浙江省诸暨市东白湖镇初级中学14—15学年上学期八年级期末考试数学(扫描版)(无答案)

合集下载

2014-2015学年浙江省绍兴市诸暨市八年级(下)期末数学试卷(解析版)

2014-2015学年浙江省绍兴市诸暨市八年级(下)期末数学试卷(解析版)

2014-2015学年浙江省绍兴市诸暨市八年级(下)期末数学试卷一、选择题:本大题有10小题,每小题3分,共30分.1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.2.(3分)已知3是关于x的方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣2 B.5 C.2 D.63.(3分)学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差4.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.5.(3分)已知反比例函数y=经过点(﹣2,3),则下列各点在此反比例函数图象上的是()A.(2,3) B.(﹣2,﹣3)C.(﹣3,2)D.(3,2)6.(3分)用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b7.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC8.(3分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1449.(3分)如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.B.C.1 D.10.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32二、填空题:本大题有10小题,每小题3分,共30分.11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)方程x2﹣2x=0的解为.13.(3分)计算=.14.(3分)一个多边形的内角和为900°,则这个多边形的边数为.15.(3分)已知反比例函数y=,则当x>0时,函数值y随x增大而(填“增大”或“减小”).16.(3分)如图,已知▱ABCD中,AE平分∠DAB,若∠C=70°,则∠AED=度.17.(3分)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的方案有种.18.(3分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.19.(3分)现有一块长80cm,宽60cm的矩形铜片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为2400cm2的无盖的长方体盒子,则x=cm.20.(3分)在平面直角坐标系中,已知四边形AOBC是平行四边形,其中A(﹣1,2),O(0,0),B(3,2),则点C的坐标为.三、解答题:本大题有6小题,共40分.21.(4分)计算:﹣+.22.(8分)选择适当的方法解下列方程:(1)(2x﹣3)2=4;(2)x2﹣2x﹣1=0.23.(6分)某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.(7分)我们把依次连结任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,依次连结各边中点得到的中点四边形EFGH.(1)这个中点四边形EFGH的形状是.(2)请证明你的结论.(3)根据以上结论进一步猜想,对角线互相垂直的四边形,它的中点四边形是;矩形的中点四边形是.25.(7分)西施旅行社为吸引外地市民组团来五泄风景区旅游,推出了如图对话中的收费标准,某单位组织员工去五泄风景区旅游,共支付给西施旅行社旅游费用13500元.请问:该单位这次共有多少名员工去五泄风景区旅游?26.(8分)如图,已知一次函数y=x﹣2与反比例函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积;(3)观察图象,可知一次函数值小于反比例函数值的x的取值范围是.2014-2015学年浙江省绍兴市诸暨市八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题有10小题,每小题3分,共30分.1.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)已知3是关于x的方程x2﹣5x+c=0的一个根,则这个方程的另一个根是()A.﹣2 B.5 C.2 D.6【分析】设方程的另一个根是m,根据根与系数的关系列出关于另一根m的方程,解方程即可.【解答】解:设方程的另一个根是m,∵3是关于x的方程x2﹣5x+c=0的一个根,∴3+m=5,解得,m=2;故选:C.3.(3分)学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选:C.4.(3分)下列电视台的台标,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.5.(3分)已知反比例函数y=经过点(﹣2,3),则下列各点在此反比例函数图象上的是()A.(2,3) B.(﹣2,﹣3)C.(﹣3,2)D.(3,2)【分析】先根据反比例函数y=经过点(﹣2,3)求出k的值,再对各选项进行逐一分析即可.【解答】解:∵反比例函数y=经过点(﹣2,3),∴k=(﹣2)×3=﹣6.A、∵2×3=6≠﹣6,∴此点不在函数图象上,故本选项错误;B、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在函数图象上,故本选项错误;C、∵(﹣3)×2=﹣6,∴此点在函数图象上,故本选项正确;D、∵3×2=6≠﹣6,∴此点不在函数图象上,故本选项错误.故选:C.6.(3分)用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b【分析】熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:A.7.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选:B.8.(3分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【分析】2014年的产量=2012年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故选:D.9.(3分)如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A.B.C.1 D.【分析】根据题意可得,阴影部分的图形是正方形,正方形ABCD的边长为,则AC=2,可得出A′C=1,可得出其面积.【解答】解:∵正方形ABCD的边长为,∴AC=2,又∵点A′是线段AC的中点,∴A′C=1,∴S=×1×1=.阴影故选:B.10.(3分)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【分析】过C点作CD⊥x轴,垂足为D,根据点C坐标求出OD、CD、BC的值,进而求出B点的坐标,即可求出k的值.【解答】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选:D.二、填空题:本大题有10小题,每小题3分,共30分.11.(3分)代数式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.12.(3分)方程x2﹣2x=0的解为x1=0,x2=2.【分析】把方程的左边分解因式得x(x﹣2)=0,得到x=0或x﹣2=0,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,x1=0 或x2=2.故答案为:x1=0,x2=2.13.(3分)计算=2.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.14.(3分)一个多边形的内角和为900°,则这个多边形的边数为7.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.15.(3分)已知反比例函数y=,则当x>0时,函数值y随x增大而减小(填“增大”或“减小”).【分析】当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,据此求解即可.【解答】解:∵k=2>0,∴图象在第一、三象限,且在每一个象限y随x的增大而减小.故答案为:减小.16.(3分)如图,已知▱ABCD中,AE平分∠DAB,若∠C=70°,则∠AED=35度.【分析】由▱ABCD中,∠C=70°,可求得∠DAB的度数,又由AE平分∠DAB,可求得∠BAE的度数,然后由平行线的性质,求得答案.【解答】解:∵▱ABCD中,∠C=70°,∴∠DAB=∠C=70°,∵AE平分∠DAB,∴∠BAE=∠DAB=35°,∵AB∥CD,∴∠AED=∠BAE=35°.故答案为:35.17.(3分)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的方案有3种.【分析】几何图形镶嵌成平面的条件是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.据此作答.【解答】解:∵使用其中的一种规格的地砖,那么有:正方形、正三角形、正六边形,一共3种方案;故答案为:3.18.(3分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.【分析】利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【解答】解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为:86.19.(3分)现有一块长80cm,宽60cm的矩形铜片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为2400cm2的无盖的长方体盒子,则x=(35﹣25)cm.【分析】设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.【解答】解:由题意得:(80﹣2x)(60﹣2x)=2400,整理得:x2﹣70x+600=0,解得x1=35+25(舍去),x2=35﹣25.故答案是:(35﹣25).20.(3分)在平面直角坐标系中,已知四边形AOBC是平行四边形,其中A(﹣1,2),O(0,0),B(3,2),则点C的坐标为(2,4).【分析】连接AB,OC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标.【解答】解连接AB,OC交于点P,如图所示:∵四边形OABC是平行四边形,∴AP=BP,OP=CP,∵O(0,0),B(3,2),∴P的坐标(1,2),∵A(﹣1,2),∴C的坐标为(2,4),故答案为:(2,4).三、解答题:本大题有6小题,共40分.21.(4分)计算:﹣+.【分析】先进行二次根式的化简,然后合并同类二次根式.【解答】解:原式=3﹣2+=2.22.(8分)选择适当的方法解下列方程:(1)(2x﹣3)2=4;(2)x2﹣2x﹣1=0.【分析】(1)利用直接开平方即可求解;(2)利用求根公式即可求解.【解答】解:(1)开方,得2x﹣3=2或﹣2,解得:x1=,x2=;(2)∵a=1,b=﹣2,c=﹣1,b2﹣4ac=4+4=8>0,∴x=,则x1=1+,x2=1﹣.23.(6分)某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图1中m的值是32.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【分析】(1)根据统计图可以分别求得本次接受随机抽样调查的学生人数和图1中m的值;(2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【解答】解:(1)由统计图可得,本次接受随机抽样调查的学生人数为:4÷8%=50,m%=1﹣8%﹣16%﹣20%﹣24%=32%,故答案为:50,32;(2)本次调查获取的样本数据的平均数是:=16(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)该校本次活动捐款金额为10元的学生人数为:1900×=608,即该校本次活动捐款金额为10元的学生有608人.24.(7分)我们把依次连结任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,依次连结各边中点得到的中点四边形EFGH.(1)这个中点四边形EFGH的形状是平行四边形.(2)请证明你的结论.(3)根据以上结论进一步猜想,对角线互相垂直的四边形,它的中点四边形是矩形;矩形的中点四边形是菱形.【分析】(1)根据四边形的形状,及三角形中位线的性质可判断出四边形EFGH 是平行四边形;(2)连接AC、利用三角形的中位线定理可得出HG=EF、EF∥GH,继而可判断出四边形EFGH的形状;(3)根据中位线的与对角线平行的性质,因此顺次连接四边中点可以得到一个相邻的边互相垂直的四边形,根据矩形的定义,邻边垂直的四边形为矩形,同理可得矩形的中点四边形形状.【解答】(1)解:中点四边形EFGH的形状是平行四边形.故答案为:平行四边形;(2)证明:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.(3)解:对角线互相垂直的四边形,它的中点四边形是:矩形;矩形的中点四边形是菱形.理由:如图2,∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,∴四边形EFGH是平行四边形,∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形,∴∠MEN=90°,∴四边形EFGH是矩形.故答案为:矩形,菱形.25.(7分)西施旅行社为吸引外地市民组团来五泄风景区旅游,推出了如图对话中的收费标准,某单位组织员工去五泄风景区旅游,共支付给西施旅行社旅游费用13500元.请问:该单位这次共有多少名员工去五泄风景区旅游?【分析】该单位共支付给旅行社旅游费用13500元,显然人数超过了25人,设该单位这次共有x名员工去风景区旅游,则人均费用为[500﹣10(x﹣25)]元,根据旅游费=人均费用×人数,列一元二次方程求x的值.【解答】解:设该单位共有x名员工去风景区旅游,∵13500>500×25,∴x>25.由题意,得:x[500﹣10(x﹣25)]=13500,整理,得:x2﹣75x+1350=0,解得x1=45,x2=30.检验:当x=30时,人均旅游费用为500﹣10(x﹣25)=450>350,当x=45时,人均旅游费用为500﹣10(x﹣15)=200<350,不合题意,舍去,∴x=30.答:该单位共有30名员工去风景区旅游.26.(8分)如图,已知一次函数y=x﹣2与反比例函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积;(3)观察图象,可知一次函数值小于反比例函数值的x的取值范围是0<x<3或x<﹣1.【分析】(1)解方程组:即可求出交点坐标A、B.=S△OCB+S△OCA即可解决.(2)求出直线AB的与y轴的交点C,根据S△AOB(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,由此直接根据图象可以写出一次函数的值<反比例函数的值x的取值范围.【解答】解:(1)由解得或∴点A坐标(3,1),点B坐标(﹣1,﹣3).(2)设直线AB为y=kx+b,由题意:解得,∴直线AB为y=x﹣2,与x轴交于点C(0,﹣2),∴S=S△OCB+S△OCA=×2×1+×2×3=4.△AOB(3)由图象可知:0<x<3或x<﹣1时,一次函数值小于反比例函数值.故答案为0<x<3或x<﹣1.。

浙教版2014-2015学年八年级上学期期末考试数学试题及答案

浙教版2014-2015学年八年级上学期期末考试数学试题及答案

浙教版2014-2015学年八年级上学期期末数学试题时间120分钟满分120分 2015.8.20一、选择题(每小题3分,共30分)1.要使式子有意义,则下列数值中字母x不能取的是()A.1B.C. 2 D. 42.命题“三角形的内角和等于180°”是()A.假命题B.定义C.定理D.公理3.用配方法解方程2x2﹣x﹣1=0,变形结果正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2= D.(x﹣)2=4.如图,在网格(网格的正方形边长为1)中,格点四边形ABCD是菱形,则此四边形ABCD 的面积等于()A.6B.12 C.D.无法计算5.不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个 C.3个D.4个6.某超市一月份的营业额为300万元,第一季度的营业额共为1500万元,如果平均每月增长率为x,则由题意可列方程为()A.300(1+x)2=1500 B.300+300×2x=1500C.300+300×3x=1500D.300[1+(1+x)+(1+x)2]=15007.已知等腰△ABC的周长为18cm,BC=8cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于()A.8cm B.2cm或8cm C.5cm D.8cm或5cm8.已知xy<0,则化简后为()A.B.C.D.9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A. B.C.D.10.如图所示的矩形是由六个正方形组成,其中最小的正方形的面积为1,则此矩形的面积为()A.99 B.120 C.143 D 168二、填空题(每小题3分,共15分).11.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.11题图 14题图 15题图12.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.13.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.15.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.三、解答题(共75分)16.若不等式10(x+4)+x<62的正整数解是方程2(a+x)﹣3x=a+1的解,求的值.(10分)17.如图,已知C为线段AB上的一点,△ACM和△CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点.求证:△CEF是等边三角形.(10分)18.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?(10分)19.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?(10分)20.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.(10分)21.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C 不重合),Q是CB延长线上一点,由B向CB延长线方向运动(Q不与B重合),连接PQ交AB于D.若两点同时出发,以相同的速度每秒1个单位运动,运动时间为t.(1)当∠PQC=30°时,求t的值;(2)过P作PE⊥AB于E,过Q作QF⊥AB,交CB的延长线于F,请找出图中在运动过程中的一对全等三角形,加以证明;(3)在(2)的条件下,当P,Q在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.(12分)22.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.(13分)答案一、选择题1.故选D.2.故选C.3.选D.4故选B.5.故选:B.6.故选D.7故选D.8.故选B.9.故选C.10.故选C.二、11.﹣2<x<﹣1.12.故答案为:﹣.13.故答案为:5或6或7.14故答案为:.15..三、解答题16.解答:解:解不等式10(x+4)+x<62的解集是x<2,所以不等式的正整数解是x=1,把x=1代入方程2(a+x)﹣3x=a+1得2(a+1)﹣3=a+1解得a=2,则=4=.17.解答:证明:△CE F为等边三角形,证明如下:∵△ACM和△CBN是等边三角形,∴AC=MC,BC=CN,∠MCA=∠NCB=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),∴∠ENC=∠FBC,∵△ACM和△CBN是等边三角形,∴∠MCA=∠NCB=60°,∴∠ECF=180°﹣60°﹣60°=60°,在△CEN和△CFB中,,∴CE=CF,∴△CEF为等边三角形.18.解答:解:(1)设生产甲礼品x万件,乙礼品(100﹣x)万件,由题意得:y=(22﹣15)x+(18﹣12)(100﹣x)=x+600;(2)设生产甲礼品x万件,乙礼品(100﹣x)万件,所获得的利润为y万元,由题意得:15x+12(100﹣x)≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)(100﹣x)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.19.解答:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.20.解答:证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.21.解答:解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)△APE≌△BQF或△EPD≌△FQD.以△APE≌△BQF为例,证明如下:连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,在△APE和△BQF中,,∴△APE≌△BQF(AAS);(3)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:由(2)知,∵△APE≌△BQF,∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.22.解答:解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.。

