中考二模 江苏省南京市秦淮区2015年中考二模数学试题及答案

合集下载

江苏省南京市2015联合体年中考数学二模考试试题

江苏省南京市2015联合体年中考数学二模考试试题

江苏省南京市联合体2015年中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣12的相反数是 ( ▲ )A. -2B.2C. -12D. 122.下列计算正确的是( ▲ ) A. a 3+a 4=a 7B .2a 3•a 4=2a 7C .(2a 4)3=8a 7D .a 8÷a 2=a 43.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5 人数13655则这20名同学每天使用的零花钱的众数和中位数分别是( ▲ ) A. 3,3B. 3,3.5C. 3.5,3.5D. 3.5,34.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,A. 态B. 度C. 决D. 切A. 42°B. 48°C. 52°D. 58°6.如图,在矩形中,=3,=5,以为圆心为半径画弧交于点,连接,作BF ⊥CE ,垂足为F ,则tan∠FBC 的值为( ▲ )A. 12B. 25C. 310D. 13.......7.代数式 1 x -1有意义,则 x 的取值范围是 ▲ .8. 分解因式:a 3-4a = ▲ .9. 计算27 -2cos30°-|1- 3 |= ▲ .(第4题)(第5题)ABCO(第6题)BADCEF10. 反比例函数y = kx 的图象经过点(1,6)和(m ,-3),则m = ▲ .11. 如图,在菱形ABCD 中,AC =2,∠ABC =60°,则BD = ▲ .12. 如图,在⊙O 中, AO ∥CD , ∠1=30°,劣弧AB 的长为3300千米,则⊙O 的周长用科学计数法表示为 ▲ 千米.13.某商品原价100元,连续两次涨价后,售价为144元,若平均增长率为x ,则x = ▲ .14.直角坐标系中点A 坐标为(5,3),B 坐标为(1,0),将点A 绕点B 逆时针旋转90°得到点C ,则点C 的坐标为 ▲ .15.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象可知:方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 ▲ .16.如图,在半径为2的⊙O 中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为 ▲ .(第15题)ABCD(第11题)BOA1C D(第12题)O(第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组 ⎩⎨⎧2x +3y =﹣5,3x -2y =12.18.(6分)化简:(xx -1-x )÷x -2x 2-2x +1.19.(8分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a 、b 、c 表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定. (1)小张同学对物理的①、②和化学的b 、c 实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率; (2)小明同学对物理的①、②、③和化学的a 实验准备得较好.他两科都抽到准备得较好的实验题目的概率为 ▲ .20. (8分)据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:2014年南京市100天空气质量等级天数统计图(1)表中a=▲ ,b=▲ ,图中严重污染部分对应的圆心角n=▲ °. (2)请你根据“2014年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2014年机动车保有量已突破200万辆,请你通过计算,估计2014年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?21.(8分)如图, 在□ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、AD 的中点,AF 与EH 交于点M ,FG 与CH 交于点N .(1)求证:四边形MFNH 为平行四边形; (2)求证:△AMH ≌△CNF .22. (8分)端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300圆,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.(8分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30º,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上),用测角仪测得塔顶D 的仰角为75º,且AB 间距离为40m . (1)求点B 到AD 的距离; (2)求塔高CD (结果用根号表示).ABCD(第23题)30°75°A B C D F G E H M N24.(8分)小林家、小华家、图书馆依次..在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x (分钟)后,小林离小华家的距离为y (米),y 与x 的函数关系如图所示.(1)小林的速度为 ▲ 米/分钟 ,a = ▲ ,小林家离图书馆的距离为 ▲ 米; (2)已知小华的步行速度是40米/分钟,设小华步行时与自己家的距离为y 1(米),请在图中画出y 1(米)与x (分钟 )的函数图象; (3)小华出发几分钟后两人在途中相遇?25.(8分)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图①所示). (1)求出这条抛物线的函数表达式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间有一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(第24题)x (分钟) y (米) 4 20 240 O a (第25题)26. (10分)如图,已知△ABC ,AB =6、AC =8,点D 是BC 边上一动点,以AD 为直径的⊙O分别交AB 、AC 于点E 、F .(1)如图①若∠AEF =∠C ,求证:BC 与⊙O 相切;(2)如图②,若∠BAC =90°,BD 长为多少时,△AEF 与△ABC 相似.27. (10分)已知直角△ABC ,∠ACB =90°,AC =3,BC =4,D 为AB 边上一动点,沿EF 折叠,点C 与点D 重合,设BD 的长度为m . (1)如图①,若折痕EF 的两个端点E 、F 在直角边上,则m 的范围为 ▲ ; (2)如图②,若m 等于2.5,求折痕EF 的长度; (3)如图③,若m 等于2013 ,求折痕EF 的长度.图②图①A DBC EFO CA BC备用EDFA CDBEFACBACB 图②图③图①DEF2015中考数学模拟试卷(二)答案一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.)7.x >1 8. a (a -2)(a+2) 9. 3 +1 10. ﹣2 11. 2 3 12.3.96×10413. (﹣2,4) 14.0.2 15. k <2 16. 6-2 3 三、解答题(本大题共11小题,共88分.) 17.解: ①×2得:4x +6y =﹣10③②×3得:9x -6y =36 ④③+④得:13x =26解得:x =2········································································································3分把x =2代入①得y =﹣3····················································································5分所以方程组的解为⎩⎨⎧x =2,y =-3.·················································································6分18.解原式=[x x -1-x (x -1)x -1]÷x -2x 2-2x +1·············································································1分 =x -x (x -1)x -1×x 2-2x +1 x -2·····························································································2分=2x -x 2x -1×x2-2x+1x-2··································································································3分=x (2-x) x-1× (x-1)2x-2···················································································4分=-x(x-1) ··············································································································5分=﹣x2+x················································································································6分19. (1)画图或列表正确·····································································································4分共有9种等可能结果,期中两科都满意的结果有4种··································································5分P(两科都满意)=49 .·········································································································6分(2)13···························································································································8分20. (1)25;20;72°······································································································3分(2)45% ···············································································································5分(3)=87500(千克) (8)分21. (1)证明:连接BD ,∵E 、F 、G 、H 分别为AB 、BC 、CD 、AD 的中点, ∴EH 为△ABD 的中位线,∴EH ∥BD . 同理FG∥BD .∴EH ∥FG·······················································································································2分 在□ABCD 中 ∴AD ∥=BC ,∵H 为AD 的中点AH =12AD ,∵F 为BC 的中点FC =12BC ,∴AH ∥=FC∴四边形AFCH 为平行四边形,∴AF ∥CH ·······················································································································4分 又∵EH ∥FG ∴四边形MFNH 为平行四边形···························································································5分 (2)∵四边形AFCH 为平行四边形 ∴∠FAD =∠HCB ···········································································································6分∵EH ∥FG,∴∠AMH =∠AFN ∵AF ∥CH∴∠AFN =∠CNF ∴∠AMH =∠CNF ············································································································7分 又∵AH =CF∴△AMH ≌△CNF ·············································································································8分22.解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,300(1+20%)x+400x=260,···················································································4分解得:x=2.5,·················································································5分经检验:x=2.5是原分式方程的解,························································································6分(1+20%)x=3,则买甲粽子为:300(1+20%)x=100个,乙粽子为:400x=160个.················································7分答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.········································8分23. (1)作BE ⊥AD ,垂足为E , 在Rt △AEB 中,sin A =BE AB,12=BE40,BE =20················3分(2)∠DBC 是△ABD 的外角 ∠ADB =∠DBC -∠A =45°,···············4分 在Rt △DEB 中,tan ∠EDB =BE ED ,1=20ED, ED=20·············································5分 在Rt△AEB 中,cos ∠EAB =AE AB, EA =20 3 ······························6分 AD =ED + EA=20+20 3 ························································································7分 在Rt △ACD 中,sin ∠DAC =DCAD, EA =10+10 3 ·····················································8分24.(1)60;960;1200;····························3分(2)如图略(以(0,0)、(24,960)为端点的线段),····························5分(3)解法一:由题意得60x -240=40x ,x =12,小华出发12分钟后两人在途中相遇.························8分 解法二:设小林在4~20分钟的函数表达式为y =kx +b ,则⎩⎨⎧0=4k +b 960=20k +b,∴k =60,b =-240,下同解法一··········8分25.解:(1)设抛物线的函数表达式为y =a (x -6)2+6,∵图像过点(0,0)∴a =-16,…………………2分 ∴y =-16 (x -6)2+6=-16x 2+2x ,…………………3分0≤x ≤12.…………………4分(2)当x =3时,y =-16×9+2×3=4.5.…………………6分ABCD(第23题)30°75°E∵4.5<5,∴不能通过.…………………8分26.(1)证明:连接DF ,在⊙O 中∠AEF =∠ADF ····························1分又∵∠AEF =∠C ∴∠ADF =∠C ····························2分∵AD 为直径,∴∠AFD =90°∴∠CFD =90°∴∠C +∠CDF =90° ∴∠ADF +∠CDF =90°∴∠ADC =90°····························3分又∵AD 为直径∴BC 与⊙O 相切. ····························4分(2)情况一:若△AEF ∽△ACB ,则∠AEF =∠C ,由(1)知BC 与⊙O 相切. ∴BD =3.6···············7分情况二:若△AEF ∽△ABC ∴∠AEF =∠B ,∴EF ∥BC ,∵∠EAF 为直角,∴EF 为直径,∴△AEO ∽△ABD ,∴EA BA =EO BD =AO AD =12,∴BD =2EO =EF ∵EF ∥BC ∴△AEF ∽△ABC ∴EF BC =EA BA =12 ,即BD =2EO =EF =12BC =5……………………10分27.解:(1)2≤m ≤4;…………………2分(2)方法一、∵∠ACB =90°,AC =3,BC =4,∴AB =5,∵BD =2.5,∴AD =DB =CD =2.5,∵点C 与点D 关于对称,∴DE =CE ,CF =DF ,∴∠CAD =∠ECD =∠EDC , ∴△ACD ∽△CDE ,∴AC CD =AD CE ,即32.5=2.5CE, ∴CE =2512;同理CF =2516 ;∴EF =12548.…………………6分方法二、作DG ⊥BC ,垂足为G ,连接DF ,△BGD ∽△BCA ,∴DG AC =BD AB =BGCB∴DG =32,C G =GB =2在Rt △FDG 中,FG 2+DG 2=DF 2,(2-DF )2+1.52=DF 2,解得DF =2516,CF =DF =2516 (4)分∵∠CEF+∠ECD =90°,∠DCF+∠ECD =90°,∴∠CEF =∠DCF ,又∵∠ECF =∠CGD =90° ∴△ECF ∽△CGD ∴EF CD =CF DG ∴EF =12548.…………………6分(3)作DG ⊥BC ,垂足为G ,作EH ⊥BC ,垂足为H ,连接DF ,△BGD ∽△BCA ,∴DG AC =BD AB =BGCB∴DG =1213, GB =1613∴CG =3613在Rt △FDG 中,FG 2+DG 2=DF 2,(3613-DF )2+(1213)2=DF 2,解得DF =2013,C F =DF =2013 (8)分易证∠HEF =∠DCG ,又∵∠EHF =∠DGC =90° ∴△EHF ∽△CGD ∴EH CG =HF DG ∴EH HF =CG DG =13,设FH =x ,则EH =3x ,∵EH ∥AC ,∴△EHB ∽△ACB ∴EH AC =HB BC ∴3x 3=4- 2013+x 4解得x =3239 ,∴EF =10 FH =323910 …………10分DEG F A CDBE FACBACB 备用备用图①DEF H G。

