试题(含解析)_2

2018-2019学年高二数学上学期期末考试试题(含解析)第I卷(选择题共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知命题,下列命题中正确的是( )A. B.C. D.【答案】C【解析】试题分析:命题,使的否定为,使,故选C.考点:特称命题的否定.2.抛物线的焦点坐标为A. B. C. D.【答案】A【解析】抛物线,开口向右且焦点在轴上,坐标为.故选A.3.“a>1”是“<1”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4. 已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:由已知中△ABC三个顶点为A(3,3,2),B (4,-3,7),C(0,5,1),利用中点公式,求出BC边上中点D的坐标,代入空间两点间距公式,即可得到答案.解:∵B(4,-3,7),C(0,5,1),则BC的中点D的坐标为(2,1,4)则AD即为△ABC中BC边上的中线故选B.考点:空间中两点之间的距离点评:本题考查的知识点是空间中两点之间的距离,其中根据已知条件求出BC边上中点的坐标,是解答本题的关键.5.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。

其中正确的命题是()A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.6.如图所示,在平行六面体中,为与的交点.若,,,则下列向量中与相等的向量是()A. B.C. D.【答案】A【解析】【分析】运用向量的加法、减法的几何意义,可以把用已知的一组基底表示.详解】.【点睛】本题考查了空间向量用一组已知基底进行表示.7.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】由于,所以到的距离之和为,满足椭圆的定义,其中,由于焦点在轴上,故选.点睛:本题主要考查椭圆的定义和标准方程. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解. 求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).8.过抛物线的焦点作直线交抛物线于两点,如果,那么A. 6B. 8C. 9D. 10【答案】B【解析】【分析】根据抛物线的性质直接求解,即焦点弦长为.【详解】抛物线中,,∴,故选B.【点睛】是抛物线的焦点弦,,,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为.9.若直线与双曲线的右支交于不同的两点,则的取值范围是A. B. C. D.【答案】D【解析】【分析】由直线与双曲线联立得(1-k2)x2-4kx-10=0,由结合韦达定理可得解.【详解】解析:把y=kx+2代入x2-y2=6,得x2-(kx+2)2=6,化简得(1-k2)x2-4kx-10=0,由题意知即解得<k<-1.答案:D.【点睛】本题主要考查了直线与双曲线的位置关系,属于中档题.10.试在抛物线上求一点,使其到焦点距离与到的距离之和最小,则该点坐标为A. B. C. D.【答案】A【解析】由题意得抛物线的焦点为,准线方程为.过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时.故点的纵坐标为1,所以横坐标.即点P的坐标为.选A.点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.11.在长方体中,如果,,那么到直线的距离为A. B. C. D.【答案】C【解析】【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.第Ⅱ卷(主观题共90分)二、填空题(每题5分,共20分,将答案写在答题纸上)13. 已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.【答案】2.【解析】试题分析:由三点共线得向量与共线,即,,,解得,,∴.考点:空间三点共线.14.已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).【答案】【解析】试题分析:设抛物线方程为,当x=0时 c=2,当x=-4和x=4时y=0,求得, b=0,则,令y=1,得,所以水面宽.考点:抛物线方程.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.①一个命题的逆命题为真,它的否命题一定也为真:②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件;④“”是“”的充分必要条件;以上说法中,判断错误的有_______________.【答案】③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若,则,有,则三个角成等差数列,反之若三个角成等差数列,有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知命题有两个不相等的负根,命题无实根,若为假,为真,求实数的取值范围.【答案】【解析】【分析】根据命题和的真假性,逐个判断.【详解】因为假,并且为真,故假,而真即不存在两个不等的负根,且无实根.所以,即,当时,不存在两个不等的负根,当时,存在两个不等的负根.所以的取值范围是【点睛】此题考查了常用的逻辑用语和一元二次方程的性质,属于基础题.18.已知椭圆C的两焦点分别为,长轴长为6。

