26.1.1反比例函数
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
人教版九年级数学下册26.1.1 反比例函数-课件PPT
而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104km2,人均占
有面积S(km2/人) 随全市总人口n(单位:人)的变化
而变化.
1.68 104
S
.
n
问题:观察以上三个解析式,你觉得它们有什么共同 特点?
v 1463, y 1000, S 1.68104 .
B. 2个 C. 3个 D. 4个
3. 填空
要满足m-1≠0
(1)若y m 1是反比例函数,则m的取值范围
x
是 m≠1
. 系数不为0
(2)若 y m m 2是反比例函数,则m的取值范
x
围是 m≠0且m≠-2 .
(3)若 y
m2 xm2 m1
是反比例函数,则m的值是
m=-1
.
要满足同时满足系数不为0,和x的次数为-1,此
2
x 1 2
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
反比例函数:定义/三种表达方式
反
比
例 函
用待定系数法求反比例函数解析式
数
根据实际问题建立反比例函数模型
THANKS!
九年级 数学
课件全新制作
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解并掌握反比例函数的概念.(重点) 2.从实际问题中抽象出反比例函数的概念,能根据 已知条件确定反比例函数的解析式.(重点、难点)
x y 12 3.
26.1.1_反比例函数
反比例函数 y= x (k为常数,k≠0)
k
k ① y= x(k为常数,k≠0) (2)反比例函数定义式及常见变式: ② xy=k (k为常数,k≠0) ③ y=kx-1(k为常数,k≠0)
……
2、思想方法方面:
(1)待定系数法 (2)从实际问题中引出反比例函数从而解决问题(转化思想)
1 已知y 1与 成反比例, 且当x 1时y 4, 求y与x x2 的函数表达式,并判断 是哪类函数?
2
1 2
-4
1 2
1
-2
2 -1
… …
-4
(1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.
2 y x
4 .近视眼镜的度数y(度)与镜片焦距x(米)成反 比例,已知400度近视眼镜镜片的焦距为0.25 米,则眼镜度数y与镜片焦距x之间的函数关
100 y 系式是___________ 。 x
反比例函数定义式及常见的变式:
①y= ② xy = k (k为常数,k≠0) ③ y = kx -1 (k 为常数,k≠0)
k(k为常数,k≠0) x
趁热打铁
⑵ 在下列函数中,y是x的反比例函数的( (A) y = (B) X+5 ) C
8
(C)xy = 5 判断一个等式为反比例 -1 = 1 x 函数,要两个条件 : -7 x m ⑶已知函数 ,则 m = ___ ; y = x是正比例函数 8 (1)自变量的指数为 -1; 已知函数 是反比例函数 ,则 m = ___ 。 (2)自变量系数不为0. 6 y = 3xm -7 已知函数 y = (m-3)x2-|m| 是反比例函数,则 m = ___ -3 。
k 若 y 是 x 的反比例函数,则设 y=_________________. x(k 为常数,k≠0)
26.1.1反比例函数的图像与性质(教案)
2.教学难点
(1)反比例函数图像的绘制:学生对反比例函数图像的绘制方法掌握不足,容易在图像的准确性和细节上出现问题。
解决方法:教师可通过示范、指导,让学生动手实践,逐步掌握图像绘制的方法和技巧。
(2)反比例函数性质的推导:学生对反比例函数性质的理解和推导存在困难,如单调性、奇偶性等。
举例:通过实际例子(如速度与时间的关系)引导学生理解反比例函数的定义,突出k值对函数图像的影响。
(2)反比例函数的图像:掌握反比例函数图像的绘制方法,了解图像在坐标平面上的分布特点。
举例:利用数形结合的方法,让学生动手绘制反比例函数图像,观察并总结图像在第一、第三象限的分布情况。
(3)反比例函数的性质:理解反比例函数的单调性、奇偶性等性质,并能应用于实际问题。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像性质这两个重点。对于难点部分,如反比例函数图像的绘制和性质的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过改变变量,观察反比例函数图像的变化,从而验证反比例函数的性质。
解决方法:教师可以通过问题引导、小组讨论等方式,帮助学生理解反比例函数的性质,并学会推导方法。
(3)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题时,容易忽略条件限制,导致解题错误。
解决方法:教师需提供丰富的实际案例,让学生在练习中学会分析问题、解决问题,提高应用能力。
(4)反比例函数与一次函数、二次函数等其他函数的联系与区别:学生容易混淆不同类型函数的性质和图像。
人教版数学九年级下册:(反比例函数)反比例函数(教案)