江苏省南京市玄武区2015年中考数学二模试题

江苏省南京市玄武区2015年中考数学二模试题

江苏省南京市玄武区2015年中考数学二模试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2的相反数是 A .-2B .-12C .12D .22.9等于A .-3B .3C .±3D .33.南京青奥会期间约有1020000人次参与了青奥文化教育活动.将数据1020000用科学记数法表示为A .10.2×105B .1.02×105C .1.02×106D .1.02×1074.如图,∠1=50°,如果AB ∥DE ,那么∠D =A .40°B .50°C . 130°D .140°5.不等式组⎩⎨⎧x >-1,2x -3≤1.的解集在数轴上表示正确的是A .C D 6.如图,水平线l 1∥l 2,铅垂线l 3∥l 4,l 1⊥l 3,若选择l 1、l 2其中一条当成x 轴,且向右为正方向,再选择l 3、l 4其中一条当成y 轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y =ax 2-ax -a 的图象,则下列关于x 、y 轴的叙述,正确的是A .l 1为x 轴,l 3为y 轴B .l 1为x 轴,l 4为y 轴C .l 2为x 轴,l 3为y 轴D .l 2为x 轴,l 4为y 轴 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.使式子x +1有意义的x 的取值范围是 ▲ .8.一组数据:1,4,2,5,3的中位数是 ▲ .9.分解因式:2x 2-4x +2= ▲ . 10.计算:sin45°+12-38= ▲ . 11.小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x 元,可得方程 ▲ . 12.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 ▲ .13.如图,ON ⊥OM ,等腰直角三角形ACB 中,∠ACB =90°,边AC 在OM 上,将△ACB 绕点A 逆时针旋转75°,使得点B 的对应点E 恰好落在ON 上,则OAEA= ▲ . (第6题)l 3 l 4l 1 l 2C (第4题) 1 A B DE14.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使3CE =CD ,过点B 作BF ∥DE , 与AE 的延长线交于点F .若AB =6,则BF 的长为 ▲ .15.如图,四边形ABCD 为⊙O 的内接四边形,连接AC 、BO ,已知∠CAB =36°,∠ABO =30°,则∠D = ▲ °.16.函数y 1=k 1x +b 的图象与函数y 2= k 2 x 的图象交于点A (2,1)、B (n ,2),则不等式- k 2x<-k 1x +b 的解集为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组:⎩⎨⎧x +y =-3,2x -y =6.18.(7分)先化简,再求值:a -2a +3÷a 2-42a +6-5a +2,其中a =1.19.(7分)如图,矩形花圃ABCD 一面靠墙,另外三面用总长度是24m 的篱笆围成.当矩形花圃的面积是40 m 2时,求BC 的长.20.(8分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字-3、-1、0、2,除数字不同外,这四个球没有任何区别.(1)从中任取一球,求该球上标记的数字为正数的概率;(2)从中任取两球,将两球上标记的数字分别记为x 、y ,求点(x ,y )位于第二象限的概率.A B C D (第19题)文档来源:弘毅教育园丁网数学第一站24.(8分)在海上某固定观测点O 处的北偏西60°方向,且距离O 处40海里的A 处,有一艘货轮正沿着正东方向匀速航行,2小时后,此货轮到达O 处的北偏东45°方向的B 处.在该货轮从A 处到B 处的航行过程中.(1)求货轮离观测点O 处的最短距离; (2)求货轮的航速.25.(9分)如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE ∥BD ,交BC 于点F ,交AE 于点E . (1)求证:∠E =∠BCO ;(2)若⊙O 的半径为3,cos A =45,求EF 的长.26.(9分)已知二次函数y =x 2—2x +c (c 为常数).(1)若该二次函数的图象与两坐标轴有三个不同的交点,求c 的取值范围;(2)已知该二次函数的图象与x 轴交于点A (-1,0)和点B ,与y 轴交于点C ,顶点为D ,若存在点P (m ,0)(m >3)使得△CDP 与△BDP 面积相等,求m 的值.27.(10分)如图,在△ABC 中,∠A =90°,AB =AC =12 cm ,半径为4cm 的⊙O 与AB 、AC 两边都相切,与BC 交于点D 、E .点P 从点A 出发,沿着边AB 向终点B 运动,点Q 从点B 出发,沿着边BC 向终点C 运动,点R 从点C 出发,沿着边CA 向终点A 运动.已知点P 、Q 、R 同时出发,运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,运动时间为ts. (1)求证:BD =CE ;(2)若x =3,当△PBQ ∽△QCR 时,求t 的值;(3)设△PBQ 关于直线PQ 对称的图形是△PB'Q ,求当t 和x 分别为何值时,点B'与圆心O 恰好重合.OA B北(第24题) 东 E BCOF D A (第25题)2014~2015学年第二学期九年级测试卷数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(本大题共10小题,每小题2分,共20分)7.x ≥-1; 8.3 9.2(x -1)210.2-2 11.3x +2(x +15)=15512.24 13.12 14.8 15.96 16.x >0,-2<x <-1三、解答题(本大题共11小题,共88分) 17.(本题6分)解:⎩⎨⎧x +y =-3, ①2x -y =6. ②①+②,得 3x =3,解得 x =1.将x =1代入①,得 1+y =-3,解得 y =-4.所以原方程组的解为⎩⎨⎧x =1,y =-4.6分18.(本题7分)解:a -2a +3÷a 2-42a +6-5a +2=a -2a +3÷(a +2)(a -2)2(a +3)-5a +2 =a -2a +3·2(a +3)(a +2)(a -2)-5a +2 =2(a -2)(a +3)(a +3)(a +2)(a -2)-5a +2 =2a +2-5a +2=-3a +2.当a =1时,原式=-1. 7分19.(本题7分)解:设BC 的长度为x m .文档来源:弘毅教育园丁网数学第一站由题意得 x ·24-x2=40.解得 x 1=4,x 2=20.答:BC 长为4 m 或20m . 7分 20.(本题8分)解:(1)正数为2,该球上标记的数字为正数的概率为14. 3分(2)点(x ,y )所有可能出现的结果有:(-3,-1)、(-3,0)、(-3,2)、(-1,0)、(-1,2)、(0,2)、 (-1,-3)、(0,-3)、(2,-3)、(0,-1)、(2,-1)、(2,0). 共有12种,它们出现的可能性相同.所有的结果中,满足“点(x ,y )位于第二象限”(记为事件A )的结果有2种,所以P(A )=16. 8分21.(本题7分)解:(1)①0.45;②100;③0.05;④1000; 4分 (2)800×(0.1+0.05)=120(万人)答:我市能称为“阅读爱好者”的市民约有120万人. 7分22.(本题9分)解:(1)证明:在正方形ABCD 中,∵AD =CD ,∴∠DAE =∠DCG ,∵DE =DG , ∴∠DEG =∠DGE , ∴∠AED =∠CGD . 在△AED 和△CGD 中,∵∠DAE =∠DCG ,∠AED =∠CGD ,DE =DG , ∴△AED ≌△CGD , ∴AE =CG . 4分(2)解法一:BE ∥DF ,理由如下:在正方形ABCD 中,AB ∥CD ,AB =CD , ∴∠BAE =∠DCG . 又∵AE =CG , ∴△AEB ≌△CGD , ∴∠AEB =∠CGD . ∵∠CGD =∠EGF , ∴∠AEB =∠EGF , ∴ BE ∥DF . 9分解法二:BE ∥DF ,理由如下: 在正方形ABCD 中, ∵AD ∥FC ,∴CG AG =CF AD . ∵CG =AE ,∴AG =CE .又∵在正方形ABCD 中,AD =CB ,∴CG CE =CF CB. 又∵∠GCF =∠ECB , ∴△CGF ∽△CEB , ∴∠CGF =∠CEB , ∴ BE ∥DF . 9分23.(本题8分)解:(1)设注水过程中y 与t 之间的函数关系式为y =kt +b .根据题意,当t =95时,y =0;当t =195时,y =1000.所以⎩⎨⎧0=95k +b ,1000=195k +b .解得⎩⎨⎧k =10,b =-950.所以,y 与t 之间的函数关系式为y =10t -950. 4分(2)由图象可知,排水速度为1500-100025=20 m 3/min .则排水需要的时间为150020=75min .清洗所用的时间为95-75=20min . 8分24.(本题8分)解:(1)如图,作OH ⊥AB ,垂足为H .在Rt △AOH 中,∵cos ∠AOH =OH AO.∴OH =cos60°·AO =20. 即货轮离观测点O 处的最短距离为20海里. 4分(2)在Rt △AOH 中,∵sin ∠AOH =AH AO,∴AH =sin60°·AO =203,在Rt △BOH 中,∵∠B =∠HOB =45°,∴HB =HO =20. ∴AB =203+20,∴货轮的航速为203+202=103+10(海里/小时). 8分25.(本题9分)(1)证明:连接BO .∵OE ∥BD , ∴∠E =∠ABD .∵AE 与⊙O 相切于点B ,∴OB ⊥AE . ∴∠ABD +∠OBD =90°.OAB北 东EBF文档来源:弘毅教育园丁网数学第一站∵CD 是⊙O 的直径, ∴∠CBO +∠OBD =90°. ∴∠ABD =∠CBO . ∵OB =OC ,∴∠CBO =∠BCO . ∴∠E =∠BCO . 4分(2)解:在Rt △ABO 中,cos A =AB AO =45,可设AB =4k ,AO =5k ,BO =(5k )2-(4k )2=3k .∵⊙O 的半径为3,∴3k =3,∴k =1. ∴AB =4,AO =5.∴AD =AO -OD =5-3=2. ∵BD ∥EO , ∴AB AE =AD AO =25,∴AE =10. ∴EB =AE -AB =6.在Rt △EBO 中,EO =EB 2+OB 2=35. ∵OE ∥BD ,∴∠EFB =∠DBF =90°.∵∠FEB =∠BEO ,∠EFB =∠EBO , ∴△EFB ∽△EBO . ∴EF EB =EB EO ,即EF 6=635. ∴EF =1255. 9分26.(本题9分)即y =x -5,当y =0时,x =5,即m =5. 9分27.(本题10分)(1)证明:连接AO 并延长交BC 于点H .连接OE 、OD .∵⊙O 与AB 、AC 两边都相切,∴点O 到AB 、AC 两边的距离相等. ∴AH 是∠CAB 的平分线. ∵AB =AC ,∴AH ⊥BC ,AH 平分BC . ∵OE =OD ,OH ⊥ED , ∴OH 平分ED .∵CE =CH -EH ,BD =BH -DH , 且CH =BH ,EH =DH , ∴ BD =CE . 3分(2BC =122+122=122.,∴BP CQ =BQ CR ,即12-t 122-3t =3t 1.5t.解得t =242-125. 6分(3M ,连接OM 、OB 、OP 、OQ ,H 参考(1)中作法. PQ 对称, ∴OP=BP ,OQ =BQ . ∵⊙O 与AB 相切于点M ,∴OM ⊥AB .设BP =a ,在Rt △OMP 中,(12-4-a )2+42=a 2,解得a =5;设BQ =b ,在Rt △OHB 中,(62-b )2+(22)2=b 2,解得b =1023.t =12-51=7 s . x =10237=10221cm .10分B。

秦淮区答案

秦淮区答案
数学 A 答案 第 1 页(共 5 页)
9
∴四边形 AMCN 是平行四边形.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2 分 ∴AM=CN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 在 Rt△ABM 和 Rt△CDN 中,AB=CD,AM=CN, ∴Rt△ABM≌Rt△CDN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 (2)解:当 AB=AF 时,四边形 AMCN 是菱形. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 证明:∵四边形 ABCD、AECF 是矩形, ∴∠B=∠BAD=∠EAF=∠F=90° . ∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN. 又∵AB=AF, ∴△ABM≌△AFN.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 ∴AM=AN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·7 分 由(1)知四边形 AMCN 是平行四边形, ∴平行四边形 AMCN 是菱形.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·8 分

2015年中考二模名校考试数学试题及答案

2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。

2015年初三二模数学题(含答案)

2015年初三二模数学题(含答案)

数 学 九 年 级 第 二 学 期 期 中 练 习一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3 119万册,其中古籍善本约有2 000 000册.2 000 000用科学记数法可以表示为A .70.210⨯ B .6210⨯ C .52010⨯ D .6102⨯2.若二次根式2x -有意义,则x 的取值范围是 A . 0≤x B .0≥x C .2≤x D . 2≥x 3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为古时子时丑时寅时卯时今时 23:00~1:00 1:00~3:00 3:00~5:00 5:00~7:00A .13B .14C.16 D .1124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立A .()2222a b a ab b +=++ B. ()2222a b a ab b -=-+C. ()()22a b a b a b +-=- D. ()2a ab a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大D CB A abab ab b a7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D . 60元 9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为A .2B .5C .22D .1010.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C DDBACPQOABADACB二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为 . 12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是 .13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为 .14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为 米.15. 如图,在Rt △ABC 中,∠C =90°,∠BAC =30°, BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则AD 的长为 .16. 五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为 (7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.三、解答题(本题共30分,每小题5分)17.计算:13128tan 45+()3--+-+︒-. 18.解不等式2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .20.已知2410x x --=,求代数式314x x x---的值. 21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.22.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围; (2)若a 为正整数,求方程的根.西东南北B CABOCDADACBEAOB四、解答题(本题共20分,每小题5分)23.已知,ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,4AE =,2EC =.(1)求证:AD=CD ;(2)若tan B=3,求线段AB 的长.24. 小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:B C B A D A C D B C B C D C D C E C C A B E A D E C B C B C E D E D D C(1)小明用表格整理了上面的调查数据,写出表格中m 和n 的值; (2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗? .(填“适中”或者“不适中”)调查问卷 年 月你觉得这种肉夹馍的口味 (单选) A. 太咸 B. 稍咸 C. 适中 D. 稍淡 E. 太淡BEACD25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.26.阅读下面材料:小明研究了这样一个问题:求使得等式20(0)kx x k +-=>成立的x 的个数.小明发现,先将该等式转化为2kx x +=,再通过研究函数2y kx =+的图象与函数y x =的图象(如图)的交点,使问题得到解决.xyy = |x |–5–4–3–2–112345–5–4–3–2–112345oxy()–5–4–3–2–112345–5–4–3–2–112345o请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.DFB EAOC五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.28.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD , DAE ∠+BAC ∠=180°. (1)直接写出∠ADE 的度数(用含α的式子表示); (2)以AB ,AE 为边作平行四边形ABFE ,①如图2,若点F 恰好落在DE 上,求证:BD =CD ; ②如图3,若点F 恰好落在BC 上,求证:BD =CF .ECAB DFEBCADFEBCA D图1 图2 图3xy()–5–4–3–2–112345–5–4–3–2–112345o29. 如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123B AC D O图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、 选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBCAAACBD二、填空题(本题共18分,每小题3分)题号1112 13 14 15 16 答案 2(1)2y x =-+(1,10)注:答案不唯一40º 20243π (5,1); (1分)(3,7)或(7,3)(2分)答对1个给1分三、解答题(本题共30分,每小题5分)17.(本小题满分5分)解:原式2213=-+-……………………..……………………………………………………...4分24=-.……………………………………………………………………………………...5分18. (本小题满分5分) 解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分 移项, 得22133x x -+≤.…………………………………………………………………..2分 合并,得 1533x -≤. ……………………………………………………………………3分系数化为1,得 5x -≥. …………………………………………………………...……4分不等式的解集在数轴上表示如下:-1-2-3-4-5-66543210. …………………………………………………………5分解法二:去分母,得 2233x x -+≤. …………………………………………………………………1分移项, 得 2332x x -+≤.……………………………………………………………………2分合并, 得 5x -≤. ………………………………………………………………..3分 系数化为1,得 5x -≥. …………………………………………………………………..4分不等式的解集在数轴上表示如下:-1-2-3-4-5-66543210. …………………………………………………………5分19.(本小题满分5分)ACE证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分 ∵∠BAE =∠BCD =90°, 在Rt △EAB 和Rt △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB . ……………………………………4分 ∴∠E =∠D . …………………………………………5分20.(本小题满分5分) 解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分 ∵2410x x --=,∴241x x -=.………………………………………………………………………………………4分 ∴原式1451+==.………………………………………………………………………………..5分 21. (本小题满分5分)解:设小明家到学校的距离为x 米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得 6000x =. ……………………………………………………………………..4分答:小明家到学校的距离为6000米. ………………………………………………………………….5分22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分 解得 53a ≤.……………………………………………………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222,22x x =+=-.………………………………………………………5分四、解答题(本题共20分,每小题5分)23. (本小题满分5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠o,122DE AE ==.………………………………………………………………1分∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC . ………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC == …………………………………………………………………………3分 在Rt △AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………4分 ∴2210AB AF FB =+=.…………………5分24. (本小题满分5分)(1)8m =;5n =;……………………...2分 (2)……………………...4分(3)适中. ………………………………….5分 25.(本小题满分5分) 证明:连接OE ,OC .AFBEACD在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC .………………………………………………………………………………..1分 ∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E .∴CF 与⊙O 相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴225OF OE EF =+=,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=,∴tan 6AC AF F =⋅=.…………………………………………………………………………4分 ∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°, ∴2262BC AB AC =+=.∴BD =32.…………………………………………………………………………………….5分26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x 的个数为 1 ;…………………………………….………1分 (2)当0<k <1时,使得原等式成立的x 的个数为 2 ;…………………………………………2分DF BEAOC(3)当k >1时,使得原等式成立的x 的个数为 1 .…..…………………………………………3分 解决问题:将不等式240 ()x a a x +-<>0转化为24()x a a x +<>0, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点. ∵函数4y x=的图象经过点A (1,4),B (2,2),函数2y x =的图象经过点C (1,1),D (2,4),若函数2(0)y x a a =+>经过点A (1,4),则3a =, ……………………………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ……………………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分 (2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩ xy ()()()()–5–4–3–2–112345–5–4–3–2–112345CD BA o解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分 (3)1t <或3t > ……………………………………………………………………………………………7分 28.(本小题满分7分)(1)∠ADE =90α︒-.…………………………………………………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC ,∴BD =CD .…………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF .∴EAC C α∠=∠=.……………………………………………………………………………………………5分 由(1)知,2DAE α∠=,∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD .∴BD =CF .………………………………………………………………………………………………………7分 29. (本小题满分8分)(1) ②,③ 是12T T -联络点.…………………………………………………………………………2分 (2)所有12T T -联络点所组成的区域为图中阴影部分(含边界).FEBC ADF EBCAD………………………………………………………………………4分(3)① ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点,阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于(0,0), 或与直线BD 相切于(0,1),如图所示. 又∵⊙M 的半径1r =,∴点M 的坐标为(0,1-)或(0,2).………………6分经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为12T T -联络点,符合题意. ∴点M 的坐标为(0,1-)或(0,2).∴点M 的纵坐标为1-或2. ② 阴影部分关于直线12y =对称,故不妨设点M 位于阴影部分下方. ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点, 阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 作ME ⊥AD 于E ,设AD 与BC 的交点为F , ∴MO = r ,ME > r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,12OF =, ∴2252AF AO OF =+=,25sin 5AO AFO AF ∠==. 在Rt △FEM 中,∠FEM =90°,FM = FO + OM = r +12,25sin sin 5EFM AFO ∠=∠=,∴5(21)sin 5r ME FM EFM +=⋅∠=. ∴5(21)5r r +>.又∵0r >, ∴052r <<+.……………………………………………………………………………………8分xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123EF B A CD OM。

