全国2010年4月高等教育线性代数(经管类)自考试题
全国2010年4月高等教育自学考试线性代数(经管类)试题
全国2010年4月高等教育自学考试线性代数(经管类)试题全国2010年4月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知2阶行列式=m , =n ,则=()A.m-nB.n-mC.m+nD.-(m+n)2.设A , B , C均为n阶方阵,AB=BA,AC=CA,则ABC=()A.ACBB.CABC.CBAD.BCA3.设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为()A.-8B.-2C.2D.84.已知A= ,B= ,P= ,Q= ,则B=()A.PAB.APC.QAD.AQ5.已知A是一个3×4矩阵,下列命题中正确的是()A.若矩阵A中所有3阶子式都为0,则秩(A)=2B.若A中存在2阶子式不为0,则秩(A)=2C.若秩(A)=2,则A中所有3阶子式都为0D.若秩(A)=2,则A中所有2阶子式都不为06.下列命题中错误的是()A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则()A.α1必能由α2,α3,β线性表出B.α2必能由α1,α3,β线性表出C.α3必能由α1,α2,β线性表出D.β必能由α1,α2,α3线性表出8.设A为m×n矩阵,m≠n,则齐次线性方程组Ax=0只有零解的充分必要条件是A 的秩()A.小于mB.等于mC.小于nD.等于n9.设A为可逆矩阵,则与A必有相同特征值的矩阵为()A.ATB.A2C.A-1D.A*10.二次型f(x1,x2,x3)= 的正惯性指数为()A.0B.1C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
(完整版)线性代数(经管类)考试试卷及答案(一)
高等教育自学考试全国统一命题考试线性代数(经管类)优化试卷(一)说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1.设A为3阶方阵,且|A|=2,则| 2A-l | ( )A.-4B.-1C.1D.42.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACBB.ABCC.BACD.CBA3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A TB.A - A TC.A A TD.A T A4.设2阶矩阵A= ,则A*= ( )5.矩阵的逆矩阵是()6.设矩阵A=,则A中( )A.所有2阶子式都不为零B.所有2阶子式都为零C.所有3阶子式都不为零D.存在一个3阶子式不为零7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关B.A的列向量组线性无关C.A的行向量组线性相关D.A的行向量组线性无关8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( )9.矩阵的非零特征值为( )A.4B.3C.2D.l10.4元二次型的秩为( )A.4B.3C.2D.l二、填空题(本大题共10小题.每小题2分.共20分)请在每小题的空格中填上正确答案.错填、不填均无分.11.若i=1,2,3,则行列式=_________________。
12.设矩阵A= ,则行列式|A T A|=_______________。
13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。
14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。
04184 线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
线性代数自考(经管类)
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算
解
测试点 个维向量线性无关相应的行列式;
解
所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.
全国2010年4月高等教育线性代数(经管类)自考试题
第一章 集中供热系统的热负荷
第四节 集中供热系统热负荷图
第四节 热 负 荷 图 一、定义:用来表示整个热源或用户系统的热负荷随室外温度或 时间变化的图。 二、作用:形象地反映热负荷的变化规律 三、分类: 1、热负荷时间图:表示热负荷随时间的变化规律 (1)全日热负荷图: 反映热负荷在一天中每小时的变化情况
例题
(2)按兰州市各室外温度间隔的小时数由此可求出低于和等 于某一室外温度tw下的延续小时数。 (3)绘制供暖热负荷延续图。按照上述绘制方法,从图右方 横坐标的bi (i=1,2 …)点引垂直线与在Qk-Qn′线上相应的 Qi(i=1,2 …)点引水平线相交得ai(i=1,2 …)点,连接ai各点, 可得出供暖热负荷延续图
如下图, 纵坐标表示供暖热负荷,横坐标左方表示室外温度。 在坐标图上连结点Qk、Qn′,绘出一直线,直线Qk-Qn′表示供暖 热负荷随室外温度变化曲线。
第一章 集中供热系统的热负荷
例题
第一章 集中供热系统的热负荷
习题
第一章 集中供热系统的热负荷
例题
兰州市各室外温度间隔的小时数
第一章 集中供热系统的热负荷
O
用 水 设 备 情 况 热指标W/m2 (时) 2~3 住宅无生活热水设备,只对公共建筑供热水时 5~15 全部住宅有沐浴设备,并供给生活热水时
第一章 集中供热系统的热负荷
第二节 集中供热系统热负荷的确定
③ 热水供应系统设计热负荷: (1)干线: 采用平均热负荷Q/r.p (2)支线:
★ 当用户有储水箱时,采用平均热负荷Q/r.p ★ 当用户无储水箱时,采用最大热负荷Q/r.max
第一章 集中供热系统的热负荷
小结
1.掌握集中供热系统热负荷的种类
自考 线性代数 04184 07年到10年全套真题
