有限元法求解问题的基本步骤

合集下载

有限元求解步骤方法

有限元求解步骤方法

步骤方法对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。

有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。

第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。

显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。

第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。

为保证问题求解的收敛性,单元推导有许多原则要遵循。

对工程应用而言,重要的是应注意每一种单元的解题性能与约束。

例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。

第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。

总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。

第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。

联立方程组的求解可用直接法、迭代法和随机法。

求解结果是单元结点处状态变量的近似值。

对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。

前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

有限元法(杆系)

有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0

有限元方法的求解步骤

有限元方法的求解步骤

有限元方法的求解步骤
1.构建几何模型:首先,需要根据实际问题构建一个几何模型。

这可以通过使用计算机辅助设计(CAD)软件进行建模,或者手动绘制模型。

2.离散化:在几何模型的基础上,需要将其离散化为有限个小元素。

最常用的元素是三角形和四边形,也可以使用更复杂的元素类型。

3.选择数学模型和假设:根据问题的物理特性,需要选择适当的数学模型和假设。

这可能涉及选择适当的方程、边界条件和材料性质等。

4.导出有限元方程:根据选择的数学模型和假设,使用变分原理或其他数学方法,可以导出与离散化模型相对应的有限元方程。

这个方程通常是一个代数方程组。

5.建立刚度矩阵和负载向量:有限元方程可以转化为刚度矩阵和负载向量的形式。

刚度矩阵描述了系统中元素和节点之间的关系,而负载向量描述了外部作用力。

6.施加边界条件:为了解决方程组并确定未知位移,需要施加边界条件。

边界条件可以是位移约束、力约束或其他类型的约束。

7.求解方程:将刚度矩阵和负载向量与边界条件组合起来,可以形成一个线性代数方程组。

可以使用各种数值方法求解线性方程组,例如直接求解、迭代法、预处理方法等。

8.后处理:在求解方程后,可以根据需要进行后处理。

后处理包括计算和输出感兴趣的结果,如应力、位移、应变等。

9.验证和调整:完成有限元求解后,需要验证结果的准确性,并根据需要对模型参数进行调整。

验证可以通过与理论解、实验结果或其他数值方法进行比较来完成。

10.进行优化和设计:利用有限元模拟的结果,可以进行系统的优化和设计改进。

这可以通过改变几何形状、材料属性或边界条件来实现。

有限元法的步骤

有限元法的步骤

有限元法的步骤
有限元法呢,第一步就是结构离散化。

这就像是把一个大蛋糕切成好多小块块一样。

把要分析的结构按照一定的规则划分成好多小单元,这些小单元就像是一个个小积木块。

比如说一个复杂的机械零件或者一个大大的建筑结构,通过这个离散化,就变成了好多小单元的组合,这样就方便咱后面进行分析啦。

接下来就是单元分析喽。

每个小单元都有自己的特性,就像每个小积木块都有自己的形状和特点。

要确定每个单元的节点位移和节点力之间的关系,这个关系可重要啦,就像是小积木块之间怎么连接、怎么受力的规则一样。

要用到好多数学知识去计算呢,不过别怕,现在有好多软件可以帮忙做这些复杂的计算啦。

再然后就是整体分析。

把所有的小单元组合起来看,就像把小积木块搭成一个大城堡那样。

要考虑各个单元之间的连接和相互作用,形成一个整体的平衡方程。

这个方程就像是城堡的建筑蓝图,告诉我们整个结构在受力的时候是怎么个情况。

还有等效节点载荷的计算。

这一步就像是给搭好的城堡加上各种重量或者外力一样。

要把实际作用在结构上的载荷等效地分配到各个节点上,这样才能准确地模拟结构在实际工作中的受力状态。

最后呢,求解未知节点的位移和应力啥的。

这就像是知道了城堡在各种外力下每个小积木块的位置变化和受力情况。

通过解前面得到的方程,就能得到我们想要的结果啦,比如结构会不会变形太大呀,哪个地方的应力最大容易坏呀之类的。

有限元法虽然听起来有点复杂,但是按照这些步骤一步一步来,就能很好地对各种结构进行分析啦。

有限元的基本步骤

有限元的基本步骤

有限元的基本步骤嘿,咱今儿就来聊聊有限元这档子事儿哈!有限元啊,那可不是啥随随便便就能搞定的东西呢!就好像盖房子,得一步步来,少了哪一步都不行。

先说说这第一步,就好比是打地基,得把模型建起来呀!你得清楚要分析的是个啥玩意儿,把它的形状、尺寸啥的都整明白咯。

这就跟认识一个新朋友似的,得先知道人家长啥样,有啥特点不是?接着呢,就是划分网格啦!这就好像给这个模型穿上一件网格衣服。

这衣服可得穿得合适,不能大了也不能小了。

网格分得好,后面的计算才能更准确呀!不然就跟穿了不合身的衣服一样,别扭得很呢!然后啊,就得确定边界条件啦!这可重要得很嘞!就好比是给这个模型定规矩,哪些地方能活动,哪些地方不能动,都得搞清楚。