初中数学浙江省绍兴市诸暨市八年级(上)期末数学考试卷.docx

初中数学浙江省绍兴市诸暨市八年级(上)期末数学考试卷.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在平面直角坐标系中,点A(1,2)的横坐标为()A. 1 B. 2 C. 0 D.﹣1试题2:在△ABC中,∠A=100°,∠B=30°,则∠C为()A. 30° B. 40° C. 50° D. 60°试题3:在函数y=中,自变量x的取值范围是()A. x>1 B. x<1 C. x≠1 D. x=1试题4:在平面直角坐标系中,在第一象限的点是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(1,﹣2)试题5:如果一个三角形的两边长分别为2和4,则第三边长可能是()A. 2 B. 4 C. 6 D. 8试题6:.在一次函数y=﹣x+1图象上的点是()A.(0,1) B.(1,0) C.(2,0) D.(2,1)试题7:在△ABC中,若∠A=35°,∠B=55°,则△ABC为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.任意三角形试题8:如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.试题9:a,b都是示数,且a<b,则下列不等式的变形正确的是()A. a+1>b+1 B.﹣a<﹣b C. 3a<3b D.试题10:图象中所反映的过程是:小敏从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示小敏离家的距离,根据图象提供的信息,以下说法错误的是()A.体育场离小敏家2.5千米B.体育场离早餐店4千米C.小敏在体育场锻炼了15分钟D.小敏从早餐店回到家用时30分钟试题11:等边三角形边长为1cm,则它周长为试题12:一次函数y=x+1,当x=1时,则y值为试题13:若等腰三角形的顶角为100°,则它的一个底角的度数为试题14:在平面直角坐标系中,点A(1,2)关于x轴对称点的坐标是________试题15:写出一个经过点(1,1)的一次函数解析式试题16:如果a=0,则ab=0”是命题(填“真”或“假”).试题17:如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.试题18:直角三角形的两直角边长分别为6和8,则斜边中线的长是试题19:等腰三角形的腰长为5,底边长为6,则它底边上的高为一元一次不等式组的整数解的个数是试题21:解一元一次不等式2x+1<3.试题22:解一元一次不等式组.试题23:△ABC在平面直角坐标系中的位置如图所示,(1)作出与△ABC关于x轴对称的△A1B1C1;(2)将△ABC向左平移4个单位长度,画出平移后的△A2B2C2.试题24:如图,AC与BD相交于O点,已知AO=DO,∠A=∠D,求证:AB=DC.如图,在平面直角坐标系中,一次函数y=﹣的图象分别交x轴,y轴交于A,B两点,与一次函数y=x的图象交于第一象限内的点C.(1)求A,B两点的坐标;(2)求△AOC的面积.试题26:某校准备组织290名学生参加社会实践活动,行李共300件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和35件行李,乙种汽车每辆最多能载30人和45件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.试题27:在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①求证;△ABD≌△ACE;②求∠BCE的度数.(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.试题1答案:A考点:点的坐标.分析:根据点的坐标表示方法:横前纵后,中逗,可得答案.解答:解:在平面直角坐标系中,点A(1,2)的横坐标为1,故选:A.点评:本题考查了点的坐标,点的坐标表示方法:横前纵后,中逗.试题2答案:C考点:三角形内角和定理.分析:根据三角形内角和定理可直接解答.解答:解:∵△ABC中,∠A=100°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣30°=50°.故选:C.点评:本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键.试题3答案:C考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.试题4答案:A考点:点的坐标.分析:根据第一象限内的点的横坐标大于零,纵坐标大于零,可得答案.解答:解:A、(1,2)在第一象限,故A正确;B、(﹣1,2)在第二象限,故B错误;C、(﹣1,﹣2)在第三象限,故C错误;D、(1,﹣2)在第四象限,故D错误;故选:A.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).试题5答案:B考点:三角形三边关系.分析:已知三角形的两边长分别为2和4,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.解答:解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选B.点评:本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.试题6答案:A考点:一次函数图象上点的坐标特征.分析:根据点在一次函数y=﹣x+1的图象上,把各点的坐标代入一次函数的解析式即可判断.解答:解:把各点代入解析式y=﹣x+1中,只有(0,1)符合,故选A点评:本题考查一次函数图象点的坐标,关键是把各点的坐标代入一次函数的解析式.试题7答案:C考点:三角形内角和定理.分析:根据三角形内角和定理求出∠ACB,即可得出答案.解答:解:∵∠A=35°,∠B=55°,∴∠ACB=180°﹣∠A﹣∠B=90°,∴△ABC为直角三角形.故选C.点评:本题考查了三角形内角和定理,直角三角形的判定,熟练掌握三角形的内角和定理是解题的关键.试题8答案:A考点:在数轴上表示不等式的解集.分析:根据图示,可得不等式组的解集,可得答案.解答:解:由图示得A>1,A<2,故选:A.点评:本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.试题9答案:C考点:不等式的性质.分析:根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.解答:解:A、等式的两边都加1,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣1,不等号的方向改变,故B错误;C、不等式的两边都乘以3,不等号的方向不变,故C正确;D、不等式的两边都乘以,不等号的方向不变,故D错误;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.试题10答案:B考点:函数的图象.分析:结合图象得出小敏从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小敏家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离小敏家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:由函数图象可知,体育场离小敏家2.5千米,故A正确;由图象可得出小敏在体育场锻炼30﹣15=15(分钟),故C正确;体育场离小敏家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故B错误;小敏从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,故D正确.故选B.试题11答案:3 cm.考点:等边三角形的性质.分析:由于等边三角形的三边相等,故能求出它的周长.解答:解:因为等边三角形的三边相等,所以周长为1×3=3.故答案为:3.点评:本题考查了等边三角形的性质,关键是熟悉等边三角形的三边相等的性质.试题12答案:2 .考点:一次函数的定义.分析:把x=1代入函数解析式即可得到相应的y的值.解答:解:把x=1代入y=x+1,得y=1+1=2,即y=2.故答案是:2.点评:本题考查了一次函数图象上点的坐标特征.一次函数图象上所有点的坐标均满足函数解析式.试题13答案:40°.考点:等腰三角形的性质.分析:已知给出了顶角为100°,利用三角形的内角和定理:三角形的内角和为180°即可解本题.解答:解:因为其顶角为100°,则它的一个底角的度数为(180﹣100)=40°.故答案为:40°.点评:此题主要考查了等腰三角形的性质,三角形的内角和定理:三角形的内角和为180°.利用三角形的内角和求角度是一种很重要的方法,要熟练掌握.试题14答案:( 1 ,﹣2 ).考点:关于x轴、y轴对称的点的坐标.专题:应用题.分析:根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点A(1,2)关于x轴对称的点的坐标.解答:解:∵点(1,2)关于x轴对称,∴对称的点的坐标是(1,﹣2).故答案为(1,﹣2).点评:本题主要考查了直角坐标系点的对称性质,比较简单.试题15答案:y=x(答案不唯一).考点:一次函数图象上点的坐标特征.专题:开放型.分析:一次函数的一般形式为:y=kx+b(k≠0).可设其中的k为1,b为未知数,把点(1,1)代入求值即可.解答:解:设这个函数解析式为y=x+b,∵这个函数经过点(1,1),∴b=0,∴这个函数解析式为y=x.故答案为:y=x(答案不唯一).点评:一次函数的一般形式有2个未知数,应设其中一个为已知数.试题16答案:真考点:命题与定理.分析:根据有理数的运算对命题的真假进行判断.解答:解:如果a=0,则ab=0”是真命题.故答案为真.点评:本题考查了菱形的性质:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.试题17答案:18:00考点:函数的图象.专题:压轴题.分析:首先看函数图象,图形的交点的横坐标为10.故可知道在10小时后,乌龟追上了兔子.可求出乌龟追上兔子的时间.解答:解:两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时.故答案为18.点评:解决本题的关键是理解两个函数图象的交点表示的意义.试题18答案:5 .考点:勾股定理.专题:计算题.分析:已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据斜边中线长为斜边长的一半即可解题.解答:解:已知直角三角形的两直角边为6、8,则斜边长为=10,故斜边的中线长为×10=5,故答案为5.点评:本题考查了勾股定理在直角三角形中的运用,考查了斜边中线长为斜边长的一半的性质,本题中正确的运用勾股定理求斜边的长是解题的关键.试题19答案:4 .考点:等腰三角形的性质;三角形三边关系.分析:根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.解答:解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD==4.故答案为:4.点评:本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.试题20答案:6 .考点:一元一次不等式组的整数解.分析:先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.解答:解:∵解不等式2x+1>0得:x>﹣,解不等式x﹣5≤0得:x≤5,∴不等式组的解集是﹣<x≤5,整数解为0,1,2,3,4,5,共6个,故答案为6.试题21答案:移项得:2x<3﹣1,合并同类项得:2x<2,把x的系数化为1得:x<1;试题22答案:,由①得:x>﹣1,由②得:x≤4,不等式组的解集为:﹣1<x≤4.点评:此题主要考查了一元一次不等式(组)的解法,关键是掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).试题23答案:考点:作图-轴对称变换;作图-平移变换.分析:(1)根据关于x轴对称的点的坐标特点画出△A1B1C1即可;(2)根据图形平移的性质画出平移后的△A2B2C2即可.解答:解:(1)如图所示;(2)如图所示.点评:本题考查的是作图﹣轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.试题24答案:考点:全等三角形的判定与性质.专题:证明题.分析:先根据对顶角相等得到∠AOB=∠COD,再根据全等三角形的判定方法AAS得到△ABO≌△DCO,即可得到结论.解答:证明:在△ABO与△DCO中,,∴△ABO≌△DCO(AAS),∴AB=CD.点评:本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.试题25答案:考点:两条直线相交或平行问题.专题:计算题.分析:(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)利用两直线相交的问题,通过解方程组可得C点坐标,然后根据三角形面积公式求解.解答:解:(1)当y=0时,﹣=0,解得x=6,则A点坐标为(6,0);当y=0时,y=﹣=3,则B点坐标为(0,3);(2)解方程组得,则C(2,2),所以△AOC的面积=×2×6=6.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.试题26答案:考点:一元一次不等式组的应用.分析:(1)设租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,根据总人数是290人和行李共有100件,列出不等式组,求出不等式组的解集,即可得出答案;(2)设租车费用为y元,再分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.解答:解:(1)由租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,由题意得:,解得:5≤x≤6.即共有2种租车方案:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆.(2)解法一:第一种租车方案的费用为5×2000+3×1800=15400(元);第二种租车方案的费用为6×2000+2×1800=15600(元).∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.解法二:设总的租车费用为y元,则y=2000x+1800(8﹣x)=14400+200x,5≤x≤6.∵200>0,∴y随x增大而增大,∴当x=5时,取得最小值,y=5×2000+3×1800=15400(元);∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.点评:此题主要考查了一元一次不等式组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出不等式组.试题27答案:考点:全等三角形的判定与性质.分析:(1)①根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE即可;②问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和.解答:解:(1)①∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);②∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°。