全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A 的秩;| A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6D.122.计算行列式32 3 20 2 0 0 0 5 10 20 2 0 3 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21B.2C.4D.84.设α1,α2,α3,α4都是3维向量,则必有( ) A.α1,α2,α3,α4线性无关 B.α1,α2,α3,α4线性相关 C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( ) A.2 B.3 C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B 相似 B.| A |=| B | C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.248.若A 、B 相似,则下列说法错误..的是( )A.A 与B 等价B.A 与B 合同C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2 B.0 C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定 B.A 半正定 C.A 负定 D.A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
4月线性代数(经管类)试题答案
2011年4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.下列等式中,正确的是( D )A .⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1200012140002B .⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛6549636543213C .1020015=⎪⎪⎭⎫ ⎝⎛D .⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---530021530021 2.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎪⎭⎫⎝⎛100010111B .⎪⎪⎪⎭⎫⎝⎛200020002C .⎪⎪⎪⎭⎫⎝⎛100010801D .⎪⎪⎪⎭⎫⎝⎛1008108013.设B A ,均为n 阶可逆矩阵,且⎪⎪⎭⎫ ⎝⎛=O A B O C ,则1-C 是( C ) A .⎪⎪⎭⎫ ⎝⎛--11A OO B B .⎪⎪⎭⎫⎝⎛--O A B O11 C .⎪⎪⎭⎫ ⎝⎛--O B A O11 D .⎪⎪⎭⎫ ⎝⎛--11B OO A4.设A 为3阶矩阵,A 的秩3)(=A r ,则矩阵A 的秩=)(A r ( D )A .0B .1C .2D .3123321A .2,1-=-=b aB .2,1=-=b aC .2,1-==b aD .2,1==b a4321A .41,ααB .31,ααC .21,ααD .32,αα7.设矩阵⎪⎪⎪⎭⎫⎝⎛=043022A ,那么矩阵A 的列向量组的秩为( B )A .3B .2C .1D .08.设3=λ是可逆矩阵A 的一个特征值,则矩阵41⎪⎭⎫⎝⎛A 有一个特征值等于( D )A .34-B .43-C.43 D .34 9.设矩阵⎪⎪⎪⎭⎫⎝⎛=213212A ,则A 的对应于特征值0=λ的特征向量为(B ) A .T )0,0,0(B .T )1,2,0(-C .T )1,0,1(-D .T )1,1,0(10.二次型22113212),,(x x x x x x x f +-=的矩阵为( C ) A .⎪⎪⎭⎫⎝⎛--1112B .⎪⎪⎭⎫ ⎝⎛--12/12/12C .⎪⎪⎪⎭⎫ ⎝⎛--000012/102/12D .⎪⎪⎪⎭⎫⎝⎛--000011012二、填空题(本大题共10小题,每小题2分,共20分)11.行列式=941321111__________.12.行列式22351011110403--中第4行各元素的代数余子式之和为__________.13.设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=1322A ,)3,2,1(=B ,则=BA __________.14.设3阶方阵A 的行列式2||=A ,则=||3A __________. 15.设B A ,为n 阶方阵,且E AB =,E A B B A ==,则=+B A __________.通解为__________.19.设3阶矩阵A 与B 相似,若A 的特征值为4,3,2,则行列式=-||1B __________.20.设⎪⎪⎭⎫⎝⎛=a A 221是正定矩阵,则a 的取值范围为__________.21.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=101012111A ,⎪⎪⎪⎭⎫ ⎝⎛=120012001B ,求:(1)B A T ;(2).解:(1)B A T =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=120012001101011121⎪⎪⎪⎭⎫ ⎝⎛--121011145;(2)||B A T 22411024011145121011145-=----=----=--=.22.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,⎪⎪⎭⎫⎝⎛=3512B ,⎪⎪⎪⎭⎫ ⎝⎛=130231C ,且满足C AXB =,求矩阵X . 