三年级数学 用假设法解题
三年级假设法解题练习题
三年级假设法解题练习题一、基本假设法练习1. 小明有10个苹果,如果他每天吃2个,几天后苹果吃完?2. 小红买了5支铅笔,如果每支铅笔可以用3天,这些铅笔可以用多少天?3. 假设一本书有100页,小华每天看20页,几天可以看完这本书?4. 假设一辆汽车每行驶100公里耗油10升,行驶500公里需要多少升油?5. 假设一个班级有40人,如果每个人捐10元钱,这个班级总共可以捐多少钱?二、进阶假设法练习1. 假设一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 假设一个正方形的边长是8厘米,求这个正方形的周长。
3. 假设小刚每天步行30分钟,他的速度是每分钟60米,问他一天可以走多远?4. 假设一瓶饮料有500毫升,如果每次喝100毫升,这瓶饮料可以喝几次?5. 假设一个三层书架,每层可以放20本书,这个书架总共可以放多少本书?三、应用假设法练习1. 假设小明家的花园是长方形,长是15米,宽是10米,求花园的面积。
2. 假设小华家的鱼缸可以装40升水,现在鱼缸里有20升水,还能再加多少升水?3. 假设学校有5个班级,每个班级有40人,求学校总共有多少名学生?4. 假设一个水果摊上的苹果每斤5元,香蕉每斤3元,小丽买了2斤苹果和3斤香蕉,一共花了多少钱?5. 假设一辆公交车每站停留5分钟,全程共经过10个站,求公交车全程停留的总时间。
四、混合假设法练习1. 假设一个班级有25个男生和20个女生,如果每个学生都参加运动会,这个班级共有多少名学生参加?2. 假设一本书的厚度是2厘米,如果10本书叠放在一起,它们总共有多厚?3. 假设一家超市有5排货架,每排货架上有10种不同的商品,这家超市总共有多少种商品?4. 假设一辆自行车每分钟可以行驶200米,如果骑行了20分钟,这辆自行车行驶了多少米?5. 假设一个公园的门票价格是每人10元,如果一家四口去公园玩,他们需要支付多少元门票?五、逻辑推理假设法练习1. 假设小猫每分钟可以跑100米,小狗每分钟可以跑150米,如果它们同时起跑,小狗多久后能追上小猫?2. 假设小明有3个红球和2个蓝球,如果他随机拿一个球,拿到红球的概率是多少?3. 假设一个篮子里有5个苹果和3个橘子,如果闭着眼睛拿一个水果,拿到苹果的概率是多少?4. 假设小华每天做5道数学题,如果他连续做了5天,他一共做了多少道数学题?5. 假设一个班级有10个学生,其中有3个学生参加了篮球比赛,剩下的学生参加了足球比赛,参加足球比赛的学生有多少人?六、实际应用假设法练习1. 假设一瓶洗发水可以洗10次头发,如果小明每3天洗一次头发,这瓶洗发水可以用多久?2. 假设一部电影时长是90分钟,如果每分钟播放24帧画面,这部电影的画面总数是多少帧?3. 假设一个水池每分钟可以注满10升水,如果需要注满一个容量为200升的水池,需要多少分钟?4. 假设一辆火车每小时可以行驶120公里,如果从A城市到B城市的距离是300公里,火车需要多少小时才能到达?5. 假设一家餐厅每天可以接待100位顾客,如果连续营业10天,这家餐厅总共可以接待多少位顾客?答案一、基本假设法练习1. 5天2. 15天3. 5天4. 50升5. 400元二、进阶假设法练习1. 50平方厘米2. 32厘米3. 1800米4. 5次5. 60本三、应用假设法练习1. 150平方米2. 20升3. 200名学生4. 34元5. 50分钟四、混合假设法练习1. 45名学生2. 20厘米3. 50种商品4. 4000米5. 40元五、逻辑推理假设法练习1. 2分钟后2. 3/5或60%3. 5/8或62.5%4. 25道数学题5. 7人六、实际应用假设法练习1. 30天2. 21600帧3. 20分钟4. 2.5小时5. 1000位顾客。
小学奥数 三年级 假设法
神通广大的假设法
例1
(★★)
孙果果是果果山的采购员,他要去买上衣和裤子共20件,一共带了440元,其中上衣每件24元,裤子每件19元。
孙果果应该买上衣和裤子各多少件?