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°2.若点P的坐标是(1,-2),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A.30° B.20° C.10° D.40°4.如图,AB=AC,BD=1,BD⊥AD,则数轴上点C所表示的数为( )A.5+1 B.-5-1 C.-5+1 D.5-15.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.不等式4x -1>2x +1的解集在数轴上表示为( )7.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A .x >4B .x >-4C .x >2D .x >-28.在等腰三角形中,有一个角是70°,则它的一条腰上的高与底边的夹角是( )A .35°B .40°或30°C .35°或20°D .70°9.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象的是( )10.如图,在平面直角坐标系中有一点A (1,0),点A 第一次向左跳动至A 1(-1,1),第二次向右跳动至A 2(2,1),第三次向左跳动至A 3(-2,2),第四次向右跳动至A 4(3,2),…,依照此规律跳下去,点A 第100次跳动至A 100,则A 100的坐标为( )A .(50,49)B .(51,50)C .(-50,49)D .(100,99) 二、填空题(每题3分,共24分)11.把命题“等腰直角三角形是轴对称图形”的逆命题改写成“如果……那么……”的形式是_______________________________________________________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为________.13.在平面直角坐标系中,已知点O (0,0),A (1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是________,A 1的坐标是________. 14.如图是一副三角板拼成的图案,则∠CEB =________°.15.如果不等式(m +1)x <m +1的解集是x >1,那么m 的取值范围是________. 16.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么(m +n )2 019=________.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是________.18.如图,在直角坐标系中,一次函数y =34x +6的图象与两坐标轴分别交于A ,B 两点,OC ⊥AB ,垂足为点C ,在直线AB 上有一点P ,y 轴的正半轴上有一点Q ,使得以O ,P ,Q 为顶点的三角形与△OCP 全等,请写出所有符合条件的点Q 的坐标:__________________.三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.解下列不等式(组),并把解集在数轴上表示出来.(1)4x -13-x >1; (2)⎩⎪⎨⎪⎧1+x >-2,2x -13≤1.20.已知一次函数y=ax+c与y=kx+b的图象如图,且点B的坐标为(-1,0),请你确定这两个一次函数的表达式.21.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.22.如图,在△ABC中,D在AB上,E在AC的延长线上,连结DE交BC于P,BD=CE,DP =EP.求证:AB=AC.23.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格中建立平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)求出△A′B′C′的面积.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(元/千克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数表达式;(3)试比较第10天与第12天的销售金额哪天多.25.如图①,在△ABC中,CD⊥AB于D,且BD∶AD∶CD=2∶3∶4.(1)试说明△ABC是等腰三角形.(2)已知S△ABC=40 cm2,如图②,动点M从点B出发以每秒1 cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值.②若点E是AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案一、1.解:∵∠A =50°,∠B =80°, ∴∠ACD =∠A +∠B =50°+80°=110°, 故选:C .2.D 点拨:由题意知,点P 的横坐标为正,纵坐标为负,这样的点在第四象限内. 3.C 点拨:∵AB ∥CD ,∴∠EFC =∠ABE =60°.∵∠EFC =∠D +∠E ,∴∠E =∠EFC -∠D=60°-50°=10°,故选C.4.D 点拨:∵在直角三角形ABD 中,∠ADB =90°,∴AB =AD 2+BD 2=22+12=5,∴点C 到原点的距离为5-1,∴点C 表示的数是5-1.故选D. 5.C 6.C7.B 点拨:将一次函数y =12x 的图象向上平移2个单位后,所得图象对应的函数的表达式为y =12x +2,令y >0,即12x +2>0,解得x >-4.8.C 点拨:70°的角可能是顶角,也可能是底角.分两种情况讨论:如图①,当顶角∠A=70°时,底角∠ABC =∠C =12(180°-∠A )=55°,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =35°.如图②,当底角∠ABC =∠C =70°时,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =20°.9.C10.B 点拨:观察发现,第2次跳动至点A 2(2,1),第4次跳动至点A 4(3,2),第6次跳动至点A 6(4,3),第8次跳动至点A 8(5,4)……第2n 次跳动至点A 2n (n +1,n ),∴第100次跳动至点A 100(51,50).故选B .二、11.如果一个三角形是轴对称图形,那么这个三角形是等腰直角三角形12.(3,0) 点拨:令y =0,得2x -6=0,解得x =3,所以一次函数y =2x -6的图象与x轴的交点坐标为(3,0).13.(3,0);(4,3) 点拨:将线段OA 向右平移3个单位,线段上任意一点的横坐标增加3,纵坐标不变,所以O 1的坐标是(3,0),A 1的坐标是(4,3). 14.10515.m <-1 点拨:∵不等式(m +1)x <m +1的解集是x >1,∴m +1<0,∴m <-1. 16.-1 17.4718.⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485点拨:∵OC ⊥AB ,∴△OCP 是以OP 为斜边的直角三角形.要使△OCP 与△OPQ 全等,则△OPQ 也是直角三角形,且OP 是斜边,∠OQP =90°,即PQ ⊥y 轴.设P ⎝ ⎛⎭⎪⎫a ,34a +6,则Q ⎝ ⎛⎭⎪⎫0,34a +6.由直线y =34x +6,可得A (-8,0),B (0,6),∴OA =8,OB =6,∴AB=10,∴OC =OA ·OB AB =245.①当OC =OQ 时,∵OP =OP ,∴Rt △OCP ≌Rt △OQP (HL).∵OQ =OC =245,∴Q ⎝ ⎛⎭⎪⎫0,245.②当OC =PQ 时,∵OP =OP , ∴Rt △OCP ≌Rt △PQO (HL), ∴245=|a |,∴a =245或a =-245, ∴34a +6=485或125,∴Q 的坐标为⎝⎛⎭⎪⎫0,485或⎝ ⎛⎭⎪⎫0,125.综上所述,所有符合条件的点Q 的坐标为⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485 .三、19.解:(1)去分母,得4x -1-3x >3,移项、合并同类项,得x >4, 它的解集在数轴上表示如图.(2)由1+x >-2,得x >-3, 由2x -13≤1,得x ≤2.∴原不等式组的解集为-3<x ≤2. 它的解集在数轴上表示如图.20.解:由题图可知交点A 的坐标为(1,3),因为函数y =kx +b 的图象过点A (1,3)和点B (-1,0),所以⎩⎪⎨⎪⎧k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =32,b =32.又因为函数y =ax +c 的图象过点(1,3)和(0,-2),所以⎩⎪⎨⎪⎧a +c =3,c =-2,解得⎩⎪⎨⎪⎧a =5,c =-2.所以这两个一次函数的表达式分别为y =5x -2,y =32x +32.点拨:解此问题先通过图形确定两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的表达式的关键..是确定a ,c ,k ,b 的值. 21.解:(1)如图,点D 即为所求.(2)如图,过点D 作DE ⊥AB 于E , 设DC =x ,则BD =8-x .∵在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴由勾股定理得AB =AC 2+BC 2=10.∵点D 到边AC 、AB 的距离相等,∴AD 是∠BAC 的平分线. 又∵∠C =90°,DE ⊥AB ,∴DE =DC =x .在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,DC =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AE =AC =6,∴BE =4. 在Rt △DEB 中,∠DEB =90°, ∴DE 2+BE 2=BD 2, 即x 2+42=(8-x )2, 解得x =3.∴CD 的长度为3.22.证明:如图,过点D 作DF ∥AC 交BC 于点F .∵DF ∥AC ,∴∠1=∠E ,∠5=∠2. 在△DPF 和△EPC 中, ⎩⎪⎨⎪⎧∠1=∠E ,DP =EP ,∠3=∠4,∴△DPF ≌△EPC (ASA), ∴DF =EC .又∵BD =EC ,∴BD =DF , ∴∠B =∠5.又∵∠5=∠2,∴∠B =∠2, ∴AB =AC .23.解:(1)建立平面直角坐标系如图.(2)△A ′B ′C ′如图.B ′(2,1). (3)S △A ′B ′C ′=12×2×(2+2)=4.24.解:(1)日销售量的最大值为120千克.(2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上, ∴k =10.∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 的函数表达式为y =k 1x +b . ∵点(12,120),(20,0)在y =k 1x +b 的图象上,∴⎩⎪⎨⎪⎧12k 1+b =120,20k 1+b =0, 解得⎩⎪⎨⎪⎧k 1=-15.b =300.∴函数表达式为y =-15x +300.综上:y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间,∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数表达式为z =k 2x +b 1. ∵点(5,32),(15,12)在z =k 2x +b 1的图象上,∴⎩⎪⎨⎪⎧5k 2+b 1=32,15k 2+b 1=12, 解得⎩⎪⎨⎪⎧k 2=-2,b 1=42.∴函数表达式为z =-2x +42. 当x =10时,y =10×10=100,z =-2×10+42=22.销售金额为100×22=2 200(元). 当x =12时,y =120,z =-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多. 25.解:(1)设BD =2x cm ,AD =3x cm ,CD =4x cm ,则AB =5x cm ,AC =AD 2+CD 2=5x cm ,∴AB =AC ,∴△ABC 是等腰三角形.(2)∵S △ABC =12×5x ×4x =40,x >0,∴x =2,∴BD =4 cm ,AD =6 cm ,CD =8 cm ,AC =10 cm. ①当MN ∥BC 时,AM =AN , 即10-t =t , ∴t =5;当DN ∥BC 时,AD =AN ,∴t =6.∴若△DMN 的边与BC 平行,t 的值为5或6. ②∵E 为Rt △ADC 斜边上的中点,∴DE =5 cm.当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM ≠DE . 当t =4时,点M 运动到点D ,不能构成三角形.当点M 在DA 上,即4<t ≤10时,△MDE 为等腰三角形,有3种可能. 若MD =DE ,则BM =9 cm , 此时t =9.若ED =EM ,则点M 运动到点A , 此时t =10.若MD =ME =(t -4)cm , 过点E 作EF ⊥AB 于点F , ∵ED =EA ,∴DF =AF =12AD =3 cm ,在Rt △AEF 中,易得EF =4 cm. ∵BM =t cm ,BF =7 cm , ∴FM =(t -7)cm.在Rt △EFM 中,由勾股定理,得(t -4)2-(t -7)2=42, ∴t =496.综上所述,符合要求的t 的值为9或10或496.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(二)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°3.若a>b,则下列式子中正确的是()A.a+3>b+3B.﹣a>﹣bC.D.﹣3a+2>﹣3b+24.下列四组线段中,能组成三角形的是()A.1,2,3B.2,2,4C.2,4,5D.1,3,55.