这要是弄错了,那可就全乱套啦!再接下来就是求解啦!这就像是让这个模型开始工作,看看它在各种条件下会有啥反应。

这可需要点耐心和技巧哦,就跟解一道难题似的,得仔细琢磨。

最后呢,就是分析结果啦!这就像是检查作业,看看做得对不对,好不好。

要是结果不满意,那还得回头去看看是哪一步出了问题,重新再来一遍。

你说这有限元像不像一场战斗?每一步都得小心翼翼,不能有丝毫马虎。

要是有一步没走好,那可能就全盘皆输啦!有限元的世界可真是奇妙又复杂呀!它能帮我们解决好多实际问题呢。

比如说设计个大桥啊,制造个飞机零件啥的。

没有有限元,这些可都不好搞嘞!咱在学习有限元的时候,可不能着急,得一步一个脚印地走。

就像学走路一样,刚开始可能会跌跌撞撞,但只要坚持,总会走得稳稳当当的。

大家想想,要是没有有限元,那我们的科技得落后多少呀!所以说呀,这有限元可真是个宝贝呢!咱可得好好学,好好用,让它为我们的生活带来更多的便利和进步!你说是不是这个理儿?。

有限元方法的求解步骤

有限元方法的求解步骤

有限元方法的求解步骤引言有限元方法(Finite Element Method,简称FEM)是一种重要的数值分析方法,广泛应用于工程领域中各种结构和材料的力学问题的求解。

本文将介绍有限元方法的求解步骤,包括问题建模、离散化、单元分析、全局组装和求解、结果后处理等环节。

问题建模在使用有限元方法求解实际问题之前,首先需要对问题进行建模。

问题建模是将实际问题转化为数学方程组,并确定其边界条件和材料特性等。

定义几何域首先需要定义几何域,即将实际物体抽象为一个或多个几何形状。

可以使用CAD软件进行建模,也可以通过数学公式描述几何形状。

决定物理场根据具体问题,决定需要考虑的物理场类型。

常见的物理场包括结构力学、热传导、流体力学等。

建立数学模型根据所选择的物理场类型,建立相应的数学模型。

在结构力学中,可以使用弹性力学方程描述材料的行为。

确定边界条件和材料特性确定边界条件和材料特性是问题建模的关键步骤。

边界条件包括约束和荷载,用于限制物体的运动和施加外力。

材料特性包括材料的弹性模量、泊松比等参数。

离散化离散化是将连续问题转化为离散问题的过程,将连续域分割成有限个子域(单元),并在每个单元上建立适当的数学模型。

选择适当的网格选择适当的网格是离散化的关键。

常见的网格包括三角形网格、四边形网格、四面体网格等。

选择合适的网格可以提高计算效率和精度。

建立单元模型在每个单元上建立适当的数学模型,例如使用有限元法时,可以使用插值函数来描述位移场。

划分单元将整个几何域划分为多个单元,通常是使用自动划分算法进行划分。

单元分析在每个单元上进行局部计算,得到局部解。

这是有限元方法中最基本也是最重要的环节之一。

单元刚度矩阵计算根据单元模型和所选数学模型,在每个单元上计算刚度矩阵。

刚度矩阵描述了单元内部的力学行为。

单元载荷向量计算根据边界条件和施加的荷载,在每个单元上计算载荷向量。

载荷向量描述了单元受到的外部力。

单元解计算根据刚度矩阵和载荷向量,通过求解线性方程组,得到每个单元的解。

有限元法及应用总结

有限元法及应用总结

有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。

它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。

有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。

1.建立初始网格:将连续介质分割为离散的小单元。

可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。

初始网格的密度应根据问题的要求进行合理的选择。

2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。

同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。

3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。

有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。

4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。

常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。

根据问题的特点选择合适的求解方法。

5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。

常见的评估方法有误差分析、收敛性分析、模型验证等。

有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。

通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。

在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。

在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。

在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。

在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。

有限元考试复习资料(华东交通大学)