江苏省南京市鼓楼区2015年中考数学二模试题(含解析).doc

江苏省南京市鼓楼区2015年中考数学二模试题(含解析).doc

江苏省南京市鼓楼区2015 年中考数学二模试题一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣13.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 24.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣1)2﹣( a﹣1)5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是 x≠ 0.正确的是()b5E2RGbCAPA.①② B .①③ C.②③ D.①②③二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题纸相应位置上) p1EanqFDPw7. 9 的平方根是.8.一个多边形的每个外角都等于72°,则这个多边形的边数为.9.已知方程组的解为,则一次函数y= ﹣x+1 和 y=2x﹣ 2 的图象的交点坐标为.10.计算(﹣)×的结果是.11.已知 x1、x2是一元二次方程x2+x=1 的两个根,则x1x2=.12.如果代数式2x+y 的值是 3,那么代数式7﹣6x ﹣ 3y 的值是.13.已知点A(2, y1)、B( m,y2)是反比例函数y=的图象上的两点,且y1< y2.写出满足条件的 m的一个值, m可以是.DXDiTa9E3d14.如图,∠ 1=70°,直线 a 平移后得到直线b,则∠ 2﹣∠ 3=°.15 .已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.RTCrpUDGiT16.如图,方格纸中有三个格点A、 B、 C,则 sin ∠ ABC=.三、解答题(本大题共 11 小题,共 88 分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 5PCzVD7HxA17.( 1)解方程组(2)解不等式2x﹣1≥,并把它的解集在数轴上表示出来.18.某校八年级学生开展踢毽子比赛活动,每班派 5 名学生参加,按团体总数排列名次,在规定时间内每人踢100 个以上(含100 个)为优秀,下表是成绩最好的甲、乙两班各 5 名学生的比赛数据.(单位:个)jLBHrnAILg1 号2 号3 号4 号5 号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?xHAQX74J0X19.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.20.在一个不透明的袋子中,放入除颜色外其余都相同的 1 个白球、 2 个黑球、 3 个红球.搅匀后,从中随机摸出 2 个球.LDAYtRyKfE(1)请列出所有可能的结果:(2)求每一种不同结果的概率.21.某纪念币从2013 年 11 月 11 日起开始上市,通过市场调查得知该纪念币每 1 枚的市场价 y(单位:元)与上市时间x(单位:天)的数据如下:Zzz6ZB2Ltk上市时间 x 天 4 10 36市场价 y 元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价 y 与上市时间 x 的变化关系:dvzfvkwMI1①y=ax+b (a≠ 0);② y=a(x﹣h)2+k(a≠ 0);③ y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?22.三角形中有 3 个角、 3 条边共 6 个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ ABC中, AB=,∠ B=45°,BC=1+,解△ ABC.23.如图,线段AB绕点 O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接 OA、 OA1、 OB、 OB1,根据旋转的性质用符号语言写出 2 条不同类型的正确结论;(3)针对第( 2)问中的图形,添加一定的条件,可以求出线段AB 扫过的面积.(不再添加字母和辅助线,线段的长用a、b、 c表示,角的度数用α 、β 、γ 表示).rqyn14ZNXI你添加的条件是,线段 AB扫过的面积是.24.如图, OA、 OB是⊙ O的半径且O A⊥ OB,作 OA的垂直平分线交⊙O于点 C、 D,连接 CB、AB.求证:∠ ABC=2∠ CBO.25.小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s 、 y m/s .EmxvxOtOco(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.SixE2yXPq5(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.26.( 1 )已知:如图, E、 F、 G、 H 分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.6ewMyirQFL求证:四边形EFGH是矩形.(2)已知:E、F、G、H 分别是菱形 ABCD的边 AB、 BC、 CD、 AD上与顶点均不重合的点,且四边形 EFGH是矩形. AE 与 AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明. kavU42VRUs27.△ ABC中, AB=AC=10, BC=12,矩形 DEFG中, EF=4, FG> 12.(1)如图①,点 A 是 FG的中点, FG∥ BC,将矩形 DEFG向下平移,直到 DE与 BC重合为止.要研究矩形 DEFG与△ ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).y6v3ALoS89(2)如图②,点 B 与 F 重合, E、B、C 在同一直线上,将矩形DEFG向右平移,直到点 E 与C重合为止.设矩形 DEFG与△ ABC重叠部分的面积为 y,平移的距离为 x.M2ub6vSTnP①求 y 与 x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与 x 的大致图象,并在图象上标注出关键点坐标.2015 年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)0YujCfmUCw1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.考点:轴对称图形.分析:根据对称轴的概念求解.解答:解:A、有3条对称轴;B、有 4 条对称轴;C、有 2 条对称轴;D、有 6 条对称轴.故选 D.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.eUts8ZQVRd2.下列算式结果为﹣ 3 的是()A.﹣ | ﹣ 3| B.(﹣ 3)0 C.﹣(﹣ 3)D.(﹣ 3)﹣1考点:负整数指数幂;相反数;绝对值;零指数幂.分析:首先根据绝对值的含义和求法,一个数的相反数的求法,以及负整数指数幂、零指数幂的运算方法,求出每个选项中的数各是多少;然后判断出算式结果为﹣ 3 的是哪个即可. sQsAEJkW5T解答:解:∵﹣ | ﹣3|= ﹣ 3,(﹣ 3)0=1,﹣(﹣ 3) =3,(﹣ 3)﹣1=﹣,∴算式结果为﹣ 3 的是﹣ | ﹣ 3| .故选: A.点评:( 1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;( 3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.GMsIasNXkA (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);( 2)00≠ 1.TIrRGchYzg(3)此题还考查了绝对值的含义和求法的应用,以及一个数的相反数的求法,要熟练掌握.3.使分式有意义的x 的取值范围是()A. x> 2 B. x< 2 C . x≠ 2 D . x≥ 2考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0 即可求解.解答:解:根据题意得:x﹣2≠ 0,解得: x≠2.故选: C.点评:本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于 0.4.下列从左边到右边的变形,是因式分解的是()A.( a﹣ 1)( a﹣ 2) =a2﹣ 3a+2B. a2﹣ 3a+2=( a﹣1)( a﹣ 2)C.( a﹣ 1)2+( a﹣ 1)=a2﹣ a D. a2﹣ 3a+2=( a﹣ 1)2﹣( a﹣ 1)考点:因式分解的意义.专题:计算题.分析:利用因式分解的意义判断即可.2解答:解:a﹣3a+2=(a﹣1)(a﹣2)是因式分解.点评:此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形考点:命题与定理.分析:要找出假命题,可以通过举反例得出;也可运用相关基础知识分析得出真命题,从而得出正确选项.解答:解: A、由平行四边形的判定定理可知是个真命题,错误;B、由平行四边形的判定定理可知是个真命题,错误;C、首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,错误;7EqZcWLZNXD、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确.故选 D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.lzq7IGf02E6.对函数y=x 3的描述:① y 随 x 的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠ 0.正确的是()zvpgeqJ1hkA.①② B .①③ C.②③ D.①②③考点:函数的图象;函数自变量的取值范围;中心对称图形.分析:①根据函数的增减性,可得答案;②根据中心对称图形的定义,可得答案;③根据立方的意义,可得答案.解答:解:① y=x3的增减性是y随 x 的增大而增大,故①正确;。

苏科版2015九年级中考二模数学试卷及答案

苏科版2015九年级中考二模数学试卷及答案

2014—2015学年度第二学期初三年级数学试题(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.-12 的倒数是 ( ▲ )A .12B .-2C .-12D .22.下列运算正确的是 ( ▲ ) A .x 2+ x 3= x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x 3D .( x 2)3 = x 83.下面四个几何体中,俯视图为四边形的是 ( ▲ )4.若菱形ABCD 的两条对角线长分别为6和8,则此菱形的面积为 ( ▲ ) A .5 B .12 C .24 D .48 5.对于反比例函数y =- 1x,下列说法正确的是A .图象经过点(1,1)B .图象位于第一、三象限 ( ▲ )C .图象是中心对称图形D .当x <0时,y 随x 的增大而减小6.某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是 ( ▲ ) A . 3100元B . 3200元C . 3300元D . 3400元7. 已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是 ( ▲ )8.已知实数m ,n 满足m ﹣n 2=2,则代数式m 2+2n 2+4m ﹣1的最小值等于 ( ▲ ) A .-14 B .-6 C .8 D .11二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是 ▲ . 10.使式子1+有意义的x 的取值范围是 ▲ .工资(元) 3000 3200 3400 3600 人数(人) 3 3 3 1 图1图2 A B C DA B C D11.因式分解:a 2+2ab= ▲.12.一种花瓣的花粉颗粒直径约为 ▲ .13.一元二次方程mx 2﹣2x+1=0有两个不相等的实数根,则m 应满足的条件是 ▲ .14.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是 ▲ .15. 如图,四边形ABCD 的四个顶点都在⊙O 上,若∠ABC=80°,则∠ADC 的度数为 ▲ °.16.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=5cm ,则EF=▲ cm .17.如图,将边长为2cm 的正方形ABCD 绕点A 顺时针旋转到AB′C′D′的位置, ∠B′AD=120°,则C 点运动到C′点的路径长为 ▲ cm .18.如下图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,……则第n 个图形中平行四边形的个数是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:(3)0 - ( 12)-2 +sin30° (2)化简:2()(2)a b b a b -++20.(本题满分8分)(1)解不等式组:⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,(2)解方程:x x -1 - 31-x = 221.(本题满分8分)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向,港口A 位于B 的北偏西30°的方向, A 、 B 之间的距离为20海里,求A 、C 之间的距离.(结果精确到海里,参考数据24)(第17题)A B C DC ′B ′ D ′ D E F A BC (第16题) (第14题) DOC B A (第15题) 45022. (本题满分8分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.23.(本题满分10分)已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.24.(本题满分10分)盐城市初级中学为了了解中考体育科目训练情况,从本校九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;A DCBEFO图1图2(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)该校九年级有学生2500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .25.(本题满分10分)如图,AB 是⊙O 的直径,点E 是上的一点,∠DBC=∠BED .(1)请判断直线BC 与⊙O 的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC 的长.26.(本题满分10分)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元).现有两种购买方案: 方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)方案二:购买门票方式如右图所示.解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲ ; 方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ , 当x >100时,y 与x 的函数关系式为 ▲ ;(2)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共600张,花去总费用计48000元,求甲、乙两单位各购买门票多少张.27.(本题满分12分) 某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,在等边三角形ABC 中,点M 是边BC 上任意一点,连接AM ,以AM 为边作等边三角形AMN ,连接CN ,证明:BM=CN .【变式探究】如图2,在等腰三角形ABC 中,BA=BC ,∠ABC=∠α,点M 为边BC 上任意一点,以AM 为腰作等腰三角形AMN ,MA=MN ,使∠AMN=∠ABC ,连接CN ,请求出BMCN的值. (用含α的式子表示出来)1000014000100 150 Ox (张y(元)【解决问题】如图3,在正方形ADBC 中,点M 为边BC 上一点,以AM 为边作正方形作AMEF ,N 为正方形AMEF 的中心,连接CN ,若正方形AMEF 的边长为10,CN=2,请你求正方形ADBC 的边长.28.(本题满分12分) 如图,抛物线c bx x y ++-=2161经过△ABC 的三个顶点,点A 坐标为(0,6),点C 坐标为 (4,6),点B 在x 轴正半轴上.(1)求该抛物线的函数表达式和点B 的坐标.(2)将经过点B 、C 的直线平移后与抛物线交于点M ,与x 轴交于点N ,当以B、C 、M 、N 为顶点的四边形是平行四边形时,请求出点M 的坐标.(3)①动点D 从点O 开始沿线段OB 向点B 运动,同时以OD 为边在第一象限作正方形ODEF ,当正方形的顶点E 恰好落在线段AB 上时,则此时正方形的边长为 ▲②将①中的正方形ODEF 沿OB 向右平移,记平移中的正方形ODEF 为正方形O ′D ′E ′F ′,当点D 与点B 重合时停止平移.设平移的距离为x ,在平移过程中,设正方形O ′D ′E ′F ′与△ABC 重叠部分的面积为y ,请你画出相对应的图形并直接写出y 与x 之间的函数关系式.AB CMN图1EFACBDM N图3图2BCM AN备用图数学参考答案一、1-5 BBDCC 6-8 BAD二、9. 4±10. 0x≥11. (2)a a b+12. 66.510-⨯13. 10m m<≠且14.1215. 100︒16. 518. 2-1n n+三、19. ⑴解:原式2111=1=142212-+-+⎛⎫⎪⎝⎭=52-⑵解:原式222-22a ab b ab b=+++=222a b+20. ⑴由①得212313xx x+<+<<由②得5332(1)51222x x x x-≤-≤-≤≥-∴312x-≤<⑵323225511xx x x xx x+=+=--=-=--检验:当5x=时,10x-≠∴5x=为原分式方程的根21. ⑴解:作AD⊥BC ∵∠B=30°∴1sin30AD︒==∵AB=20 ∴AD=10 ∵∠1=45°∴∠ACD=45°∴sin45ADAC︒==∴AC=∴AC≈10×1.414=14.14 ≈14.122. ⑴13⑵共出现9种等可能性的结果54==99P P P P∴≠小明小华小明小华∴不公平答:游戏对双方不公平23. ⑴证明:∵平行四边形ABCD ∴AD∥BC △DOE与△BOF中∴12EDO FBO OD OB EDO FBO ∠=∠⎧⎪∠=∠=⎨⎪∠=∠⎩∵O 为BD 中点 ∴OB=OD ∴DOE BOF ∆≅∆⑵解:当∠DOE=90°时,BFOE 为菱形 ∵DOE BOF ∆≅∆∴OE=OF ∵OB=OD ∴BFDE 为平行四边形 ∵∠DOE=90°∴EF ⊥BD∴BFDE 为菱形 ∴当90DIEBFDE ∠=︒时,为菱形24. ⑴40人⑵54︒⑶500人25. ⑴BC 与O 相切 ∵BD BD =∴∠BAD=∠BED ∵∠DBC=∠BED∴∠BAD=∠DBC ∵AB 为直径 ∴∠ADB=90° ∴∠BAD+∠ABD=90°∴∠DBC+∠ABD=90° ∴∠CBO=90° ∴点B 在O 上∴BC 与O 相切 ⑵∵AB 为直径 ∴∠ADB=90° ∴∠BDC=90° ∵BC 与O 相切∴∠CBO=90° ∴∠BDC=∠CBO∴ABCBDC ∆∆∴BC AC CD BC= ∴2BCCD AC =⋅∵4,5CD AD ==∴AC=9∴24936BC =⨯= ∴BC=6(BC=-6 舍去) 26. ⑴y=10000+50x y=100x y=80x+2000⑵解:设甲购买门票m 张,则乙购买门票(600-m )张。