对假命题“若a2<b2,则a<b”举反例,可以是()A.a=﹣1,b=2B.a=﹣1,b=﹣1C.a=﹣2,b=﹣1D.a=0,b=﹣1 6.如图,已知BE=CF,AC∥DF,添加下列条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.∠B=∠DEC C.AC=DF D.∠A=∠D 7.如图,直线y=kx+b(k≠0)经过点A(0,3),且与直线y=x交于点B(1,1),则不等式kx+b>x的解为()A.x>0B.x>1C.x<1D.x<28.将一根16cm长的细铁丝折成一个等腰三角形(弯折处长度忽略不计),设腰长为xcm,底边长为ycm,则下列选项中能正确描述y与x函数关系的是()A.B.C.D.9.如图,在边长为2的等边△ABC中,点D,P分别为BC,AC的中点,点Q是AD上一动点,则△PQC的周长的最小值为()A.3B.+1C.D.10.如图,已知直线l:y=x,过点A0(1,0)作x轴的垂线交直线l于点B0,过点B0作直线l的垂线交x轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交x轴于点A2,…,按此作法继续下数,记△A0B0A1的面积为S1,△A1B1A2的面积为S2,…,△A n﹣1B n﹣1A n的面积为S n,那么S4的值为()A.3×83B.C.3D.11.若点P(a﹣1,2)在第一象限,则a的取值范围是.12.若点(﹣1,y1)和点(2,y2)是直线y=3x+1上的两个点,则y1y2(填“>”、“<”或“=”).13.如图,在△ABC中,BD是一条角平分线,CE是AB边上的高线,BD,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=9,DE=7.5,则CD的长为.15.如图,将边长为8cm的正方形ABCD沿EF折叠(E,F分别是AD,BC边上的点),使点B恰好落在CD的中点B'处,则BF的长为.16.如图,在长方形ABCD中,AB=4cm,AD=6cm,E为AB的中点.点P从点D出发,以2cm/s的速度沿D→C→B→A路线运动,运动至点A停止,运动时间为t(s).若△DEP 为等腰三角形,则t的值为.17.解一元一次不等式组.18.如图,在平面直角坐标系中,△ABC如图所示.(1)在图中,以y轴为对称轴,作△ABC的轴对称图形△A'B'C'.(2)求△ABC的面积.19.如图,在△ABC中,AB=AC,点D是△ABC内一点,且DB=DC,过点D作DE⊥AB 于点E,DF⊥AC于点F,求证:DE=DF.20.通过测量获得成年女性的脚长与身高的各组数据如下表:脚长x(cm)2222.52323.52424.5身高y(cm)150155161165169175(1)判断成年女性的身高y与脚长x是否满足或近似地满足一次函数关系.如果是,求出y关于x函数表达式.(2)若某人身高为167cm,则其脚长约为多少?21.[旧知重温]课本第64页作业题第2题:如图1,AD平分△ABC的外角∠EAC,AD∥BC,求证:△ABC是等腰三角形.证明:∵AD∥BC,∴∠DAC=∠C,∠EAD=∠B.∵AD平分∠EAC,∴∠DAC=∠EAD,∴∠B=∠C,∴AB=AC,即△ABC为等腰三角形.[拓展知新]如图2,AD平分△ABC的外角∠EAC,AF平分∠BAC交BC于点F,连结DF 交AC于点H,已知DF∥AB,求证:H为DF中点.22.周老师参加了某次半程马拉松比赛(赛程21km).若周老师从甲地出发出发,匀速前进,15分钟后,工作人员以18km/h的速度沿同一路线骑车运送一批运动饮料到距离起点9km的补给站,到达后留在原地.周老师在补给站补充能量后进行了提速并保持匀速,直至到达终点.如图是周老师和工作人员经过的路程y(km)与周老师出发时间x(h)之间的函数关系,根据图象信息回答下列问题:(1)周老师出发多久后,工作人员追上了他?(2)周老师提速后的速度是多少?(3)周老师出发多久后,在工作人员前方2km处?23.如图1,直线l:y=﹣x+6分别与x,y轴交于A,B两点,作∠ABO的角平分线交x 轴于点P.(1)写出A,B的坐标.(2)求OP的长.(3)如图2,点C为线段BP上一点,过点C作CD∥AB交x轴于点D,且CD=OB.求证:P为OD中点.参考答案1.解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.2.解:∵∠A=50°,∠B=80°,∴∠ACD=∠A+∠B=50°+80°=110°,故选:C.3.解:A、不等式a>b的两边同时加上3,不等号的方向不变,即a+3>b+3,原变形正确,故本选项符合题意.B、不等式a>b的两边同时乘﹣1,不等号的方向改变,即﹣a<﹣b,原变形错误,故本选项不符合题意.C、不等式a>b的两边同时除以5,不等号的方向不变,即>,原变形错误,故本选项不符合题意.D、不等式a>b的两边同时乘﹣3,再加上2,不等号的方向改变,即﹣3a+2<﹣3b+2,原变形错误,故本选项不符合题意.故选:A.4.解:A.∵1+2=3,∴不能组成三角形,故本选项不符合题意;B.∵2+2=4,∴不能组成三角形,故本选项不符合题意;C.∵2+4>5,∴能组成三角形,故本选项符合题意;D.∵1+3<5,∴不能组成三角形,故本选项不符合题意;故选:C.5.解:用来证明命题“若a2<b2,则a<b是假命题的反例可以是:a=0,b=﹣1,因为02<(﹣1)2,但是0>﹣1,所以D符合题意;故选:D.6.解:B:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠A=∠D,∵∠B=∠DEC,∴△ABC≌△DEF(AAS),∴不符合题意;C:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵AC=DF,∴△ABC≌△DEF(SAS),∴不符合题意;D::∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵∠A=∠D,∴△ABC≌△DEF(AAS),∴不符合题意;A:无法判定△ABC≌△DEF,∴符合题意;故选:A.7.解:如图所示:不等式kx+b>x的解为:x<1.故选:C.8.解:由已知y=16﹣2x,由三角形三边关系得:,解得:4<x<8,故选:D.9.解:如图,连接BP,与AD交于点Q,连接CQ,∵△ABC是等边三角形,AD⊥BC,∴QC=QB,∴QP+QC=QP+QB=BP,此时QP+QC最小,△PQC的周长QP+QC+PC最小,∵△ABC是一个边长为2的正三角形,点P是边AC的中点,∴∠BPC=90°,CP=1cm,∴BP==,∴△PQC的周长的最小值为+1.故选:B.10.解:∵A0B0⊥x轴交直线l于点B0,A0(1,0),直线l:y=x,∴B0(1,),OA0=1,∴A0B0=,∴∠OB0A0=30°,∠B0OA0=60°,∵A1B0⊥l,∴∠OB0A1=90°,∴∠A0B0A1=60°,∴A0A1=×=3,∴S1=•A0B0•A0A1=××3=,OA1=1+3=4,∴A1(4,0),∵A1B1⊥x轴交直线l于点B1,A1(4,0),直线l:y=x,∴B1(4,4),∴A1B1=4,∴∠OB1A1=30°,∠B1OA1=60°,∵A2B1⊥l,∴∠OB1A2=90°,∴∠A1B1A2=60°,∴A1A2=×4=12,∴S2=•A1B1•A1A2=×4×12=24,OA2=4+12=16,同理可得,S3=×16×48=384,S4=×163,故选:B.11.解:∵点P(a﹣1,2)在第一象限,∴a﹣1>0,∴a>1,故答案为:a>1.12.解:∵y=3x+1,k=3>0,∴y随x的增大而增大,∵点(﹣1,y1)和N(2,y2)是直线y=3x+1上的两个点,﹣1<2,∴y1<y2,故答案为:<.13.解:∵CE是AB边上的高线,∴∠CEB=90°,∵∠EFB=60°,∴∠EBF=30°,∵∠EBD+∠A=∠BDC=70°∴∠A=∠BDC﹣∠EBD=70°﹣30°=40°,故答案为:40°.14.解:∵CD⊥AB于D,E是AC的中点,∴DE=AE=EC,∵AD=9,DE=7.5,∴AC=15,∴在Rt△ADC中AD2+DC2=AC2,即DC2=AC2﹣AD2=225﹣81=144,故DC=12.故答案为:12.15.解:∵点B'是CD中点,∴B'C=DB'=4cm,∵将边长为8cm的正方形ABCD沿EF折叠,∴BF=B'F,∵F'B2=CF2+B'C2,∴BF2=(8﹣BF)2+16,∴BF=5,故答案为:5cm.16.解:①若ED=EP,点P与C重合,∵AB=4cm,∴CD=DP=4cm,∴t==2;②如图,若EP=DP,设PC=xcm,则BP=(6﹣x)(cm),∵EB2+BP2=EP2,CP2+CD2=PD2,∴22+(6﹣x)2=x2+42,解得x=2,∴DC+PC=4+2=6(cm).∴t==3;③如图,若ED=DP,∵AD=6cm,AE=2cm,∴DE===2(cm),∴DP=2(cm),∴PC==2(cm),∴DC+PC=(4+2)(cm),∴t==2+.综合以上可得t的值为2或3或2+.故答案为:2或3或2+.17.解:,由①得,x>1,由②得,x<5,∴原不等式组的解集是1<x<5.18.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积=2×3﹣1×2﹣1×3﹣×1×2=6﹣1﹣﹣1=.19.证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.20.解:(1)身高y与脚长x满足或近似地满足一次函数关系,通过描点发现y与x的关系对应图象成一条直线,近似满足一次函数关系,设y与x的关系为:y=kx+b,将(22,150),(22.5,155)代入,得:,解得:,∴一次函数关系式为:y=10x﹣70,将其它点代入,发现都成立;(2)当y=167时,代入函数关系式,10x﹣70=167,解得:x=23.7,即脚长为23.7厘米.21.证明:∵AF平分∠BAC,∴∠BAF=∠CAF,∵AB∥DF,∴∠BAF=∠AFH,∴∠CAF=∠AFH,∴HA=HF,同理HA=HD,∴HD=HF,即H为DF中点.22.解:(1)直线EF:y=18(x﹣0.25)=18x﹣4.5,由题意:点A坐标为(1,9),∴OA:y=9x,方程组,解得:,∴周老师出发0.5小时后,工作人员追上了他;(2)提速后,速度为==10(km/h),答:周老师提速后的速度是10km/h;(3)①工作人员出发前:(h);②工作人员出发后,为追上周老师:设周老师出发x小时,在工作人员前方2km,则9x﹣(18x﹣4.5)=2,解得:x=;③工作人员达到补给站后:10(x﹣1)=2,解得:x=,答:周老师出发或或后,在工作人员前方2km处.23.(1)解:在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=8,令x=0,则y=6,∴A点的坐标为(8,0),B点的坐标为(0,6);(2)解:如图1,过P作PQ⊥AB于Q,∵BP平分∠ABO,∠BOP=90°,∴PQ=PO,∵PB=PB,∴Rt△PBO≌Rt△PBQ(HL),∴BQ=OB=6,∵AB==10,∴AQ=4,设OP=x,则PQ=PO=x,∵AP2=PQ2+AQ2,∴(8﹣x)2=x2+42,∴x=3,∴OP=3;(3)证明:过D作DE∥OB交BP的延长线于E,则∠OBP=∠DEP,∵AB∥CD,∴∠PCD=∠PBA,∵∠PBA=∠OBP,∴∠PCD=∠OBP,∴∠PCD=∠DEP,∴CD=ED,∵CD=OB,∴DE=DB,在△OPB与△DPE中,,∴△OPB≌△DPE(AAS),∴OP=DP,∴P为OD中点.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(三)一、选择题(80分)1.(2019·模拟·江苏苏州市吴中区)如图,内接于圆O,∠OAC=25∘,则∠ABC的度数为( )A.B.115∘C.D.125∘2.(2020·同步练习·天津天津市)如图,点A表示的实数是( )A.√3B.C.−√3D.−√53.(2019·期中·浙江温州市鹿城区)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图()所示).图()由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若,则S1+S2+S3的值是( )A.B.38C.48D.804.(2019·期末·云南昆明市官渡区)如图,在中,,∠BAC=45∘,BD⊥AC,垂足为D点,平分∠BAC,交于点F交于点E,点为AB的中点,连接DG,交AE于点,下列结论错误的是( )A.B.HE=BE C.AF=2CE D.DH=DF 5.(2019·期中·天津天津市和平区)如图,四边形ABCD,,,点E在边AB上,且AD=AE,BE=BC,则的值为A.√2B.C.√22D.126.(2018·期中·江苏无锡市锡山区)等腰三角形一个角为,则这个等腰三角形的顶角可能为( )A.B.65∘C.80∘D.或80∘7.(2020·单元测试)如图,在△ABC和中,点在边BD上,边交边BE于点.若AC=BD,AB=ED,BC=BE,则∠ACB等于A.∠EDB B.∠BED C.12∠AFB D.2∠ABF 8.(2019·期中·河北石家庄市新华区)如图,在和△OCD中,,OC=OD,OA>OC,,连接,BD交于点M,连接OM.下列结论:① AC=BD;② ∠AMB=40∘;③ OM平分∠BOC;④ MO平分∠BMC,其中正确的个数为A.4B.C.D.19.(2017·期中·天津天津市和平区)如图,在平面直角坐标系中,为坐标原点,四边形ABCD是矩形,顶点,,C,D的坐标分别为(−1,0),,(5,2),,点E(3,0)在x轴上,点P在CD边上运动,使为等腰三角形,则满足条件的P点有A.3个B.4个C.5个D.个10.(2020·期中·江苏苏州市相城区)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重合的四边形EFGH,EH=12cm,EF=16cm,则边的长是A.12cm B.16cm C.D.24cm 11.(2017·期末·江苏苏州市昆山市)如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且过点A作AB⊥x轴于点B,将△ABO绕点逆时针旋转60∘得到,则点C的坐标为A.(−√3,2)B.(−√3,1)C.(−2,√3)D.(−1,√3) 12.