九台区二中2018-2019学年上学期高二数学12月月考试题含解析

九台区二中2018-2019学年上学期高二数学12月月考试题含解析

九台区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|2. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .313. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点4. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,265. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .6. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++ ,则k =A 、22B 、23C 、24D 、257. 计算log 25log 53log 32的值为( )A .1B .2C .4D .88. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .9. 下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}C .0∈{0}D .∅={0}10.已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-11.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)12.定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6二、填空题13.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.14.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .15.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.16.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .17.双曲线x2﹣my2=1(m>0)的实轴长是虚轴长的2倍,则m的值为.18.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f(x)=3x+1 ②f(x)=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)三、解答题19.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.20.(本小题满分12分)已知函数21()xf xx+=,数列{}n a满足:12a=,11nna fa+⎛⎫= ⎪⎝⎭(Nn*∈).(1)求数列{}n a的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y 关于x 的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X ,求X 的分布列和数学期望.22.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.23.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅= ,sin 3BAC ∠=,AB =BD .(Ⅰ)求AD 的长; (Ⅱ)求cos C .24.设p :关于x 的不等式a x >1的解集是{x|x <0};q :函数的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.九台区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.2.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.3.【答案】D【解析】试题分析:因为直线a 平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.4.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.5.【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.6. 【答案】A【解析】1237k a a a a a =++++ 17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 7. 【答案】A【解析】解:log 25log 53log 32==1.故选:A .【点评】本题考查对数的运算法则的应用,考查计算能力.8. 【答案】C【解析】解;∵f ′(x )= f ′(x )>k >1,∴>k >1,即>k >1,当x=时,f ()+1>×k=,即f ()﹣1=故f ()>,所以f ()<,一定出错, 故选:C .9. 【答案】C【解析】解:对于A ∅⊆{0},用“∈”不对,对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确; 对于D ,空集没有任何元素,{0}有一个元素,故不正确.10.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 11.【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x 上但不在阴影区域内,故不成立;故选D .【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.12.【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数,∴函数f(x)在x=7时,函数取得最大值f(7)=6,∵函数f(x)是偶函数,∴在[﹣7,0]上是减函数,且最大值是6,故选:D二、填空题13.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.14.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.15.【答案】1,e ⎛⎤-∞⎥⎝⎦【解析】结合函数的解析式:122ee1xxy+=+可得:()()122221'1x xxe eye+-=+,令y′=0,解得:x=0,当x>0时,y′>0,当x<0,y′<0,则x∈(-∞,0),函数单调递增,x∈(0,+∞)时,函数y单调递减,则当x=0时,取最大值,最大值为e,∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x -=,当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.16.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O 的半径为3,球O 1 的半径为1,则,在Rt △OMO 1中,OO 1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.17.【答案】4.【解析】解:双曲线x2﹣my2=1化为x2﹣=1,∴a2=1,b2=,∵实轴长是虚轴长的2倍,∴2a=2×2b,化为a2=4b2,即1=,解得m=4.故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.18.【答案】①④【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);①f(x)在R递增,符合题意;②f(x)在R递减,不合题意;③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f(x)在R递增,符合题意;故答案为:①④.三、解答题19.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x,y,z)为平面ABD的一个法向量,由条件得,=,=(﹣2,0,a).∴即,不妨令x=1,则y=,z=,∴=.又二面角A﹣BD﹣C所成角θ的正切值是2,∴.∴=cosθ=,∴==,解得a=2.∴V ABCDE=V E﹣ADC+V E﹣ABC=+=+==8.∴该几何体ABCDE的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.20.【答案】【解析】(1)∵211()2x f x x x +==+,∴11()2n n na f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,∴1()(22)(1)22n n a a n n nS n n ++===+, ∴1111(1)1n S n n n n ==-++. (8分) ∴1231111n n T S S S S =++++11111111()()()()1223341n n =-+-+-++-+ 111n =-+1n n =+. (12分) 21.【答案】【解析】解:(1), =5…且,代入回归直线方程可得∴=0.6x+3.2, x=6时, =6.8,…(2)X 的取值有0,1,2,3,则,,,…0 1 2 3【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.22.【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k 值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k 的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P 1(,﹣)或点P 2(﹣,)(12分)23.【答案】【解析】(Ⅰ)因为AD AC ⊥,所以sin sin cos 2BAC BAD BAD π⎛⎫∠=+∠=∠ ⎪⎝⎭,所以cos BAD ∠=.…… 3分 在ABD ∆中,由余弦定理可知,2222cos BD AB AD AB AD BAD =+-⋅⋅∠ 即28150AD AD -+=,解之得5AD =或3AD =, 由于AB AD >,所以3AD =.…… 6分(Ⅱ)在ABD ∆中,由cos BAD ∠=可知1sin 3BAD ∠= …… 7分由正弦定理可知,sin sin BD ABBAD ADB =∠∠,所以sin sin AB BAD ADB BD ∠∠==…… 9分因为2ADB DAC C C π∠=∠+∠=+∠,即cos C = 12分24.【答案】【解析】解:∵关于x 的不等式a x>1的解集是{x|x <0},∴0<a <1; 故命题p 为真时,0<a <1; ∵函数的定义域为R ,∴⇒a ≥,由复合命题真值表知:若p ∨q 是真命题,p ∧q 是假命题,则命题p 、q 一真一假,当p 真q 假时,则⇒0<a <;当q真p假时,则⇒a≥1,综上实数a的取值范围是(0,)∪[1,+∞).。

