复变函数论试题五

合集下载

复变函数论第四版答案《复变函数论》试题库及答案

复变函数论第四版答案《复变函数论》试题库及答案

复变函数论第四版答案《复变函数论》试题库及答案导读:就爱阅读网友为您分享以下“《复变函数论》试题库及答案”的资讯,希望对您有所帮助,感谢您对的支持!《复变函数》考试试题(九)一、判断题(20分)1、若函数f(z)在z0可导,则f(z)在z0解析.( )2、若函数f(z)在z0满足Cauchy-Riemann条件,则f(z)在z0处解析.( )3、如果z0是f(z)的极点,则limf(z)一定存在且等于无穷大.( ) z?z014、若函数f(z)在单连通区域D内解析,则对D内任一简单闭曲线C都有( ) ?Cf(z)dz?0.5、若函数f(z)在z0处解析,则它在该点的某个领域内可以展开为幂级数.( )6、若函数f(z)在区域D内的解析,且在D内某一条曲线上恒为常数,则f(z)在区域D内恒为常数.( )7、若z0是f(z)的m阶零点,则z0是1的m阶极点.( ) f(z)(. ) 8、如果函数f(z)在D?z:z?1上解析,且f(z)?1(z?1),则f(z)?1(z?9、lime??.( ) z??z??10、如果函数f(z)在z?1内解析,则f(z?f(z( ) z?1z?1二、填空题(20分)212?i(1?)n,则limzn?___________. 1?nn12、设f(z)?,则f(z)的定义域为____________________________. sinz3、函数sinz的周期为______________. 1、若zn?sin4、sinz?cosz?_______________.5、幂级数22?nzn?0??n的收敛半径为________________.6、若z0是f(z)的m阶零点且m?1,则z0是f?(z)的____________零点.7、若函数f(z)在整个复平面除去有限个极点外,处处解析,则称它是______________.8、函数f(z)?的不解析点之集为__________.9、方程20z?11z?3z?5?0在单位圆内的零点个数为3___________. 83ez,1)?_________________. 10、Res(2z?1三、计算题(30分)n?2?i?1、lim?? n???6?3?2?7??1d?,其中C??z:z?3?,试求f?(1?i). 2、设f(z)??C??zez3、设f(z)?2,求Res(f(z),?i). z?14、求函数z在1?z?2内的罗朗展式. (z?1)(z?2)z?1的实部与虚部. z?15、求复数w?6、利用留数定理计算积分4四、证明题(20分) ?????x2?x?2dx. 42x?10x?91、方程z?9z?6z?1?0在单位圆内的根的个数为6.2、若函数f(z)?u(x,y)?iv(x,y)在区域D内解析,u(x,y)等于常数,则f(z)在D恒等于常数.7、若z0是f(z)的m阶零点,则z0是五、计算题(10分)求一个单叶函数,去将z平面上的带开区域?z:盘w:w?1.7631的m阶极点. f(z)?????Imz???保形映射为w平面的单位圆2???《复变函数》考试试题(十)一、判断题(40分):51、若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.( )2、如果z0是f(z)的本性奇点,则limf(z)一定不存在.( ) z?z03、若函数f(z)?u(x,y)?iv(x,y)在D内连续,则u(x,y)与v(x,y)都在D内连续.( )4、cosz与sinz在复平面内有界.( )5、若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点(. )6、若f(z)在z0处满足柯西-黎曼条件,则f(z)在z0解析(. )7、若limf(z)存在且有限,则z0是函数的可去奇点(. ) z?z08、若f(z)在单连通区域D内解析,则对D内任一简单闭曲线C都有?Cf(x)dz?0.( )9、若函数f(z)是单连通区域D内的解析函数,则它在D内6有任意阶导数.( )10、若函数f(z)在区域D内解析,且在D内某个圆内恒为常数,则在区域D内恒等于常数.( )二、填空题(20分):1、函数e的周期为_________________.2、幂级数nnz?的和函数为_________________.n?0??z3、设f(z)?1,则f(z)的定义域为_________________. 2z?14、?nzn?0??n的收敛半径为_________________.ez5、Res(n,0)=_________________. z7三、计算题(40分):1、zzdz. 2(9?z)(z?i)eiz,?i). 2、求Res(1?z23、?. 4、设u(x,y)?ln(x2?y2). 求v(x,y),使得f(z)?u(x,y)?iv(x,y)为解析函数,且满足nnf(1?i)?ln2。