第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗?问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由.思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =kx(k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,自变量x的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x,只须把x =2,y=6代入,求出k 值,即可得y =12x,再把x =4代入可求出 y=3. 【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) x ≠0,∴ y =12k k x . 11220,k 0,0,k k k ≠≠∴≠ 故y =12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数? y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x ,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.。
人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件
(((((((((((453534434254))))))))))))-yyxyyx3yyxxyyyxyyy121x+1x1212=2xx11x0x21xx
(5)
y
2
x
不具备 y k 的形式,所以y不是x的反
比例函数。 x
可以改写成
y
2 3x
,所以y是x的反
比例函数,比例系数k= 2
否
是
是
是
⑨ y 1
x2
否
⑩ y ( 2 3)x1 ⑾
是
1000 y 0 x
是
“聚焦”自变量
对于反比例函数 y 1000
x
①当x=50时,y=__2_0__ ②当x=-100时,y=__-_1_0_
③X的值能不能取0?为什么? 函数 y k(k≠0)中,自变量x的取值范围是不为0的一 切实数。x ④某住宅小区要种植一个面积为1000m2的矩形草坪,草 坪的长y(单位:m)随宽x(单位:m)的变化而变化。
4
变式2、已知函数 y = y1 + y2,y1与x 成正比例,y2与x成
反比例,且当x=1时,y=3;当x=2时,y=3。
解((12:))(1求 当)设yx与=y41x时的,k函1xy数,的关y值2 系。式kx2;方将求法两出:组函先值数分代的别入值设所。设y1,的y2函与数x的关关系系式式中,,
x
4.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
“极限”大挑战
5.(1)已知y与z成正比例,z与x成正比例。问y是x
的什么函数?
y与x成正比例
人教版九年级数学下册26.1.1:反比例函数 教案设计设计
26.1.1反比例函数
教学过程
(1).写出这个反比例函数的表达式;
(2).根据函数表达式完成上表.
练习:二、
1、.y 是x 的反比例函数,当x=3时,y=-6.
(1)写出y 与x 的函数关系式.
(2)求当y=4时x 的值.
2、y 是x-2 的反比例函数,当x=3时,y=4.
(1)求y 与x 的函数关系式.
(2)当x=-2时,求y 的值.
四、课后练习
1、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为
2、若函数28)3(m x m y -+=是反比例函数,则m 的取值是
3、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为
4、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 ,当x =-3时,y =
5、已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9,求当x =-1时y 的值是多少?
6、当m = 时,关于x 的函数22)1(-+=m x
m y 是反比例函数? 7、已知3)2(-+=m x
m y 是反比例函数,则m 是什么? 五、学生作业
六、板书设计
如果两个变量x,、y 之间
的关系可以表示成 )0(≠=k k x
k y 为常数,的形式,那么y 是x 的反
比例函数。
例1 例2
课堂总结与反思:
课堂小结:
1、反比例函数的意义
2、反比例函数解析式的求法课后反思:。
26.1.1 反比例函数课件(共22张PPT)
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
人教版九年级数学下册:26.1.1《反比例函数》教学设计
人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。
本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。
教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.学会反比例函数的解析式,并能灵活运用。
3.提高解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数的解析式的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。
六. 教学准备1.准备相关的案例和实际问题。
2.准备反比例函数的图象和解析式的资料。
3.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。
2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。
通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。
3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。
每组选取一个实例,并用反比例函数的解析式表示。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。