(2020·单元测试·上海上海市)如图,已知在△ABC,中,∠BAC=∠DAE=90∘,,AD=AE,点,,E三点在同一条直线上,连接,.以下四个结论:① BD=CE;② ;③ BD⊥CE;④ ∠BAE+∠DAC=180∘.其中结论正确的个数是( )A.B.C.3D.13.(2019·期中·江苏徐州市新沂市)如图,在△ABC中,∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边的中点,CD=CF,则( )A.125∘B.C.175∘D.14.(2018·期中·广东深圳市)如果三角形满足有一个角是另一个角的倍,那么我们称这个三角形为完美三角形.下列各组数据中,能作为一个完美三角形三边长的一组是( )A.2,,2B.1,,√2C.2,,2√3D.1,,215.(2019·模拟·浙江温州市苍南县)如图,的半径为2√3,四边形为⊙O的内接矩形,AD=6,M为中点,E为⊙O上的一个动点,连接,作DF⊥DE交射线EA于,连接MF,则MF的最大值为( )A.B.6+√57C.2√3+√61D.16.(2017·期中·天津天津市红桥区)如图,点是△ABC外的一点,PD⊥AB于点,PE⊥AC于点,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70∘,则∠BPC的度数为A.B.30∘C.35∘D.17.(2020·专项)如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90∘.在上取一点,以为折痕,使的一部分与BC重合,点A与延长线上的点重合,则DE的长度为( )A.6B.C.2√3D.√318.(2018·期末·江苏苏州市张家港市)如图,矩形ABCD中,AB=2,,对角线的垂直平分线分别交AD,于点E,,连接CE,则△DCE的面积为( )A.5B.C.2D.119.(2020·同步练习·上海上海市)已知三角形的两边长分别为和9cm,则下列长度的四条线段中能作为第三边的是A.13cm B.6cm C.5cm D20.(2019·模拟·天津天津市和平区)如图,四边形中,DC∥AB,BC=1,AB=AC=AD=2,则的长为( )A.B.√14C.√15D.3√2二、填空题(30分)x+4交轴于点A,交轴于21.(2019·期末·广东佛山市禅城区)如图,直线y=43点,点为线段OB上一点,将△ABC沿着直线翻折,点B恰好落在轴上的处,则△ACD的面积为.22.(2019·期中·浙江温州市龙湾区)如图,△ABC中,,∠BAC=120∘,是边上的中线,且BD=BE,则是度.23.(2020·单元测试·上海上海市)如图,在直角坐标系中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,A n B n C n C n−1的顶点A1,,A3,⋯,均在直线上,顶点C1,C2,C3,,C n在x轴上,若点的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.24.(2019·单元测试)如图,正方形ABDE,CDFI,EFGH的面积分别为,9,16,,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=.25.(2020·专项·上海上海市闵行区)如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.26.(2019·期中·江苏苏州市常熟市)如图,在△ABC中,ED∥BC,∠ABC和的平分线分别交ED于点G,,若BE=6,DC=8,DE=20,则.三、解答题(40分)27.(2021·专项)如图,等腰直角△ABC的斜边AB在轴上且长为,点在轴上方.矩形ODEF中,点D,F分别落在,轴上,边OD长为2,长为,将等腰直角△ABC沿x轴向右平移得等腰直角△AʹBʹCʹ.(1) 当点Bʹ与点D重合时,求直线AʹCʹ的解析式;(2) 连接CʹF,CʹE.当线段和线段之和最短时,求矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积;(3) 当矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积为 2.5时,求直线AʹCʹ与轴交点的坐标.(本问直接写出答案即可)28.(2019·单元测试·黑龙江哈尔滨市香坊区)如图,在△ABC中,∠C=90∘,是∠BAC的平分线,DE⊥AB于点E,点在上,BD=DF.求证:(1) CF=EB;(2) AB=AF+2EB.29.(2019·期末·广东佛山市高明区)如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,,B(−2,1),.(1) 作出关于轴对称的△A1B1C1;(2) 写出△A1B1C1的各顶点的坐标;(3) 求△ABC的面积.30.(2018·期末·江苏苏州市)已知:Rt△ABC中,∠BAC=90∘,,点是BC的中点,点是BC边上的一个动点.(1) 如图①,若点与点重合,连接,则与BC的位置关系是;(2) 如图②,若点P在线段上,过点作BE⊥AP于点E,过点作CF⊥AP于点,则CF,和EF这三条线段之间的数量关系是;(3) 如图③,在(2)的条件下若的延长线交直线于点M,找出图中与相等的线段,并加以证明;(4) 如图④,已知BC=4,AD=2,若点P从点出发沿着BC向点运动,过点B作BE⊥AP于点,过点作CF⊥AP于点F,设线段的长度为,线段的长度为d2,试求出点P在运动的过程中d1+d2的最大值.答案一、选择题1. 【答案】B【解析】∵OA=OC,∠OAC=25∘,,由圆周角定理得,∠ABC=(360∘−130∘)÷2=115∘,故选:B.【知识点】等腰三角形的性质、三角形的内角和、圆周角定理及其推理2. 【答案】D【知识点】勾股定理、在数轴上表示实数3. 【答案】C【解析】因为八个直角三角形全等,四边形,EFGH,MNKT是正方形,所以CG=KG,CF=DG=KF,所以S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,所以S2=GF2=EF2,S3=(KF−NF)2=KF2+NF2−2KF⋅NF,所以.【知识点】勾股定理4. 【答案】A【解析】∵∠BAC=45∘,,∴∠CAB=∠ABD=45∘,,∵AB=AC,平分,BC,∠CAE=∠BAE=22.5∘,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90∘,且∠C+∠DBC=90∘,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90∘,∴△ADF≌△BDC(AAS),,故选项C不符合题意;∵点为的中点,AD=BD,∠ADB=90∘,,∴AG=BG,DG⊥AB,∠AFD=67.5∘,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意;连接BH,∵AG=BG,DG⊥AB,,∴∠HAB=∠HBA=22.5∘,∴∠EHB=45∘,且,∴∠EHB=∠EBH=45∘,∴HE=BE,故选项B不符合题意.【知识点】等腰三角形的判定、等腰三角形“三线合一”5. 【答案】B【解析】过点A作AF⊥BC于点,∵∠D=∠C=90∘,四边形是矩形,,AF=CD,设AE=x,BE=y,则AB=x+y,∵AD=AE,,∴BF=BC−CF=BC−AD=y−x,∵CD=2,∴AF=CD=2,在Rt△ABF中,根据勾股定理可得22+(y−x)2=(x+y)2,解得xy=1,∴AE⋅BE=1.【知识点】矩形的判定、勾股定理6. 【答案】D【解析】分两种情况:当角为等腰三角形的顶角时,此时等腰三角形的顶角;当50∘角为等腰三角形的底角时,此时等腰三角形的顶角为:180∘−50∘×2=80∘,综上,等腰三角形的顶角为50∘或80∘.【知识点】等腰三角形的性质、三角形的内角和7. 【答案】C【解析】在和△DEB中,{AC=DB,AB=DE,BC=EB,(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,.【知识点】边边边8. 【答案】B【解析】∵∠AOB=∠COD=40∘,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB,∠AOC=∠BOD, OC=OD,∴△AOC≌△BOD(SAS),,,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40∘,②正确;作OG⊥MC于,OH⊥MB于,如图所示:则∠OGC=∠OHD=90∘,在△OCG和△ODH中,,∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,当∠DOM=∠AOM时,OM才平分∠BOC,假设,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,∴∠COM=∠BOM,在△COM和中,{∠COM=∠BOM,OM=OM,∠CMO=∠BMO,,∴OB=OC,,∴OA=OC,与矛盾,∴③错误.正确的个数有3个.【知识点】角边角9. 【答案】A【知识点】等腰三角形的判定10. 【答案】C【解析】如图所示,由折叠过程可知:,∠MEF=∠BEF,∵∠AEH+∠AHE=90∘,∠HEM+∠MEF=90∘,∴∠MEF=∠BEF=∠AHE,同理可得∠EHM=∠DGH=∠GFN,∴∠HEM=∠FGN;在与△GFN中,{∠HME=∠FNG,EM=NG,∠HEM=∠FGN,,∴NF=HM=AH=FC,,在Rt△EFH中,由勾股定理知EH2+EF2=HF2=AD2,.【知识点】折叠问题、对应边相等、角边角、勾股定理11. 【答案】D【解析】作CH⊥x轴于H点,如图,设,∴n=√3m,∴tan∠AOB=ABOB=√3,∴∠AOB=60∘,∵OA=4,∴OB=2,,∵△ABO绕点B逆时针旋转60∘,得到△CBD,,∠ABC=60∘,∴∠CBH=30∘,BC=√3,BH=√3CH=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,点坐标为(−1,√3).【知识点】坐标平面内图形的旋转变换、正切、正比例函数的图象12. 【答案】D【解析】如图:① ∵∠BAC=∠DAE=90∘,,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(),∴BD=CE①正确;② ∵∠BAC=90∘,AB=AC,∴∠ABC=45∘,∴∠ABD+∠DBC=45∘.∴∠ACE+∠DBC=45∘,②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90∘,∴∠ABD+∠AFB=90∘,.∵∠DFC=∠AFB,,∴∠FDC=90∘.∴BD⊥CE,∴③正确;④ ∵∠BAC=∠DAE=90∘,∠BAC+∠DAE+∠BAE+∠DAC=360∘,∴∠BAE+∠DAC=180∘,故④正确.所以①②③④都正确,共计4个.【知识点】等腰直角三角形、边角边13. 【答案】C【解析】,为边AC的中点,,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60∘,∵∠B=50∘,∴∠BCD+∠BDC=130∘,和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65∘,∴∠CED=115∘,.【知识点】直角三角形斜边的中线、等边三角形三个角相等,都等于60°14. 【答案】C【解析】A、若三边为,2,2,则此三边构成等边三角形,三个角相等,所以这个三角形不是“完美三角形”,所以A选项不符合题意;B、若三边为1,,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“完美三角形”,所以B选项不符合题意;C、若三边为2,,,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“完美三角形”,所以C选项符合题意;D、若三边为,,,由于12+(√3)2=22,此三边构成一个直角三角形,最小角为30∘,所以这个三角形不是“完美三角形”,所以D选项不符合题意.故选:C.【知识点】30度所对的直角边等于斜边的一半、勾股逆定理15. 【答案】B【解析】如图,连接AC交BD于点,以AD为边向上作等边△ADJ,连接JF,,JD,JM.四边形是矩形,∴∠ADC=90∘,,AC=4√3,∴sin∠ACD=ADAC =4√3=√32,∴∠ACD=60∘,,∵DF⊥DE,,∴∠EFD=30∘,是等边三角形,∴∠AJD=60∘,∴∠AFD=12∠AJD,∴点的运动轨迹是以J为圆心JA为半径的圆,当点F在MJ的延长线上时,FM的值最大,此时,JM=√(4√3)2+32=√57,∴FM的最大值为6+√57.【知识点】勾股定理、圆周角定理及其推理16. 【答案】C【解析】在Rt△BDP和Rt△BFP中,{PD=PF, BP=BP,∴Rt△BDP≌Rt△BFP(HL),,在Rt△CEP和Rt△CFP中,{PE=PF,PC=PC,,∴∠ACP=∠FCP,∵∠ACF是的外角,,两边都除以2,得:12∠ABC+12∠BAC=12∠ACF,即∠PBC+12∠BAC=∠FCP,∵∠PCF是△BCP的外角,,∴∠BPC=12∠BAC=12×70∘=35∘.【知识点】斜边、直角边17. 【答案】C【知识点】勾股定理18. 【答案】B【解析】因为四边形ABCD是矩形,所以,AD=BC=4,因为是AC的垂直平分线,所以AE=CE,设CE=x,则ED=AD−AE=4−x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4−x)2,,解得:x=52即CE的长为5,,2所以△DCE的面积.【知识点】矩形的性质、垂直平分线的性质、勾股定理19. 【答案】B【知识点】三角形的三边关系20. 【答案】C【解析】过点C作的垂线交于点G,作AF⊥BC交BC于点F,作交BA的延长线于点E,,AB=AC=AD=2,,∴CF=12∴AF=√AC2−CF2=√15.2又,,∴CG=√154∴AG=√AC2−CG2=7,,∵DE⊥AB,CG⊥AB,,又∵CD∥AB,∠CGE=90∘,∴四边形是矩形,,∴DE=CG=√154又,∠CGA=∠DEA=90∘,∴△DEA≌△CGA(HL),∴EA=AG,,∴BE=2AG+BG=154。