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学

九台区第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<12.下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤3.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.4.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A.最多可以购买4份一等奖奖品 B.最多可以购买16份二等奖奖品C.购买奖品至少要花费100元 D.共有20种不同的购买奖品方案5.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.6. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅7. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或2 8. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣19. 已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )A .[1,+∞)B .[0.2}C .[1,2]D .(﹣∞,2]10.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>11.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 12.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)二、填空题13.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .16.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .17.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .18.已知i 是虚数单位,复数的模为 .三、解答题19.已知函数f (x )=x ﹣1+(a ∈R ,e 为自然对数的底数).(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (Ⅱ)求函数f (x )的极值;(Ⅲ)当a=1的值时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值.20.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a.21.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分) (3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.23.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5]. (1)求实数m 的值;(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2的最小值.24.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.九台区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵命题p:存在x0>0,使2<1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A2.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C.【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.3.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

九台区高级中学2018-2019学年上学期高二数学12月月考试题含解析

九台区高级中学2018-2019学年上学期高二数学12月月考试题含解析

九台区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数y=2|x|的图象是()A.B.C.D.2.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.3.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关5. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .146. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .7. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .8. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π9. 定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或210.记,那么ABC D11.如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣12.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .14.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .15.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .16.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 17.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .18.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .三、解答题19.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.20.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.21.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M.(I)求椭圆Γ的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.22.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.23.某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t 0 3 6 9 12 15 18 21 24y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f(t)可近似的看成是函数y=Asinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?24.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a .(1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.九台区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)∴y=2|x|是偶函数,又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.2.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.3.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.4.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.5.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.6.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.7.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y 轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.8.【答案】B【解析】试题分析:由正弦定理可得()sin0,,4sin6B B Bππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 9.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.10.【答案】B【解析】【解析1】,所以【解析2】,11.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.12.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.二、填空题13.【答案】﹣2.【解析】解:∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y﹣1=(n+1)(x﹣1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn﹣lg(n+1),∴a1+a2+…+a99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100)=lg1﹣lg100=﹣2.故答案为:﹣2.14.【答案】(﹣∞,3].【解析】解:f′(x)=3x2﹣2ax+3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a+6≥0,∴a≤3;实数a的取值范围是(﹣∞,3].15.【答案】50π.【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.16.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=017.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.18.【答案】30°.【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.三、解答题19.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.(Ⅱ)不等式f(x)﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔+2<f(x)min恒成立,∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,∴f(x)的最小值为4,∴+2<4,即,解得:﹣1<a<0或3<a<4.∴实数a的取值范围为(﹣1,0)∪(3,4).20.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解21.【答案】【解析】解:(Ⅰ)依题意得,解得,所以所求的椭圆方程为;(Ⅱ)假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x﹣2y﹣2=0相切,因为以AM为直径的圆C过点F,所以∠AFM=90°,即AF⊥AM,又=﹣1,所以直线MF的方程为y=x﹣2,由消去y,得3x2﹣8x=0,解得x=0或x=,所以M(0,﹣2)或M(,),(1)当M为(0,﹣2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x﹣2y﹣2=0的距离为d==≠,所以圆C与直线x﹣2y﹣2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r===,所以圆心C到直线x﹣2y﹣2=0的距离为d==r,所以圆心C与直线x﹣2y﹣2=0相切,此时k AF=,所以直线l的方程为y=﹣+2,即x+2y﹣4=0,综上所述,存在满足条件的直线l,其方程为x+2y﹣4=0.【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在.22.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.23.【答案】【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点评】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.24.【答案】(1)详见解析;(2)详见解析.。