26.1.1反比例函数 教案
26.1.1反比例函数教案1. 仔细审题,完成下面填空:(1)京沪线铁路全长1463km,某次列车的平均速度v •随此次列车的全程运行时间t 的变化而变化,其关系可用函数式表示为:(2)某住宅小区要种植一个面积为1 000 m2矩形草坪,草坪的长y随宽x 的变化而变化,其关系可用函数式表示为(3) 已知北京市的总面积为1.68×104km2,人均占有的土地面积S km2/人,随全市总人口n人的变化而变化,其关系可用函数式表示为.2、合作探究分析:上述问题中的函数关系式都是y=的形式,其中k为常数.归纳:一般地,形如y=(k为常数,且k•≠0)•的函数称为。
注:在y=中,自变量x是分式的分母,当x=0时,分式无意义,所以x•的取值范围.3、反比例函数的变形形式:新课标第一网(1) xy=k; (2) y=kx-1.四、【教后反思】在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标。
这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。
重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透.26.1.2反比例函数的图像和性质(1)一、【教材分析】二、【教学流程】1.函数x y 20=的图象在第________象限, 在每一象限内,y 随x 的增大而_________.2.函数x y 30-= 的图象在第________象限, 在每一象限内,y 随x 的增大而_________. 3.函数 x πy = ,当x >0时,图象在第____象限, y 随x 的增大而_________. 4.1000米长跑比赛中,速度h 关于时间t 的函数的图象大致是( ) .5.当0>k 时,函数kx y =与x k y -=在同一坐标系的大致图像是( ).6.在平面直角坐标系中,反比例函数xa a y 22+-=图象的两个分支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 7.如图k >0能表示在同一坐标系中的大致图像的是( )Y y y y XxxxA B C D1.抛物线y =ax 2+bx +c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数xc b a y ++=在同一坐标系内的图像大致为( )2.若)>(0k xky =当x=-3,-2,-1时值为y y y 321,,小刚说y y y 321<<,你同意他的观点吗?说明理由.三、【板书设计】四、【教后反思】反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用. 课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。
人教版九年级数学下册:26.1.1《反比例函数》说课稿
人教版九年级数学下册:26.1.1《反比例函数》说课稿一. 教材分析《反比例函数》是人教版九年级数学下册第26章第一节的内容,本节课主要介绍了反比例函数的定义、性质及图象。
这部分内容是在学生已经掌握了函数的概念、正比例函数的知识基础上进行学习的,为后续学习二次函数打下基础。
反比例函数是实际应用中经常遇到的一种函数形式,对于学生来说,理解和掌握反比例函数的知识,能够提高他们解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和图象已经有了一定的了解。
但是,反比例函数的概念和性质相对复杂,学生可能难以理解和接受。
因此,在教学过程中,需要关注学生的认知水平,通过合适的教学方法,帮助学生理解和掌握反比例函数的知识。
三. 说教学目标1.知识与技能目标:让学生理解反比例函数的定义,掌握反比例函数的性质,能够绘制反比例函数的图象。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生学会如何从实际问题中抽象出反比例函数模型。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 说教学重难点1.教学重点:反比例函数的定义,反比例函数的性质,反比例函数图象的特点。
2.教学难点:反比例函数概念的理解,反比例函数性质的证明,反比例函数图象的绘制。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,培养学生的动手操作能力和思维能力。
2.教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,帮助学生直观地理解反比例函数的知识。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学模型来解决这些问题,从而引出反比例函数的概念。
2.新课讲解:讲解反比例函数的定义,通过示例让学生理解反比例函数的概念。
然后,引导学生通过观察、分析、归纳等方法,总结出反比例函数的性质。
3.实践操作:让学生利用反比例函数图象软件,绘制反比例函数的图象,观察图象的特点,进一步理解反比例函数的性质。
反比例函数