《复变函数论》答案

《复变函数论》答案

第1页《复变函数论》答案一、单项选择题1.在复平面上方程|z -i|=|z +i|表示( A ) A .直线 B .圆周 C .椭圆周D .抛物线2.在复平面上方程|z +1|=4表示( B )A .直线B .圆周C .椭圆周D .抛物线3.arg(1=( C )A. 3π- B. 6π- C. 56π D. 2,6k k ππ+∈Z4.arg(1)i +=( B )A.4π- B. 4π C. 54π D. 2,4k k ππ+∈Z5.在z 平面上处处解析的函数是( B ) A. 31()f z z =B. 3()f z z = C. ()f z z = D. ()R e f z z z =6.下列函数中( A )是整函数. A.1()1f z z =- B. ()1f z z =- C. 2()f z z = D. ()I m f z z =7.2||2sin (1)z zdz z ==-⎰( C ) A. 0 B.sin1- C. 2cos1i π D. 2sin1i π-8.2||1cos (2)z zdz z ==-⎰( A ) A.0 B. 2sin 2i π- C. 2cos 2i π D. 2sin 2i π-第2页9.幂级数112nnn n n z z ∞∞==+∑∑的收敛半径是( A )A. 1B. 2C.14 D.1210.在复平面上不等式|z -2|<3表示( C )A .直线B .圆周C .圆D .正方形 11.arg()i -=( A )A.2π- B. 2π C. 32π D. 32,2k k ππ+∈Z12.在z 平面上处处解析的函数是( C ) A. 21()1f z z =+ B. ()f z z = C. 2()1f z z =- D. ()Im f z z =13.||2sin 1z zdz z ==-⎰( D ) A. 0 B.2sin1i π- C. 2cos1i π D. 2sin1i π14.幂级数1!n n n z ∞=∑的收敛半径是( A )A. 0B. 1C. 2D. e15.幂级数21nn z n∞=∑的收敛半径是( B )A.0B. 1C.2D.416.0z =是2cos ()zf z z =的( C )极点A.0B. 1C.2D.417.1z =是2cos ()zf z z=的( D )A.零点B. 极点C.孤立奇点D.解析点第3页18.下列等式中,成立的是( C )A.22Lnz Lnz =B.rg(2)arg()A i i -=-C.10Ln =D.Re()z z z z ⋅=⋅ 19.在复平面上,下列命题中,不正确的是( B )A. 22sin cos 1z z +=B. 0z e >C.cos sin iz e z i z =+D. 10i π是()5z f z e =的周期20.下列等式中,不正确的是( C ) A.33lnz lnz = B.arg(2)arg()i i =-- C.0zLn z= D.Im()0z z ⋅= 二、填空题1. Im(1+i)4=_ _0______.2. Re(1+i)4=____-4______.3.345iz -=,则z = 1 . 4.1z =,则z = 2 . 5.方程41z =-在复数域中共有_ 4 个根. 6.方程21z =-在复数域中共有_ 2 个根. 7.设ω是1的n 次根,1ω≠,则21n ωωω-+++= -18.设31ie πω=,32ieπω-=,则12ωω+= 1 .9.设22()(1)z f z z e =-,则0z =是()f z 的____4____阶零点. 10.设()1z f z e z =--,则0z =是()f z 的____2____阶零点. 11.()f z 以z=a 为m 级极点,则z=a 为2()f z 2m 级极点.12.(),()f z g z 以z=a 为3级和4级极点,则z=a 为()()f z g z +的 4 级极点.第4页13.(),()f z g z 以z=a 为5级和2级极点,则z=a 为()()f zg z 3 级极点. 14.()f z 以z=a 为m 阶零点,且m 0>,则z=a 是()f z '的__m-1___阶零点.15.()zf z e =,则()f z 在0z =的邻域内泰勒展式为212!n z z z n +++++.16.21()1f z z=-,则()f z 在0z =的邻域内泰勒展式为2421n z z z +++++.17. 设sin cos z i αα=+,则z 的三角表示为cos sin 22i ππαα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭.18.设211)(z z f +=,则)(z f 的孤立奇点有___i ± . 19.设1()1f z z=+,则)(z f 的孤立奇点有___-1 .20.幂级数0nn z n∞=∑的收敛半径为____1_____ .21.幂级数0n n nz ∞=∑的收敛半径为____1_____ .22.4z 在点1z i =-23.3z 在点z i =-处的伸缩率为 3 . 24.z e 在点1z i =+处的伸缩率为 e . 三、完成下列各题 1.求16i ieπ-+解 161cos sin 6622ii iei ie e eπππ-+⎛⎫=+=-+ ⎪⎝⎭第5页2.求n L i .解 n 2,2L i i k i k ππ=+∈Z3. 求()34Ln i +解 ()434ln 5arctan2,3Ln i i k i k π+=++∈Z 4. 函数2()f z z =在复平面上何处可导?何处解析?解 仅在0z =处可导,处处不解析.5. 函数()()222()2f z x y i xy y =-+-,z x iy =+在复平面上何处可导?何处解析? 解 仅在直线0y =上可导,在复平面上处处不解析.6. 函数2()f z x iy =-,z x iy =+在复平面上何处可导?何处解析?解 仅在直线12x =-处可导,处处不解析. 7. 计算()211sin 1z z dz z π+=-⎰解 ()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 8. 计算211sin 41z z dz z π-=⎛⎫ ⎪⎝⎭-⎰ 解2111sin sin 442112z z z z idz i z z πππ-==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=⋅=-+⎰第6页9. 计算()211sin 1z z dz z π+=-⎰解()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 10. 将sin z 展开为z 的幂级数.解 ()()2101sin 21!nn n z z n +∞=-=+∑ (z <+∞)11. 将cos z 展开为z 的幂级数.解 ()()201c o s2!nn n z z n ∞=-=∑ (z <+∞)12. 将1z展开为1z -的幂级数.解 ()()()0111111n nn z z z ∞===---+∑ (11z -<)四、1. 用留数计算积分:312(1)(2)(4)(5)z dzi z z z z π=----⎰. 解()()()()()31212(1)(2)(4)(5)()()1113412311112612z z z dzi z z z z Res f z Res f z π===----=+=+-⋅-⋅-⋅-⋅-=-+=⎰第7页2. 用留数计算积分:912(1)(2)(5)(10)z dzi z z z z π=----⎰. 解()91012(1)(2)(5)(10)()()1098511985360z z z dzi z z z z Res f z Res f z π===∞----=-+⎛⎫=-+ ⎪⋅⋅⎝⎭=-=-⋅⋅⎰3. 用留数计算积分 ()222211z z z dz z =-+-⎰。