九台区二中2018-2019学年高二上学期第二次月考试卷数学

九台区二中2018-2019学年高二上学期第二次月考试卷数学

九台区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. i 是虚数单位,=( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i2. 已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1B .C .3D .23. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 4. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2 B .8C .﹣2或8D .2或85. 设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直6. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .67. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数8. 函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .139. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 10.直线2x+y+7=0的倾斜角为( )A.锐角 B.直角 C.钝角 D.不存在11.已知向量,,其中.则“”是“”成立的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件12.执行如图所示的程序框图,如果输入的t=10,则输出的i=()A.4 B.5C.6 D.7二、填空题13.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.14.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),求向量在方向上的投影.15.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).16.命题:“∀x∈R,都有x3≥1”的否定形式为.17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.18.已知线性回归方程=9,则b= .三、解答题19.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同. (1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.20.已知f (x )=|x ﹣1|+|x+2|. (1)解不等式f (x )≥5;(2)若关于x 的不等式f (x )>a 2﹣2a 对于任意的x ∈R 恒成立,求a 的取值范围.21.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.22.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.23.设,证明:(Ⅰ)当x>1时,f(x)<(x﹣1);(Ⅱ)当1<x<3时,.24.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若2x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.九台区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:,故选D .【点评】本小题考查复数代数形式的乘除运算,基础题.2. 【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D .【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.3. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 4. 【答案】D【解析】解:由题意可得3∈A ,|a ﹣5|=3, ∴a=2,或a=8, 故选 D .5. 【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.6.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.7.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.8.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k 的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.9. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.10.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tan θ=﹣2,即可判断出结论. 【解答】解:设直线2x+y+7=0的倾斜角为θ, 则tan θ=﹣2, 则θ为钝角.故选:C . 11.【答案】A【解析】【知识点】平面向量坐标运算 【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

九台区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或 D .或2. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 3. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .4. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]5. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .2 6. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假7. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .8. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)9. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.2310.已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .11.已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)12.下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )二、填空题13.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .14.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .15.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16.设是空间中给定的个不同的点,则使成立的点的个数有_________个.17.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .18. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.如图所示,在边长为的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.20.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3. (Ⅰ)求实数m 的值;(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2的最小值.21.已知函数且f (1)=2.(1)求实数k 的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.22.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.23.(本小题满分10分) 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.24.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)九台区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.2. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 3. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .4. 【答案】B【解析】解:∵函数y=x 2+(2a ﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a ≤﹣ 故选B .5. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.6.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.7.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.9.【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.10.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.11.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],12.【答案】D【解析】考点:平面的基本公理与推论.二、填空题13.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.14.【答案】(﹣1,1].【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]15.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 16.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。

九台区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣ 2. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.653. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈 4. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .25. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 6. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l7. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位: 小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.8. 已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .9. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心10.已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .11.如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .312.在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB二、填空题13.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .14.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 .15.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .17.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。

九台区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

九台区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣22.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.3.已知x>1,则函数的最小值为()A.4 B.3 C.2 D.14.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?5.已知M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则实数a的取值范围为()A.(﹣∞,1)B.(﹣∞,1] C.(﹣∞,0)D.(﹣∞,0]6. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1507. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .458. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°9. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .910.已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .11.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .12.设x ,y 满足约束条件,则目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( )A .B .C .6D .5二、填空题13.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .14.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .15.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.16.已知f (x )=,则f (﹣)+f ()等于 .17.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.三、解答题19.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分A B C D E,其频率分布直方图如下图所示.别记为,,,,(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.21.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项. (1)求数列{a n }、{b n }的通项公式;(2)设c n =,求{c n }的前n 项和S n .22.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.23.设集合A={x|0<x ﹣m <3},B={x|x ≤0或x ≥3},分别求满足下列条件的实数m 的取值范围. (1)A ∩B=∅; (2)A ∪B=B .24.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.九台区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 2. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 3. 【答案】B【解析】解:∵x >1∴x ﹣1>0由基本不等式可得,当且仅当即x ﹣1=1时,x=2时取等号“=”故选B4. 【答案】 B【解析】解:模拟执行程序框图,可得 i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s 的,则判断框中应填入的条件是i ≤4. 故选:B .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.6.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.7.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.8.【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,可得a2=7c2,所以cosA===﹣,∵0<A<180°,∴A=120°.故选:C.【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.9.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C10.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.11.【答案】A【解析】考点:二元一次不等式所表示的平面区域.12.【答案】B【解析】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()≥=,当且仅当a=b=,取最小值.故选B .二、填空题13.【答案】【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以为面AEF 与面ABC 所成的二面角的平面角。