解:⎪⎪⎪⎭⎫ ⎝⎛=100010001343122321),(E A →⎪⎪⎪⎭⎫ ⎝⎛------103012001620520321→⎪⎪⎪⎭⎫ ⎝⎛------111012001100520321→⎪⎪⎪⎭⎫ ⎝⎛----111012001100520321 →⎪⎪⎪⎭⎫ ⎝⎛-----111563332100020021→⎪⎪⎪⎭⎫⎝⎛----111563231100020001→⎪⎪⎪⎭⎫ ⎝⎛----1112/532/3231100010001,⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----=-222563462211112/532/32311A ;13512||==B ,⎪⎪⎭⎫⎝⎛--==*-2513||11B B B ;11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛----=22256346221⎪⎪⎪⎭⎫ ⎝⎛130231⎪⎪⎭⎫ ⎝⎛--2513⎪⎪⎪⎭⎫⎝⎛-=40402221⎪⎪⎭⎫⎝⎛--2513 ⎪⎪⎪⎭⎫ ⎝⎛-=202011⎪⎪⎭⎫ ⎝⎛--2513⎪⎪⎪⎭⎫⎝⎛---=41041012.23.求向量组T T T T )4,6,5,4(,)4,3,4,3(,)2,1,1,1(,)0,1,2,1(4321====αααα的秩与一个极大线性无关组.解:()⎪⎪⎪⎪⎪⎭⎫⎝⎛=4420631154124311,,,4321αααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4420200032104311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2000200032104311→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100032104311→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100002100311→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100002100301, 向量组的秩为3,421,,ααα是一个极大线性无关组.24.判断线性方程组⎪⎩⎪⎨⎧-=+-=+--=-+-1542421343143214321x x x x x x x x x x x 是否有解,有解时求出它的解.解:⎪⎪⎪⎭⎫ ⎝⎛------=154012*********),(b A →⎪⎪⎪⎭⎫ ⎝⎛------113112*********→⎪⎪⎪⎭⎫ ⎝⎛------267104671015401→⎪⎪⎪⎭⎫ ⎝⎛-----200004671015401,3),(=b A r ,2)(=A r ,)(),(A r b A r ≠,方程组无解.25.已知2阶矩阵A 的特征值为9,121==λλ,对应的特征向量依次为T )1,1(1-=α,T )1,7(2=α,求矩阵A .解:21,αα线性无关,令⎪⎪⎭⎫ ⎝⎛-==1171),(21ααP ,则⎪⎪⎭⎫ ⎝⎛=-90011AP P ,其中81||11-==*-P P P ⎪⎪⎭⎫⎝⎛---1171,从而 19001-⎪⎪⎭⎫ ⎝⎛=P P A ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=9001117181⎪⎪⎭⎫ ⎝⎛---1171⎪⎪⎭⎫ ⎝⎛--=9163181⎪⎪⎭⎫⎝⎛---1171 ⎪⎪⎭⎫ ⎝⎛-----=168566481⎪⎪⎭⎫⎝⎛=2178. 26.已知矩阵A 相似于对角矩阵⎪⎪⎭⎫⎝⎛-=Λ2001,求行列式||E A -的值.解:Λ的特征值是2,1-,且A 相似于Λ,所以A 的特征值也是2,1-,E A -的特征值是1,2-,从而212||-=⨯-=-E A .注:标准答案如下:因为A 与Λ相似,所以存在可逆矩阵P ,使P P A Λ=-1,=-||E A 21002|||)(|||11-=-=-Λ=-Λ=-Λ--E P E P E P P .四、证明题(本大题共6分)27.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵.证明: (1)BA AB -为对称矩阵;(2)BA AB +为反对称矩阵.证:因为A 为对称矩阵,B 为反对称矩阵,所以A A T =,B B T -=.(1)BA AB B A A B B A A B BA AB BA AB T T T T T T T -=---=-=-=-)()()()()(,所以BA AB -为对称矩阵;(2))()()()()()(BA AB B A A B B A A B BA AB BA AB T T T T T T T +-=-+-=+=+=+,BA AB +为反对称矩阵.。
月月自考线性代数(经管类)历试题及答案
全国2012年4月高等教育自学考试 线性代数(经管类)试题 课程代码:04184说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r (A)表示矩阵A 的秩.一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( )A.-12B.-6C.6D.122.设矩阵A =120120003⎛⎫ ⎪⎪ ⎪⎝⎭,则A *中位于第1行第2列的元素是()A.-6B.-3C.3D.63.设A 为3阶矩阵,且|A |=3,则1()A --=( )A.-3B.13-C.13D.34.已知4⨯3矩阵A 的列向量组线性无关,则A T 的秩等于( ) A.1B.2C.3D.45.设A 为3阶矩阵,P =100210001⎛⎫ ⎪⎪ ⎪⎝⎭,则用P 左乘A ,相当于将A ( )A.第1行的2倍加到第2行B.第1列的2倍加到第2列C.第2行的2倍加到第1行D.第2列的2倍加到第1列6.齐次线性方程组123234230+= 0x x x x x x ++=⎧⎨--⎩的基础解系所含解向量的个数为( )A.1B.2C.3D.47.设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为( )A.1212cηηη-+ B.1212c ηηη-+ C.1212cηηη++ D.1212c ηηη++8.设A 是n 阶方阵,且|5A +3E |=0,则A 必有一个特征值为( ) A.53-B.35-C.35D.539.若矩阵A 与对角矩阵D =100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则A 3=( ) A.E B.DC.AD.-E10.二次型f 123(,,)x x x =22212332x x x +-是( )A.正定的B.负定的C.半正定的D.不定的二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