复变函数论试卷和答案汇编

复变函数论试卷和答案汇编

,其中 C
=
{z
:|
z
|=
3},试求
f
'(1 +
i).
w = z −1 4. 求复数 z + 1 的实部与虚部.
四. 证明题.(20 分)
1. 函数 f ( z) 在区域 D 内解析. | 证明:如果 f ( z) | 在 D 内为常数,那么它在 D 内
为常数.
2. 试证: f (z) = z(1− z) 在割去线段 0 ≤ Re z ≤ 1 的 z 平面内能分出两个单值解析分支, 并求出支割线 0 ≤ Re z ≤ 1 上岸取正值的那支在 z = −1的值.
= __________.( n 为自然数)
2. sin 2 z + cos2 z = _________.
3.函数 sin z 的周期为___________.
4.设
f
(z)
=
1 z2 +1
,则
f
(z) 的孤立奇点有_____ห้องสมุดไป่ตู้____.

5.幂级数 ∑ nzn 的收敛半径为__________. n=0
5. 若 z0 是 f(z)的 m 阶零点且 m>0,则 z0 是 f '(z) 的_____零点. 6. 函数 ez 的周期为__________.
7. 方程 2z5 − z3 + 3z + 8 = 0 在单位圆内的零点个数为________.
8.

f
(z)
=
1 1+ z2
,则
f
(z) 的孤立奇点有_________.
() () () ()
5. 如 z0 是函数 f(z)的本性奇点,则 lim f (z) 一定不存在. z→z0

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。

()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。

() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。

2.ln(3i)-= , i i = 。

3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。

4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。

三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。

问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。

求(1)-的所有三次⽅根。

3.2d Cz z其中C 是0z=到34i z =+的直线段。

4.||2e cos d z z z z=?。

(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。

(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。

7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。

四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。

设221()(1)F s s s =+,求()F s 的逆变换。

4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

《复变函数论》试题库汇编

《复变函数论》试题库汇编

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数论》试题库及答案

《复变函数论》试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案
Re s[ f (z),2] lim z 1 1 z2 2z 2 2
(2 分) (2 分) (2 分)
7
Re s[ f (z), ] 1
(1 分)
6.解:原式(3
分)
2iRe

s
z
ze z 2
1
,1

Re s
z
ze z 2
1
,1
zi i( cos z)zi i cos i = ich1
五、1.解:
f
(z)
(1分)
1 (z i)

z
1 i
i

(1分) 1 (z i)
1 i 31
1 z
i i

(1分) 1 z
i
1 i
n0

z
i
i n
n1

(3分)2i
e 2

e 1 2

2i ch1
(1 分)
7.解:
原式=(2 分)
1 dz =(1 分)
2i dz
| z | 1
2
z2
1
iz
|z|1 z 2 4z 1
2z
=(1 分)
2i
dz
|z|1 (z 2 3)(z 2 3)
数,且 f(0)=0。
三、(10 分)应用留数的相关定理计算
dz
|z|2 z 6 (z 1)(z 3)
四、计算积分(5 分×2)
dz
1. |z|2 z(z 1)
2. cos z c (z i)3
C:绕点 i 一周正向任意简单闭曲线。