浙江省八年级数学上学期期末试卷(含解析)浙教版

浙江省八年级数学上学期期末试卷(含解析)浙教版

八年级(上)期末数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.三根木条的长度如图,能组成三角形的是()A.B.C.D.2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)3.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b| D.由a>b,得a2>b24.若点P(a,4﹣a)是第二象限的点,则a必须满足()A.a<4 B.a>4 C.a<0 D.0<a<45.点A(﹣4,0)与点B(4,0)是()A.关于y轴对称 B.关于x轴对称C.关于坐标轴都对称 D.以上答案都错6.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80° C.70° D.50°8.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.310.若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7二、认真填一填(本题有6小题,每小题4分,共24分)11.“x减去y不大于﹣4”用不等式可表示为.12.函数y=中自变量x的取值范围是.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.若直角三角形的两个锐角之差为25°,则较小角的度数为.15.如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是.16.在平面直角坐标系xOy中,有点A(2,1)和点B,若△AOB为等腰直角三角形,则点B的坐标为.三、解答题(本大题有8小题,共66分)17.已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(﹣2,﹣3).画出示意图,然后写出其他各顶点的坐标.18.在直角三角形ABC中,∠C=90°,AB=5,BC=3.求斜边上的高线及中线的长.19.已知线段a,c(如图),用直尺和圆规作Rt△ABC,使∠C=Rt∠,BC=a,AB=c.(温馨提醒:1.请保留作图痕迹,不用写作法;2.如果用直尺和圆规无法作出符合条件的图形时,用三角板、量角器等工具画图,分数也可得5分)20.解不等式组(1)5x+3<3(2+x)(2).21.一次函数y=kx+4的图象过点(﹣1,7).(1)求k的值;(2)判断点(a,﹣3a+4)是否在该函数图象上,并说明理由.22.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AM B=70°,求∠N的度数.23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段以期待达到节水的目的,图是此区自来水厂对居民某月用水量x吨与水费y元的函数图象(水费按月结算).(1)填空价目表(2)若某户居民9月份用水量为9.5吨,求该用户9月份水费;(3)若某户居民10月份水费30元,求该用户10月份用水量;(4)若某户居民11月、12月共用水18吨,其中11月用水a(吨),用含a的代数式表示该户居民11月、12月共应交水费Q(元).参考答案与试题解析一、仔细选一选(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.三根木条的长度如图,能组成三角形的是()A.B.C.D.【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,可选出答案.【解答】解:A、2+2=4<5,不能构成三角形,故此选项错误;B、2+2=4,不能构成三角形,故此选项错误;C、2+3=5,不能构成三角形,故此选项错误;D、2+2=5>4,能构成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6) D.(3,﹣4)【考点】点的坐标.【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得﹣2a<﹣2bC.由a>b,得|a|>|b| D.由a>b,得a2>b2【考点】不等式的性质.【专题】应用题.【分析】根据不等式的性质判断即可.要注意选项C中a,b的正负性.【解答】解:A、由a>b,得a﹣2>b﹣2,故选项错误;B、由a>b,得﹣2a<﹣2b,故选项正确;C、a>b>0时,才有|a|>|b|,0>a>b时,有|a|<|b|,故选项错误;D、1>a>b>0时,a2<b2,故选项错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.若点P(a,4﹣a)是第二象限的点,则a必须满足()A.a<4 B.a>4 C.a<0 D.0<a<4【考点】点的坐标.【分析】根据点P在第二象限内,那么点的横坐标<0,纵坐标>0,可得到关于a的两不等式,求a的范围即可.【解答】解:∵点P(a,4﹣a)是第二象限的点,∴a<0,4﹣a>0,解得:a<0.故选C.【点评】本题主要考查了平面直角坐标系中各个象限内点的坐标的符号特点及不等式的解法,牢记四个象限的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.点A(﹣4,0)与点B(4,0)是()A.关于y轴对称 B.关于x轴对称C.关于坐标轴都对称 D.以上答案都错【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:点A(﹣4,0)与点B(4,0)是关于y轴对称,故选:A.【点评】本题考查了关于y轴对称的点的坐标,关于y轴对称的点的横坐标互为相反数,纵坐标相等.6.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)【考点】一次函数图象与几何变换;正比例函数的性质.【分析】根据平移性质可由已知的解析式写出新的解析式.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=2(x﹣2).故选C.【点评】能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx ±|b|.7.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80° C.70° D.50°【考点】三角形的外角性质;三角形内角和定理.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【点评】本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.8.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.9.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3【考点】两条直线相交或平行问题.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.10.若关于x的不等式的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.二、认真填一填(本题有6小题,每小题4分,共24分)11.“x减去y不大于﹣4”用不等式可表示为x﹣y≤﹣4 .【考点】由实际问题抽象出一元一次不等式.【分析】x减去y即为x﹣y,不大于即≤,据此列不等式.【解答】解:由题意得,x﹣y≤﹣4.故答案为:x﹣y≤﹣4.【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.函数y=中自变量x的取值范围是x≠.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1≠0,解得x≠.故答案为:x≠.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是∠APO=∠BPO等(只写一个即可,不添加辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP.【解答】解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO等.【点评】此题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.14.若直角三角形的两个锐角之差为25°,则较小角的度数为32.5°.【考点】直角三角形的性质.【分析】根据直角三角形中两锐角和为90°,再根据两个锐角之差为25°,设其中一个角为x,则另一个为90°﹣x,即可求出最小的锐角度数.【解答】解:∵两个锐角和是90°,∴设一个锐角为x,则另一个锐角为90°﹣x,∵一个直角三角形两个锐角的差为25°,得:90°﹣x﹣x=25°,得:x=32.5°,∴较小的锐角的度数是32.5°.故答案为:32.5°.【点评】本题考查了直角三角形的性质,两锐角和为90°,关键是根据两锐角的关系设出未知数,列出方程.15.如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是﹣2≤a≤2 .【考点】坐标与图形性质;一次函数的性质;矩形的性质.【专题】压轴题;动点型.【分析】P点在x轴上,根据对称性,求出在一边的最远距离后便可求出取值范围.【解答】解:连接QC延长与x轴相交于P1,根据中位线定理可知OP1=2,连接QD延长与x轴交于点P2,则OP2=2,所以实数a的取值范围是﹣2≤a≤2.故答案为:﹣2≤a≤2.【点评】主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式有机的和图形结合起来求解的方法.关键是找到最大值和最小值.16.在平面直角坐标系xOy中,有点A(2,1)和点B,若△AOB为等腰直角三角形,则点B的坐标为(1,﹣2),(﹣1,2),(3,﹣1),(1,3),(,﹣)或(,).【考点】等腰直角三角形;坐标与图形性质.【分析】首先画出坐标系,分别以O为直角顶点,B为直角顶点,A为直角顶点,利用坐标系找出B 点坐标,注意要细心,不要漏解.【解答】解:如图所示,故答案为:(1,﹣2),(﹣1,2),(3,﹣1),(1,3),(,﹣)或(,).【点评】此题主要考查了坐标与图形,以及勾股定理逆定理的应用,关键是要分类讨论,不要漏解.三、解答题(本大题有8小题,共66分)17.已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(﹣2,﹣3).画出示意图,然后写出其他各顶点的坐标.【考点】坐标与图形性质.【专题】作图题.【分析】根据题意可以画出相应的长方形、建立合适的坐标系,写出各点的坐标.【解答】解:由题意可得,如下图所示,点A的坐标为(﹣2,﹣3),则其他各点的坐标是:B(4,﹣3)、C(4,1)、D(﹣2,1).【点评】本题考查坐标与图形的性质,是一道开放性的题目,解题的关键是画出符合要求的图形,写出相应的各点的坐标,注意画出的图形不同,写出的点的坐标也不相同.18.在直角三角形ABC中,∠C=90°,AB=5,BC=3.求斜边上的高线及中线的长.【考点】勾股定理.【分析】根据直角三角形的性质可求斜边上中线的长,根据勾股定理求得AC的长,再根据面积公式求得斜边上的高线的长.【解答】解:∵在直角三角形ABC中,∠C=90°,AB=5,BC=3,∴斜边上中线的长=AB=2.5,根据勾股定理,得:AC==4,三角形的面积是×3×4=6,AB边上的高为=2.4.【点评】本题考查了勾股定理,熟练运用勾股定理进行计算.注意:直角三角形的面积等于两条直角边的乘积的一半;直角三角形的斜边上的高等于两条直角边的乘积除以斜边.19.已知线段a,c(如图),用直尺和圆规作Rt△ABC,使∠C=Rt∠,BC=a,AB=c.(温馨提醒:1.请保留作图痕迹,不用写作法;2.如果用直尺和圆规无法作出符合条件的图形时,用三角板、量角器等工具画图,分数也可得5分)【考点】作图—复杂作图.【分析】先在直线m上截取CB=a,再过点C作直线m的垂线n,然后以点B为圆心,c长为半径作弧交直线n于点A,则△ABC为所作.【解答】解:如图,△ABC为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.解不等式组(1)5x+3<3(2+x)(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)去括号得,5x+3<6+3x,移项得,5x﹣3x<6﹣3,合并同类项得,2x<3,把x的系数化为1得,x<;(2),由①得,x>,由②得,x≤4,故不等式组的解集为:<x≤4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.一次函数y=kx+4的图象过点(﹣1,7).(1)求k的值;(2)判断点(a,﹣3a+4)是否在该函数图象上,并说明理由.【考点】一次函数图象上点的坐标特征.【分析】(1)将已知点坐标代入一次函数解析式中即可求出k的值;(2)把点(a,﹣3a+4)代入解析式即可判断.【解答】解:(1)把x=﹣1,y=7代入y=kx+4中,可得:7=﹣k+4,解得:k=﹣3,(2)把x=a代入y=﹣3x+4中,可得:y=﹣3a+4,所以点(a,﹣3a+4)在该函数图象上.【点评】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,若∠AMB=70°,求∠N的度数.【考点】全等三角形的判定与性质.【分析】(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.【解答】解:(1)在△ABC和△DCB中,,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形,∴∠N=∠BMC,∵∠AMB=70°,∴∠N=∠BMC=110°.【点评】此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.23.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.【考点】勾股定理;全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS 得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【解答】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2.【点评】本题考查三角形全等的判定方法,及勾股定理的运用.24.为了加强公民的节水意识,合理利用水资源,某区采用价格调控手段以期待达到节水的目的,图是此区自来水厂对居民某月用水量x吨与水费y元的函数图象(水费按月结算).(1)填空价目表(2)若某户居民9月份用水量为9.5吨,求该用户9月份水费;(3)若某户居民10月份水费30元,求该用户10月份用水量;(4)若某户居民11月、12月共用水18吨,其中11月用水a(吨),用含a的代数式表示该户居民11月、12月共应交水费Q(元).【考点】一次函数的应用.【专题】应用题.【分析】(1)利用函数图象,用水量除以总水费可得各阶段的水费单价;(2)9月份用水量为9.5吨,用水量超出6吨不超出10吨的部分,则前面6吨缴12元,超过的3.5吨按4元每吨缴费;(3)10月份水费30元,说明用水量超过10吨,前面10吨的费用为28元,超过10吨部分按每吨8元缴费,于是设该用户10月份用水量为x吨得到28+8(x﹣10)=30,然后解方程即可;(4)分类讨论:当0≤a≤6、6<a≤8、8<a≤10、10<a≤12、12<a≤18,确定11月和12月用水量在哪个阶段,然后乘以对应的水价表示出每个月的水费,再把两个月的水费相加即可.【解答】解:(1)12÷6=2,(28﹣12)÷(10﹣6)=4,(40﹣28)÷(11.5﹣10)=8,所以用水量不超出6吨时,每吨2元;用水量超出6吨不超出10吨时,每吨4元;用水量超出10吨时,每吨8元;故答案为2,4,8;(2)该用户9月份水费=12+4(9.5﹣6)=26(元);(3)设该用户10月份用水量为x吨,28+8(x﹣10)=30,解得x=10.25(吨),即该用户10月份用水量为10.25钝;(4)11月用水a(吨),12月用水(18﹣a)吨,当0≤a≤6时,Q=2a+28+8(18﹣a﹣10)=﹣6a+92;当6<a≤8时,Q=12+4(a﹣6)+28+8(18﹣a﹣10)=﹣4a+80;当8<a≤10时,Q=12+4(a﹣6)+12+4(18﹣a﹣6)=48;当10<a≤12时,Q=28+8(a﹣10)+12+4(18﹣a﹣6)=4a+8;当12<a≤18时,Q=28+8(a﹣10)+2(18﹣a)=6a﹣16,【点评】本题考查为一次函数的应用:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.解决(4)小题时要同时考虑11月和12月的用水量的范围.21。

浙教版八年级上学期期末数学试卷含答案详解

浙教版八年级上学期期末数学试卷含答案详解

八年级上学期期末数学试卷一、选择题:每小题2分,共20分.1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°2.若a<b,则下列各式中一定成立的是()A.﹣a<﹣b B.2a>2b C.a﹣1<b﹣1D.ac2<bc2A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°4.如图,是一台自动测温记录仪的图象,它反映了嵊州市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3∠B.从0时至14时,气温随时间增长而上升C.14时气温最高为8∠D.从14时至24时,气温随时间增长而下降5.如图,在方格纸中,以AB为一边作∠ABP,使之与∠ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点8.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.69.运算与推理以下是甲、乙两人得到+>的推理过程:(甲)因为>=3,>=2,所以+>3+2=5.又=<=5,所以+>.(乙)作一个直角三角形,两直角边长分别为,.利用勾股定理得斜边长的平方为,所以+>.对于两个人的推理,下列说法中正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确10.如图,函数y=mx﹣4m(m是常数,且m≠0)的图象分别交x轴、y轴于点M、N,线段MN 上两点A、B(点B在点A的右侧),作AA1∠x轴,BB1∠x轴,且垂足分别为A1,B1,若OA1+OB1>4,则∠OA1A的面积S1与∠OB1B的面积S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不确定的二、填空题:每小题3分,共30分.11.函数中自变量x的取值范围是.13.不等式3x﹣6<4x﹣2的最小整数解是.14.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.15.如图,在平面直角坐标系中,点A的坐标为(0,4),∠OAB沿x轴向右平移后得到∠O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.16.定义新运算:对于任意实数a,b都有:a∠b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2∠5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3∠x<13的解集为.17.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.18.如图,在∠ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AC=9,则CP的长为.19.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为26,请写出符合条件的所有x的值.20.如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持∠ABC 是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是.随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是.三、解答题21.解不等式(组)(1)2x﹣7≤3(x﹣1)(2)并写出它的整数解.22.如图,点B、C、E、F在同一直线上,BC=EF,AC∠BC于点C,DF∠EF于点F,AC=DF.求证:(1)∠ABC∠∠DEF;(2)AB∠DE.23.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,∠ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将∠ABC沿y轴正方向平移3个单位得到∠A1B1C1,画出∠A1B1C1,并写出点B1坐标;(2)画出∠A1B1C1关于y轴对称的∠A2B2C2,并写出点C2的坐标.24.如图,∠ABC中,∠C=90°,边AB的垂直平分线交AB、AC边分别为点D,点E,连结BE.(1)若∠A=40°,求∠CBE的度数.(2)若AB=10,BC=6,求∠BCE的周长.25.某厂每天只生产A、B两种型号的丝巾,共600条,A、B两种型号的丝巾每条的成本和利润如表,设每天生产A型号丝巾x条,该厂每天获利y元.A B成本(元/条)5035利润(元/条)2015(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本26400元,那么每天至少获利多少元.26.已知:如图,∠ABC中的顶点A、C分别在平面直角坐标系的x轴、y轴上,且∠ACB=90°,AC=2,BC=1,当点A从原点出发朝x轴的正方向运动,点C也随之在y轴上运动,当点C运动到原点时点A停止运动,连结OB.(1)点A在原点时,求OB的长;(2)当OA=OC时,求OB的长;(3)在整个运动过程中,OB是否存在最大值?若存在,请你求出这个最大值;若不存在,请说明理由.四、附加题:每小题10分,共20分。

【浙教版】八年级数学上期末试卷及答案(4)