【解析版】2015年江苏省南京市鼓楼区中考数学二模试卷

【解析版】2015年江苏省南京市鼓楼区中考数学二模试卷

2015年江苏省南京市鼓楼区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列算式结果为﹣3的是()A.﹣|﹣3| B.(﹣3)0C.﹣(﹣3)D.(﹣3)﹣13.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥24.下列从左边到右边的变形,是因式分解的是()A.(a﹣1)(a﹣2)=a2﹣3a+2 B.a2﹣3a+2=(a﹣1)(a﹣2)C.(a﹣1)2+(a﹣1)=a2﹣a D.a2﹣3a+2=(a﹣1)2﹣(a﹣1)5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形6.对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是()A.①② B.①③ C.②③ D.①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.9的平方根是.8.一个多边形的每个外角都等于72°,则这个多边形的边数为.9.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为.10.计算(﹣)×的结果是.11.已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2= .12.如果代数式2x+y的值是3,那么代数式7﹣6x﹣3y的值是.13.已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.14.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3= °.15.已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.16.如图,方格纸中有三个格点A、B、C,则sin∠ABC= .三、解答题(本大题共11小题,共88分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程组(2)解不等式2x﹣1≥,并把它的解集在数轴上表示出来.18.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据.(单位:个)统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?19.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)请用合适的方式表示加油过程中变量之间的关系.20.在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.(1)请列出所有可能的结果:(2)求每一种不同结果的概率.21.某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x﹣h)2+k( a≠0);③y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?22.三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.23.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,根据旋转的性质用符号语言写出2条不同类型的正确结论;(3)针对第(2)问中的图形,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长用a、b、c…表示,角的度数用α、β、γ…表示).你添加的条件是,线段AB扫过的面积是.24.如图,OA、OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C、D,连接CB、AB.求证:∠ABC=2∠CBO.25.小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.26.求证:四边形EFGH是矩形.(2)已知:E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD上与顶点均不重合的点,且四边形EFGH是矩形.AE与AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明.27.△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.①求y与x的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.2015年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.考点:轴对称图形.分析:根据对称轴的概念求解.解答:解:A、有3条对称轴;B、有4条对称轴;C、有2条对称轴;D、有6条对称轴.故选D.点评:本题考查了轴对称图形的知识,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.下列算式结果为﹣3的是()A.﹣|﹣3| B.(﹣3)0C.﹣(﹣3)D.(﹣3)﹣1考点:负整数指数幂;相反数;绝对值;零指数幂.分析:首先根据绝对值的含义和求法,一个数的相反数的求法,以及负整数指数幂、零指数幂的运算方法,求出每个选项中的数各是多少;然后判断出算式结果为﹣3的是哪个即可.解答:解:∵﹣|﹣3|=﹣3,(﹣3)0=1,﹣(﹣3)=3,(﹣3)﹣1=﹣,∴算式结果为﹣3的是﹣|﹣3|.故选:A.点评:(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a ≠0);(2)00≠1.(3)此题还考查了绝对值的含义和求法的应用,以及一个数的相反数的求法,要熟练掌握.3.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2考点:分式有意义的条件.分析:根据分式有意义的条件:分母不等于0即可求解.解答:解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.点评:本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于0.4.下列从左边到右边的变形,是因式分解的是()A.(a﹣1)(a﹣2)=a2﹣3a+2 B.a2﹣3a+2=(a﹣1)(a﹣2)C.(a﹣1)2+(a﹣1)=a2﹣a D.a2﹣3a+2=(a﹣1)2﹣(a﹣1)考点:因式分解的意义.专题:计算题.分析:利用因式分解的意义判断即可.解答:解:a2﹣3a+2=(a﹣1)(a﹣2)是因式分解.故选B点评:此题考查了因式分解的意义,熟练掌握因式分解的意义是解本题的关键.5.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形考点:命题与定理.分析:要找出假命题,可以通过举反例得出;也可运用相关基础知识分析得出真命题,从而得出正确选项.解答:解:A、由平行四边形的判定定理可知是个真命题,错误;B、由平行四边形的判定定理可知是个真命题,错误;C、首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,错误;D、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确.故选D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是()A.①② B.①③ C.②③ D.①②③考点:函数的图象;函数自变量的取值范围;中心对称图形.分析:①根据函数的增减性,可得答案;②根据中心对称图形的定义,可得答案;③根据立方的意义,可得答案.解答:解:①y=x3的增减性是y随x的增大而增大,故①正确;②y=x3的图象绕原点旋转180°能与原图相重合,故②正确;③y=x3的自变量取值范围是全体实数,故③错误;故选:A.点评:本题考查了函数图象,熟悉函数图象及性质是解题关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.9的平方根是±3 .考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.8.一个多边形的每个外角都等于72°,则这个多边形的边数为 5 .考点:多边形内角与外角.分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.解答:解:多边形的边数是:360÷72=5.故答案为:5.点评:本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.9.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标.解答:解:∵方程组的解为,∴一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为(1,0).故答案为:(1,0).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10.计算(﹣)×的结果是 2 .考点:二次根式的混合运算.分析:根据二次根式的混合运算顺序,首先计算小括号里面的,然后计算乘法,求出算式(﹣)×的结果是多少即可.解答:解:(﹣)×=(3﹣2)×=×=2即(﹣)×的结果是2.故答案为:2.点评:(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.11.已知x1、x2是一元二次方程x2+x=1的两个根,则x1x2= ﹣1 .考点:根与系数的关系.分析:直接利用根与系数的关系得到两根之积即可.解答:解:x2+x=1x2+x﹣1=0,由根与系数的关系可知:x1•x2==﹣1.故答案为:﹣1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.12.如果代数式2x+y的值是3,那么代数式7﹣6x﹣3y的值是﹣2 .考点:代数式求值.分析:首先化简所给代数式7﹣6x﹣3y,然后把2x+y=3代入,求出代数式7﹣6x﹣3y的值是多少即可.解答:解:7﹣6x﹣3y=7﹣3(2x+y)=7﹣3×3=7﹣9=﹣2即代数式7﹣6x﹣3y的值是﹣2.故答案为:﹣2.点评:此题主要考查了代数式求值的方法,要熟练掌握,解答此题的关键是要明确三种题型:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.13.已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是 1 .考点:反比例函数图象上点的坐标特征.分析:由于y=在一、三象限,根据题意判定A、B在第一象限,根据反比例函数的性质即可求解.解答:解:由于y=在一、三象限,y随x的增大而减小,若满足y1<y2,点A(2,y1)在第一象限,B(m,y2)在第一象限,若满足y1<y2,则m满足的条件是0<m<2;故答案为1.点评:本题考查了反比例函数图象上点的坐标特征,要学会比较图象上任意两点函数的大小.14.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3= 110 °.考点:平移的性质.分析:延长直线后根据平行线的性质和三角形的外角性质解答即可.解答:解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣70°=110°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=110°,故答案为:110.点评:此题考查平移问题,关键是根据平行线的性质和三角形的外角性质解答.15.已知等腰△ABC中,AB=AC=13cm,BC=10cm,则△ABC的内切圆半径为cm.考点:三角形的内切圆与内心;等腰三角形的性质.专题:计算题.分析:如图,设△ABC的内切圆半径为r,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r即可.解答:解:如图,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD=12cm,根据切线长定理,AE=AB﹣BE=AB﹣BD=13﹣5=8,设△ABC的内切圆半径为r,∴AO=12﹣r,∴(12﹣r)2﹣r2=64,解得r=,故答案为.点评:本题考查了勾股定理、三角形的内切圆和等腰三角形的性质,是基础知识要熟练掌握.16.如图,方格纸中有三个格点A、B、C,则sin∠ABC= .考点:勾股定理;锐角三角函数的定义.专题:网格型.分析:首先过点A作AD⊥BC于点D,连接AC,进而结合S△ABC得出AD的长,再利用锐角三角函数关系求出答案.解答:解:如图所示:过点A作AD⊥BC于点D,连接AC,∵S△ABC=20﹣×2×5﹣×2×4﹣×1×4=9,S△ABC=×BC×AD=9,∴×2AD=9,解得:AD=,故sin∠ABC===.故答案为:.点评:此题主要考查了锐角三角函数关系以及勾股定理,得出直角三角形进而求出是解题关键.三、解答题(本大题共11小题,共88分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程组(2)解不等式2x﹣1≥,并把它的解集在数轴上表示出来.考点:解二元一次方程组;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:(1)法1:方程组利用代入消元法求出解即可;法2:方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可.解答:解:(1)解方程组法1:由①,得x=6﹣2y③,将③代入②,得3(6﹣2y)﹣2y=2,解这个一元一次方程,得y=2,将y=2代入③,得x=2,则方程组的解是;法2:①+②,得4x=8,解这个一元一次方程,得x=2,将x=2代入①,得y=2,则方程组的解是,(2)去分母,得:2(2x﹣1)≥3x﹣1.去括号,得4x﹣2≥3x﹣1,移项、合并同类项,得x≥1,这个不等式的解集在数轴上表示如下:点评:此题考查了解二元一次方程组,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?考点:方差;中位数.分析:平均数=总成绩÷学生人数;中位数是按次序排列后的第3个数.根据方差的计算公式得到数据的方差.解答:解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个;=×500=100(个),乙=×500=100(个);甲S2甲=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]=94;S2乙=[(100﹣100)2+(96﹣100)2+(110﹣100)2+(90﹣100)2+(104﹣100)2]=46.4,甲班的优秀率为:2÷5=0.4=40%,乙班的优秀率为:3÷5=0.6=60%;乙班定为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较好.点评:本题考查了方差,中位数的知识,用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数,以及方差的算法等,需注意方差小了表示成绩稳定.19.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是单价,变量是数量、金额;(2)请用合适的方式表示加油过程中变量之间的关系.考点:函数关系式;常量与变量.分析:(1)根据常量和变量的定义,即可解答;(2)根据金额=单价×数量,即可列出.解答:(1)加油过程中的常量是单价,变量是数量、金额;故答案为:单价,数量、金额.(2)设加油数量是x升,金额是y元,则y=6.80x.点评:主要考查了函数的定义和列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.20.在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.(1)请列出所有可能的结果:(2)求每一种不同结果的概率.考点:列表法与树状图法.分析:(1)用枚举法将所有等可能的结果列举出来即可,也可采用列表或树形图的方法将所有等可能的结果列举出来;(2)确定每一种不同结果的数量,利用概率公式求解即可.解答:解:(1)搅匀后,从中随机摸出2个球,所有可能的结果有15个,即:(白,黑1),(白,黑2),(白,红1),(白,红2),(白,红3),(黑1,黑2),(黑1,红1),(黑1,红2),(黑1,红3),(黑2,红1),(黑2,红2),(黑2,红3),(红1,红2),(红1,红3),(红2,红3).它们是等可能的.(2)其中摸得一个白球和一个黑球的结果有2个,摸得一个白球和一个红球的结果有3个,摸得二个黑球的结果有1个,摸得一个黑球和一个红球的结果有6个,摸得二个红球的结果有3个.所以P(摸得一个白球和一个黑球)=,P(摸得一个白球和一个红球)==,P(摸得二个黑球)=,P(摸得一个黑球和一个红球)==,P(摸得二红球)==.点评:考查了概率的求法,能够利用枚举法将所有等可能的情况列举出来是解答本题的关键,难度不大.21.某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x﹣h)2+k( a≠0);③y=(a≠0).你可选择的函数的序号是②.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?考点:二次函数的应用.分析:(1)根据市场价y(单位:元)与上市时间x(单位:天)的数据,逐一判断出可选择的函数的序号是哪个即可.(2)根据二次函数最值的求法,求出该纪念币上市多少天时市场价最低,最低价格是多少即可.解答:解:(1)①设纪念币的市场价y与上市时间x的变化关系是y=ax+b时,则,解得.∴y=﹣6.5x+116,∵﹣6.5×36+116=﹣118≠90,∴纪念币的市场价y与上市时间x的变化关系不是y=﹣6.5x+116;②设纪念币的市场价y与上市时间x的变化关系是y=a(x﹣h)2+k( a≠0)时,则解得∴y=(x﹣20)2+26,∴纪念币的市场价y与上市时间x的变化关系是y=(x﹣20)2+26.③4×90=360,10×51=510,36×90=3240,∵360≠510≠3240,∴纪念币的市场价y与上市时间x的变化关系不是y=(a≠0).∴选择的函数的序号是②.(2)∵y=(x﹣20)2+26,∴当x=20时,y有最小值26,∴该纪念币上市20天时市场价最低,最低价格为26元.答:该纪念币上市20天时市场价最低,最低价格为26元.点评:此题注意考查了二次函数的应用,要熟练掌握,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.22.三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.考点:解直角三角形.分析:过点A作AD⊥BC,垂足为D,解直角三角形求出BD、AD,求出CD,解直角三角形求出∠C,AC,即可求出答案.解答:解:过点A作AD⊥BC,垂足为D,在Rt△ADB中,∠ADB=90°,∠B=45°,AB=,则cos∠B=.∴AD=BD=AB×cos 45°=×cos 45°=1,在Rt△ADC中,∠ADC=90°,CD=BC﹣BD=1+﹣1=,则tan∠C===,∴∠C=30°,∴AC==2,∠BAC=180°﹣45°﹣30°=105°.点评:本题考查了解直角三角形,勾股定理,特殊角的三角函数值的应用,能求出各个角的度数和求出各个边的长是解此题的关键,难度适中.23.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,根据旋转的性质用符号语言写出2条不同类型的正确结论;(3)针对第(2)问中的图形,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长用a、b、c…表示,角的度数用α、β、γ…表示).你添加的条件是∠AOA1=∠BOB1=α;OA=OA1=a;OB=OB1=b ,线段AB扫过的面积是.考点:作图-旋转变换;扇形面积的计算.分析:(1)分别连接AA1,BB1,分别作其垂直平分线,交点即为旋转中心O;(2)根据图形写出2条不同类型的结论;(3)首先添加一定条件,然后求出线段AB扫过的面积.解答:解:(1)作图如右;(2)如:OA=OA1,∠AOA1=∠BOB1等;(3)添加的条件为:∠AOA1=∠BOB1=α;OA=OA1=a;OB=OB1=b.面积为﹣=(b2﹣a2).点评:本题主要考查了作图﹣旋转变换以及扇形面积的计算的知识,解答本题的关键是找出旋转中心,正确地画出旋转图形是求线段AB扫过面积的基础,此题难度不大.24.(6分)(2015•南京二模)如图,OA、OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C、D,连接CB、AB.求证:∠ABC=2∠CBO.考点:圆周角定理;线段垂直平分线的性质;等边三角形的判定与性质.专题:证明题.分析:连接OC、AC,如图,根据线段垂直平分线的性质得OC=AC,则可判断△OAC是等边三角形,所以∠AOC=60°,于是根据圆周角定理得到∠ABC=∠AOC=30°,然后在△BOC中,由于∠BOC=∠AOC+∠AOB=150°,根据三角形内角和可计算出∠CBO=15°,所以∠ABC=2∠CBO.解答:证明:连接OC、AC,如图,∵CD垂直平分OA,∴OC=AC.∴OC=AC=OA,∴△OAC是等边三角形,∴∠AOC=60°,∴∠ABC=∠AOC=30°,在△BOC中,∠BOC=∠AOC+∠AOB=150°,∵OB=OC,∴∠CBO=15°,∴∠ABC=2∠CBO.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了线段垂直平分线的性质和等边三角形的判定与性质.25.小明和小莉在跑道上进行100m短跑比赛,两人从出发点同时起跑,小明到达终点时,小莉离终点还差6m,已知小明和小莉的平均速度分别为x m/s、y m/s.(1)如果两人重新开始比赛,小明从起点向后退6m,两人同时起跑能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人起跑位置?请设计两种方案.考点:分式方程的应用.分析:(1)首先得出两人之间的速度之间关系,进而利用小明从起点向后退6m,得出两人的速度差,求出即可;(2)利用两人的速度关系得出符合题意的方案.解答:解:(1)根据题意,得=,则y=x.因为﹣=﹣=﹣<0,所以<所以小明先到达终点.(2)方案一:小明在起点,小莉在起点前6米处,两人同时起跑,同时到达;方案二:设小莉在起点,小明在起点后a米处,两人同时起跑,同时到达.则=,即=,解得a=.所以小莉在起点,小明在起点后米处,两人同时起跑,同时到达.点评:此题主要考查了分式方程的应用以及行程问题的相关的知识点;判断出两人的速度之比是解决本题的突破点.(1)已知:如图,E、F、G、H分别是菱形ABCD的各边上与顶点均不重合的点,且AE=CF=CG=AH.26.求证:四边形EFGH是矩形.(2)已知:E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD上与顶点均不重合的点,且四边形EFGH是矩形.AE与AH相等吗?如果相等,请说明理由;如果不相等,请举反例进行说明.。