复变函数论习题及答案

复变函数论习题及答案

第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。

5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。

6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。

10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。

复变函数论试题库及答案

复变函数论试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数论》试题库

《复变函数论》试题库

《复变函数》考试试题(一)一、 判断题.(正确者在括号内打√,错误者在括号内打×,每题2分) 1.当复数0z =时,其模为零,辐角也为零. ( )2.若0z 是多项式110()n n n n P z a z a z a --=+++(0)n a ≠的根,则0z 也()P z 是的根.( )3.如果函数()f z 为整函数,且存在实数M ,使得Re ()f z M <,则()f z 为一常数.( ) 4.设函数1()f z 与2()f z 在区域内D 解析,且在D 内的一小段弧上相等,则对任意的z D ∈,有1()f z 2()f z ≡. ( )5.若z =∞是函数()f z 的可去奇点,则Re ()0z s f z =∞=. ( )二、填空题.(每题2分)1.23456i i i i i ⋅⋅⋅⋅= _____________________. 2.设0z x iy =+≠,且arg ,arctan22y z x ππππ-<≤-<<,当0,0x y <>时,arg arctanyx =+________________. 3.函数1w z =将z 平面上的曲线22(1)1x y -+=变成w 平面上的曲线______________.4.方程440(0)z a a +=>的不同的根为________________. 5.(1)i i +___________________.6.级数20[2(1)]nn z ∞=+-∑的收敛半径为____________________.7.cos nz 在z n <(n 为正整数)内零点的个数为_____________________. 8.函数336()6sin (6)f z z z z =+-的零点0z =的阶数为_____________________. 9.设a 为函数()()()z f z z ϕψ=的一阶极点,且()0,()0,()0a a a ϕψψ'≠=≠,则()Re ()z af z sf z ='=_____________________. 10.设a 为函数()f z 的m 阶极点,则()Re ()z af z sf z ='=_____________________. 三、计算题(50分)1.设221(,)ln()2u x y x y =+。

《复变函数论》精彩试题库及问题详解

《复变函数论》精彩试题库及问题详解

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。

2.-8i 的三个单根分别为:,,。

3.Ln z 在的区域内连续。

4.z z f =)(的解极域为:。

5.xyi y x z f 2)(22+-=的导数=')(z f。

6.=??0,sin Re 3z z s。

7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。

10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。

三、(10分)应用留数的相关定理计算=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.?=-2||)1(z z z dz2.?-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。

五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。

1.1||0<-六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。

(2))(2ωπδ=?∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组??='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。

八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2. 3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域 9.∞+∞-ωωπωωd e F i )(2110. ?∞+-0)(dt e t f st二、解:∵yu x x v ??-=-=?? xuy y v ??==??∴c xy u +=(5分)c xy y x i z f ++??? ??+-=22212 1)(∵f (0)=0 c =0 (3分)∴222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--= (2分)三、解:原式=(2分)??--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z(2分)??---=∑=k k z z z z s i ,)3)(1(1 Re 2643π33=z ∞=4z2312(3,)3)(1(1Re 66?=??--分)z z z s--=∞--0,1)31)(11(11Re 2,)3)(1(1Re 26 6z z z z s z z z s 分)(=0∴原式=(2分) 23126??i π=i 63π- 四、1.解:原式??-π=∑=k k z z z s i ,)1(1Re 221(3分) z 1=0 z 2=1]11[2+-=i π=0 (2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π- 五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=--?-=-+-=+-?-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:??-+?-=-+?-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=??? ??---=2)(120)(11+∞=-=∑n n n i z i 2)(--∞=-=∑n n n i z i (2分)六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-? (3分)∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-?ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-?dt e t i(2分)七、解:∵=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX (3分)S (2)-(1):∴??? ??-?-=s s s Y 111)(2??++--=--=1111211112s s s s s s (3分)∴cht e e t Y t t -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数论试卷