九台区二中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区二中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N2. 某程序框图如图所示,该程序运行输出的k 值是( )A .4B .5C .6D .73. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)4. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}5. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .16. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a 7. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=8. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.9. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .10.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或11.与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°12.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.二、填空题13x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.14.用“<”或“>”号填空:30.8 30.7.15.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .16.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .17.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 18.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .三、解答题19.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y 对x 的回归直线方程: =﹣10x+170; =﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)20.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.21.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.22.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.23..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.九台区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.2.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.4.【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.5.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.6.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C7.【答案】D【解析】解:抛物线x=﹣4y2即为y2=﹣x,可得准线方程为x=.故选:D.8.【答案】D9.【答案】C【解析】解:由于q=2,∴∴;故选:C.10.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B11.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.12.【答案】B【解析】二、填空题13.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.14.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.15.【答案】11[3) 32⎡⎤+∞⎢⎥⎣⎦,,【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对()3x g x a =-于轴的交点个数进行分情况讨论,特别注意:1.在1x <时也轴有一个交点式,还需31a ≥且21a <;2. 当()130g a =-≤时,()g x 与轴无交点,但()h x 中3x a =和2x a =,两交点横坐标均满足1x ≥.16.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.17.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-. 18.【答案】2【解析】解:设f (x )=﹣,则f (x )为奇函数,所以函数f (x )的最大值与最小值互为相反数,即f (x )的最大值与最小值之和为0.将函数f(x)向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x∈R)的最大值与最小值的和为2.故答案为:2.【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.三、解答题19.【答案】【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5,=(90+84+83+80+75+68)=80;∵(,)在回归直线上,∴选择=﹣20x+250;(2)利润w=(x﹣5)(﹣20x+250)=﹣20x2+350x﹣1250=﹣20(x﹣8.75)2+281.25,∴当x=8.75元时,利润W最大为281.25(万元),∴当单价定8.75元时,利润最大281.25(万元).20.【答案】【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a>0设f(x)=a(x﹣)2+.将点(0,4)代入得:f(0)=,解得:a=1∴f(x)=(x﹣)2+=x2﹣3x+4.(2)h(x)=f(x)﹣(2t﹣3)x=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t≥1时,最小值﹣2t+5.∴.(3)由已知:f(x)>2x+m对于x∈[﹣1,3]恒成立,∴m<x2﹣5x+4对x∈[﹣1,3]恒成立,∵g(x)=x2﹣5x+4在x∈[﹣1,3]上的最小值为,∴m<.21.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.22.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.23.【答案】【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,∴a=1 …(2)f(x)==﹣1+,在(﹣∞,+∞)上单调递减…(3)f(t2﹣2t)+f(2t2﹣k)<0⇔f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),又f(x)=在(﹣∞,+∞)上单调递减,∴t2﹣2t>﹣2t2+k,即3t2﹣2t﹣k>0恒成立,∴△=4+12k<0,∴k<﹣.…(利用分离参数也可).24.【答案】【解析】解:(1)∵EP与⊙O相切于点A,∴∠ACB=∠PAB=25°,又BC是⊙O的直径,∴∠ABC=65°,∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,∴∠D=115°.证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB,∠D=∠PBA,∴△ADC∽△PBA,∴,又DA=BA,∴DA2=DC•BP.。

九台区高中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区高中2018-2019学年高二上学期数学期末模拟试卷含解析

九台区高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .2. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .43. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假 B .¬q 为真 C .p ∨q 为真 D .p ∧q 为假4. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i5. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个6. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .377. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定8. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点9. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .311510.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111]11.设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .12.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .D .二、填空题13.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.14.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .15.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .16.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 . 17.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0. 18.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.三、解答题19.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?20.已知函数f (x )=sin (ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P (0,1)(Ⅰ)求函数f (x )的解析式;(Ⅱ)设函数 g (x )=f (x )+cos2x ﹣1,将函数 g (x )图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m )内是单调函数,求实数m 的最大值.21.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.PA=;(1)求证:PB∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.(2)OAB【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.22.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.23.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.九台区高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.2.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.3.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C4.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.5.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.6.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.7.【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 >4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.8. 【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 9. 【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式. 10.【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)11.【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .12.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

九台区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

九台区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.2. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3. 正方体的内切球与外接球的半径之比为( )A .B .C .D .4. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .125. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}6. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f7. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .8. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项. 9. 已知函数f (x )=,则f (0)=( )A .﹣1B .0C .1D .310.连续抛掷两次骰子得到的点数分别为m 和n,记向量=(m ,n),向量=(1,﹣2),则⊥的概率是( ) A.B.C.D.11.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化二、填空题13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.若全集,集合,则1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623816.已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N+),向量=(0,1),θn是向量与i的夹角,则++…+=.17.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.18.已知函数21,0()1,0x xf xx x⎧-≤=⎨->⎩,()21xg x=-,则((2))f g=,[()]f g x的值域为.【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.三、解答题19.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.20.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:(1)现有三条y 对x 的回归直线方程: =﹣10x+170; =﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)21.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.22.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值.合计23.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.24.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)九台区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 2. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.3. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C4. 【答案】A 【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3. 故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力.5. 【答案】C【解析】解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8}.故选C6.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B7.【答案】A【解析】解:直线x+y﹣1=0与2x+2y+3=0的距离,就是直线2x+2y﹣2=0与2x+2y+3=0的距离是:=.故选:A.8.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.9.【答案】B【解析】解:函数f(x)=,则f(0)=f(2)=log22﹣1=1﹣1=0.故选B.【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.10.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.11.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.12.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.二、填空题13.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.14.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.15.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