2015年江宁二模(含答案)

2015年江宁二模(含答案)

2014-2015学年九年级数学学业水平调研试卷(二)一、选择题:(每小题2分,共12分)1.下列手机软件图标中,是中心对称图形的是( ▲ )2.下列事件是必然事件的是( ▲ )A .某射击运动员射击一次,命中靶心B .单项式加上单项式,和为多项式C .打开电视机,正在播广告D .13名同学中至少有两名同学的出生月份相同 3.函数2-=x y ,自变量x 的取值范围是( ▲ )A. x >2B. x <2C. x ≥2D. x ≤24.实数a ,b 在数轴上对应点的位置如图所示,下列各式中正确的是( ▲ )A . -a >bB .-a <bC .-a >-bD .a >-b5.如图,以原点为圆心的圆与反比例函数xy 3=的图像交于A 、B 、C 、D 四点,已知点A6.若关于x 的一元二次方程02=++b ax x 有两个不同的实数根n m ,)(n m <,方程22=++b ax x 有两个不同的实数根q p ,)(q p <,则q p n m ,,,的大小关系为( ▲ ) A .q n m p <<< B .n q p m <<< C .q n p m <<< D .n q m p <<<二、填空题(本大题共10小题,每小题2分,共20分) 7.写出大于-2的一个负数: ▲ . 8.计算))((2-525+结果是 ▲ . 9.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2= ▲°. 10.正比例函数kx =y 的图像经过点(-2,1)、(1,y 1)、(2,y 2),则y 1 ▲ y 2(填“<”或“>”). 11.二次函数22y 2+-=x x 的图像顶点坐标是 ▲ .12. 已知棱柱的侧棱长为6,俯视图是边长为4的等边三角形,则此棱柱的侧面积为 ▲ .13.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=130°,则∠BOD= ▲ °. 14.如图,AB 是⊙O 的直径,点C 在⊙O 上,且13AB =,AC=12,OD AC ⊥,垂足为D ,则OD 的长为 ▲ .15.如图,在△ABC 中,AB=4,将△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ▲ .16.如图,圆心O 恰好为正方形ABCD 的中心,已知AB =10,⊙O 的半径为1,现将⊙O 在正方形内部沿某一方向平移,,当它与正方形ABCD 的某条边相切时停止平移,设此时的平移的距离为d ,则d 的取值范围是 ▲ . 三、解答题(本大题共11小题,共88分) 17.(6分)解不等式1233≤-+x x ,并把它的解集在数轴上表示出来. 18. (6分)解方程组:⎩⎨⎧=+=+.52,42y x y x19. (6分)计算: xx x x x 22)2422+÷-+-(.20.(8分)一次期中考试中,A 、B 、C 、D 、E 五位同学的数学、英语成绩有如下信息:(公式:方差222212[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-,其中x 是平均数.) (1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的方差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=个人成绩-平均成绩标准差.(说明:标准差为方差的算术平方根)从标准分看,标准分大的考试成绩更好,请问A 同学在本次考试中,数学与英语哪个学科考得更好?21.(8分)某校举行班级网球对抗赛,每个班级选派一对男女混合双打选手参赛,九年级一班准备在小明、小亮两名男选手和小敏、小颖、小丽三名女选手中,选择男、女选手各一名组成一对参赛.(1)列出所有可能的配对结果;(2)如果小明与小丽、小亮与小敏是最佳组合,那么组成最佳组合的概率是多少?22.(8分)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

江苏省南京市2015年中考数学试题(WORD版,含答案)

江苏省南京市2015年中考数学试题(WORD版,含答案)

第6题图F 南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 82.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积 = 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆 5.估计 5 -12介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D.2 5 二. 填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.18.(7分)解方程2x -3 = 3x19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD . (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.第15题图y 1=1B 第17题图–1–2–31230第20题图A21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB ∥CD,点E、F分别在AB、CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形.(2)小明在完成(1)的证明后继续进行了探索.过G作MN ∥EF,分别交AB、CD于点M、N,过H东北OBA作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?小明的证明思路 第24题图B C 第25题图A(第26题)y /江苏省历年考试真题第11 页共11 页。

2015南京中考数学试题及答案

2015南京中考数学试题及答案

第6题图F B 江苏省南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 8 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是(A.AE EC = 12B .DE BC = 12C .△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积= 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( ) A. 2.3×105辆 B. 3.2×105辆 C. 2.3×106辆 D. 3.2×106辆 5.估计5 -12介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D.2 5二. 填空题(本大题共10小题,每小题2分,共20分) 7.4的平方根是 ;4的算术平方根是 .8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 .第3题图13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A '关于y 轴的对称点,得到点A '',则点A''的坐标是( , ). 14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”). 15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E = °.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1)-1≥ 3x +2,并把它的解集在数轴上表示出来.18.(7分)解方程2x -3 = 3xy 第15题图y 1=1B E第17题图–1–2–312319.(7分)计算⎝⎛⎭⎫2a 2-b 2 - 1a ² - ab ÷ aa +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CDBD.(1) 求证:△ACD ∽ △CBD ;(2) 求∠ACB 的大小. 21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1) 本次检测抽取了大、中、小学生共名,其中小学生名;(2) 根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3) 比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.第20题图A22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)C24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H . (1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)小明的证明思路第24题图B C 第25题图AB26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC =DE .(1) 求证:∠A =∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg)之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?(第26题)/kg y /(第27题)2015南京中考答案1.B 2A 3C 4C 5C 6A 7. ±2;2.8.x≥﹣1 9. 5 10.(a﹣2b)2.11.﹣1<x<1 12. 3,﹣4 13. ﹣2;3 14.增大15. 215 16. y=17.解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:18.解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.19.解:(﹣)÷=[﹣]×=[﹣]×=×=.20.(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.21.解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).22.解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.23.解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.24.(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.25.解:满足条件的所有图形如图所示:26.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.27.解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.。