例2
(★★)
孙果果特别喜欢吃桃子,晴天每天可以采20个,雨天每天只能采12个。
他一连几天采了112个桃子,平均每天采14个。
问这几天中有几个雨天?
例3
(★★★)
现有大、小宝箱共50个,每个大宝箱可装宝贝4千克,每个小宝箱可装宝贝2千克,大宝箱比小宝箱共多装20千克。
问:大、小宝箱各有多少个?
例4
(★★★★)
天上一群九头鸟和地上一群九尾狐商量去吃唐僧,九头鸟有九头一尾,九尾狐有九尾一头。
孙悟空将它们抓起来关进了笼子,猪八戒在笼子外得意地数出了134个头和166条尾巴。
那么共有多少只九头鸟,多少只九尾狐?
例5
(★★★★)
老师领得工资240两,有2两、5两、10两三种一共50张,其中2两和5两的张数一样多,那么三种各有多少张?。
小学三年级奥数第31讲 用假设法解题(含答案分析)
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
用假设法解题
用假设法解题摘要:一、假设法解题的概念和原理1.假设法解题的定义2.假设法解题的基本原理二、假设法解题的具体步骤1.确定问题2.提出假设3.利用假设进行推理4.验证假设5.得出结论三、假设法解题的优点和局限性1.优点a.提高解题效率b.锻炼思维能力c.拓宽解题思路2.局限性a.适用范围有限b.结果可能受主观因素影响四、如何在日常学习中运用假设法解题1.熟悉假设法解题的基本原理2.多做练习,提高解题能力3.注意总结经验,避免盲目尝试正文:假设法解题是一种通过提出假设并进行推理,从而解决问题的方法。
它适用于各种领域的问题,尤其在一些需要创新思维和灵活解题技巧的场合,具有很高的实用价值。
要运用假设法解题,首先需要明确问题,了解问题的背景和已知条件。
接着,根据问题提出假设,这是解题的关键。
假设的提出需要根据已有的知识和经验,以及对问题的分析。
假设应该具有可验证性,即可以通过一定的实验或推理来验证其是否成立。
在提出假设后,利用假设进行推理,从而得到可能的结论。
这一步需要注意的是,推理过程要遵循逻辑规律,不能跳跃性地进行。
同时,要尽量保持假设的客观性,避免受到主观因素的影响。
在推理过程中,可能需要反复验证假设,以确保得出的结论是正确的。
验证假设的方法有多种,可以通过实验、举例子、反证法等。
在验证假设时,要保持严谨的态度,不能因为急于求成而忽视细节。
假设法解题的优点在于,它可以帮助我们提高解题效率,锻炼思维能力,拓宽解题思路。
然而,它也有一定的局限性,如适用范围有限,结果可能受主观因素影响等。
因此,在日常学习中,我们需要熟悉假设法解题的基本原理,多做练习,提高解题能力,并注意总结经验,避免盲目尝试。
总之,假设法解题是一种实用的解题方法,通过提出假设、进行推理和验证假设,我们可以解决各种问题。
数学假设法解题
假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。
即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。
小学数学应用题解题思路—假设法
小学数学应用题解题思路—假设法例1:自行车和汽车共有24 辆,全部轮胎有54 只〔每辆汽车以4 只轮胎计算〕,自行车和汽车各有几辆?假设一:假设24 辆车都是汽车,那么按每辆汽车 4 只轮胎计算,轮胎只数应为96 只,这比题中说的全部轮胎54 只多算了42 只〔96-54〕,怎么会多算42 只轮胎,这是由于假定自行车的辆数,把它当作汽车来计算。
每辆自行车是 2 只轮胎,比每辆汽车少 2 只轮胎,现在把自行车假设为汽车后,每辆自行车就多算了 2 只轮胎,那么,多算42 只轮胎就可求出有几辆自行车算作汽车。
据此,可以推算出自行车的辆数。
〔4×24-54〕÷〔4-2〕=42÷2=21〔辆〕自行车有21 辆,而自行车和汽车总计是24 辆,减法计算,可得汽车的辆数:24-21=3〔辆〕答:自行车有21 辆,汽车有 3 辆。
假设二:假设24 辆车全部是自行车,那么,该有轮胎48 只〔2×24〕。
这比题中的“54 只轮胎〞少算了 6 只〔54-48〕,怎么会少算 6 只轮胎,这是由于假定汽车的辆数当作自行车来计算。
每辆汽车少算 2 只轮胎,那么少算 6 只轮胎,就可求出有几辆汽车算作自行车。
据此,列式计算〔54-2×24〕÷〔4-2〕=6÷2=3〔辆〕既知汽车有 3 辆,汽车和自行车总计24 辆,减法计算,可得自行车辆数24-3=21〔辆〕例2:某农机厂制造一批农具,原方案18 天完成,实际每天比方案多制造50 件,照这样做了12 天,就超过原方案产量240 件,这批农具原方案制造多少件?分析:这道题要求原方案制造多少件,不是从题目的条件来看,既不知道原计划每天制造多少件,也不知道实际每天制造多少件,所以要想按照一般的数量关系,通过分析来寻找解题线索,是一个比拟困难的问题,在这种情况下,可以用假设法来解答。
题目告诉我们,“原方案18 天完成〞我们就假设实际生产了18 天。
三年级知识点:用假设法解题练习30道附答案