04184线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称: 工商企业管理专业代码: Y020202第一部分习题一、选择题3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题319、关于初等矩阵下列结论成立的是()A,都是可逆阵 B.所对应的行列式的值为1 C.相乘仍为初等矩阵D.相加仍为初等矩阵\ 2、10、设2阶矩阵A=「),则人=()第一部分习题 一、选择题1、若〃阶方阵A 的秩为r,则结论(A. IAWOB. IAI=OC. 2、下列结论正确的是()A.若 AB=0,则 A=0 或 B=0. C.两个同阶对角矩阵是可交换的. 3、下列结论错误的是()A. n+1个n 维向量一定线性相关. C. n 个n 维列向量/。
D. n n4,/>/?B. D. B. )成立。
D. r< n若 AB=AC,则 B 二C AB 二 BA n 个n+1维向量一定线性相关一,%线性相关,则同%…= 0 若同%…%| =。
则。
a x a 2 a ya\a2 %4、若 A b? b 3=m ,则2bl 2b 2 2b3=( )G 5 c 33cj 3c2 3c35、设 A, B, C 均为 n 阶方阵,AB=BA, AC=CA,则 ABC=( )6、二次型/(占,々/3)= *:+工;+4事工2-2々工的秩为( )A 、0 B. 1C 、2D 、37、若A 、B 为,邛介方阵,下列说法正确的是()A 、若A,B 都是可逆的,则A+B 是可逆的 B 、若A, B 都是可逆的,则A8是可逆的C 、若A+B 是可逆的,则A-B 是可逆的D 、若A+B 是可逆的,则A, B 都是可逆的A. 6mB. -6mC. 2333m D. -2333/n[3 4J4 一2、f-4 31 (-4 2 ] ( 4 一3、Ax B% C、I D、1-3 1 )U -1J 13 -1J 1-2 1 J11、设片,外是非齐次线性方程组AX = A的两个解,则下列向量中仍为方程组4X = 77解的是()A、月+旦B、4-色C,汽& D、吟也12、向量组囚,。
全国4月自考04184线性代数经管类真题
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试卷课程代码:04184一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设行列式D 1=2211b a b a ,D 2=2221113232a b a a b a --,则D 2= 【 】A.-D 1B.D 1C.2D 1D.3D 12、若A=⎪⎪⎭⎫ ⎝⎛1x 1021,B =⎪⎪⎭⎫ ⎝⎛y 24202,且2A =B ,则 【 】 A.x=1,y=2 B.x=2,y=1C.x=1,y=1D.x=2,y=23、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】A.⎪⎪⎪⎭⎫ ⎝⎛000000001B.⎪⎪⎪⎭⎫ ⎝⎛000010001C.⎪⎪⎪⎭⎫ ⎝⎛100000001D.⎪⎪⎪⎭⎫ ⎝⎛1000100014、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组(E +A )x =0的基础 解系所含解向量的个数为 【 】A.0B.1C.2D.35、矩阵⎪⎪⎭⎫ ⎝⎛--3113有一个特征值为 【 】 A.-3 B.-2 C.1 D.2二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6、设A 为3阶矩阵,且A =3,则13-A= . 7、设A =⎪⎪⎭⎫ ⎝⎛5312,则A *= . 8、已知A =⎪⎪⎭⎫ ⎝⎛1201,B =⎪⎪⎭⎫ ⎝⎛-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数k= .10、若齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x ax x x 有非零解,则数a = .11、设向量=1α(1,-2,2)T ,=2α(2,0,-1)T ,则内积(21,αα)= .12、向量空间V ={x=(x 1,x 2,0)T |x 1,x 2R ∈}的维数为 .13、与向量(1,0,1)T 和(1,1,0)T 均正交的一个单位向量为 .14、矩阵⎪⎪⎭⎫ ⎝⎛3221的两个特征值之积为 . 15、若实二次型f(x1,x2,x3)=2123222212x x x a ax x +++正定,则数a 的取值范围是.三、计算题(本大题共7小题,每小题9分,共63分)16、计算行列式D =5111141111311112的值.17、设2阶矩阵A 的行列式21=A ,求行列式*12)2(A A +-的值.18、设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---101111010,B =⎪⎪⎪⎭⎫ ⎝⎛--301521,矩阵X 满足X =AX +B ,求X .19、求向量组T T T T )10,1,3(,)6,3,1(,)1,5,2(,)1,2,1(4321-=--===αααα的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.20、利用克拉默法则解线性方程组⎪⎩⎪⎨⎧=++=++=++232212322123221333c x c cx x b x b bx x a x a ax x ,其中c b a ,,两两互不相同.21、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=1111311a a A 与⎪⎪⎪⎭⎫ ⎝⎛=b B 00010000相似,求数b a ,的值.22、用正交变换化二次型212121455),(x x x x x x f ++=为标准型,并写出所作的正交变换.四、证明题(本题7分)23、设A ,B 均为n 阶矩阵,且A =B +E ,B 2=B ,证明A 可逆.。