苏教版中考第二次模拟检测《数学卷》含答案解析

苏教版中考第二次模拟检测《数学卷》含答案解析

苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1. -5的倒数是A. 15B. 5C. -15D. -52. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab3. 如图是一个由5个相同的正方体组成的几何体,它的左视图是()A. B.C. D.4. 如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A. 24B. 14C. 12D. 65. 生物学家发现了一种病毒,其长度约为0.00000032mm,将数据0. 00000032用科学记数法表示正确的是( )A. 73.210⨯B. 73.210-⨯C. 83.210⨯D. 83.210-⨯6. 某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( )A. 平均数是B. 中位数是C. 众数是D. 方差是7. 一元二次方程23410x x -+=的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等的实数根D. 两个不相等的实数根8. 如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作Rt △ABC ,使∠BAC=90°,∠ACB=30°,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A. B. C. D.二.填空题(共10小题)9. 若分式 11x - 有意义,则x 取值范围是_______________ . 10. 一元二次方程290x 的解是__.11. 分解因式3a 2-3b 2=__.12. 已知2a ﹣3b=7,则8+6b ﹣4a=_____.13. 若正多边形的一个外角是40°,则这个正多边形的边数是_____.14. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的母线长l 为6cm ,扇形的圆心角θ=120°,则该圆锥的侧面积为_____cm 2.(结果保留π)15. 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 .16. 已知点A 是直线y=x+1上一点,其横坐标为﹣12,若点B 与点A 关于y 轴对称,则点B 的坐标为_____. 17. 如图,将▱ABCD 沿EF 对折,使点A 落在点C 处,若∠A =60°,AD =4,AB =8,则AE 的长为__.18. 已知抛物线y =x 2+2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m (m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧),若B ,C 是线段AD 的三等分点,则m 的值为__________.三.解答题(共10小题)19. 计算:(1)(﹣2017)0﹣(13)﹣19 (2)化简:(2a b ﹣a )÷22a b b-. 20. (1)解方程:22x x -=1﹣12x-; (2)解不等式组:12322x x x -≥⎧⎪⎨+<-⎪⎩. 21. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友. (1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.22. 在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A ﹣国学诵读”、“B ﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?23. 如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.24. 如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O切线;(2)若3,求⊙O的直径.25. 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?26. 如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A 处测得码头C 的船的东北方向,航行40分钟后到达B 处,这时码头C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C 的最近距离.(结果精确的0.1海里,参考数据:2 1.413 1.73≈≈)27. 如图1和图2,在△ABC 中,AB =13,BC =14,513BH AB =. 探究:如图1,AH ⊥BC 于点H ,则AH =___,AC =___,△ABC 的面积ABC S ∆=___.拓展:如图2,点D 在AC 上(可与点A 、C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,设BD =x ,AE =m ,CF =n ,(当点D 与A 重合时,我们认为ABD S ∆=0).(1)用含x 、m 或n 的代数式表示ABD S ∆及CBD S ∆;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现:请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.28. 如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.答案与解析一.选择题(共8小题)1. -5的倒数是A. 15B. 5C. -15D. -5【答案】C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15 .故选C.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab 【答案】A【解析】【分析】根据单项式的乘法解答即可.【详解】-3a•(2b)=-6ab,故选A.【点睛】此题考查单项式的乘法,关键是根据法则计算.3. 如图是一个由5个相同的正方体组成的几何体,它的左视图是()A. B.C. D.【答案】B【解析】【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从左面看是一列3个正方形.故选:B.【点睛】本题主要考查几何图形的三视图;增强空间想象能力是解决这类几何问题的关键.4. 如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A. 24B. 14C. 12D. 6【答案】C【解析】【分析】根据题意可知,DE是△ABC的中位线,知DE=12BC,进而推出△ABC的周长=2△ADE的周长,本题即解.【详解】解:∵D,E分别是△ABC的边AB,AC上的中点,∴DE是△ABC的中位线,AD=12AB,AE=12AC,∴DE=12 BC,∵△ADE的周长=6,∴AD+AE+DE=6,∴△ABC的周长=AB+AC+BC=2(AD+AE+DE)=12,故选:C.【点睛】本题主要考查三角形的中位线知识;根据中位线的性质推出所求三角形的周长与已知三角形的周长的数量关系是解题的关键.5. 生物学家发现了一种病毒,其长度约为0.00000032mm ,将数据0. 00000032用科学记数法表示正确的是( )A. 73.210⨯B. 73.210-⨯C. 83.210⨯D. 83.210-⨯【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-7. 故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6. 某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( )A. 平均数是B. 中位数是C. 众数是D. 方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D .7. 一元二次方程23410x x -+=的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等实数根D. 两个不相等的实数根 【答案】D【解析】【分析】先计算判别式的值,然后根据判别式的意义判断根的情况.【详解】解:∵△=b2-4ac=16−12=4>0,∴方程有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【答案】C【解析】分析:利用相似三角形的性质与判定得出y与x之间的函数关系式进而得出答案.详解:如图所示:过点C作CD⊥y轴于点D,∵∠BAC=90°,∴∠DAC+∠OAB=90°,∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB,又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴OB OA AB DA DC AC===tan30°,则1x y =-故(x >0),则选项C 符合题意.故选C .点睛:此题主要考查了动点问题的函数图象,正确利用相似得出函数关系式是解题关键.二.填空题(共10小题)9. 若分式 11x - 有意义,则x 的取值范围是_______________ . 【答案】1x ≠【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.10. 一元二次方程290x 的解是__.【答案】x 1=3,x 2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.11. 分解因式3a 2-3b 2=__.【答案】3(a+b)(a-b)【解析】【分析】提公因式3,再运用平方差公式对括号里的因式分解【详解】解:原式()()()22=33a b a b a b -=+-【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. 已知2a ﹣3b=7,则8+6b ﹣4a=_____.【答案】-6【解析】试题分析:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为﹣6. 考点:代数式求值;整体代入.13. 若正多边形的一个外角是40°,则这个正多边形的边数是_____.【答案】9【解析】【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】解:多边形的每个外角相等,且其和为360°,据此可得360n=40, 解得n =9.故答案为9.【点睛】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单. 14. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的母线长l 为6cm ,扇形的圆心角θ=120°,则该圆锥的侧面积为_____cm 2.(结果保留π)【答案】12π.【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,所以利用扇形面积公式计算即可.【详解】解:该圆锥的侧面积=21206360π⨯⨯=12π(cm2).故答案为12π.【点睛】本题考查了圆锥侧面积的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15. 从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.16. 已知点A是直线y=x+1上一点,其横坐标为﹣12,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(12,12)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-12,12),∵A、B关于y轴对称,故答案为(12,12).点睛:本题考查一次函数的应用、轴对称的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17. 如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为__.【答案】285【解析】【分析】过点C作CG⊥AB的延长线于点G,易证△D′CF≌△ECB(ASA),从而可知D′F=EB,CF=CE,设AE=x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】过点C作CG⊥AB的延长线于点G,在▱ABCD中,∠D=∠EBC,AD=BC,∠A=∠DCB,由于▱ABCD沿EF对折,∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,D′C=AD=BC,∴∠D′CF+∠FCE=∠FCE+∠ECB,∴∠D′CF=∠ECB,且∠D'=∠EBC,D'C=BC∴△D′CF≌△ECB(ASA)∴D′F=EB,CF=CE,∵DF=D′F,∴DF=EB,AE=CF设AE=x,则EB=8﹣x,CF=x,∵BC=4,∠CBG=60°,在Rt△BCG中,由勾股定理可知:CG=∴EG=EB+BG=8﹣x+2=10﹣x在Rt△CEG中,由勾股定理可知:(10﹣x)2+()2=x2,∴x=28 5∴AE=28 5故答案为:28 5【点睛】本题考查翻折变换,平行四边形的性质,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.18. 已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.【答案】2或8【解析】【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB 求解即可.【详解】解:①如图,当点C在点B左侧时,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2;当点C在点B右侧时,AB=BC=CD=4,∴m=AB+BC=4+4=8;故答案为:2或8.【点睛】本题考查了抛物线与x轴的交点、抛物线的平移及解一元二次方程等知识,属于常考题型,利用数形结合的思想和三等分点的定义解决问题是关键.三.解答题(共10小题)19. 计算:(1)(﹣2017)0﹣(13)﹣1+9;(2)化简:(2ab﹣a)÷22a bb-.【答案】(1)1;(2)aa b +.【解析】【分析】(1)根据零指数幂、负整数指数幂和算术平方根可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)(﹣2017)0﹣(13)﹣1+9=1﹣3+3 =1;(2)(2ab﹣a)÷22a bb-=2()()a ab bb a b a b-⋅+-=() ()() a a ba b a b-+-=aa b +.【点睛】本题考查分式的混合运算、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20. (1)解方程:22xx-=1﹣12x-;(2)解不等式组:1232 2x xx-≥⎧⎪⎨+<-⎪⎩.【答案】(1)x=﹣1,(2)x<﹣10.【解析】【分析】(1)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)方程整理得:22xx-=1+12x-,去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)12322x xx-⎧⎪⎨+<-⎪⎩①②,由①得:x≤﹣1,由②得:x<﹣10,则不等式组解集为x<﹣10.【点睛】此题考查了解一元一次不等式组及解分式方程,利用了转化思想,解分式方程注意要检验.21. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【答案】(1)详见解析;(2)13.【解析】试题分析:(1)画树状图或列表即可得,注意是每个人分两个,相当于摸球后不放回,即不能有以下情况出现:11221122(,),(,),(,),(,)A A A A B B B B ;(2)12种情况中,同一味道4种情况.试题解析:(1)设大枣味的两个粽子分别为1A 、2A ,火腿味的两个粽子分别为1B 、2B ,则:或(2)由(1)可知,在上述12种等可能的情况中,小红拿到的两个粽子是同一味道的共有12211221(,),(,),(,),(,),A A A A B B B B 4种情况,所以P=41123. 22. 在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A ﹣国学诵读”、“B ﹣演讲”、“C ﹣课本剧”、“D ﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C 占20%,希望参加活动B 占15%,则被调查的总人数为 人,扇形统计图中,希望参加活动D 所占圆心角为 度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A 有多少人?【答案】(1)60,72;图见解析;(2)360.【解析】【分析】(1)根据统计图中希望参加C的人数和所占的百分比可以求得被调查的总人数,进而可以求得参加活动B 和D的人数,计算出希望参加活动D所占圆心角的度数,将条形统计图补充完整;(2)根据统计图中的数据可以估算全校学生希望参加活动A有多少人.【详解】(1)由题意可得,被调查的总人数是:12÷20%=60,希望参加活动B的人数为:60×15%=9,希望参加活动D的人数为:60﹣27﹣9﹣12=12,扇形统计图中,希望参加活动D所占圆心角为:360°×(1﹣2760﹣15%﹣20%)=360°×20%=72°,故答案为60,72.补全的条形统计图如图所示;(2)由题意可得,800×2760=360. 答:全校学生希望参加活动A 有360人.考点:条形统计图;用样本估计总体;扇形统计图. 23. 如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,BD 平分∠ABF ,且交AE 于点D ,连接CD . (1)求证:四边形ABCD 是菱形;(2)若∠ADB=30°,BD=6,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB ,证出AB=AD ,同理:AB=BC ,得出AD=BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD=OB=12BD=3,再由三角函数即可得出AD 的长. 【详解】(1)∵AE ∥BF ,∴∠ADB=∠CBD ,又∵BD 平分∠ABF ,∴∠ABD=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,同理:AB=BC ,∴AD=BC ,∴四边形ABCD 是平行四边形,又∵AB=AD ,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD=6,∴AC ⊥BD ,OD=OB=12BD=3, ∵∠ADB=30°,∴cos∠ADB=32 ODAD,∴AD=23.24. 如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC,(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径.【答案】(1)见解析(2)23【解析】解:(1)证明:连接OA,∵∠B=600,∴∠AOC=2∠B=1200.∵OA=OC,∴∠OAC=∠OCA=300.又∵AP=AC,∴∠P=∠ACP=300.∴∠OAP=∠AOC﹣∠P=900.∴OA⊥PA.∵OA是⊙O的半径,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=300,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵3∴3∴⊙O的直径为3.(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=300,再由AP=AC得出∠P=300,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.(2)利用含300的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=3,可得出⊙O的直径.25. 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.考点:一元二次方程的应用题.26. 如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.123 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【详解】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×4060=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=12AB=10,由勾股定理可知:AD=103∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=103+10∵∠DAB=30°,∴CE=12AC=53+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里27. 如图1和图2,在△ABC中,AB=13,BC=14,513 BHAB.探究:如图1,AH ⊥BC 于点H ,则AH =___,AC =___,△ABC 的面积ABC S ∆=___.拓展:如图2,点D 在AC 上(可与点A 、C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,设BD =x ,AE =m ,CF =n ,(当点D 与A 重合时,我们认为ABD S ∆=0).(1)用含x 、m 或n 的代数式表示ABD S ∆及CBD S ∆;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现:请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.【答案】探究:12,15,84;拓展:(1)ABD 1=2S mx ∆,12CBD S nx ∆=;(2)168m n x+=;x=565时,(m n +)的最大值为15;当14x =时,(m n +)的最小值为12;(3)565x =或1314x <≤;发现:565. 【解析】【分析】 探究:由513BH AB =,AB=13,可得BH 的长,即可求出CH 的长,利用勾股定理求出AH 、AC 的长即可;拓展:(1)由三角形的面积公式即可求解;(2)首先由(1)可得2ABD S m x∆=,2CBD S n x ∆=,再根据S △ABD +S △CBD =S △ABC =84,即可求出(m+n )与x 的函数关系式,然后由点D 在AC 上(可与点A ,C 重合),可知x 的最小值为AC 边上的高,最大值为BC 的长;根据反比例函数的性质即可得答案;(3)由于BC >BA ,所以当以B 为圆心,以大于565且小于13为半径画圆时,与AC 有两个交点,不符合题意,故根据点D 的唯一性,分两种情况:①当BD 为△ABC 的边AC 上的高时,D 点符合题意;②当AB <BD ≤BC 时,D 点符合题意;发现:由于AC >BC >AB ,所以使得A 、B 、C 三点到这条直线的距离之和最小的直线就是AC 所在的直线. 【详解】探究:∵513BH AB =,AB=13, ∴BH =5,∴12AH =,∴HC =9,15AC ==,∴S △ABC =12×12×14=84, 故答案为12,15,84;拓展:解:(1)由三角形面积公式得出:ABD 1=2S mx ∆,12CBD S nx ∆=; (2)∵2ABD S m x∆=,2CBD S n x ∆=, ∴CBD ABD 2S 2S 168m n x x x∆∆+=+=, ∵AC 边上的高为:22845615155ABC S ∆⨯==, ∴x 的取值范围为:56145x ≤≤, ∵(m n +)随x 的增大而减小, ∴565x =时,(m n +)的最大值为:15; 当14x =时,(m n +)的最小值为12;(3)∵BC >BA ,只能确定唯一的点D ,∴当以B 为圆心,以大于565且小于13为半径画圆时,与AC 有两个交点,不符合题意, ①当BD 为△ABC 的边AC 上的高时,即x=565时,BD 与AC 有一个交点,符合题意, ②当AB <BD ≤BC 时,即1314x <≤时,BD 与AC 有一个交点,符合题意,∴x 的取值范围是565x =或1314x <≤, 发现:∵AC >BC >AB ,∴AC 、BC 、AB 三边上的高中,AC 边上的高最短,∴过A 、B 、C 三点到这条直线的距离之和最小的直线就是AC 所在的直线,最小值为AC 边上的高的长565. 【点睛】本题考查了勾股定理,三角形的面积,反比例函数的性质等知识,综合性较强,熟练掌握相关性质及定理是解题关键.28. 如图,抛物线y=﹣x 2+bx+c 和直线y=x+1交于A ,B 两点,点A 在x 轴上,点B 在直线x=3上,直线x=3与x 轴交于点C(1)求抛物线的解析式;(2)点P 从点A 2个单位长度的速度沿线段AB 向点B 运动,点Q 从点C 出发,以每秒2个单位长度的速度沿线段CA 向点A 运动,点P ,Q 同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t 秒(t >0).以PQ 为边作矩形PQNM ,使点N 在直线x=3上.①当t 为何值时,矩形PQNM 的面积最小?并求出最小面积;②直接写出当t 为何值时,恰好有矩形PQNM 的顶点落在抛物线上.【答案】(1)抛物线解析式为y=﹣x 2+3x+4;(2)①当t=65时,面积最小是165;②t=231027±2.【解析】【分析】(1)利用待定系数法进行求解即可;(2)①分别用t 表示PE 、PQ 、EQ ,用△PQE ∽△QNC 表示NC 及QN ,列出矩形PQNM 面积与t 的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M 坐标,分别讨论M 、N 、Q 在抛物线上时的情况,并分别求出t 值.【详解】(1)由已知,B 点横坐标为3,∵A 、B 在y=x+1上,∴A (﹣1,0),B (3,4),把A (﹣1,0),B (3,4)代入y=﹣x 2+bx+c 得, 10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y=﹣x 2+3x+4;(2)①如图,过点P 作PE ⊥x 轴于点E ,∵直线y=x+1与x 轴夹角为45°,P 2 ∴t 秒时点E 坐标为(﹣1+t ,0),Q 点坐标为(3﹣2t ,0),∴EQ=4﹣3t ,PE=t ,∵∠PQE+∠NQC=90°, ∠PQE+∠EPQ=90°, ∴∠EPQ=∠NQC ,∴△PQE ∽△QNC , ∴12PQ PE NQ QC ==, ∴矩形PQNM 的面积S=PQ•NQ=2PQ 2,∵PQ 2=PE 2+EQ 2,∴S=2()2243t t +-2=20t 2﹣48t+32, 当t=625b a -=时, S 最小=20×(65)2﹣48×65+32=165; ②由①点Q 坐标为(3﹣2t ,0),P (﹣1+t ,t ),C (3,0),∴△PQE ∽△QNC ,可得NC=2QE=8﹣6t ,∴N 点坐标为(3,8﹣6t ),由矩形对边平行且相等,P (﹣1+t ,t ),Q (3﹣2t ,0),∴点M 坐标为(3t ﹣1,8﹣5t )当M 在抛物线上时,则有8﹣5t=﹣(3t ﹣1)2+3(3t ﹣1)+4,解得t=109±, 当点Q 到A 时,Q 在抛物线上,此时t=2,当N 在抛物线上时,8﹣6t=4,∴t=23,综上所述当t=23、109±或2时,矩形PQNM 的顶点落在抛物线上. 【点睛】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,熟练掌握相关知识以及应用数形结合和分类讨论的数学思想是解题的关键.。

南京市秦淮区2015年中考二模数学试卷(含答案)

南京市秦淮区2015年中考二模数学试卷(含答案)