三年级知识点:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40 + 4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60 + 2=30 45-30=15 兔:15+(2+1)=5 只鸡:15-5=40 只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48 + 2=24兔(48-24) + 4=6互换鸡变6只兔:(48-6x2)+4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。
自行车(5)辆,三轮车(5)辆。
5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4x36=144 吨,45 —36=9 辆,144 + 9=16 吨,16x45=720 吨。
6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4x16=64 吨,48-16=32 辆,64 + 32=2 吨,2x48=96 0吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2 角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7乂47=329 (角),329-212=117 (角),因为把3角和2角的练习簿都看成了7角,117+(7*33**2)=9 (本)1x9=9 (本),2x9=18 (本), 47-18-9=20 (本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?36+2=18千克,36+18=54千克,乙54 + 2=27千克,甲18 +27=45千克。
假设法解题
假设法解题
这是一个经典的逻辑问题,通常使用假设法来解决。
假设法是一种通过假设某一条件成立或不成立,然后根据这个假设进行推理,最后得出结论的解题方法。
假设法解题的一般步骤如下:
假设某一条件成立或不成立。
根据这个假设进行推理,得出结论。
如果结论与题目中的已知条件矛盾,则说明假设不成立,需要调整假设。
如果结论与题目中的已知条件一致,则说明假设成立。
现在,我们用这个方法来解决这个问题:
题目:有100匹马跟100块石头,马分3种,大型马;中型马跟小型马.其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头.问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
假设需要 x 匹大马,y 匹中型马和 z 匹小型马。
根据题目,我们可以建立以下方程:
x + y + z = 100 (因为总共有100匹马)
3x + 2y + z/2 = 100 (因为总共有100块石头)
现在我们要来解这个方程组,找出 x, y 和 z 的值。
计算结果为: [{x: 7, y: 31, z: 62}]
所以,需要 7 匹大马,31 匹中型马和 62 匹小型马。
【详解】三年级(上)第09讲 假设法解鸡兔同笼
第九讲 假设法解鸡兔同笼1. 例题1答案:鸡有23只;兔有12只详解:假设全是鸡,35只鸡共有腿35270⨯=条,比较一下发现比实际腿少947024-=条,接下来进行调整,拿1只兔换1只鸡,腿会增加2条,共需要增加()244212÷-=只兔子,那么鸡有351223-=只.也可以在开始时假设全是兔,35只兔共有腿354140⨯=条,比较一下发现比实际腿多1409446-=条,接下来进行调整,拿1只鸡换1只兔,腿会减少2条,共需要增加()464223÷-=只鸡,那么兔子有352312-=只.2. 例题2答案:三脚猫有5只;五脚猪有7只详解:假设全是三脚猫,12只三脚猫共有腿12336⨯=条,比较一下发现比实际腿少503614-=条,接下来进行调整,拿1只五脚猪换1只三脚猫,腿会增加2条,共需要增加()14537÷-=只五脚猪,那么三脚猫有1275-=只. 3. 例题3答案:普通票有20张;套票有15张详解:假设老师买的全是普通票,35张普通票共3510350⨯=元,比较发现比实际花的钱少500350150-=元,接下来进行调整,增加1张套票,花的钱会增加10,共需要增加()150201015÷-=张,那么普通票有351520-=张. 4. 例题4答案:男生有15名;女生有35名详解:男生女生共吃了1355130-=块月饼.假设全是女生,共吃了502100⨯=块月饼,比较发现比实际的少13010030-=块月饼,接下来进行调整,增加1名男生,吃的月饼会增加2块,共需要增加()304215÷-=名男生,那么女生有501535-=名.5. 例题5答案:6天详解:松鼠妈妈一共采了112个松籽,平均每天采14个,那么一共采了112148÷=天.假设这些天全是晴天,共采了820160⨯=个松籽,比较发现比实际的多16011248-=个松籽,接下来进行调整,1个晴天变雨天,松籽的总数会减少8个,雨天有()4820126÷-=天.6. 例题6答案:6千克详解:水果糖共卖了480300180-=元,水果糖卖了180209÷=千克.那么奶糖和巧克力糖共卖了了11千克,共卖了300元.假设全是巧克力糖,会卖1130330⨯=元,比较发现比实际的多33030030-=元,接下来进行调整,1千克巧克力糖换成奶糖,收入会减少5元,奶糖有()3030256÷-=千克.7. 