有限元考试复习资料(华东交通大学)

有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

①优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

有限元单元法求解问题的的基本步骤

有限元单元法求解问题的的基本步骤

诚信·公平·开放·共赢Loyalty Fair Opening Win-win有限元单元法求解问题的的基本步骤(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2) 区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3) 确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4) 单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5) 总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6) 边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。

对于自然边界条件,一般在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7) 解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

第3章 有限元分析的数学求解原理-三大步骤

第3章 有限元分析的数学求解原理-三大步骤

U x x y y z z xy xy yz yz zx zx dV
X u Y v Z w dV X u Y v Z w d W
V V
用 * 表示;引起的虚 应变分量用 * 表示
j Vj
Ui
i Vi


0 X
y
¼ 1-9 Í

ui* * vi wi* * * u j , v* j w*j

x* * y * z * * xy *yz * 18 zx
19
7.间接解法:最小势能原理
20
最小势能原理
W U 0
最小势能原理就是说当一个体系的势能最小时,系统会处于稳定 平衡状态。或者说在所有几何可能位移中,真实位移使得总势能取最小值
0 表明在满足位移边界条件的所有可能位移 最小势能原理: 中,实际发生的位移使弹性体的势能最小。即对于稳定平衡状态,实 际发生的位移使弹性体总势能取极小值。显然,最小势能原理与虚功 原理完全等价。 n m
虚功原理的矩阵表示
在虚位移发生时,外力在虚位移上的虚功是:
* 式中

U i u i* V i v i* W i w i* U j u *j V j v *j W j w *j
* 是 的转置矩阵。
T

*
F
T
同样,在虚位移发生时,在弹性体单位体积内,应力在虚应变上的虚 功是: * * * * * * * T x x y y z z xy xy yz yz zx zx
27
⑴解析法

弹性力学有限元法详解

弹性力学有限元法详解

x
4
i1 4
Ni ( ,)xi
y
i1
Ni ( ,) yi
总体坐标系适用于整体结构,局部坐标系只适用于具体某个 单元。
常用的对于平面问题还有八节点等参元,空间问题有八节 点空间等参元,二十节点等参元等 。
第18页,共40页。
3.2 连续体离散化
5.轴对称单元
对于回转结构,如果约束条件和载荷都对称于回转轴,其 应力、应变和位移也都对称于回转轴线,这类应力应变问题称 为轴对称问题 ,通常用柱坐标来描述应力、应变和位移,单元 为实心圆环体,仅截面不同
1
2
ai
(1
0
)
ai (1 0 ) ai (1 0 )
1
2
ai
(1
0
)
(i, j,l,m)
对于平面应变问题:
E
E 1 2
1
第29页,共40页。
3.3 单元分析
2. 单元分析
由虚功原理得:
Fe
K e BT DBdxdyt A
BT DBdxdyt δe
A
Fe Keδe
单元刚度矩阵可分块表示为:
第10页,共40页。
3.2 连续体离散化
3. 薄板弯曲单元和薄板单元
A. 薄板弯曲单元
l
θxi
i
θyi
wi
m
j
四边形弯 曲单元
四边形单元有四个节点,每个节点有三个自由度,主要承 受横向载荷和绕水平轴的弯矩。
第11页,共40页。
3.2 连续体离散化
3.薄板弯曲单元和薄板单元
A. 薄板弯曲单元
m
θxi
对于平面应变问题:
E
E 1 2

有限元分析与应用_第7讲有限元方法的一般步骤

有限元分析与应用_第7讲有限元方法的一般步骤

有限元分析与应用_第7讲有限元方法的一般步骤有限元方法(Finite Element Method,简称FEM)是一种将连续体力学问题转化为有限个离散子域的数学方法。