26.1.1反比例函数知识点1反比例函数的定义1.一般地,形如的函数,叫做反比例函数,其中是自变量,是函数,自变量的取值范围是.反比例函数还可以写成或(k为常数,k≠0)的形式.2.下列函数中,能表示y是x的反比例函数的是()A.y=B.y=-C.y=D.y=3.若函数y=是关于x的反比例函数,则m需满足的条件是()A.m≠0B.m≠3C.m≠-3D.m为一切实数4.已知y=2x2m是反比例函数,则()A.m=B.m=-C.m≠0D.m为一切实数5.反比例函数y=的自变量x的取值范围是.6.下列哪些关系式中的y是x的反比例函数?每一个反比例函数相应的k值是多少?①y=+1;②y=-;③y=;④xy=;⑤y=;⑥=2;⑦y=;⑧y=-2x-1.知识点2根据实际问题列反比例函数解析式7.(1)苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数解析式为;(2)矩形的面积为4,一条边的长为x,与其相邻的一条边的长为y,则y与x之间的函数解析式为(不用体现自变量的取值范围).8.已知一个长方体的体积是100cm3,它的长是y cm,宽是10cm,高是x cm.(1)写出y与x之间的函数解析式;(2)当x=2时,求y的值.知识点3用待定系数法求反比例函数的解析式9.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数解析式是,当x=-3时,y=.10.已知y是x的反比例函数,且当x=2时,y=-3,请你确定该反比例函数的解析式,并求当y=-8时自变量x的值.11.下列问题情景中的两个变量成反比例的是()A.汽车沿一条公路从A地驶往B地所需的时间t与平均速度vB.圆的周长l与圆的半径rC.圆的面积S与圆的半径rD.在电阻不变的情况下,电流强度I与电压U12.计划修建铁路m km,铺轨天数为t(d),每日铺轨量为s(km/d),则在下列三个结论中,正确的是()①当m一定时,t是s的反比例函数;②当t一定时,m是s的反比例函数;③当s一定时,m是t的反比例函数.A.①B.②C.③D.①②③13.已知y与x-1成反比例,且当x=2时,y=3,则y与x之间的函数解析式为.14.已知y是x的反比例函数,下表给出了x与y的一些对应值:x-2-1-1213y232-1(1)写出这个反比例函数的解析式;(2)根据函数解析式完成上表.15.已知y=(m2+2m).(1)当m为何值时,y是x的正比例函数?(2)当m为何值时,y是x的二次函数?(3)当m为何值时,y是x的反比例函数?26.1.2第1课时反比例函数的图象和性质知识点1反比例函数图象的识别及画法1.下列图象中是反比例函数y=的大致图象的是()2.下列说法错误的是()A.反比例函数的图象是双曲线B.画反比例函数的图象时,注意用平滑的曲线连线C.反比例函数的图象与坐标轴没有交点D.反比例函数的图象经过原点3.在如图所示的直角坐标系中画出反比例函数y=与y=-的图象.知识点2反比例函数的图象和性质4.反比例函数y=的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.如果反比例函数y=(a是常数)的图象在第二,四象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>26.若点A(-3,y1),B(-2,y2),C(1,y3)都在反比例函数y=-的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y17.已知反比例函数y=-,则下列结论不正确的是()A.图象必经过点(-1,2)B.y随x的增大而增大C.图象在第二、四象限D.若x>0,则y<08.反比例函数y=的图象如图26-1-3,则函数y=-kx+2的图象可能是图26-1-4中的()图26-1-3图26-1-49.反比例函数y=(k≠0)的图象的两个分支分别位于第象限.10.已知函数y=-,当x<0时,y0,此时,其图象的相应部分在第象限.11.在反比例函数y=的图象的每一支上,y都随x的增大而增大,则k的取值范围是.12.已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)13.已知点A(x1,3),B(x2,6)都在反比例函数y=-的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x114.在同一平面直角坐标系中,函数y=-x+k与y=(k为常数,且k≠0)的图象可能是()15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点的坐标为(1,3),则另一个交点的坐标是.16.在如图所示的平面直角坐标系中,作出函数y=的图象,并根据图象回答下列问题:(1)当x=-2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当-1<x<2且x≠0时,求y的取值范围.18.如图,已知反比例函数y=的图象经过点A(1,3),B(3,m).(1)求反比例函数的解析式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.26.1.2第2课时反比例函数的性质的应用知识点1反比例函数图象上点的坐标与解析式之间的关系1.下列各点中,在反比例函数y=图象上的是()A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)2.点(-1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(4,-1)B.-,1C.(-4,-1)D.,23.已知反比例函数y=的图象经过点(1,1),则k的值为()A.-1B.0C.1D.24.A(x1,y1),B(x2,y2)是反比例函数y=-的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<05.A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,y1>y2,则k的取值范围是()A.k>B.k<C.k≥D.k≤6.已知反比例函数的图象经过点(1,2).(1)求这个反比例函数的解析式;(2)请判断点(-1,-2)是否在这个反比例函数的图象上,并说明理由.