练习1答案:鸡有18只;兔有3只简答:假设全是鸡:21242⨯=条;比较:48426-=条;调整:兔:()6423÷-=只,鸡:21318-=只.8. 练习2答案:独脚鸡有4只;三脚猫有8只简答:假设全是独脚鸡:12112⨯=条;比较:281216-=条;调整:三脚猫:()16318÷-=只,独脚鸡:1284-=只.9. 练习3答案:4个简答:假设买的全是菜包子:61272⨯=角;比较:80728-=角;调整:肉包子:()8864÷-=个.10. 练习4答案:大猴子有6只;小猴子有8只简答:大、小猴子共摘了19935164-=个桃子,大小猴子共15114-=个.假设全是小猴子:1410140⨯=个;比较:16414024-=个;调整:大猴子:()2414106÷-=只,小猴子有1468-=只.11. 作业1答案:兔子有3只;鸡有7只简答:假设全是鸡,可得兔子有只,于是鸡有只. 12. 作业2答案:18辆简答:假设全是独轮车,可得三轮车有辆.13. 作业3答案:5天简答:假设都是晴天,可得有天下雨.14. 作业4答案:18名简答:同学们共植树棵.假设全是女生,可得男生有名.15. 作业5答案:晴天有7天;雨天有3天简答:10天内共运了次.假设全是雨天,可得晴天有天.那么雨天有天. 1073-= (65310)(83)7-⨯÷-= 6501065÷= (106352)(42)18-⨯÷-= 1126106-= (15901200)(9060)5⨯-÷-= (66301)(31)18-⨯÷-= 1037-= (26210)(42)3-⨯÷-=。
小学三年级奥数第31讲 用假设法解题附答案解析
第31讲用假设法解题一、专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
二、精讲精练例1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一1、鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2、鸡、兔共50只,共有脚160只。
鸡、兔各几只?例2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1、鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?例3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?2、运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例4 :水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?练习四1、小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
小学数学 3年级 《用假设法解题》练习+详解
小学数学3年级《用假设法解题》试题部分1.田野里种了一些单头向日葵(有一个花盘)和双头向日葵(有两个花盘),这两种向日葵共25株,36个花盘。
那么双头向日葵共有______株。
2.公园里共有15条长凳,每条长凳上坐了2个大人或者4个小孩,共坐了46人,那么这些人中有____个小孩。
3.公园里共有30条长凳,每条长凳上坐了3个大人或者4个小孩,共坐了100人,那么这些人中有______个小孩。
4.幼儿园里小朋友和老师共40人在一起喝汤,每个老师单独用1个碗喝,而2个小朋友合用1个碗喝,最后共用了27个碗,那么共有_____个小朋友。
5.幼儿园里小朋友和老师共30人在一起喝汤,每个老师单独用1个碗喝,而2个小朋友合用1个碗喝,最后共用了21个碗,那么共有______个小朋友。
6.幼儿园里小朋友和老师共50人在一起喝汤,每个老师单独用1个碗喝,而3个小朋友合用1个碗喝,最后共用了20个碗,那么共有______个小朋友。
7.集体劳动时,女生抬土,每2名女生用1根扁担抬1个筐;男生挑土,每1名男生用1根扁担挑2个筐。
结果共用了20根扁担和34个筐,那么女生有_____人。
8.集体劳动时,女生抬土,每2名女生用1根扁担抬1个筐;男生挑土,每1名男生用1根扁担挑2个筐。
结果共用了25根扁担和36个筐,那么男生有_____人。
9.和尚在庙里吃饭,2个小和尚公用1个碗吃1碗米饭,1个大和尚独用1个碗吃2碗米饭。
结果一共用了20个碗,吃了34碗米饭,那么大和尚有______人。
答案详解部分1.田野里种了一些单头向日葵(有一个花盘)和双头向日葵(有两个花盘),这两种向日葵共25株,36个花盘。
那么双头向日葵共有______株。
【答案】11【详解】假设全是单头向日葵,25株向日葵应该有25个花盘,实际多出来36-25=11个,而每一个双头向日葵都会多1个,所以一共有11÷1=11株。
2.公园里共有15条长凳,每条长凳上坐了2个大人或者4个小孩,共坐了46人,那么这些人中有____个小孩。
用假设法解题
用假设法解题
例1:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?