复变函数论试卷

《复变函数论》试卷一一、填空(30分)1. 将复数()πααα≤≤+-=0sin cos 1i z 化为三角表示式,则=z 把它化为指数表示式,则=z2.=+i e π3 ,()ii +1的辐角的主值为3. =z 0是()44sin z z z f =的 阶零点.4.0z 是()z f 的()1>m m 阶零点,则0z 是()z f '1的 阶极点. 5.已知()()2323cxy x i y bx ay z f +++=为解析函数, 则___________________===c b a6.方程0273=+z 的根为 , ,二、简要回答下列各题(15分)1. 用复数i 去乘复数i +1的几何意义是什么?2. 函数()z f 在0z 解析有哪几个等价条件?3. 设函数()z f 在单连通区域D 内处处解析,且不为零,C 是D 内的任一简单闭曲线,问积分()()dz z f z f c ⎰'是否等于零,为什么?三、计算下列积分(16分)1. czdz ⎰,c 是从点1i -到点1i +的有向直线段2. 202cos d πθθ+⎰四、(12分)求函数()11z z +在圆环112z <-<内的洛朗级数展开式.五、(12分)证明方程24290z z ++=在单位圆1z =内及其上无解. 六、(15分)求映射,把带形区域0Re 2z <<共形映射成单位圆1w <,且把1z =映射成0w =,把2z =映射成1w =.《复变函数》试卷二一、填空题(20分)1. -2是 的一个平方根2. 设21i z --=,则,=z Argz = =z Im3. 若22z z =,则θi re z =满足条件 4. =ze e,()=ze e Re5. 设1≠=θi re z ,则()=-1ln Re z6. 设变换βαβα,,+=z w 为复常数,则称此变换为 变换,它是由 等三个变换复合而成.7. 幂级数∑∞=12n nn z n 的收敛半径=R 8.函数baz +1在0=z 处的幂级数展开式为 ,其收敛半径为9.变换z e W =将区域π<<z D Im 0:变换成区域:G二、判断下列命题之真伪(20分)1.()z e z F cos =在全平面上任意阶可微.2. 若函数()z F 在有界区域D 内有解析,且在其中有无穷多个零点,则()z F 在D 内恒为零. ( )3. 设扩充复平面上的点a 时函数()z F 的可去奇点,则()Re 0z asF z ==.4. 若()W F z =是区域D 内的保形变换,则()W F z =在D 内单叶解析且保角.5. 若函数()z F 在区域D 内解析,则()0cf z dz =⎰,其中c 是D 内的任意一条围线.6. 设()()(),,F z u x y iv x y =+在区域D 内可导,则在D 内,()'y x F z v iv =+7. 设函数()z F 在点()a ≠∞解析,则总存在0R >,在z a R -<内()z F 能展成幂级数()0nn n c z a ∞=-∑.8. 非常数的整函数必为无界函数.9. 设()f z 在区域D 内解析,则()f z 在D 内连续. 10. 若函数()f z 在a 点可导,则()f z 在a 点解析.三、计算下列各题(24分)1. 求极限0cos lim sin z z z zz z →--2. 求21c I dz z=⎰ ,其中是下半圆周,起点11z =-,终点21z =3. 求i 的立方根4. 求2212cos d I p pπθθ=-+⎰()1p >5. 求()11f z z =-在1z =及z =∞的残数 6. 求1sin z dzI z z==⎰四、(16分) 1. 叙述儒歇定理2. 证明方程()01z n e e z λλ-=>在单位圆1z <内有n 根 五、求下列变换(20分)1. 求将2,,2i -对应变成1,,1i -的线性变换2. 求出将圆42z i -<变为半平面v u >的保形变换,使得圆心变到-4,而圆周上的点2i 变到0w =《复变函数》试卷三一、填空题(45分)1. ()1Arg i -= ,复数()1cos sin 0z i ϕϕϕπ=-+<≤的模为2. 设()()32256f z z z =+-,则()'f z =3. 设()()cos sin x f z e y i y =+,则()'f z =4. z e 是周期函数,其基本周期为5. 如果函数()w f z =在区域D 内满足条件: ,则称()f z 为区域D 内的解析函数6. 设c 是连接a 与b 的直线段,则czdz ⎰=7. 设圆周:3c z =,则3c dzz ⎰= 8. 级数21nn z n ∞=∑的收敛半径为 ,级数2491z z z ++++⋅⋅⋅的收敛半径为9. 0z =为函数()sin f z z z =-的 级零点10. 叙述最大模原理: 11. 设()()()25121zf z z z =-+,则1z =为()f z 的 级极点,12z =-为()f z 的 级极点12. 设()22f z z z =+,则在点12z i =-+处的旋转角()'arg 12f i -+= 二、判断下列命题之真伪(15分)1. 函数()2f z z =在z 平面上处处不解析 2.()z F z e =是整函数3.若函数()F z 在区域D 内解析,c 是D 内任一条围线,则()0cF z dz =⎰4.设函数()F z 在点()a ≠∞解析,则总存在0R >,在z a R -<内能展成幂级数()0nn n c z a ∞=-∑2. 若函数()f z 在点a 可导,则()f z 在点a 解析 三、求解下列各题(20分) 1. 求积分()ln 1z rI z dz ==+⎰ ()01r <<2. 求积分()()229I d i ξξξξξ==-+⎰3. 求积分()22521z z I dz z z =-=-⎰4. 试将函数()2zf z z =+按1z -的幂展开,并指出其收敛范围5. 求将2,,2i -对应变成1,,1i -的线性变换 四、证明题(20分)1. ①叙述代数学基本定理②试用复分析方法证明代数学基本定理2. 证明方程()00z n e e z λλ-=>在单位圆1z <内有n 根《复变函数》试卷四一、填空题(50分)1. 已知1z i =-,则arg z = ()arg z ππ-<≤,z = ,z =2.3. 设()()cos sin x f z e y i y =+,则()'f z =4. sin z 的零点为 ,cos z 的零点为5. ()1Ln -= , i i =6. 