知识点2反比例函数比例系数k的几何意义7.过双曲线y=(k为常数,k≠0)上任意一点P(x,y)分别作x轴,y轴的垂线PM,PN,所得的矩形PMON的面积S=,S△POM=S△PON=.8.如图已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为()A.2B.-2C.4D.-49.如图,A是反比例函数y=(x>0)的图象上一点,过点A作AB⊥x轴,垂足为B,线段AB交反比例函数y=(x>0)的图象于点C,则△OAC的面积为.8题图9题图10.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.11.如下图,在平面直角坐标系中,A是x轴正半轴上的一个定点,B是反比例函数y=(x>0)的图象上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小12.如图,平行于x轴的直线与反比例函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为()A.8B.-8C.4D.-413.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.12题图13题图14.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上.点A关于x轴的对称点B 在双曲线y=上,则k1+k2的值为.15.已知反比例函数y=(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(-2,0).求出反比例函数的解析式;(3)若点E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?。
26.1.1 反比例函数(教学设计)九年级数学下册同步备课系列(人教版)
26.1.1 反比例函数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十六章“反比例函数”26.1.1 反比例函数,内容包括:从实例中归纳出反比例函数的概念及反比例函数的辨析.2.内容解析教材中本课时的主要内容是通过对三个实际问题列方程,得到三个不同于以前学过的函数解析式,给学生以疑问.让学生通过观察、探究与归纳,得到反比例函数的概念.本节内容体现了由特殊到一般、数学建模、从具体到抽象以及分类讨论等思想方法.这样安排的目的有两个,一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学理念,体会数学就在我们身边的道理;二是从简单的实际问题入手,激发学生学习数学的兴趣.基于以上分析,确定本节课的教学重点是:理解反比例函数的概念.二、目标和目标解析1.目标1.理解反比例函数的概念;2.根据题目条件会求对应量的值,能用待定系数法求反比例函数的关系式.3.能利用反比例函数的意义分析简单的问题.2.目标解析达成目标1)的标志是:理解反比例函数的概念,需要注意的地方是自变量x的取值范围是不等于0的一切实数,及会判别反比例函数.达成目标2)的标志是:用待定系数法求反比例函数的关系式.达成目标3)的标志是:能利用反比例函数的意义分析简单的问题.三、教学问题诊断分析学生在思考1)v=1463t 2)y=1000x3)S=1.68×104n的共同特征时,发现函数的特征不容易统一,所以引导学生找解析式中变量和常量的位置,这三个解析式结构都是:变量= 常量变量,进而得出反比例函数的概念.基于以上分析,本节课的教学难点是:从实例中归纳出反比例函数的概念及反比例函数的辨析.四、教学过程设计(一)复习巩固【提问一】什么是正比例函数?【提问二】什么是一次函数?【提问三】什么是二次函数?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习反比例函数打好基础.(二)探究新知下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n (单位:人)的变化而变化.师生活动:学生积极回答问题.【设计意图】以学生比较熟知的,贴近学生生活的例子引入课题,一方面可以提高学生的兴趣,另一方面可以降低学生理解的难度.【问题一】观察以下三个解析式,你发现了什么?1)v=1463t 2)y=1000x3)S=1.68×104n师生活动:先由学生尝试回答,之后由教师引导学生共同归纳:这三个解析式结构都是:变量= 常量变量,从而归纳得出反比例函数的概念:一般地,形如y= kx(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.【提问】请说出自变量x的取值范围?师生活动:学生观察反比例函数解析式的结构,得出自变量x的取值范围是不等于0的一切实数.【提问】尝试说出反比例函数的等价变形形式?师生活动:学生观察反比例函数解析式的结构,得出:y= kx⇔ y=kx-1⇔ k=xy(x≠0)⇔y是x的反比例函数.【设计意图】让学生经历合作探究过程,通过观察、发现、归纳,理解反比例函数的概念.再通过提问环节,引导学生初步思考、回顾已有的知识,主动参与到本节课的学习中来.(三)典例分析与针对训练例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ①y = 2x ①y= 32x ① y= −1x① y= x2①-xy=2 ①y=6x-12. 已知反比例函数的解析式为y=|a|−2x,则a的取值范围是() A.a≠2B.a≠−2C.a≠±2D.a=±2【设计意图】考查学生对反比例函数概念的掌握.例2 若函数①=(m+1)x|m|﹣2是反比例函数,则①=()A.±1B.±3C.﹣1D.1【针对训练】1.