九台区第二中学校2018-2019学年上学期高二数学12月月考试题含解析

九台区第二中学校2018-2019学年上学期高二数学12月月考试题含解析

九台区第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A.B.C.D.2. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)3. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( ) A.(,1)B .(﹣∞,)∪(1,+∞) C.(﹣,) D .(﹣∞,﹣)∪(,+∞)4. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4) 5. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A .2B.C .3 D.6. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 7. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的168. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.10.运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y=C .y=3xD .y=3x 311.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40 C .60 D .2012.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}C .{1,2,3,4,5}D .∅二、填空题13.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .14.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .15.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.16.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .17.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.20.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.21.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.22.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.23.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x(1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.24.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点2在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.九台区第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.2.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.3.【答案】A【解析】解:因为f(x)为偶函数,所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,即(2x﹣1)2<x2,解得<x<1,所以x的取值范围是(,1),故选:A.4.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B .5. 【答案】B【解析】解:双曲线C :x 2﹣=1(b >0)的顶点为(±1,0),渐近线方程为y=±bx ,由题意可得=,解得b=1,c==,即有离心率e==.故选:B .【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.6. 【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y 轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定. 7. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A. 考点:圆锥的体积公式.1 8. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .9. 【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.10.【答案】 C【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C .【点评】本题考查了程序框图的应用问题,是基础题目.11.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B .【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.12.【答案】B【解析】解:∵C U A={1,5}∴B ∪(∁U A )={2,5}∪{1,5}={1,2,5}. 故选B .二、填空题13.【答案】 2n ﹣1 .【解析】解:∵a 1=1,a n+1=a n +2n, ∴a 2﹣a 1=2, a 3﹣a 2=22, …a n ﹣a n ﹣1=2n ﹣1,相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1,a n =2n ﹣1,故答案为:2n﹣1,14.【答案】 2 .【解析】解:函数可化为f (x )==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f (x )=的最大值与最小值的和为1+1+0=2.即M+m=2. 故答案为:2.15.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e -'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23.16.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.17.【答案】5【解析】试题分析:'2'f x x ax f a=++∴-=∴=.()323,(3)0,5考点:导数与极值.18.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.三、解答题19.【答案】【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x﹣3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2…①当动圆与圆O2相内切时,有|O2M|=10﹣R…②将①②两式相加,得|O1M|+|O2M|=12>|O1O2|,∴动圆圆心M(x,y)到点O1(﹣3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(﹣3,0)、O2(3,0),长轴长等于12的椭圆.∴2c=6,2a=12,∴c=3,a=6∴b2=36﹣9=27∴圆心轨迹方程为,轨迹为椭圆.(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2﹣108=0,整理得所以圆心轨迹方程为,轨迹为椭圆.【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.20.【答案】【解析】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.21.【答案】【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.22.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.23.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.24.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.。