【浙教版】八年级数学上期末试卷及答案(4)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒ 2.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 3.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒4.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩5.如图,方格中的任一行、任一列及对角线上的数的和都相等,则m 等于( )A .14B .10C .13D .96.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.如图,已知正比例函数1y ax =与一次函数212y x b =-+的图象交于点P .下面有四个结论:①0a >;②0b <;③当0x <时,10y <;④当2x >时,12y y <.其中正确的是( )A .①②B .②④C .③④D .①③ 8.如图,若直线y=kx+b 与x 轴交于点A (-4,0),与y 轴正半轴交于B ,且△OAB 的面积为4,则该直线的解析式为( )A .y=12x+2B .y=2x+2C .y=4x+4D .y=14x+4 9.如图,若弹簧的总长度y (cm )是关于所挂重物x (kg )的一次函数y =kx +b ,则不挂重物时,弹簧的长度是( )A .5cmB .8cmC .9cmD .10cm10.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为( ) A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4) 11.下列二次根式中,最简二次根式是()A.7B.9C.12D.2 312.下列各组数是勾股数的是()A.4,5,6B.5,7,9C.6,8,10D.10,11,12二、填空题13.如图所示,D是ABC的边BC上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=_________.14.如图,A,B分别是线段OC,OD上的点,OC=OD,OA=OB,若∠O=60°,∠C=25°,则∠BED的度数是_____度.15.如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,ABC的顶点均在格点上.请按要求完成下列各问题:(1)ABC 的周长等于 (结果保留根号) (2)点1C 与点C 关于 y 轴对称的,则点1C 的坐标为 .(3)在 x 轴上找到一点P ,若使PA PB +最小,此时点P 坐标为 ;若使PA PB -最大,此时P 点坐标为 .16.如图,已知一次函数14y x b =+的图象与x 轴、一次函数22y x =-的图象分别交于点C ,D ,点D 的坐标为(2,)m -.若在x 轴上存在点E ,使得以点C ,D ,E 为顶点的三角形是直角三角形,请写出点E 的坐标__________.17.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______. 18.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.19.定义运算“@”的运算法则为:xy 4+,则2@6 =____.20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .22.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?23.为了落实政府的“精准扶贫”政策,某县政府准备购买A 、B 两种类型的化肥,通过市场调研得知:购买2袋A 种化肥和3袋B 种化肥共需560元;购买3袋A 种化肥比购买2袋B 种化肥多用60元.(1)每袋A 种化肥和B 种化肥各多少元?(2)现某村组需要购买A ,B 两种类型的化肥共30袋,设购买A 种化肥a 袋,购买A 种化肥和B 种化肥的总费用为w 元,如果购买A 种化肥的数量不超过15袋,求购买这批化肥的最少费用.24.如图,(1)在网格中画出ABC ∆关于y 轴对称的111A B C ∆;(2)写出ABC ∆关于x 轴对称的222A B C ∆的各顶点坐标;(3)在y 轴上确定一点P ,使PAB ∆周长最短.只需作图,保留作图痕迹. 25.已知;53a =53b =(1)ab ;(2)223a ab b -+;26.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【详解】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D.【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m为正数”时,应先假设m为负数或零故选:C.【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.3.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.4.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组.5.D解析:D【分析】如图,根据题意得121211161115121116x y x ++=++⎧⎨++=++⎩,求出1314x y =⎧⎨=⎩,根据16+m+y=12+11+16,求出答案.【详解】 如图,由题意得121211161115121116x y x ++=++⎧⎨++=++⎩, 解得1314x y =⎧⎨=⎩, ∵16+m+y=12+11+16,∴16+m+14=39,解得m=9,故选:D ..【点睛】此题考查二元一次方程组的应用,根据题意设出未知数列方程组解决问题是解题的关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.D解析:D【分析】利用两函数图象结合与坐标轴交点进而分别分析得出答案.【详解】如图所示:∵y 1=ax ,经过第一、三象限,∴a >0,故①正确; ∵212y x b =-+与y 轴交在正半轴, ∴b >0,故②错误;∵正比例函数y 1=ax ,经过原点, ∴当x <0时,函数图像位于x 轴下方,∴y 1<0;故③正确;当x >2时,y 1>y 2,故④错误.故选:D .【点睛】此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.8.A解析:A【分析】先利用三角形面积公式求出OB=2得到B (0,2),然后利用待定系数法求直线解析式.【详解】∵A (-4,0),∴OA=4,∵△OAB 的面积为4∵12×4×OB=4,解得OB=2,∴B (0,2),把A (-4,0),B (0,2)代入y=kx+b ,402k b b -⎨⎩+⎧==, 解得122k b ⎧⎨⎩==, ∴直线解析式为y=12x+2.故选:A .【点睛】本题考查了待定系数法求一次函数关系式:设一次函数解析式为y=kx+b (k ≠0),要有两组对应量确定解析式,即得到k ,b 的二元一次方程组.9.B解析:B【分析】利用待定系数法求解一次函数的关系式,再令x =0计算即可求解不挂重物时弹簧的长度.【详解】解:将(4,10),(20,18)代入y =kx +b ,得4102018k b k b +=⎧⎨+=⎩, 解得128k b ⎧=⎪⎨⎪=⎩, ∴182y x =+, 当x =0时,y =8,∴不挂重物时,弹簧的长度是8cm .故选:B .【点睛】本题考查了一次函数的应用,根据题意和图象求出函数解析式是解题关键.10.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.11.A解析:A【分析】根据最简二次根式的概念判断即可.【详解】解:A,是最简二次根式;B3,故不是最简二次根式;C=,故不是最简二次根式;D3,故不是最简二次根式;【点睛】本题考查了最简二次根式的定义,熟记定义,并能灵活进行化简,判断是解题的关键. 12.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.二、填空题13.【分析】先根据三角形的外角性质可得再根据三角形的内角和定理可得然后根据角的和差即可得的度数由此即可得【详解】又解得故答案为:【点睛】本题考查了三角形的外角性质三角形的内角和定理等知识点熟练掌握三角形 解析:24︒【分析】先根据三角形的外角性质可得4321∠=∠=∠,再根据三角形的内角和定理可得18041DAC ∠=︒-∠,然后根据角的和差即可得1∠的度数,由此即可得.【详解】12∠=∠,31221∴∠=∠+∠=∠,34∠∠=,421∴∠=∠,1804318041DAC ∴∠=︒-∠-∠=︒-∠,118031BAC DAC ∴∠=∠+∠=︒-∠,又63BAC ∠=︒,1803163∴︒-∠=︒,解得139∠=︒,1804118043924DAC ∴∠=︒-∠=︒-⨯︒=︒,故答案为:24︒.本题考查了三角形的外角性质、三角形的内角和定理等知识点,熟练掌握三角形的角的性质是解题关键.14.【分析】先根据SAS 证明△ODA ≌△OCB 可得∠D =∠C 然后根据三角形的外角性质可求出∠DBE 的度数再利用三角形的内角和定理即可求出∠BED 【详解】解:在△ODA 和△OCB 中∴△ODA ≌△OCB (S解析:【分析】先根据SAS 证明△ODA ≌△OCB ,可得∠D =∠C ,然后根据三角形的外角性质可求出∠DBE 的度数,再利用三角形的内角和定理即可求出∠BED .【详解】解:在△ODA 和△OCB 中,OD OC O O OA OB =⎧⎪∠=∠⎨⎪=⎩∴△ODA ≌△OCB (SAS ),∴∠D =∠C =25°,∵∠O =60°,∠C =25°,∴∠DBE =60°+25°=85°,∴∠BED =180°﹣85°﹣25°=70°.故答案为:70.【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及三角形的外角性质,属于常考题型,熟练掌握上述基础知识是解题的关键.15.(1);(2)(-51);(3)()(-10)【分析】(1)由图可求A (34)B(12)C (51)坐标利用勾股定理求ABBCAC 距离再求的周长=AB+AC+BC 即可;(2)点与点关于y 轴对称横坐标互解析:(1) 2)(-5,1);(3)(5,03-),(-1,0).【分析】(1)由图可求A (3,4),B (1,2),C (5,1)坐标,利用勾股定理求AB 、BC 、AC 距离,再求ABC 的周长=AB+AC+BC 即可;(2)点1C 与点C 关于 y 轴对称,横坐标互为相反数可求点1C 的坐标;(3)作点B 关于x 轴对称点B′,连结AB′交x 轴于P ,利用两点间距离AP+BP=AP+B′P≥AB′,求出B′(1,-2),设AB′解析式为:y kx b =+,将A 、B′坐标代入解析式得:342k b k b +=⎧⎨+=-⎩,求出AB′解析式为:35y x =-,求x 轴交点坐标,延长AB 交x 轴于点P ,PA PB AB -≤,设AB 的解析式为11y k x b =+,把A 、B 两点坐标代入解析式得1111342k b k b +=⎧⎨+=⎩,解方程求出AB 的解析式为1y x =+,求出x 轴交点即可. 【详解】解:(1)有图可知A (3,4),B (1,2),C (5,1),由勾股定理======ABC 的周长=AB+AC+BC=故答案为:;(2)点1C 与点C 关于 y 轴对称的,则点1C 的坐标为(-5,1),故答案为:(-5,1);(3)作点B 关于x 轴对称点B′,连结AB′交x 轴于P ,利用两点间距离AP+BP=AP+B′P≥AB′,B′(1,-2),设AB′解析式为:y kx b =+,将A 、B′坐标代入解析式得:342k b k b +=⎧⎨+=-⎩, 解得35k b =⎧⎨=-⎩, AB′解析式为:35y x =-, 当y=0,350x -=,53x =, 点P 坐标为(5,03),延长AB 交x 轴于点P ,PA PB AB -≤,设AB 的解析式为11y k x b =+, 把A 、B 两点坐标代入解析式得1111342k b k b +=⎧⎨+=⎩, 解得:1111k b =⎧⎨=⎩, AB 的解析式为1y x =+,当y=0时,10x +=,1x =-, 点P 坐标为(-1,0),故答案为:(5,03),(-1,0).【点睛】本题考查两点距离公式,三角形周长,关于y 轴对称点的坐标,线段和与差最小与最大问题,一次函数解析式,掌握两点距离公式,三角形周长,关于y 轴对称点的坐标,线段和最小与线段差最大,关键作点B 关于x 轴对称,求AB′或AB 解析式与x 轴的交点. 16.或【分析】由一次函数的图象过点D 可求D (-2-4)由点D 在一次函数的图象上可求一次函数可求C (-10)由△CDE 为直角三角形分别以点D 与点E 为直角顶点以点E 为直角顶点DE ⊥x 轴可得E (-20)以点D解析:(2,0) -或(18,0)-【分析】由一次函数22y x =-的图象过点D , 可求D (-2,-4),由点D 在一次函数14y x b =+的图象上,可求一次函数44y x =+,可求C (-1,0),由△CDE 为直角三角形,分别以点D 与点E 为直角顶点,以点E 为直角顶点,DE ⊥x 轴, 可得E (-2,0),以点D 为直角顶点,DE ⊥CD ,设点E (m ,0) 由勾股定理CD 2+DE 2=CE 2,则17+()()222+16=1m m ++解得m=-18,E(-18,0),综合即可.【详解】解:∵一次函数22y x =-的图象过点D ,点D 的坐标为(2,)m -.∴224m =--=-,D (-2,-4),∵一次函数14y x b =+的图象与一次函数22y x =-的图象点D ,∴()4=42b -⨯-+,∴=4b ,∴一次函数44y x =+,∵一次函数44y x =+的图象与x 轴交于点C ,∴y=0,44=0x +,1x =-,C (-1,0),以点E 为直角顶点,DE ⊥x 轴,点D 与点E 横坐标相同,E (-2,0),以点D 为直角顶点,DE ⊥CD ,设点E (m ,0) ,由勾股定理CE=|m+1|, ∵CD 2+DE 2=CE 2, 则17+()()222+16=1m m ++,∴解得m=-18,E(-18,0),综合点E 的坐标(-2,0)或(-18,0).【点睛】本题考查一次函数的图像与解析式的关系,待定系数法求解析式,直角三角形顶点的坐标,掌握一次函数的图像与解析式的关系点在图像上点的坐标满足解析式,待定系数法求解析式,会利用勾股定理与平行y 轴直线的特征来求直角三角形顶点的坐标是解题关键. 17.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.18.(-43)【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限第二象限中的点横坐标为负数纵坐标为正数所以点A 的坐标为(-43)故答案为:解析:(-4,3) .【分析】到x 轴的距离表示点的纵坐标的绝对值;到y 轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数. 所以点A 的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.19.4【分析】把x=2y=6代入x@y=中计算即可【详解】解:∵x@y=∴2@6==4故答案为4【点睛】本题考查了有理数的运算能力注意能由代数式转化成有理数计算的式子解析:4【分析】把x=2,y=6代入中计算即可.【详解】解:∵,∴=,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的【分析】分2种情况:①6cm 是直角边;②6cm 是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm 是直角边,7cm >(舍去);②6cm 是斜边,..【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.三、解答题21.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 22.购进甲商品240件,乙商品72件【分析】分别利用用36000元购进了甲、乙两种商品,以及两种商品销售完后共获利润6000元分别得出等式求出答案.【详解】解:设购进甲商品x 件,乙商品y 件,根据题意可得:()()120100360001301201501006000x y x y +=⎧⎨-+-=⎩, 解得: 24072x y =⎧⎨=⎩答:购进甲商品240件,乙商品72件.【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.23.(1)A 种化肥100元一袋,B 种化肥120元一袋;(2)3300元.【分析】(1)设A 种化肥x 元一袋,B 种化肥y 元一袋,根据“购买2袋A 种化肥和3袋B 种化肥共需560元;购买3袋A 种化肥比购买2袋B 种化肥多用60元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)购买A 种化肥a 袋,则购买B 种化肥(30-a)袋,根据购买A 种化肥和B 种化肥的总费用为w 元,即可得出关一次函数解析式,再根据且购买A 种化肥的数量不超过15袋,即可得出函数值.【详解】解:(1)设A 种化肥x 元一袋,B 种化肥y 元一袋,依题意,得:235603260x y x y +=⎧⎨-=⎩, 解得:100120x y =⎧⎨=⎩. 答:A 种化肥100元一袋,B 种化肥120元一袋.(2)由题意得,w=100a+120(30-a)=-20a+3600,∵-20<0,∴w 随a 的增大而减小,又∵0<a≤15,∴当a=15时,w 最小,即w 最小= -20×15+3600=3300(元),∴购买这批化肥的最少费用为3300元.【点睛】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一次函数解析式. 24.(1)如图所示,见解析;(2)222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示,见解析.【分析】(1)直接利用关于y 轴对称点的性质得出答案;(2)直接利用关于x 轴对称点的性质得出答案;(3)利用轴对称求最短路线的方法得出P 点位置即可.【详解】解:(1)如图所示:(2)∵A (-3,2),B (4-,3-),C (1-,1),∴关于x 轴对称的点分别为:222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示:【点睛】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键. 25.(1)2;(2)10.【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可.【详解】 解:53a =+,53b =-,()()5353532ab ∴=+-=-=,535323a b -=+-+= ∴ (1)ab =2 (2)()()2222323210a ab b a b ab -+=--=-=.【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.26.BC=43+3或43-3【分析】作AD ⊥BC 于D ,分点D 在线段BC 上和BC 的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD ⊥BC 于D ,分两种情况:①高BD 在线段BC 上,如图1所示:在Rt △ABD 中,BD=22228443AB AD -=-=, 在Rt △ACD 中,CD=222254AC AD -=-=3,∴BC=BD+CD=43+3;②高AD 在CB 的延长线上,如图2所示:3;综上所述,BC的长为+3或.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。