下面是有限元方法一般步骤的详细介绍。

第一步是建立数学模型。

根据实际问题的特点和要求,选择合适的数学模型。

通常需要确定几何模型(包括尺寸和形状)、物理模型(包括材料特性和边界条件)和数学模型(通常为偏微分方程组)。

同时,也要将实际问题抽象为离散子域。

第二步是离散化。

将实际问题转化为有限个子域,将连续的问题离散为离散节点和单元的问题。

通常包括选择节点和单元的类型、确定网格尺寸和单元形状以及建立局部坐标。

第三步是建立有限元方程。

根据离散化的结果,利用变分原理或其他数学方法,建立离散节点上的有限元方程。

通常需要建立刚度矩阵和载荷矢量。

刚度矩阵的计算包括积分和局部坐标转换等。

第四步是引入边界条件。

根据实际问题的特点,确定边界条件,包括固支约束、力和热边界条件等。

将边界条件应用到有限元方程中,得到最终的离散方程。

第五步是求解离散方程。

利用数值计算方法,求解离散方程组,得到节点上的未知位移、温度或其他待求解变量。

求解过程一般涉及线性方程组的求解方法,如直接法(高斯消元法)和迭代法(雅可比法、SOR法等)。

第六步是后处理。

根据求解结果,进行数据分析和可视化,得到问题的解释和评估。

后处理结果可以包括位移、应力、温度等各种物理量的分布图、曲线图和表格。

同时,也可以对模型进行验证和优化。

总的来说,有限元方法的一般步骤包括建立数学模型、离散化、建立有限元方程、引入边界条件、求解离散方程和后处理。

每个步骤都需要综合考虑问题特点、数学方法和计算机实现的要求。

在实际应用中,可以根据具体情况和经验进行适当的调整和改进,以得到更准确和高效的结果。

工程电磁场数值分析(有限元法)

工程电磁场数值分析(有限元法)
使用适当的数值方法求解离散方程组,得到场函数的近似解 。
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01