2018年吉林省长春市九台市第二中学高二数学文上学期期末试卷含解析

2018年吉林省长春市九台市第二中学高二数学文上学期期末试卷含解析

2018年吉林省长春市九台市第二中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为A. B.- C. D.参考答案:C略2. 下图是函数y=f(x)的的图像,则函数y=f(x)的导函数图像是()参考答案:D略3. 已知,为的导函数,则的图象是( )A.B. C.D.参考答案:A4. 函数,以下关于此函数的说法正确的是A.在处取得极小值B.在处取得极大值C.在处取得极小值D.在处取得极大值参考答案:D5. 已知向量,,则()A. (-6,-4)B. (-5,-6)C.(-8,-5)D. (-7,-6)参考答案:C【分析】由已知向量的坐标运算直接求得的坐标.【详解】∵向量(-2,﹣1),(3,2),∴.故选C.【点睛】本题考查了向量坐标的运算及数乘运算,属于基础题.6. 展开式中的常数项为()A.20 B.﹣20 C.15 D.﹣15参考答案:B【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:∵二项式=,它的展开式的通项公式为T r+1=?(﹣1)r?x6﹣2r,令6﹣2r=0,求得r=3,可得展开式中的常数项为﹣=﹣20,故选:B.7. 下列命题中是假命题的是()A. B.C. D.参考答案:B8. 的值是()A. B. C. D.参考答案:A略9. 已知命题p:对任意x∈R,有cosx≤1,则( )A.¬p:存在x0∈R,使cosx0≥1B.¬p:存在x∈R,使cosx≥1C.¬p:存在x0∈R,使cosx0>1 D.¬p:存在x∈R,使cosx>1参考答案:C【考点】命题的否定.【专题】常规题型.【分析】已知命题p:对任意x∈R,有cosx≤1,根据命题否定的规则,对命题进行否定;【解答】解:∵已知命题p:对任意x∈R,有cosx≤1,∴¬p:存在x0∈R,使cosx0>1,故选C.【点评】此题考查对命题的否定,注意常见的否定词,此题是一道基础题.10. 已知全集U=R,集合则等于()A.B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.参考答案:12. 计算(﹣8﹣7i)×(﹣3i)= .参考答案:﹣21+24i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式=24i﹣21,故答案为:﹣21+24i.13. 已知等比数列{a n}的公比为正数,且a3a9=2a52,a2=2,则a1= .参考答案:考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由a3a9=2a52,结合等比数列的性质可求q,然后由可求解答:解:∵a3a9=2a52,由等比数列的性质可知,∴?a5∵a n>0∴q=∵a2=2∴=故答案为:点评:本题主要考查了等比数列的通项公式的简单应用,属于基础试题14. 命题“”的否定为.”参考答案:15. 定积分______.参考答案:2【分析】根据定积分的计算法则计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.函数 y=1﹣
(x∈R)的最大值与最小值的和为 2 .
三、解答题
19.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行
试销,得到如下数据: 单价 x(单位:元) 销量 y(单位:万件)
8 8.2 8.4 8.6 8.8 9 90 84 83 80 75 68
分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如
果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,
选择恰当的数学模型③解模. 3. 【答案】 D
【解析】解:由题意作出其平面区域,
将 u=2x+y 化为 y=﹣2x+u,u 相当于直线 y=﹣2x+u 的纵截距, 故由图象可知, 使 u=2x+y 取得最大值的点在直线 y=3﹣2x 上且在阴影区域内, 故(1,1),(0,3),( ,2)成立,
20.已知二次函数 f(x)的图象过点(0,4),对任意 x 满足 f(3﹣x)=f(x),且有最小值是 . (1)求 f(x)的解析式; (2)求函数 h(x)=f(x)﹣(2t﹣3)x 在区间[0,1]上的最小值,其中 t∈R; (3)在区间[﹣1,3]上,y=f(x)的图象恒在函数 y=2x+m 的图象上方,试确定实数 m 的范围.
y2=﹣ x,
可得准线方程为 x= .
故选:D. 8. 【答案】D
第 8 页,共 15 页
9. 【答案】C 【解析】解:由于 q=2,



故选:C. 10.【答案】B
【解析】解:因为 y=f(x)为奇函数,所以当 x>0 时,﹣x<0, 根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即 f(x)=x﹣2, 当 x<0 时,f(x)=x+2, 代入所求不等式得:2(x+2)﹣1<0,即 2x<﹣3,
(1)现有三条 y 对 x 的回归直线方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根据所学的统计
学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件 5 元,为使
公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)
根据上表数据可得 y 与 x 之间的线性回归方程 =0.7x+ ,据此模型估计,该机器使用年限为 14 年时的维修
费用约为 万元.
第 2 页,共 15 页
14.用“<”或“>”号填空:30.8 30.7.
15.设函数
f
x

3x
x
a ,x 1
3a x
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
9. 设等比数列{an}的公比 q=2,前 n 项和为 Sn,则 =(

A.2 B.4 C. D.
10.己知 y=f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)=x+2,那么不等式 2f(x)﹣1<0 的解集是 ()
A.
即:k360°+257°,(k∈Z)
故选 C
【点评】本题考查终边相同的角,是基础题. 12.【答案】B