分析与解答:假设1000个玻璃杯全部运到并完好无损,应得运费1×1000=1000元,实际上少得1000-920=80元,这说明运输过程中打碎了玻璃杯。
每打碎一个,不但不给运费还要赔偿3元,这样玻璃杯厂就少收入1+3=4元。
又已求出共少收入80元,所以打碎的玻璃杯数为80÷4=20个。
练习 1
1,搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
但打碎一只,不仅不给搬运费还要赔5角。
如果运完后共得运费260元,那么,搬运中打碎了多少只?
2,某次数学竞赛共20道题,评分标准是每做对一题得5分,每做错一题倒扣1分。
刘亮参加了这次竞赛,得了64分。
刘亮做对了多少道题?
3,某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道或不做倒扣4分。
小华在这次竞赛中共得66分,他做对了几道题?
例5:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。
其中40元和50元的张数相等,每种票各售出多少张?。
小学鸡兔同笼假设法
小学鸡兔同笼假设法
鸡兔同笼是中国古代的数学名题之一,早在《孙子算经》就已记载了这个有趣的问题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”小学常常采取假设法解决问题。
方法/步骤
1.假设法①假设全是鸡
已知笼子里总共有35头,则脚的总数为:35x2=70;
但实际总的脚数为94,说明缺少的脚数为:94-70=24
根据图片知缺少的脚数是由兔子变成鸡少掉的,一只兔子少掉2只脚。
则兔子的数量为:24÷2=12(只)
鸡的数量为:35-12=23(只)
以上4个算式即是假设过程的列式步骤
2. 2
假设法②假设全是兔
已知有35头,则脚的总数为:35x4=140
但实际总的脚数为94,说明多出的脚数为:140-94=46
根据图片知多出的脚数是鸡变成兔子多出的,一只鸡多出2只脚。
则鸡的数量为:46÷2=23(只)
兔子的数量为:35-23=12(只)
以上4个算式即是假设过程的列式步骤。
小学三年级奥数专题二十九:用假设法解题
小学三年级奥数专题二十九:用假设法解题专题简析:我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)例题1:鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?思路:假设全是鸡,共有脚:30×2=60只脚;比实际少:84-60=24只脚;这是因为把4只脚的兔子都按2只脚的鸡计算了。
每只兔子少算:4-2=2只脚,所以兔子有:24÷2=12只;鸡有鸡30-12=18只。
(先假设全是鸡,先算出的是兔子;反之先算出的是鸡。
)试一试1:鸡、兔共50只,共有脚160只。
鸡、兔各几只?例题2:鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?思路:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。
每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
兔的只数:(168-2×30)÷(4+2)=18只;鸡的只数:18+30=48只。
试一试2:鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?例题3:某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?思路导航:假设全做对,应得9×12=108分,现在少了108-84=24分。
而做错一题,不但得不到9分,反而需要倒扣3分,里外少了12分,所以错了24÷12=2题。
试一试3:运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?例题4:水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?思路:水果糖的块数是巧克力糖的3倍,如果小红每天吃1块巧克力糖,3块水果糖,几天后,两种糖同时吃完。
小学数学解题策略(25)——假设法
小学数学解题策略(25)——假设法
第二十五讲假设法
当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
这种解题方法就叫做假设法。
用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新
奇巧妙,既简单又便于计算的条件。
有些用一般方法能解答的应用题,用假设法解答可能更简捷。
(一)假设情节变化
解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球
的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:
3+2=5(份)
原来篮球的个数是:
1。
三年级数学用假设法解题
三年级数学用假设法解题专题简析:假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
例题1 鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?思路导航:练习一1,鸡、兔共100只,共有脚280只。
鸡、兔各多少只?2,鸡、兔共50只,共有脚160只。
鸡、兔各几只?3,鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?例题2 鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二1,鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?2,买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?3,鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
鸡、兔各几只?例题3 某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三1,某小学进行英语竞赛,每答对一题得10分,答错一题倒扣4分,共15题,小华得了102分。
小华答对几题?2,运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?3,某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。
生产后得到费用5350元,有几件不符合要求?例题4 水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
三年级第七次课-用假设法解题
=15(张)---5元人民币
45÷3=15张
27-15=12(张)---2元人民币
答:王刚做错了2题。
锦囊妙计
这类题类似与鸡兔同笼问题,用假设法解题时, (1)一般可假设要求的两种物品是同一种; (2)根据“假设前后总的差量÷两种物品的面值差 (或其它差量)”,求出一种物品,再求出另一种物品.