有限元方法的求解步骤

有限元方法的求解步骤

有限元方法的求解步骤引言有限元方法是一种数值分析技术,用于求解连续介质力学问题。

它的基本思想是将复杂的物理问题离散化为简单的几何单元,并在每个单元上建立适当的数学模型。

通过在整个域内组装这些单元,最终得到整个系统的近似解。

本文将详细介绍有限元方法的求解步骤,包括问题建模、网格划分、单元模型与刚度矩阵计算、边界条件处理和求解方程等内容。

问题建模在使用有限元方法求解实际问题之前,首先需要对问题进行建模。

这涉及确定问题的几何形状、边界条件和材料属性等方面。

通常可以使用偏微分方程来描述力学行为,并根据具体情况选择适当的方程类型。

网格划分网格划分是有限元方法中非常重要的一步,它将连续域离散化为有限多个几何单元。

常用的网格类型包括三角形网格和四边形网格。

根据具体情况,可以选择不同密度和形状的网格来逼近真实几何形状。

单元模型与刚度矩阵计算在每个几何单元上,需要建立适当的数学模型来描述物理行为。

通常使用一些基本假设和理论模型来近似真实行为。

对于弹性力学问题,常用的单元模型包括线性弹性、非线性弹性和塑性等。

根据单元模型,可以计算每个单元的刚度矩阵。

刚度矩阵描述了单元内部各个节点之间的相互作用关系。

它是由材料属性和几何形状决定的,并且可以通过数值积分等方法进行计算。

边界条件处理边界条件是求解过程中必须考虑的重要因素。

它们描述了系统在边界上的约束条件,例如固定边界、施加力或位移等。

在有限元方法中,通常将边界条件转化为所谓的约束方程,以便将其应用于整个系统。

对于固定边界条件,可以直接将相应自由度设置为零。

而施加力或位移边界条件,则需要将其转化为等效荷载或约束方程,并在求解过程中进行处理。

求解方程有限元方法最终目标是求解整个系统的近似解。

为此,需要将所有单元的刚度矩阵组装成整个系统的刚度矩阵。

同时,需要将所有边界条件应用于约束方程中。

通过求解线性方程组,可以得到系统的节点位移。

常用的求解方法包括直接法和迭代法。

在实际计算中,可以根据问题特点选择最适合的方法。

有限元法的基本步骤

有限元法的基本步骤

有限元法的基本步骤有限元法是一种用于求解较为复杂的实际工程问题的数值分析方法。

它将一个连续的物体或系统划分为许多小的单元,然后通过建立在这些单元上的数学方程来模拟和求解实际问题。

在这篇文章中,我们将探讨有限元法的基本步骤,并深入讨论其原理和应用。

1. 确定问题的边界和几何形状在使用有限元法求解实际问题之前,需要先确定问题的边界和几何形状。

通常情况下,问题的边界需要定义为固定边界或自由边界,以便在数学模型中进行处理。

问题的几何形状也需要被建模和描述,这样才能得到准确的计算结果。

2. 划分网格划分网格是有限元法中非常重要的一步。

网格划分是将问题的几何形状划分为一系列小的单元。

这些小单元称为有限元,它们可以是三角形、四边形或其他形状。

网格的划分需要根据问题的几何形状和求解精度来确定,并且需要保证各个有限元之间具有充分的连续性和相互联系,以确保模拟结果的准确性和可靠性。

3. 建立数学模型和方程在确定问题的边界和划分网格之后,下一步是建立与物理现象相关的数学模型和方程。

根据问题的具体情况,可以使用不同类型的方程,如静力学方程、热传导方程、流体力学方程等。

这些方程将物理现象转化为数学表达式,并可以通过有限元法进行求解。

4. 应用边界条件在建立数学模型和方程之后,需要应用边界条件。

边界条件可以是物体的固定边界条件,如固定端或自由端;也可以是物体的外部边界条件,如外力、温度等。

边界条件的正确应用对于求解实际问题非常重要,它们将影响模拟结果的准确性和可靠性。

5. 求解数学方程一旦建立了数学模型、划分网格并应用了边界条件,下一步就是使用数值方法求解数学方程。

有限元法将整个问题转化为一个求解代数方程组的问题,并通过迭代方法求解。

求解过程中需要根据初始条件和边界条件进行迭代计算,直到得到收敛的解。

通过以上的基本步骤,我们可以使用有限元法对复杂的实际工程问题进行数值求解。

有限元法的优点在于可以模拟各种不同的物理现象,并且可以对复杂的几何形状进行建模和求解。

有限元法的基本步骤

有限元法的基本步骤

有限元法的基本步骤有限元法是一种数值计算方法,用于求解一般的物理问题。

它将求解区域划分为许多小的有限元,然后在每个有限元中近似地求解物理方程。

下面是有限元法的基本步骤。

1.问题建模和离散化:首先,将待求解的物理问题建模为一个数学模型。

确定问题的几何形状、材料特性、边界条件以及所关心的物理量等。

然后,将求解区域离散化为有限个子域,即有限元。

这些子域通常被称为有限元。

这可以通过网格划分、三角剖分等方法完成。

2.选择适当的有限元类型:根据问题的性质和求解的准确性要求,选择适当的有限元类型。

有限元可以是线性元、二次元、高次元等。

线性元是最简单的元素类型,但精度较低;高次元则可以提供更高的精度,但可能需要更多的计算资源。

3.构造刚度矩阵和载荷向量:对每个有限元,需要确定与之相关的刚度矩阵和载荷向量。

刚度矩阵描述了有限元中节点之间的刚度关系,载荷向量描述了有限元中的外部载荷。

这些可以通过对有限元进行分析和积分得到。

4.组装:将所有有限元的刚度矩阵和载荷向量组装成整体的刚度矩阵和载荷向量。

这可以通过将每个有限元的局部坐标映射到全局坐标系中,然后使用节点编号等方法实现。

5.应用边界条件:为了得到唯一的解,必须对一些节点施加边界条件。

边界条件可以是位移约束、力约束或应力约束等。

这些边界条件可以通过直接施加到刚度矩阵和载荷向量上,或通过修改刚度矩阵和载荷向量来实现。

6.求解:利用数值方法求解稀疏矩阵方程组。

通常使用迭代方法,如共轭梯度法、Jacobi迭代法或Gauss-Seidel法等,来求解这个方程组。

7.后处理:在得到解后,可以通过一些后处理操作进行结果的分析和可视化。

后处理可以包括计算附加的物理量,如应力、应变、位移等,并将结果可视化。

有限元法是一种广泛使用的数值计算方法,可以用于求解各种工程和科学领域的问题。

它具有高精度、适用范围广等优点,并且可以随着计算资源的增加而提高计算精度。

在实际应用中,根据具体问题的特点,有限元方法的步骤和细节可能会有所调整和改变,但上述基本步骤仍然适用于大多数情况。

有限元计算的流程

有限元计算的流程

有限元计算的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!有限元计算的流程一、问题定义阶段在进行有限元计算之前,首先需要明确要解决的问题。

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理

第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。

有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。

在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。

同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。

A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。

微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。

所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。

有限元和有限体积

有限元和有限体积

有限元和有限体积引言有限元和有限体积方法是数值计算中常用的一种数值方法,用于求解连续介质力学问题。

有限元方法通过将连续介质分割为无数个小单元,通过对小单元进行分析,来近似求解整个问题。

而有限体积方法使用有限体积元胞对区域进行离散化,通过求解元胞边界上的通量和源项来逼近整体问题的解。

本文将详细讨论这两种方法的基本原理、应用领域和优缺点。

有限元方法基本原理有限元方法是将连续介质划分为一个个小的有限元,每个有限元都有自己的形状函数和自由度。

通过将连续问题离散化为有限个自由度上的代数方程,再通过求解代数方程组来近似求解连续问题的解。

具体步骤如下:1.将连续介质划分为有限个小的有限元;2.在每个有限元上选择适当的形状函数;3.建立有限元刚度矩阵和载荷向量;4.组装有限元刚度矩阵和载荷向量;5.边界条件的处理;6.求解代数方程组得到近似解。