函数y=(m﹣1)x m2−m−1是反比例函数,求m的值.例3 已知y是x的反比例函数,当x=2时,y=6.1)写出y与x的函数关系式;2)求当x=4时,y的值.【针对训练】1. 已知y与x2 成反比例,且当x=3时,y=4.1)写出y关于x的函数解析式;2)当x=1.5时,求y的值;3)当y= 6时,求x的值.2. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.【问题二】简述利用待定系数法求反比例函数解析式的具体方法?【设计意图】考查学生对利用待定系数法求反比例函数解析式的掌握.例4 矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为_________.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是________________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式_____.【设计意图】考查学生利用反比例函数描述数量关系的能力.例5 反比例函数y=k+1x的图象经过点(﹣1,2),则k=_____.【针对训练】1 已知反比例函数y= kx(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6)B.(-1,-12)C.(0.5,24)D.(-3,8)【设计意图】考查学生对求反比例函数系数的掌握.(四)能力提升1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=______.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?【设计意图】考查学生对求反比例函数概念的掌握.(五)直击中考1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为()A.2B.−2C.12D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是()A.(1,4)B.(−1,−4)C.(−2,2)D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6的图象经过点(4,a),则a的值x为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.你知道反比例函数的三种形式吗?3.简述利用待定系数法求反比例函数解析式的具体方法?(七)布置作业P3:练习第1题、第2题.五、教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:下列哪些式子表示 是关于 的反比例函数?每一个反比例函数中相应的 值是多少?
1 ;⑵ ;⑶ ;⑷ ;⑸ ⑹ ;
⑺
例2:已知 是 的反比例函数,并且当 时,
⑴写出 关于 的函数解析式;⑵当 时,求 的值
例3:若函数 是反比例函数,则m=_______ ;
训练
达标
10分钟
1、下列关系式中的y是x的反比例函数吗?如果是, k是多少?
情感、态度与价值观:让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
教学
重点
理解反比例函数的概念,能根据已知条件写出函数解析式;
教学
难点
理解反比例函数的概念及建立反比例函数建模;
教学
方法
探索归纳法,讲练结合法;
教 学 过 程
引课
明标
3分钟
(1) (2) (3)xy=21(4)y=2x-1 (6)y=x-4(7) (8)
2、已知函数 是反比例函数,则 m = ___
3、若y=是反比例函数,则n=________;
4、已知y与x2成反比例,当x=3时,y=4;
(1)写出y与x的函数关系式;(2)求当x=1.5时,y的值;
小结
提升
2分钟
1、形如 (k为常数,k 0)的函数,叫做反比例函数;
4、对于函数关系式,当x=10时,y=_______ ,当x=20时,y=____ ,
当 越来越大时, ________ ;这说明 与 具备________的关系。
精讲
点拨
10分钟
归纳:一般地,)自变量x的取值范围是_______________.
什么叫做函数?我们学过哪些函数?如何确定函数的解析式?从今天开始,我们一起来学习反比例函数:
自学
探究
20分钟
1、在下列实际问题中,变量间的对应关系可用怎样的函数式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.
塔甸中学“问题导学 互动探究”教学教案
主备教师
鲁崇安
辅备教师
上课教师
鲁崇安
课题
26.1.1反比例函数
教材
2013人教版
上课时间
年 月 日
课时
1课时
一 次 备 课
二次备课
教学
目标
知识与能力:1、理解并掌握反比例函数的概念;
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式;
过程与方法:通过对实际问题的分析、类比、归纳,得出反比例函数的概念,并用概念解决一些实际问题;
2、反比例函数的不同形式:y= ,xy=k;
3、反比例函数中自变量x的取值范围为x 0;
板书
设计
26.1.1反比例函数
1、反比例函数的概念: 2、反比例函数的不同形式:
3、反比例函数中自变量 4、例题讲练:
x的取值范围:
教学
反思
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。_______;.
2、这三个函数关系式是我们以前学过的正比例函数吗?是一次函数吗?或是二次函数?
3、这三个函数关系式有什么共同特点吗?__________;你能用一个一般形式来表示吗?___________;