练习题二
练习题一
1,鸡、兔共10只,共有脚28只。
鸡、兔各多少只?
A、 4、6
B、5、5
C
C、 6、4
D、7、3
2、停车场有小轿车和三轮车共60辆, 共有200个轮子,三轮车有多少辆?
A、38 C、45
B
B、40 D、20
面值是2元、5元的人民币共27张,合计99元,面值是2元、
5元的人民币各有多少张?
用假设法解题
“鸡兔同笼”问题是我国古代数学名题之一。它记载 于我国唐代的一部算书《孙子算经》,距今已有1500多 年。书中的题目是这样的:“今有雉兔同笼,上有三十 五头,下有九十四足,问雉兔各几何 ?”
笼子里有若干只鸡和兔,从上面数, 有35个头;从下面数,有94只脚。鸡和兔 各有几只?
学一学
什么是假设法??
【思路导航】
99-2×27
这道题类似于“鸡兔同笼”问题。 假设全是面值是2元的人民币,
=99-54
那么27张人民币是2X27=54(元), 与实际相比减少了
=45(元)
99-54=45(元)
45÷(5-2)
少的原因是每把一张面、值2元的人民 币当作一张面值是5元的人币,要少5-
=45÷3
2=3(元)钱, 所以,面值是5元的人民币有
假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答 案,但是如果我们合理地进行假设,往往会使问题得到解决。所谓假 设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的 调整,从而找到正确答案。我国古代趣题“鸡兔同笼”就是运用假设 法解决问题的一个范例。
三年级假设法解题练习题
三年级假设法解题练习题假设法是数学解题中常用的一种方法,它通过对问题进行一定的假设,进而简化题目的难度,以便更容易找到解决方案。
在三年级数学中,也可以运用假设法来解决一些复杂的问题。
下面是一些三年级假设法解题练习题,帮助同学们更好地掌握这一解题方法。
【题目一】小明和小华两个人一起参加了一个足球比赛,他们两个人都进了两个球,比分是多少?解题思路:假设小明进的球数是X,小华进的球数是Y,根据题意可以列出以下等式:X + Y = 4根据等式可以得出:X = 4 - Y因此,当Y = 0时,X = 4;当Y = 1时,X = 3;当Y = 2时,X = 2;当Y = 3时,X = 1;当Y = 4时,X = 0。
所以,可能的比分是:4:0,3:1,2:2,1:3,0:4。
【题目二】小明一共有24本书,其中有若干本是科普书,若干本是小说。
如果小明的科普书和小说的比例是2:3,他有多少本小说?解题思路:假设小说的本数是X,科普书的本数是Y,根据题意可以列出以下等式:X + Y = 24X:Y = 2:3根据第二个等式可以得出:X = 2Y/3将X代入第一个等式中,得到:2Y/3 + Y = 24解方程得到:5Y/3 = 24化简得到:Y = 24 * 3 / 5 = 14.4小说的本数应为整数,所以假设小说的本数为14本,科普书的本数为24 - 14 = 10本。
【题目三】班里一共有40个学生,其中女生和男生的比例是3:4。
女生有多少个?解题思路:假设女生的人数是X,男生的人数是Y,根据题意可以列出以下等式:X + Y = 40X:Y = 3:4根据第二个等式可以得出:X = 3Y/4将X代入第一个等式中,得到:3Y/4 + Y = 40解方程得到:7Y/4 = 40化简得到:Y = 40 * 4 / 7 = 22.86男生的人数应为整数,所以假设男生的人数为23个,女生的人数为40 - 23 = 17个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三十一周用假设法解题
专题简析:
假设是数学中思考问题的一常见的方法,有些应用题乍看很难求出答案,但是如果我们合理地进行假设,往往会使问题得到解决。
所谓假设法就是依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国古代趣题“鸡兔同笼”就是运用假设法解决问题的一个范例。
解答“鸡兔同笼”问题的基本关系式是:
兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)用假设法解答类似“鸡兔同笼”的问题时,可以根据题意假设几个量相同,然后进行推算,所得结果与题中对应的数量不符合时,要能够正确地运用别的量加以调整,从而找到正确的答案。
例题1 鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?