江苏省南京市秦淮区2015年中考二模数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.-12的倒数是A .2B .12C .-2D .-122.计算2x 2÷x 3的结果是 A .xB .2xC .x-1D .2x -13.下列函数图像中,既是中心对称图形又是轴对称图形的是4.□ABCD 中,CE 平分∠BCD .若BC =10,AE =4,则□ABCD 的周长是 A .28 B .32C .36D .405.为了说明命题“当b <0时,关于x 的一元二次方程x 2+bx +2=0必有实数解”是假命题,可以举的一个反例是 A .b =2B .b =3C .b =-2D .b =-36.如图,⊙O 的半径为1,A 为⊙O 上一点,过点A 的直线l 交⊙O 于点B ,将直线l 绕点A 旋转180°,当AB 的长度由1变为3时,l 在圆内扫过的面积为A .π6B .π3C .π3 或 π2+ 3D .π6 或 π2+ 3 2二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.某时刻在南京中华门监测点监测到PM 2.5的含量为65微克/米3,即0.000065克/米3,将0.000065用科学记数法表示为 ▲ .ABOABDC(第4题)E(第9题)ABCDE 18.计算8-6×13的值是 ▲ . 9.如图,∠ECB =92°,CD ∥AB ,∠B =57°,则∠1= ▲ °.10.根据不等式的基本性质,若将“6a >2”变形为“6<2a ”,则a 的取值范围为 ▲ .11.为了了解某小区居民的用水情况,随机抽查了该小区20户家庭的月用水量,数据见下表:这20户家庭平均月用水量是 ▲ m 3.12.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D .若∠A ′DC =90°,则∠A = ▲ °.13.如图,⊙O 是△ABD 的外接圆,AB =AD ,点C在⊙O 上,若∠C14.如图,在菱形OABC 中,点A 的坐标是(3,1),点C 的横坐标是215形.若大正六边形的面积为S 1,小正六边形的面积为S 2,则 S 1S 2值是 ▲ .16.如图,△ABC 和△BOD 都是等腰直角三角形,∠ACB =∠BDO =90°,且点A 在反比例函数 y =kx(k >0)的图像上,若OB 2-AB 2=10,则k 的值为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(第16题)(第15题)BACD B' A'(第12题)(第13题)17.(6分)解不等式组⎩⎪⎨⎪⎧2x -1>-5,4-x 3≥x +12,并写出不等式组的整数解.18.(6分)化简:1-a -2a ÷a 2-4a 2+a.19.(8分)在Rt △ABC 中,∠ACB =90°.(1)作AB 的垂直平分线l ,交AB 于点D ,连接CD ,分别作∠ADC 、∠BDC 的平分线,交AC 、BC 于点E 、F (尺规作图,不写作法,保留作图痕迹);(2)求证:四边形CEDF 是矩形.20.(8分)小明有2件上衣,分别为红色和蓝色,有3条裤子, 其中2条为蓝色、1条为棕色.(1)小明任意拿出1条裤子,是蓝色裤子的概率是 ▲ ;(2)小明任意拿出1件上衣和1条裤子,求上衣和裤子恰好都是蓝色的概率.(第19题)AC21.(8分)为了推动阳光体育运动的广泛开展,引导学生积极参加体育锻炼,某校九年级准备购买一批运动鞋供学生借用,现从九年级各班随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)接受随机抽样调查的学生人数为 ▲ ,图①中m 的值为 ▲ ; (2)在本次调查中,学生鞋号的众数为 ▲ 号,中位数为 ▲ 号;(3)根据样本数据,若该年级计划购买100双运动鞋,建议购买35号运动鞋多少双?22.(8分)某工厂经过两年时间将某种产品的产量从每年10000台提高到14400台.求该产品产量平均每年的年增长率.34号35号 36号37号 38号 九年级抽样学生鞋号条形统计图 九年级抽样学生鞋号扇形统计图35号 30% 34号m %10% 38号37号 36号 20%25% 图①图②(第21题)23.(8分)如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是▲;(填写所有符合条件的序号)①AC=13;②tan∠ACB=125;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)24.(8分)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图像解答下列问题:(1)洗衣机的进水时间是▲分钟,清洗时洗衣机中的水量是▲升;(2)已知洗衣机的排水速度为每分钟19升.①求排水时y与x之间的表达式;②洗衣机中的水量到达某一水位后13.9分钟又到达该水位,求该水位为多少升?25.(8分)已知二次函数y=(x-1) (x-a-1)(a为常数,且a>0(1)求证:不论a为何值,该二次函数的图像总经过x轴上一定点;(2)设该函数图像与x轴的交点为A、B(点A在点B的左侧),与y轴的交点为C,△ABC的面积为1.①求a的值;②D是该函数图像上一点,且点D的横坐标是m,若S△ABD=18S△ABC,直接写出m的值.(第24题)AB M(第23题)26.(9分)如图,AB 是⊙O 的直径,C 是AB⌒ 的中点,延长AC 至点D ,使AC =CD ,DB 的延长线交CE 的延长线于点F ,AF 交⊙O 于点M ,连接BM . (1)求证:DB 是⊙O 的切线;(2)若⊙O 的半径为2,E 是OB 的中点,求BM 的长.27.(11分)在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”.(1)下列三角形是倍边三角形的是( ▲ ) A .顶角为30°的等腰三角形B .底角为30°的等腰三角形C .有一个角为30°的直角三角形D .有一个角为45°的直角三角形(2)如图①,在△ABC 中,AB =AC ,延长AB 到D ,使BD =AB ,E 是AB 的中点.求证:△DCE 是倍边三角形;(3)如图②,Rt △ABC 中,∠C =90°,AC =3,BC =6,若点D 在边AB 上(点D 不与A 、B 重合),且△BCD 是倍边三角形,求BD 的长.(第26题)ABCDE①AC②参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题二、填空题(每小题2分,共计20分)7.6.5×10-58. 2 9.35 10.a<0 11.10 12.5513.38° 14.(5,1+6) 15.4316.5三、解答题(本大题共11小题,共计88分)17.(本题6分)解:由①得,x >-2.………………………………………………………… 2分由②得,x ≤1. ……………………………………………………… 4分 ∴-2<x ≤1.…………………………………………………………… 5分 ∴不等式组的整数解为-1,0,1.…………………………………… 6分18.(本题6分)解:原式=1-a -2a ·a (a +1)(a +2)( a -2)…………………………………………… 3分=1-a +1a +2 …………………………………………………………… 4分=1a +2. ………………………………………………………………6分 19.(本题8分)解:(1)画图正确.…………………………………………………………… 4分 (2)由题意得,点D 是AB 的中点.∵∠ACB =90°,∴CD =AD =BD =12AB . ………………………5分在△ACD 中,∵CD =AD ,ED 平分∠ADC , ∴ED ⊥AC .即∠CED =90°.同理∠DFC =90°.……………………7分 ∵∠ACB =∠CED =∠DFC =90°, ∴四边形CEDF 是矩形.…………… 8分20.(本题8分)解:(1)23.…………………………………………………………………… 2分(2)小明任意拿出1件上衣和1条裤子,所有可能出现的结果有:红蓝、红蓝、红棕、蓝蓝、蓝蓝、蓝棕,共有6种,它们出现的可能性相同.所有的结果中,满足“上衣和裤子恰好都是蓝色’”(记为事件A )的结果有2种,所以P(A )=13.…………………………………………………………… 8分 21.(本题8分)解:(1)40,15.…………………………………………………………… 2分 (2)35,36.…………………………………………………………… 4分 (3)根据题意得:100×30%=30(双),建议购买35号运动鞋30双.………8分22.(本题8分)解:设该产品产量平均每年的增长率为x .由题意可得:10000(1+x )2=14400.……………………………………4分A CABCDEF解得:x 1=20%,x 2=-220%(舍去).………………………………7分 答:该产品的该产品产量平均每年的增长率为20%.……………… 8分23.(本题8分)解:(1)②③(每个1分,多写不得分)…………………………………… 2分 (2)方案一:选②作AD ⊥BC 于D ,……………………………3分则∠ADB =∠ADC =90°.在Rt △ABD 中,∵∠ADB =90°,∴AD =AB ·sin B =12,BD =AB ·cos B =16.……………………………5分 在Rt △ACD 中,∵∠ADC =90°,∴CD =AD tan ∠ACB =5.…………………………………………………7分∴BC =BD +CD =21.………………………………………………… 8分 方案二:选③作CE ⊥AB 于E ,则∠BEC =90°.……………………………………3分 由S △ABC =12AB ·CE 得CE =12.6.………………………………………5分在Rt △BEC 中,∵∠BEC =90°, ∴BC =CEsin B=21.……………………8分 24.(本题8分)解:(1)4;40.………………………………………………………………… 2分(2)①y =40-19(x -15),即y =-19x +325;……………………… 4分②设洗衣机中的水量第一次到达某一水位的时间为x 分钟,则第二次达到该水位时时间为(x +13.9)分钟.根据题意得10 x =-19(x +13.9)+325.………………………… 6分解得x =2.1.……………………………………………………… 7分 此时y =10×2.1=21.答:该水位为21升.…………………………8分25.(本题8分)解:(1)令y =0,则(x -1) (x -a -1)=0.………………………………… 1分 解得x 1=1,x 2=1+a .∴二次函数的图像与x 轴的交点为(1,0)、(1+a ,0). ∴不论a 为何值,该二次函数的图像经过x 轴上的定点(1,0).………2分 (2)①由题意得,AB =a , OC =1+a ,(a >0)∴S △ABC =12AB ·OC =12a (a +1). ∴12a (a +1)=1.…………………………… 4分解得a 1=1,a 2=-2(舍去).∵a >0,∴a =1. ………………………5分(3)m =3+22或3-22或32.……………………………………………… 8分26.(本题9分)(1)证明:连接OC .A BCDE∵C 是AB ⌒ 的中点,∴∠COA =12∠AOB =90°.………………… 1分∵AC =CD ,AO =BO ,∴CO 是△ADB 的中位线. ∴CO ∥DB .……………………………………… 2分 ∴∠ABD =∠COA =90°. ∴BD ⊥OB . 又∵点B 在⊙O 上,∴DB 是⊙O 的切线.…………………………………………………………4分 (2)解:∵CO ∥DB ,∴∠COE =∠FBE ,∠OCE =∠BFE .∵E 是OB 的中点,∴OE =EB .∴△COE ≌△FBE .…………………………5分∴BF =CO =2.………………………………………………………………………………………6分 在Rt △ABF 中,由勾股定理得,AF =25. sin ∠BAM =BF AF =55. ∵AB 是直径,∴∠AMB =90°.在Rt △ABM 中, sin ∠BAM =BM AB =55,∴BM =455.……………………9分27.(本题11分)解:(1)C .……………………………………………………………………………2分 (2)∵BD =AB =AC ,∴AD =2AC .即ADAC =2.∵E 是AB 的中点,∴AB =2AE .∴AC =2AE .即ACAE=2.………………3分 ∴AD AC =ACAE .又∵∠A =∠A ,∴△ACD ∽△AEC .∴CD CE =ADAC=2.∴△DCE 是倍边三角形.……………………………………………… 5分 (3)当BC =2BD 时,BD =3.……………………………………………… 6分 当BC =2CD 时,如图①,CD =3,作CE ⊥AB 于E ,tan A =CE AE =BCAC=2,设AE =x ,则CE =2x ,AC∴5x =3.x =355.在△ACD 中,∵CD =AC =3,CE ⊥AB , ∴AD =2 AE =655.∴BD =AB -AD =955.………………………………………………… 8分当BD =2CD 时,如图②,作DF ⊥BC 于F ,tan B =DF BF =AC BC =12,设DF =y ,则BF =2y , BC①BCF ②∴CD =52y ,CF =12y . ∵BC =BF +CF ,∴6=2y +12y . 解得y =125. BD =1255. 同理,当CD =2BD 时,DF =219-45,BD =295-455. 综上所述,BD =3或955或1255或295-455.…………………… 11分 (说明:最后一个答案保留6519+2不扣分)。

2015年中考二模名校联考数学试题

2015年中考二模名校联考数学试题

2015年中考二模名校联考数学试题时间 100分钟 满分100分 2015/3/4一、选择题(每小题2分,共20分).1. -2的绝对值是( )A .2B .-2C .0D .21 2. 下列计算正确的是( ).A .325a a a +=B .326a a a ⋅=C .()326aa = D .2222a a ⎛⎫=⎪⎝⎭3. 如图,由三个小立方块搭成的俯视图是( )4. 下列各式计算正确的是( ) A .2222-=-B .a a 482=(a >0)C .)9()4(-⨯-=4-9-⨯D .336=÷5. 如果整式252n x x --+是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .66. 如图,河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比为1:3,则AB 的长为( )米.A .12B .43C .53D .637. 如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 半径是( ).A .2B .3C . 1D .5BA第7题图CO正面A B C DABC第6题图8. 把a a a +-232分解因式的结果是( ).A . a a a +-)2(2B . )2(2a a a -C . )1)(1(-+a a aD . 2)1(-a a9. 如图,爸爸从家(点O )出发,沿着扇形AOB 上OA AB BC →→的路径去匀速散步.设爸爸距家(点O )的距离为s ,散步的时间为t ,则下列图形中能大致刻画s 与t 之间函数关系的图象是( )10. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.二、填空题(每小题3分,共15分)11. 方程0122=--x x 的解是 .12. 截止5月初,受H7N9禽流感的影响,家禽养殖业遭受了巨大的冲击,最新数据显示,损失已超过400亿元,用科学记数法表示为 元.13. 圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图形的圆心角为__________. 14. 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .ACDA BC D 第9题图15. 命题“直角三角形的两个锐角互余”的条件是 .三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题7分, 21、22题每小题8分,23题10分,24题14分,共75分.)16. 解不等式组:并将解集在数轴上表示出来。

2015年江苏省南京市中考数学试卷-答案

2015年江苏省南京市中考数学试卷-答案

江苏省南京市2015年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】负数的绝对值等于它的相反数,原式=5322-+=-=。

【考点】有理数的加法,绝对值的求法 2.【答案】A【解析】()()()2223326xyx y x y -=-=。

【考点】幂的乘方和积的乘方 3.【答案】C【解析】此题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方。

DE BC ∥,ADE ABC ∴△∽△,AD AE DEAB AC BC∴==,12AD DB =,13AD AE DE AB AC BC ===,故A 、B 选项均错误;ADE ABC △∽△,1==3ADE AD ABC AB ∴△的周长△的周长,21==9ADE AD ABC AB ⎛⎫∴ ⎪⎝⎭△的面积△的面积,故C 选项正确,D 错误。

【考点】比例的性质,相似三角形的判定与性质 4.【答案】C【解析】通过单项式的加法进行加减之后,用科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数。

2014年底机动车的数量为:566310210 2.310⨯+⨯=⨯。

【考点】单项式的加法,科学记数法 5.【答案】C2.235≈1 1.235≈,10.6172≈。

【考点】估算有理数的大小 6.【答案】A【解析】本题正确的作出辅助线是解题的关键,连接OE ,OF ,ON ,OG ,在矩形ABCD 中,90A B ∠=∠=︒,4CD AB ==,AD ,AB ,BC 分别与O 相切于E ,F ,G 三点,90AEO AFO OFB BGO ∴∠=∠=∠=∠=︒,∴四边形AFOE ,FBGO 是正方形,∴2AF BF AE BG ====,3DE ∴=,∵DM 是O 的切线,3DN DE ∴==,MN MG =,523CM MN MN ∴=--=-,在Rt DMC△中,222DM CD CM =+,∴()()222334NM NM +=-+,∴43NM =,∴413333DM =+=,故选A 。

2015年南京秦淮区中考一模试卷及答案

2015年南京秦淮区中考一模试卷及答案

12.如图,l1∥l2∥l3,如果 AB=2,BC=3,DF=4,那么 DE=
E D
俯视图 (第 14 题)
︵ 13.如图,在⊙O 的内接四边形 ABCD 中,AB=AD,∠C=110° .若点 E 在AD上,则∠E= 14.一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的表面积为 ▲
共6页
第3页
21. (8 分)某“双选”题的四个选项中有两个正确答案,该题满分为 2 分,得分规则是:选出两个正确答 案且没有多选任何一个错误答案得 2 分;选出一个正确答案且没有多选任何一个错误答案得 1 分;不 选或所选答案中至少有一个错误答案得 0 分. (1)任选一个答案,得 1 分的概率是 (2)任选两个答案,求得 2 分的概率; (3)如果只能确认四个选项中的某一个答案是正确的,此时的最佳答题策略是(▲) . A.只选确认的那一个正确答案 B.除了选择确认的那一个正确答案,再任意选择剩下的三个选项中的一个 C.上述两种答题策略中任选一个 ▲ ;
九年级数学 A
共6页
第1页
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卷 ... 相应位置 上) .... 7.南京青奥会期间,约有 1 020 000 人次参与了青奥文化教育活动.将 1 020 000 用科学记数法表示为 ▲ 8.当 x . ▲ 1 时,分式 有意义. x+1 ▲ . ▲ 象限. k2 (k 为常数,k≠0)的图像位于第 x
甲 108° 乙

5 甲
10 乙
b 丙 品种 (第 20 题)
根据所给信息,解决下列问题: (1)a= ▲ ,b= ▲ ; (2)已知该超市现有乙种大米 750 袋,根据检测结果,估计该超市乙种大米中有多少袋 B 级大米? (3)对于该超市的甲种和丙种大米,你会选择购买哪一种?简述理由.