自考_线性代数_04184_07年到10年全套真题[1] 2
全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A 的秩;| A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6D.122.计算行列式32 3 202 0 0 0 5 10 2 0 2 03 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21 B.2 C.4D.84.设α1,α2,α3,α4都是3维向量,则必有( ) A.α1,α2,α3,α4线性无关 B.α1,α2,α3,α4线性相关 C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( ) A.2 B.3 C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B 相似 B.| A |=| B | C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.248.若A 、B 相似,则下列说法错误..的是( )A.A 与B 等价B.A 与B 合同C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2 B.0 C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定 B.A 半正定 C.A 负定 D.A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数(经管类)试题及答案解析(试卷+答案+解析) (1)
全国2011年7月高等教育自学考试线性代数(经管类)试题(课程代码:04184)说明:本卷中,A T表示方阵A的转置钜阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 设101350041A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则TAA=()A. -49B. -7C. 7D. 492. 设A为3阶方阵,且4A=,则2A-=()A. -32B. -8C. 8D. 323. 设A,B为n阶方阵,且A T=-A,B T=B,则下列命题正确的是()A. (A+B)T=A+BB. (AB)T=-ABC. A2是对称矩阵D. B2+A是对称阵4. 设A,B,X,Y都是n阶方阵,则下面等式正确的是()A. 若A2=0,则A=0B. (AB)2=A2B2C. 若AX=AY,则X=YD. 若A+X=B,则X=B-A5. 设矩阵A =11310214000500⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( )A. 1B. 2C. 3D. 46. 若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k ≠( )A. -2B. -1C. 0D. 27. 实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( ) A. 0 B. 1 C. 2D. 38. 若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( ) A. 1 B. 2 C. 3 D. 49. 设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( )A. 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C. 10001102⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D. 10102001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10. 设实二次型2212323(,,)f x xx x x =-,则f ( )A. 正定B. 不定C. 负定D. 半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
04184 线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2010年4月高等教育线性代数(经管类)自考试题一、单项选择题(本大题共20小题,每小题1分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
一、单项选择题(本大题共20小题,每小题1分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
全国2010年4月高等教育线性代数自考试题
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A,B,C均为n阶方阵,AB=BA,AC=CA,则ABC=( )
A.ACB
B.CAB
C.CBA
D.BCA
2.设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为( )
A.-8
B.-2
C.2
D.8。