函数()f z ()(),,u x y iv x y =+在区域D 内解析的充要条件是7.1z dzz =⎰=21z dzz =⎰=8. 幂级数21nn z n∞=∑ 的收敛半径为9. 0z =是函数()sin f z z z =-的 级零点10. 叙述最大模原理: 11.函数()()()112f z z z =--在z 平面内有 个奇点,它们是12. 1z =为函数()()()251121z f z z z +=-+的 级极点13. 方程742520z z z -+-=在单位圆内有 个根14. 设()22f z z z =+,则()f z 在12z i =-+处的旋转角为 伸缩率为 15. 线性变换()0az bw ad bc cz d+=-≠+的逆变换为16. 变换3w z =将z 平面上区域:0arg 3D z π<<变换为w 平面上的区域G :二、判断题(15分)1. 设()f z 在区域D 内可导,则()f z 在D 内解析2. 互为共轭的两复数具有相同的模3. 复数0z =的充要条件是0z =4. 设()f z 在区域D 内解析,c 为D 内任一闭曲线,则()0cf z dz =⎰5. sin z 和cos z 都是平面上的有界函数三、计算下列各题(15分) 1. 设()()()112f z z z =--,求()f z 在1z <内的泰勒展式2. 求积分()22521z z I dz z z =-=-⎰3.求将2,,2i -对应地变成1,,1i -的线性变换四、证明题(20分)1. 证明函数()2f z z =在z 平面上处处不解析2. 设a 为()f z 的n 级零点,证明:a 必为函数()()'f z f z 的一级极点,并且()()'Re z a f z s n f z =⎡⎤=⎢⎥⎣⎦《复变函数》试卷五一、填空题(18分)1. 的所有值为:2. ()cos 1i += ()1Ln -=3. 0cos limsin z z z zz z→--=4. 设()()0n n f z c z r z +∞-∞=≤<<+∞∑,则()Re z s f z =∞=5. 令z x iy =+,2z w e =,则w = Im w =6. 线性变换()()0az bW L z ad bc cz d+==-≠+在扩充z 平面上有下列特性,请你完整地予以叙述⑴ 保形性:⑵ 保交比性: ⑶ 保圆周性: ⑷ 保对称性:7. 1w z=将z 平面上的直线y x =变换为w 平面上的曲线二、判断题(10分)下列断语如果正确则打“ √”,否则打“×”1. 如果函数()f z 在点()a ≠∞处解析,则存在0R >,使()f z 在z a R -<内可展成泰勒级数,且展式唯一2. 设a 是z 平面上的一点,若a 为函数()f z 的可去奇点,则()Re 0z as f z ==( )3. 如果函数()f z 在某有界区域D 内解析,且在D 内有一列零点,则()f z 在D 内恒为零 4. sin z 和cos z 都是z 平面上的有界整函数 5. 若函数()f z 在区域D 内解析,则()0cf z dz =⎰.其中c 是内的任意一条围线三、解下列各题(24分)1. 求1c dz z ⎰的值,其中c 是上半单位圆周,起点为1z =-,终点为1z =2. 求函数()11z f z e -=在1,z =∞的留数3. 计算积分()20sin 01x mxI dx m x+∞=>+⎰4. 将函数()11z f z z -=+在1z =处展开成幂级数,并求其收敛半径四、证明题(24分)1. 试证:在原点解析,且在()11,2,z n n==⋅⋅⋅处取下列值的函数()f z 是不存在的: 111111,,,,,224466⋅⋅⋅2. 试证:73120z z -+=的根全在12z <<内 五、(12分)求将2,,2i -对应地变成1,,1i -的线性变换六、(12分)求出将圆42z i -<变成半平面v u >的保形变换,使得圆心变到-4,而圆周上的点变到2i 变到0w =《复变函数》试卷六一、填空题(30分)1.已知z=1-i ,则arg z= (-π<arg z ≤π),| z |= , z =2.变换W=Z 3将Z 平面上区域D :0< arg z <3π变换为W 平面上的区域G :3.Ln (-1)= , i i = , Arctg(2i) = 4.函数f (z )在区域D 内解析的充要条件是下列条件之一(1) (2) (3) (4)5.幂级数z +z 4+z 9+…+2n z +…的收敛半径为6.在原点解析,而在z= 1n (n=1,2,…)处取值为 f(1n )=211n+的函数为7.函数f (z )=z 2(21z e -)的零点是 ,它是 级的 二、判断题(10分)1.设f (z )在区域D 内可导,则f (z )在D 内解析 ( ) 2.设f (z )在区域D 内解析,C 是D 内任一闭曲线,则c⎰f (z )dz=03.Sinz 和cosz 都是z 平面上的有界函数 ( ) 4.f (z )=u +iv 在区域D 内解析,则-u 是v 的共轭调和函数5. f (z )=| z |2在z 平面上处处不解析三、求下列积分(15分) 1.I= z cze dz ⎰,其中c 是连结o 到-1+i 的直线段 2.I=212ln(1)z z z dz =+⎰3.I=22(8)()z zdz z z i =--⎰ 四、(12分)已知u=x 3+6x 2y-3xy 2-2y 3,求解析函数f(z)=u+iv 使合条件f (0)=0五、(12分)将函数f(z)=1az b+(a,b 为复数,ab ≠0)展开为z 的幂级数,并指出展式成立的范围 , 六、(12分)叙述并证明代数学基本定理七、(9分)设f (z )=u(x ·y )+iv(x ·y )在区域内解析,试证在D 内,0f z∂=∂《复变函数》试卷七一.填空题(20分)1.已知z =1-I ,则argz = (-π<arg z ≤π),| z |= ,z =2.变换W=Z 3将z 平面上的区域D 变换为W 平面上的区域G :,其中D : 0< arg z <3π3. sin 2z +cos 2z =1在直线z =x ,(y=0)上成立,则由 定理,sin 2z +cos 2z =1 在全平面上也成立4.设f(z)=2z 4-z 3+11z 2-1,f(z)在| z |<2内有 个零点,f(z)在 2≤| z |<3 内有 个零点,f(z)在3≤| z |<+∞内有 零点,f(z)在z =1处的旋转角为 ,伸缩率为 。