秦淮区二模试题及答案

秦淮区二模试题及答案

秦淮区二模试题及答案 Modified by JACK on the afternoon of December 26, 20202016/2017学年度第二学期第二阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题..卡.上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔写在答题卷...上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卡.相应位置....上)1.计算(-2)2的结果是A .-2B .2C .-4D .42.下列计算正确的是A .(2a -1)2=4a 2-1B .3a 6÷3a 3=a 2C .(-ab 2)4=-a 4b 6D .-2a +(2a -1)=-13.下列命题错误..的是A .平行四边形的对角线互相平分B .矩形的对角线相等C .对角线互相垂直平分的四边形是菱形D .对角线相等的四边形是矩形4.已知a =2 2,b =3 3,c = 55,则下列大小关系正确的是 A .a >b >c B .c >b >a C .b >a >c D .a >c >b5.设m 、n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n 的值是A .3B .4C .5D .66. 如图,将△ABC 绕点C (0,-1)旋转180°得到△A 'B 'C ,设点A 的坐标为(a ,b ),则点A ′的坐标为A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b -2)二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.8的平方根是 ▲ ;8的立方根是 ▲ .8.若式子1-x 在实数范围内有意义,则x 的取值范围是 ▲ . 9.“五一”小长假首日,全国旅游接待总人数约为52 500 000人次,将52 500000用科学记数法表示为 ▲ .10.已知关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k = ▲ .11.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积为 ▲ .(结果保留π)12.已知正比例函数y =mx 与反比例函数y =nx 的图像的一个交点坐标为(1,2),则另一个交点坐标是 ▲ .13.如图,A 、B 为⊙O 上两点,OB =10,AB =16,P 为AB 上一动点,则点P到圆心O 的最短距离为 ▲ .ABOP(第13题)ABD CEG(第14题)14.如图,AD 、CE 是△ABC 的中线,G 是△ABC 的重心,且AD ⊥CE .若AD=33,CE =6,则AB = ▲ .15.已知二次函数y 1=a 1x 2+b 1x +c 1中,函数y 1与自变量x 之间的部分对应值如下表:如果将该函数的图像沿x 轴翻折,得到二次函数y 2=a 2x 2+b 2x +c 2的图像,则当x =-3时,y 2= ▲ .16.如图,在△ABC 中,CA =CB ,AC =3,AB =4.GH ︵与CA 延长线、AB 、CB 延长线相切,切点分别为E 、D 、 F ,则该弧所在圆的半径为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎨⎧2x +4≤3(x +2),3x -1<2,并写出它的整数解.(第16题)CFG HADBE18.(6分)化简 ( x 2+4x +4 ) ÷x 2-4x 2-2x .19.(8分)如图,四边形ABCD 为平行四边形,∠DAB 的平分线AE 交CD 于点F ,交BC的延长线于点E ,连接BF . (1)求证BE =CD ;(2)若BF ⊥AE ,∠BEA =45°,AB =4,则□ABCD 的面积是 ▲ .20.(6分)为了了解某区九年级学生体育中考成绩,现从该区随机抽取部分学生的体育成绩进行分段,分数段如下:A :40分;B :分;C :39分;D :38~分;E:~分.(注:体育中考成绩由高到低依次为40分、分、39分、分、38分……)绘制成统计表如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ▲ ,b 的值为 ▲ ;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”,那么甲同学的体育成绩在分数段 ▲ 内;(填相应分数段的字母) (3)若把成绩大于39分定为优秀,则今年该区3600名九年级学生体育中考成绩为优秀的学生人数约有多少名?(第19题)DCBAEF21.(8分)王老师从3名男生和2名女生中随机抽取参加“我是朗读者”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为 ▲ ;(2)若抽取2名,求恰好是2名女生的概率.22.(8分)如图,函数y =ax 2+bx +c 的图像交x 轴于A 、B 两点,交y 轴于点C ,对称轴为过点(2,0)且平行于y 轴的直线,已知A (1,0),C (0,3).(1)求该函数的表达式;(2)将该函数图像向上平移 ▲ 个单位长度,得到的函数图像与x 轴只有一个公共点.23.(8分)某商场在“五一”小长假期间销售一批衬衫,平均每天可销售20件,每件可获利400元.经调查发现,在一定范围内,衬衫的单价每降10元,题)每天就可多售出 2件衬衫.这种衬衫的单价应降价多少元,才能使商场通过销售这批衬衫平均每天盈利12000元24.(8分)已知:C 、D 是∠AOB 的边OB 上两点,请通过直尺和圆规完成以下作图(保留作图的痕迹,不写作法).(1)在射线OA 上取一点P ,使得PC =(2)在(1)中,连接PC 、PD 上取一点Q ,使得∠CQD =∠CPD25.(10分)王老师每天上班的行程是:首先要步行到距离家1km 的某地铁起始站,然后乘坐15分钟地铁到达学校.某日,王老师早上7:00从家出发,当坐上地铁到达某站时,发现有一本书忘记带了,于是立刻乘坐反方向地铁回家取书,当他到达起始站后,立刻骑共享单车回家,骑车速度是步行速度的2倍.图中的折线表示王老师从出发到回到家的过程中,离家的距离y (km )与行程时间x (min )之间的函数关系.所有衔接时间全部忽略不计,根据图像进行以下探究:(1)王老师的步行速度是 ▲ km/min ,地铁的速度是 ▲ km/min ;(2)①求线段BC 、CD 的函数表达式;②求王老师几点钟回到家?y(第24题)(3)若王老师再通过骑共享单车及乘坐地铁到学校,请在图上继续画出这段行程的y 与x 之间的函数图像.(注:请标注出必要的数据)26.(8分)如图,AB 为⊙O 的直径,弦CD 与AB 交于点E ,且OC ⊥AB ,过点D 、A 分别作⊙O 的切线交于点G ,延长BA 、DG 交于点F . (1)求证∠FED =∠FDE ;(2)若OE AE =12,⊙O 的半径为3,求DG 的长.27.(12分)我们知道,锐角三角函数可以揭示三角形的边与角之间的关系.为了解决有关锐角三角函数的问题,我们往往需要构造直角三角形.例如,已知tan α=13(0°<α<90°),tan β=12(0°<β<90°),求 α+β 的度数,我们就可以在图①的方格纸中构造Rt △ABC 和Rt △AED 来解决.②(第26题)OCGFDEBA(1)利用图①可得α+β= ▲ °;(2)若tan 2α=34(0°<α<45°),请在图②的方格纸中构造直角三角形,求tan α;(3)在矩形ABCD 中,AC 与BD 交于点O ,设∠CAB =α(0°<α<45°),请利用图③探究sin2α、cos α和sin α的数量关系.2016/2017学年度第二学期第二阶段学业质量监测试卷九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)AαDCBO③①(第27题)二、填空题(本大题共10小题,每小题2分,共20分) 三、解答题 (本大题共11小题,共88分) 17.(本题6分)解:解不等式①,得x ≥-2. …………………………………………………………2分解不等式②,得x <1. ……………………………………………………………4分 所以,不等式组的解集是-2≤x <1. ……………………………………………5分所以,不等式组的整数解为x =-2、-1、0 (6)分18.(本题6分)解:(x 2+4x +4) ÷x 2-4x 2-2x=x 2+4x +4x ·x 2-2x x 2-4 ………………………………………………………………2分=(x +2)2x ·x (x -2)( x -2)(x +2) ……………………………………………………………5分=x +2.…………………………………………………………………………………6分19.(本题8分)(1)证明:∵四边形ABCD 是平行四边形,7.±2 2 ;2 8.x ≤1 9.×107 10.1 11.12π 12.(-1,-2)13.614.815.1216.2 5∴AD ∥BC ,AB =CD . ……………………………………………………2分∴∠E =∠DAE .……………………………………………………………3分 ∵AE 是∠BAD 的平分线, ∴∠BAE =∠DAE .∴∠BAE =∠E .……………………………………………………………4分 ∴AB =BE .…………………………………………………………………5分 ∴BE =CD .…………………………………………………………………6分(2)8.……………………………………………………………………………………8分20.(本题6分)解:(1), 20. ……………………………………………………………………2分 (2)B. ………………………………………………………………………………4分(3)今年该区3600名九年级学生体育中考成绩为优秀的学生人数约有3600×+=2952(名). ……………………………………………6分21.(本题8分)解:(1)35.………………………………………………………………………………2分(2)从3名男生和2名女生中随机抽取2名参加“我是朗读者”演讲比赛的同学,所有可能出现的结果有:(男1,男2)、(男1,男3)、(男1,女1)、(男1,女2)、(男2,男3)、(男2,女1)、(男2,女2)、(男3,女1)、(男3,女2)、(女1,女2),共有10种,它们出现的可能性相同.所有的结果中,满足“恰好是2名女生”(记为事件A )的结果只有一种, 所以P (A )=110.……………………………………………………………8分22.(本题8分)解:(1)方法一:因为函数y =ax 2+bx +c 的图像对称轴为过点(2,0)且平行于y 轴的直线,所以设函数表达式为y =a (x -2)2+k . (1)分因为函数图像经过(1,0),(0,3),所以⎩⎨⎧a +k =0,4a +k =3.………………………………………………………………2分解方程组,得⎩⎨⎧a =1,k =-1.………………………………………………………4分所以函数的表达式为y =(x -2)2-1(或y =x 2-4x +3). ……… ……5分方法二:根据题意知,函数y =ax 2+bx +c 的图像经过点(1,0)、(3,0)、(0,3),所以,⎩⎪⎨⎪⎧c =3,a +b +c =0,9a +3b +c =0 (1)分解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.………………………………………………………4分所以函数的表达式为y =x 2-4x +3.………………………………5分(2)1. …………………………………………………………………………………8分23.(本题8分)解: 设这种衬衫的单价应降10x 元. ……………………………………………………1分 根据题意,得(20+2x ) (400 -10x )=12000. …………………………………………5分解这个方程,得x 1=10,x 2=20 .………………………………………………………7分 当x =10时,10x =100;x =20时,20x =200.答: 这种衬衫的单价应降价100元或200元,才能使商场平均每天盈利12000元.…………………………………………………………………………8分24.(本题8分)解:(1)如图①,P就是所求的点.4分(2)如图②, Q就是所求的点.……………………………………………………8分25.(本题10分)解:(1)112,815.……………………………………………………………………2分(2)①设线段BC所表示的y与x之间的函数表达式为y1=k1x+b1 .因为y1=k1x+b1的图像过B(18,)与C(24,1),所以⎩⎨⎧24 k1+b1=1,18 k1+b1=.解方程组,得⎩⎨⎧k1=-815,b1=695.所以线段BC所表示的y与x之间的函数表达式为y1=-815x+695.………………………………………………………………………………4分 设线段CD 所表示的y 与x 之间的函数表达式为y 2=k 2x +b 2 . 因为骑车速度是步行速度的2倍,步行速度为112 km/min , 所以骑车速度为16 km/min ,即k 2=-16. 由题意得,图像经过点C (24,1), 所以-16×24+b 2=1,解方程,得b 2=5.所以线段CD 所表示的y 与x 之间的函数表达式为y 2=-16x +5.………………………………………………………………………………6分 ②令y 2=0,即-16x +5=0,x =30.因为王老师早上7:00从家出发,所以王老师回到家时是7:30. ………………………………………………………………………………8分 (3)如图.…………………………………………………………………………………10分26.(本题8分)y(1)证明:连接OD . ……………………………………………………………………1分∵FD 为⊙O 的切线,∴OD ⊥DF .…………………………………………………………………2分 ∴∠ODF =90°,即∠1+∠ODC =∵OC =OD , ∴∠C =∠ODC . ∴∠1+∠C =90°. ∵OC ⊥AB , ∴∠C +∠3=90°.∴∠1=∠3. ………………………………………………………………3分 ∵∠2=∠3,∴∠1=∠2,即∠FED =∠FDE .…………………………………………4分(2) 解:∵OE AE =12,⊙O 的半径为3,∴OE =1. ……………………………………………………………………5分 ∵∠1=∠2. ∴EF =FD .在Rt △ODF 中,OD =3,设DF =x ,则EF =x ,OF =1+x . ∵OD 2+DF 2=OF 2,∴32+x 2=(x +1)2,解得x =4.∴DF =4,OF =5. …………………………………………………………6分 ∴F A =OF -OA =2. ∵AG 为⊙O 的切线, ∴AG ⊥AF . ∴∠GAF =90°. ∵∠F =∠OFD , ∴△FOD ∽△FGA .∴FD FA =OD GA ,即 4 2 =3GA .∴GA =. …………………………………………………………………7分∵GA 、GD 为⊙O 的切线,B∴GA=GD=.……………………………………………………………8分27.(本题12分)解:(1)45 (3)分(2)方法一:构造如图所示的Rt△ABC,AC=3,CB=4,AB=5. …………4分设∠ABC=2α.在△ABC中,∠C=90°,tan2α=tan∠ABC=3 4 .延长CB至D,使得BD=AB.又∵AB=BD=5,∴∠BAD=∠D.∴∠ABC=2∠D.∴∠D=α. ……………………………………………………………………5分∴在△ADC中,∠C=90°,tanα=tan∠D=AC CD=13.……………………7分方法二:构造如图所示的Rt△ABC,AC=3,AB=4,BC=5. …………4分设∠ABC=2α.在△ABC中,∠C=90°,tan2α=tan∠ABC=3 4 .作∠ABC 的平分线BD 交AC 于点D ,过点D 作DE ⊥AB ,垂足为点E .∵BD 平分∠ABC ,∴∠DBC =∠ABD =12∠ABC . ∴∠DBC =α.………………………………………………………………5分 ∵DE ⊥AB ,∴∠DEB =90°,DE =DC .∵∠ACB =∠AED =90°,∠A =∠A , ∴△ADE ∽△ABC .∴AD AB =EDCB .设DC =x ,则DE =x ,AD =3-x . ∴3-x 5 =x 4.∴x =43.∴在△DBC 中,∠C =90°,tan α=tan ∠DBC =43×14=13.………………7分(2)过C 作CE ⊥OB ,垂足为E .………………………………………………8分 ∵四边形ABCD 是矩形,∴AO =CO =12AC ,BO =DO =12BD ,AC =BD .∴OA =OB .∴∠OAB =∠OBA =α,∠COB =2α. ………………………………………9分在Rt △OCE 中,∠ABC =90°, sin2α=CE OC =2CEAC .…………………10分 在Rt △ACB 中,∠ABC =90°,AαDCBOEsinα=CBAC,cosα=ABAC.易证△CEB∽△ABC.∴CEAB=BCAC.∴CE=AB·BCAC.∴2CEAC=2AB·BCAC2=2·CBAC·ABAC.即sin2α=2 sinα·cosα. ……………………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)接受随机抽样调查的学生人数为▲,图①中m的值为▲;
(2)在本次调查中,学生鞋号的众数为▲号,中位数为▲号;
(3)根据样本数据,若该年级计划购买100双运动鞋,建议购买35号运动鞋多少双?
22.(8分)某工厂经过两年时间将某种产品的产量从每年10000台提高到14400台.求该产品产量平均每年的年增长率.
A.B.
C.或+D.或+
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)
7.某时刻在南京中华门监测点监测到PM2.5的含量为65微克/米3,即0.000065克/米3,将0.000065用科学记数法表示为▲.
8.计算-×的值是▲.
9.如图,∠ECB=92°,CD∥AB,∠B=57°,则∠1=▲°.
13.如图,⊙O是△ABD的外接圆,AB=AD,点C在⊙O上,若∠C=76°,则∠ABD=▲°.
14.如图,在菱形OABC中,点A的坐标是(3,1),点C的横坐标是2,则点B的坐标是▲.
15.如图,顺次连接一个正六边形各边的中点,所得图形仍是正六边形.若大正六边形的面积为S1,小正六边形的面积为S2,则的值是▲.
2014/2015学年度第二学期第二阶段学业质量监测试卷
九年级数学
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.
2.答选择题必须用2B铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.
24.(8分)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.
根据图像解答下列问题:
(1)洗衣机的进水时间是▲分钟,清洗时洗衣机中的水量是▲升;
(2)已知洗衣机的排水速度为每分钟19升.
①求排水时y与x之间的表达式;
①求a的值;
②D是该函数图像上一点,且点D的横坐标是m,若S△ABD=S△ABC,直接写出m的值.
26.(9分)如图,AB是⊙O的直径,C是的中点,延长AC至点D,使AC=CD,DB的延长线交CE的延长线于点F,AF交⊙O于点M,连接BM.
(1)求证:DB是⊙O的切线;
(2)若⊙O的半径为2,E是OB的中点,求BM的长.
4.□ABCD中,CE平分∠BCD.若BC=10,AE=4,则□ABCD的周长是
A.28B.32
C.36D.40
5.为了说明命题“当b<0时,关于x的一元二次方程x2+bx+2=0必有实数解”是假命题,可以举的一个反例是
A.b=2B.b=3C.b=-2D.b=-3
6.如图,⊙O的半径为1,A为⊙O上一点,过点A的直线l交⊙O于点B,将直线l绕点A旋转180°,当AB的长度由1变为时,l在圆内扫过的面积为
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)
1.-的倒数是
A.2B.C.-2D.-
2.计算2x2÷x3的结果是
A.xB.2xC.x-1D.2x-1
3.下列函数图像中,既是中心对称图形又是轴对称图形的是
②洗衣机中的水量到达某一水位后13.9分钟又到达该水位,求该水位为多少升?
25.(8分)已知二次函数y=(x-1) (x-a-1)(a为常数,且a>0).
(1)求证:不论a为何值,该二次函数的图像总经过x轴上一定点;
(2)设该函数图像与x轴的交点为A、B(点A在点B的左侧),与y轴的交点为C,△ABC的面积为1.
(1)小明任意拿出1条裤子,是蓝色裤子的概率是▲;
(2)小明任意拿出1件上衣和1条裤子,求上衣和裤子恰好都是蓝色的概率.
21.(8分)为了推动阳光体育运动的广泛开展,引导学生积极参加体育锻炼,某校九年级准备购买一批运动鞋供学生借用,现从九年级各班随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
10.根据不等式的基本性质,若将“>2”变形为“6<2a”,则a的取值范围为▲.
11.为了了解某小区居民的用水情况,随机抽查了该小区20户家庭的月用水量,数据见下表:
月用水量/3
8
9
10
11
12
户数/个
3
4
6
4
3
这20户家庭平均月用水量是▲m3.
12.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=▲°.
27.(11分)在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”.
(1)下列三角形是倍边三角形的是(▲)
A.顶角为30°的等腰三角形B.底角为30°的等腰三角形
C.有一个角为30°的直角三角形D.有一个角为45°的直角三角形
(2)如图①,在△ABC中,AB=AC,延长AB到D,使BD=AB,E是AB的中点.
23.(8分)如图,已知∠ABM=37°,AB=20,C是射线BM上一点.
(1)在下列条件中,可以唯一确定BC长的是▲;(填写所有符合条件的序号)
①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.
(2)在(1)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
16.如图,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且点A在反比例函数
y=(k>0)的图像上,若OB2-AB2=10,则k的值为▲.
三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)解不等式组并写出不等式组的整数解.
18.(6分)化简:1-÷.
19.(8分)在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F(尺规作图,不写作法,保留作图痕迹);
(2)求证:四边形CEDF是矩形.
20.(8分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.
相关文档
最新文档