第 9 页,共 15 页
二、填空题
13.【答案】 7.5
【解析】解:∵由表格可知 =9, =4, ∴这组数据的样本中心点是(9,4), 根据样本中心点在线性回归直线 =0.7x+ 上,
九台区二中 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题
1. 已知全集 I={1,2,3,4,5,6,7,8},集合 M={3,4,5},集合 N={1,3,6},则集合{2,7,8}是 () A.M∪N B.M∩NC.∁IM∪∁IN D.∁IM∩∁IN 2. 某程序框图如图所示,该程序运行输出的 k 值是( )
∴4=0.7×9+ ,
∴ =﹣2.3,
∴这组数据对应的线性回归方程是 =0.7x﹣2.3, ∵x=14, ∴ =7.5, 故答案为:7.5 【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程 的系数的过程省掉,只要求 a 的值,这样使得题目简化,注意运算不要出错. 14.【答案】 >
第 5 页,共 15 页
九台区二中 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D 【解析】解:∵全集 I={1,2,3,4,5,6,7,8},集合 M={3,4,5},集合 N={1,3,6}, ∴M∪N={1,2,3,6,7,8}, M∩N={3}; ∁IM∪∁IN={1,2,4,5,6,7,8}; ∁IM∩∁IN={2,7,8}, 故选:D. 2. 【答案】 C
B.

C.
D.

11.与﹣463°终边相同的角可以表示为(k∈Z)( )
A.k360°+463°
B.k360°+103°
C.k360°+257°
D.k360°﹣257°
12.设 F
为双曲线
x2 a2

y2 b2
1(a

0, b
0) 的右焦点,若 OF
的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为 1 | OF | ,则双曲线的离心率为(

2
A. 2 2 B. 2 3 C. 2 3 D.3 3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.
二、填空题
13.某工厂的某种型号的机器的使用年限 x 和所支出的维修费用 y(万元)的统计资料如表: x 6 8 10 12 y2356
16.【答案】 2i .
【解析】解:向量 饶坐标原点逆时针旋转 60°得到向量所对应的复数为
( +i)(cos60°+isin60°)=( +i)(
)=2i
,故答案为 2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转 60°得到向量对应的复数为( +i)(
cos60°+isin60°),是解题的关键.
而点( ,0)在直线 y=3﹣2x 上但不在阴影区域内,
第 6 页,共 15 页
故不成立; 故选 D.
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题. 4. 【答案】B 【解析】解:由于 1∈{0,1},{1}⊆{0,1}, 故选:B
第 7 页,共 15 页
【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足 集合中元素的性质,是解答本题的关键. 5. 【答案】 【解析】选 C.由题意得 log2(a+6)+2log26=9. 即 log2(a+6)=3, ∴a+6=23=8,∴a=2,故选 C. 6. 【答案】C
A.4
B.5
3. 实数 x,y 满足不等式组
C.6
D.7
,则下列点中不能使 u=2x+y 取得最大值的是( )
A.(1,1) B.(0,3) C.( ,2) D.( ,0)
4. 下列关系正确的是( )
A.1∉{0,1}
B.1∈{0,1}
C.1⊆{0,1}
D.{1}∈{0,1}
{ ) 5.
已知函数 f(x)=
23..已知定义域为 R 的函数 f(x)=
是奇函数.
(1)求 a 的值; (2)判断 f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明); (3)若对于任意 t∈R,不等式 f(t2﹣2t)+f(2t2﹣k)<0 恒成立,求 k 的取值范围.
第 4 页,共 15 页
24.如图,四边形 ABCD 内接于⊙O,过点 A 作⊙O 的切钱 EP 交 CB 的延长线于 P,己知∠PAB=25°. (1)若 BC 是⊙O 的直径,求∠D 的大小; (2)若∠DAE=25°,求证:DA2=DC•BP.
【解析】解:∵y=3x 是增函数,
又 0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
15.【答案】

1 3
,1 2

[3
, )
第 10 页,共 15 页




考 点:1、分段函数;2、函数的零点. 【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论 的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,
log2(a-x),x<1 2x,x ≥ 1
若 f(-6)+f(log26)=9,则 a 的值为(

A.4
B.3
C.2
D.1
6. 已知 f(x)是 R 上的偶函数,且在(﹣∞,0)上是增函数,设
,b=f(log43),c=f(0.4﹣1.2)
则 a,b,c 的大小关系为( )
第 1 页,共 15 页
A.a<c<b B.b<a<c C.c<a<b D.c<b<a
7. 抛物线 x=﹣4y2 的准线方程为(

A.y=1 B.y= C.x=1 D.x=
8. 以下四个命题中,真命题的是( )
A. x R, x2 x 2 B.“对任意的 x R , x2 x 1 0 ”的否定是“存在 x0 R , x02 x0 1 0 C. R ,函数 f (x) sin(2x ) 都不是偶函数 D.已知 m , n 表示两条不同的直线, , 表示不同的平面,并且 m , n ,则“ ”是 “ m / /n ”的必要不充分条件
相关文档
最新文档