《复变函数论》试题库

《复变函数论》试题库

《复变函数》考试试题(一)一、 判断题.(正确者在括号内打√,错误者在括号内打×,每题2分) 1.当复数0z =时,其模为零,辐角也为零. ( )2.若0z 是多项式110()n n n n P z a z a z a --=+++ (0)n a ≠的根,则0z 也()P z 是的根.( ) 3.如果函数()f z 为整函数,且存在实数M ,使得Re ()f z M <,则()f z 为一常数.( ) 4.设函数1()f z 与2()f z 在区域内D 解析,且在D 内的一小段弧上相等,则对任意的z D ∈,有1()f z 2()f z ≡. ( )5.若z =∞是函数()f z 的可去奇点,则Re ()0z s f z =∞=. ( )二、填空题.(每题2分)1.23456i i i i i ⋅⋅⋅⋅= _____________________. 2.设0z x iy =+≠,且arg ,arctan22y z xππππ-<≤-<<,当0,0x y <>时,arg arctany x =+________________.3.函数1w z=将z 平面上的曲线22(1)1x y -+=变成w 平面上的曲线______________.4.方程440(0)z a a +=>的不同的根为________________. 5.(1)i i +___________________.6.级数20[2(1)]n n z ∞=+-∑的收敛半径为____________________.7.cos nz 在z n <(n 为正整数)内零点的个数为_____________________.8.函数336()6sin (6)f z z z z =+-的零点0z =的阶数为_____________________.9.设a 为函数()()()z f z z ϕψ=的一阶极点,且()0,()0,()0a a a ϕψψ'≠=≠,则()Re ()z af z sf z ='=_____________________.10.设a 为函数()f z 的m 阶极点,则()Re ()z af z sf z ='=_____________________.三、计算题(50分)1.设221(,)ln()2u x y x y =+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西北师范大学数学与信息科学学院
数学与应用数学专业(本科) 复变函数论 试题五
复查人签名______________ 核分人签名______________
一、单项选择题(在每小题的四个备选答案中,选出一个正
确的答案,并将其号码填入题干后的括号内。