有限体积方法基本原理有限体积方法是将连续介质划分为有限个的离散控制体积,通过对每个控制体积内部的平衡方程进行积分,得到离散控制方程。

以控制体积为基本单位,建立离散方程,通过对自由度进行遍历,求解整个问题。

具体步骤如下:1.将连续介质划分为有限个的离散控制体积;2.在每个控制体积内部建立平衡方程并进行积分;3.得到离散控制方程;4.边界条件的处理;5.求解离散方程组得到近似解。

有限元方法和有限体积方法的区别有限元方法和有限体积方法都是数值计算的重要方法,但在求解连续介质力学问题时有一些差异。

离散化方式不同有限元方法对连续介质进行的离散化是基于几何结构的,将连续域划分为小的有限元。

而有限体积方法则是基于控制体积划分,离散化程度相对较小。

近似程度不同有限元方法是在各个有限元上进行近似,通过调节有限元的数量和自由度的精度来改变近似程度。

有限体积方法是在每个控制体积上进行平衡方程的积分,通过选取不同大小的控制体积来改变近似程度。

单元法程度的力学意义不同有限元方法中的单元法是具有力学意义的,可以通过单元的应力、应变等物理量来反映力学本质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (4)单元分析:将各个单元中的求解函数用单元基 函数的线性组合表达式进行逼近;再将 近似函数 代入积分方程,并对单元区域进行积分,可获得 含有待定系数(即单元中各节点 的参数值)的代数 方程组,称为单元有限元方程。 • (5)总体合成:在得出单元有限元方程之后,将区 域中所有单元有限元方程按一定法则进行累加, 形成总体有限元方程。
• 4.引入支撑条件,求出各节点的位移 • 节点的支撑条件有两种:一种是节点n沿某个方向 的位移为零,另一种是节点n沿某个方向的位移为 一给定值。 • 5.求出各单元内的应力和应变。 • 对于有限元方法,其基本思路和解题步骤可归 纳为: • (1)建立积分方程,根据变分原理或方程余量与权 函数正交化原理,建立与微分方程初边值问题等 价的积分表达式,这是有限元法的出发点。
有限元法求解问题的基本步骤
元计算科技发展有限公司
• 1.结构离散化 对整个结构进行离散化,将其分割成若干个单元 ,单元间彼此通过节点相连; • 2.求出各单元的刚度矩阵[K](e) [K](e)是由单元节点位移量{Φ}(e)求单元节点力向 量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e) • 3.集成总体刚度矩阵[K]并写出总体平衡方程: 总体刚度矩阵[K]是由整体节点位移向量{Φ}求整体 节点力向量 的转移矩阵,其关系式为{F}= [K] {Φ} ,此即为总体平衡方程。
• (2)区域单元剖分,根据求解区域的形状及实际问 题的物理特点,将区域剖分为若干相互连接、不 重叠的单元。区域单元划分是采用有限元方法的 前期准备工作,这部分工作量比较大,除了给计 算单元和节点进行编号和确定相互之间的关系之 外,还要表示节点的位置坐标,同时还需要列出 自然边界和本质边界的节点序号和相应的边界值 。 • (3)确定单元基函数,根据单元中节点数目及对近 似解精度的要求,选择满足一定插值条件的插值 函数作为单元基函数。有限元方法中的基函数是 在单元中选取的,由于各单元 具有规则的几何形 状,在选取基函数时可遵循一定的法则。
• (6)边界条件的处理:一般边界条件有三种形式, 分为本质边界条件(狄里克雷边界条件 )、自然边 界条件(黎曼边界条般在积分表达式中 可自动得到满足。对于本质边界条件和混合边界 条件,需按一定法 则对总体有限元方程进行修正 满足。 • (7)解有限元方程:根据边界条件修正的总体有限 元方程组,是含所有待定未知量的封闭 方程组, 采用适当的数值计算方法求解,可求得各节点的 函数值。
Thanks!
相关文档
最新文档