思路导航:
假设全是鸡,共有脚:30×2=60只;
比实际少:84-60=24只;
这是因为把4只脚的兔子都按2只脚的鸡计算了。
每把一只兔子算作一只鸡,少算:4-2=2只脚,现在共少算了24只脚,说明把:24÷2=12只兔子按鸡算了。
所以,共有兔子12只,有鸡30-12=18只。
练习一
1,鸡、兔共100只,共有脚280只。
鸡、兔各多少只?
2,鸡、兔共50只,共有脚160只。
鸡、兔各几只?
3,鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?
例题2 鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?
思路导航:因为鸡比兔多30只,则可以把30只鸡的脚从总数中去掉,剩下的鸡兔就同样多了。
每一对鸡和兔共4+2=6只脚,用6去除剩下的鸡兔总脚数,就可求出兔的只数。
兔的只数:(168-2×30)÷(4+2)=18只;
鸡的只数:18+30=48只。
练习二
1,鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?
2,买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元。
两种票各买了几张?
3,鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
鸡、兔各几只?
例题3 某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?
思路导航:这类题实与鸡兔同笼同类,还用假设法进行思考。
若全做对,应得9×12=108分,现在少了108-84=24分。
为什么会少24分,因为做错一题,不但得不到9分,反而需要倒扣3分,里外少了12分,所以错了24÷12=2题。
练习三
1,某小学进行英语竞赛,每答对一题得10分,答错一题倒扣4分,共15题,小华得了102分。
小华答对几题?
2,运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元。
运后运费为8880元,损失了几箱?
3,某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。
生产后得到费用5350元,有几件不符合要求?
例题4 水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?
思路导航:水果糖的块数是巧克力糖的3倍,如果小红每天吃1块巧克力糖,3块水果糖,那若干天后,两种糖正好同时吃完。
现在小红每天吃2块水果糖,少吃3-2=1块,结果若干天后水果糖还剩下7块。
所以共吃了7÷1=7天,水果糖有2×7+7=21块。
练习四
1,小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
原来苹果有多少个?
2,某商店有些红气球和黄气球,红气球的只数是黄气球的4倍。
每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。
红气球原来有多少只?
3,四(3)班有彩色粉笔和白粉笔若干盒,白粉笔是彩色粉笔的7倍。
每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白色粉笔还剩10盒。
原来白色粉笔有多少盒?
例题5 学校买来8张办公桌和6把椅子,共花去1650元。
每张办公桌的价钱是每把椅子的2倍,每张办公桌和每把椅子各多少元?
思路导航:假设学校买的全部是办公桌,根据“每张办公桌的价钱是每把椅子的2倍”,则买6把椅子的价钱只能买6÷2=3张办公桌,那么1650元就相当于8+3=11张办公桌的价钱。
所以,每张办公桌:1650÷11=150元
每把椅子:150÷2=75元。
练习五
1,买4张办公桌9把椅子共用252元,1张桌子和3把椅子的价钱正好相等。
桌、椅单价各多少元?
2,学校买来4个篮球和5个排球,共用了185元。
已知1个篮球比1个排球贵8元,那么篮球每个多少元?排球每个多少元?
3,小明买2个乒乓球和4个皮球共用去52元,6个乒乓球的价钱相当于1个皮球的价钱。
乒乓球、皮球的单位各多少元?。