每题2分, 共14分)
1.下面包含∞的区域有( )
A }0Re :{>∈z C z
B }2||1:{<<∈z
C z
C }1|1000:|{>-∈z C z
D }2
arg 0:{π<<∈z C z 2.下面点集为单连通区域的有 ( )
A }0Re 1:{>>∈z C z
B }2000
||1:{<<∈z C z C }1|:|{>∈z C z D }2
arg 0:{π≤<∈z C z 3.)
2)(1(22--=z z ω的全部枝点为( ) A. 1,-1 B 2,2- C ∞ D 1,-1,2,2- 4.=)(z f 2x 2iy +, 则)(z f 只在( )上可微。

A. 复平面 B 原点 C 直线1=x D 直线1-=x
5.设)(z f 及
)(z f 在有界区域 D 内及边界C 上解析,则)(z f 在区域 D 内( )
A 一次函数
B 常数
C 多项式
D 不确定
6. 设)(z f 在1|1|<-z 解析。

则)1(f =( ) A π
21
θθπd e f i )2(20⎰ B π21θθπd e f i )1(20⎰+ C π21θθπ
d e f i )22(20⎰+ D 不确定。

7.设)(z f 在扩充复平面上解析,则)(z f 必为( )
A 一次函数
B 常数
C 多项式
D 不确定
二、多项选择题 (在每小题的五个备选答案中,选出二至五个
正确答案。

并将其号码填写在题干后的括号内;错选、 多
选不得分。

每小题3分,共15分)
1
可以成为函数)1)(1()(2-+=z z Lnz z f 的枝点的点为=z ( )
A 0,1
B i
C -i
D ∞
E 2
2 下面积分值为零的有( )。

A dz z z ⎰=1||31 B ⎰=1||z tgzdz C ⎰=+1||3
z z dz z e D
dz z z ⎰=--1|2|21 E dz z z z ⎰=1||sin 3 设C 表示闭曲线1||=z ,则满足 1);(=C f N 函数)(z f 有=)(z f ( )。

A )1(-z e z
B 243++z z
C 3473-+z z
D z sin
E 318235--+z z z
4 设)(z f 为整函数,下列条件可以使)(z f 为常数的有( )。

A. )(z f 有界 B )(z f 的值全含在一个圆外 C )(z f 的值全含在一个圆内 D ∞为)(z f 的解析点 E |)(|z f 为常数。

5 在i z =处旋转角为2π-
的)(z f 有=)(z f ( )。

A 282z - B 2
2
z - C z e -1 D z e 21π- E 4z
三、计算题(每小题4分,共16分)
1 设2
31i z -=,计算,Im ,Re |,|z z z 及Argz 。

2 i +-1)1(。

3 dz z z e z z z ⎰++=)22(cos 21||。

4 设z z f sin 1)(=
,计算)(z f 在πn z =点处的残数。

四、综合计算题(每小题7分,共35分)
1 由计算积分⎰=+1||2
1z dz z 的值证明: 0cos 45cos 210=++⎰dx x x π。

2 计算 ),1(''i f + 其中 ξξξξd z
z f C ⎰-++=1373)(2,C 表示圆周:922=+y x 。

3 设)(z f )
1(1+=z z ,分别求)(z f 在0=z 和1=z 处的Ta y lo r 展式或L aurent 展式。

4
设1>a ,利用残数理论计算实积分dx x
a ⎰+π20cos 1。

5 设)(z f 22)
(cos 1π--=
z z z ,判断)(z f 的奇点类型,并求)(z f 在孤立奇点处的残数。

五、证明题(每小题10分,共20分) 1 设)(z f 在点a z =的某邻域内连续,证明
)(2)(200lim a f d re a f i r πθπθ=+⎰→。

2 设)(z f 在复平面解析,且存在正数0>M ,成立
M z f <)(Re ,
证明)(z f 恒为常数。

相关文档
最新文档