【浙教版】八年级数学上期末试卷(及答案)(3)

【浙教版】八年级数学上期末试卷(及答案)(3)

一、选择题1.下列命题的逆命题是真命题的是()A.两个全等三角形的对应角相等B.若一个三角形的两个内角分别为30和60︒,则这个三角形是直角三角形C.两个全等三角形的面积相等D.如果一个数是无限不循环小数,那么这个数是无理数2.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°3.如图,下列能判定//AB CD的条件有()个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°;(5)∠5=∠DA.1 B.2 C.3 D.44.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?()A.2300千米B.2400千米C.2500千米D.2600千米5.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐步成为人们喜爱的交通工具.某汽车公司计划正好用190万元购买A,B两种型号的新能源汽车(两种型号的汽车均购买),其中A型汽车进价为20万元/辆,B型汽车进价为30万元/辆,则A,B型号两种汽车一共最多购买()A.9辆B.8辆C.7辆D.6辆6.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.46282x yx y+=⎧⎨=+⎩B.46282y xx y+=⎧⎨=+⎩C.46282x yx y+=⎧⎨=-⎩D.46282y xx y+=⎧⎨=-⎩7.如图,一次函数y=kx+b图象与x轴的交点坐标是(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的是()A .①和②B .①和③C .②和③D .①②③都正确 8.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .9.直线1:l y kx a =+如图所示,则下列关于直线2:2l y ax a =+的说法错误的是( )A .直线2l 一定经过点(2,0)-B .直线2l 经过第一、二、三象限C .直线2l 与坐标轴围成的三角形的面积为2D .直线2l 与直线3:2l y ax a =-+关于y 轴对称10.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a b a b +-的值是( ) A .15- B .15 C .﹣5D .5 11.下列命题是真命题的是( )A .同位角相等B .算术平方根等于自身的数只有1C .直角三角形的两锐角互余D .如果22a b =,那么a b =12.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .7二、填空题13.如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整:解:因为AD BC ⊥,EF BC ⊥,所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF , 根据“ ”,所以1CAD ∠∠=.因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.14.完成下面的证明:已知:如图,AB ∥DE ,求证:∠D+∠BCD-∠B=180°,证明:过点C 作CF ∥AB .∵AB ∥CF (已知),∴∠B= (1) ( 依据: (2) ).∵AB ∥DE ,CF ∥AB( 已知 ) ,∴CF ∥DE (依据: (3) )∴∠2+ (4) =180° ( 依据: (5) )∵∠2=∠BCD -∠1,∴∠D+∠BCD-∠B=180°.15.有一个蓄水池,池内原有水60m 3,现在向蓄水池注水,已知池内总水量y 与注水时间x 具有如下关系:注水时间x(min )0 1 2 3 … 池内水量y(m 3) 60 72 84 96 …式为_____.16.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax c by x d-=⎧⎨-=⎩的解为______. 17.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________.18.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______. 19.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.20.如图,Rt ABC 中,90C ∠=︒,AB 的垂直平分线交BC 于点E ,若:5BE =,3CE =,则AC =_________.三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问:甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m 人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人?23.已知一次函数()1240y mx m m =-+≠.(1)判断点()2,4是否在该一次函数的图象上,并说明理由;(2)若一次函数26y x =-+,当0m >,试比较函数值1y 与2y 的大小;(3)函数1y 随x 的增大而减小,且与y 轴交于点A ,若点A 到坐标原点的距离小于6,点B ,C 的坐标分别为()0,2-,()2,1.求ABC 面积的取值范围.24.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A 地,黄军的指挥所地B 地,A 地在B 地的正西边(如图).部队司令部在C 地.C 在A 的北偏东60︒方向上、在B 的北偏东30方向上.(1)BAC ∠=______°;(2)请在图中确定(画出)C 的位置,标出字母C ;(3)演习前,司令部要蓝军、黄军派人到C 地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地.已知吉普车行驶了18分钟.A 到C 的距离是B 到C 的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B 地到C 地的距离(速度单位用:千米/时).25.计算:0112(2020)9()3π-----26.如图,在△ABC 中,∠C =90°,将△ACE 沿着AE 折叠以后C 点正好落在AB 边上的点D 处.(1)当∠B =28°时,求∠CAE 的度数;(2)当AC =6,AB =10时,求线段DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据原命题分别写出逆命题,然后再判断真假即可.【详解】A 、两个全等三角形的对应角相等,逆命题是:对应角相等的两个三角形全等,是假命题;B 、若一个三角形的两个内角分别为 30° 和 60° ,则这个三角形是直角三角形,逆命题是:如果一个三角形是直角三角形,那么它的两个内角分别为 30° 和 60° ,是假命题;C 、两个全等三角形的面积相等,逆命题是:面积相等的两个三角形全等,是假命题;D 、如果一个数是无限不循环小数,那么这个数是无理数,逆命题是:如果一个数是无理数,那么这个数是无限不循环小数 ,是真命题. 故选:D【点睛】本题考查了命题与定理,解决本题的关键是掌握真命题.2.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.3.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.B解析:B【分析】设每个新轮胎报废时的总磨损量为k ,一对新轮胎交换位置前走了x km ,交换位置后走了y km ,根据交换前磨损总量和交换后的磨损总量相等,可列出方程组,解方程组即可.【详解】解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为3000k ,安装在后轮的轮胎每行驶1km 的磨损量为2000k , 又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有3000200030002000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相加,得()()230002000k x y k x y k +++=, 则x +y =2400, ∴安装在自行车上的这对轮胎最多可行驶2400千米.故选:B .【点睛】本题考查了应用类问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键. 5.A解析:A【分析】设购买A ,B 型号汽车分别购买m ,n 辆,列出二元一次方程,根据m ,n 的实际意义,分别求出m ,n 的对应值,即可求解.【详解】设购买A ,B 型号汽车分别购买m ,n 辆,∵两种型号的汽车均购买,∴m≥1,n≥1,且m ,n 均为整数,由题意得:20m+30n=190,即2m+3n=19,∴1≤n≤5,又∵2m 为偶数,则3n 为奇数,∴n 为奇数,即:n=1,3,5,当n=1时,m=8,当n=3时,m=5,当n=5时,m=2,∴A ,B 型号两种汽车一共最多购买9辆.故选A.【点睛】本题主要考查二元一次方程的实际应用,根据等量关系,列出方程,是解题的关键. 6.A解析:A设小亮买了甲种水果x 千克,乙种水果y 千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【详解】设小亮买了甲种水果x 千克,乙种水果y 千克,由题意得:46282x y x y +=⎧⎨=+⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.7.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.8.A解析:A【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象.【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大,∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限.故选A .【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键. 9.C解析:C取2x =-,代入计算2y ax a =+求得y 值,可判断A ;由直线1l 可得到0a >,推出直线2l 所经过的象限,即可判断B ;求得直线2l 与坐标轴围成的面积,可判断C ;分别求得直线2l 和直线3l 与与坐标轴的交点坐标,即可判断D .【详解】A 、当2x =-时,220y a a =-+=,所以直线2l 一定经过点(-2,0),选项A 正确;B 、由直线1l 的图象知:0a >,则直线2l 经过第一、二、三象限,选项B 正确;C 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),则直线2l 与坐标轴围成的三角形的面积为12222a a ⨯⨯=,选项C 错误,符合题意; D 、直线2l 与x 轴相交于点(-2,0),与y 轴相交于点(0,2a ),直线3l 与x 轴相交于点(2,0),与y 轴相交于点(0,2a ),而点(-2,0)与点(2,0)关于y 轴对称,则直线2l 与直线3l 关于y 轴对称,选项D 正确;故选:C .【点睛】本题主要考查了一次函数的图象和性质,一次函数的图象与坐标轴围成的三角形的面积,一次函数图象与几何变换,熟练掌握一次函数图象与性质是解题的关键.10.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =, 则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 11.C解析:C【分析】根据同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质判断即可.【详解】解:A 、同位角不一定相等,原命题是假命题;B 、算术平方根等于自身的数有1和0,原命题是假命题;C、直角三角形两锐角互余,是真命题;D、如果a2=b2,那么a=b或a=-b,原命题是假命题;故选:C.【点睛】本题考查了命题的真假判断,包括同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.12.D解析:D【分析】根据“AAS”可得到△ABC≌△CDE,由勾股定理可得到b的面积=a的面积+c的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,∵∠ABC=∠CDE,AC=CE,∴△ABC≌△CDE,∴BC=DE,∵AC2=AB2+BC2,∴AC2=AB2+DE2,∴b的面积=a的面积+c的面积=3+4=7.故答案为:D.【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.二、填空题13.两直线平行同位角相等;同位角相等两直线平行;AC;两直线平行内错角相等【分析】根据平行线的判定和性质解题【详解】解:因为AD⊥BCEF⊥BC 所以∠ADC=∠EFC=90°根据同位角相等两直线平行所以解析:两直线平行,同位角相等;同位角相等,两直线平行;AC;两直线平行,内错角相等.【分析】根据平行线的判定和性质解题.【详解】解:因为AD⊥BC,EF⊥BC,所以∠ADC=∠EFC=90°,根据“同位角相等,两直线平行”,所以AD//EF,根据“两直线平行,同位角相等”,所以∠1=∠CAD.因为∠3=∠C,根据“同位角相等,两直线平行”,所以DG//AC,根据“两直线平行,内错角相等”,所以∠2=∠CAD.所以∠1=∠2.故答案为:两直线平行,同位角相等;同位角相等,两直线平行;AC;两直线平行,内错角相等.【点睛】本题考查平行线的判定和性质,根据题目已知条件灵活运用平行线的判定和性质求解是解题关键.14.(1)∠1(2)两直线平行内错角相等(3)平行于同一条直线的两条直线互相平行(4)∠D(5)两直线平行同旁内角互补【分析】过点C作CF∥AB推出AB∥CF∥DE 根据平行线的性质得出∠B=∠1∠2+∠解析:(1)∠1,(2)两直线平行,内错角相等,(3)平行于同一条直线的两条直线互相平行,(4)∠D,(5)两直线平行,同旁内角互补.【分析】过点C作CF∥AB,推出AB∥CF∥DE,根据平行线的性质得出∠B=∠1,∠2+∠D=180°,即可推出答案.【详解】证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=∠1(两直线平行,内错角相等),∵AB∥DE,CF∥AB(已知),∴CF∥DE(平行于同一条直线的两条直线互相平行),∴∠2+∠D=180°(两直线平行,同旁内角互补),∵∠2=∠BCD-∠1(已知),∴∠D+∠BCD+∠B=180°(等量代换),故答案为:(1)∠1,(2)两直线平行,内错角相等,(3)平行于同一条直线的两条直线互相平行,(4)∠D,(5)两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质和判定的应用,解题的关键是能正确作出辅助线,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.15.y=12x+60【分析】设直线的解析式为y=kx+b 从表中任意选取两点代入解析式转化为方程求解即可【详解】解:设直线的解析式为y=kx+b 把(060)和(172)分别代入解析式得解得∴直线的解析式为解析:y=12x+60.【分析】设直线的解析式为y=kx+b ,从表中任意选取两点代入解析式,转化为方程求解即可.【详解】解:设直线的解析式为y=kx+b ,把(0,60)和(1,72)分别代入解析式,得6072b k b =⎧⎨+=⎩, 解得1260k b =⎧⎨=⎩, ∴直线的解析式为y=12x+60,故答案为:y=12x+60.【点睛】本题考查了待定系数法确定一次函数的解析式,熟练掌握待定系数法,灵活求解二元一次方程组是解题的关键.16.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12x y =-⎧⎨=⎩ 【分析】用换元法求解即可.【详解】解:∵y ax c by x d-=⎧⎨-=⎩, ∴()()()()a x y c xb y d ⎧---=⎪⎨---=⎪⎩, ∵方程组ax yc x byd -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩, ∴12x y -=⎧⎨-=-⎩, ∴12x y =-⎧⎨=⎩,故答案为:12x y =-⎧⎨=⎩. 【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.17.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.18.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.19.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】343cm,解:∵一个正方体的木块的体积是3∴正方体的棱长为3343=7(cm3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm3),∴每个小正方体的表面积为6×3.52=73.5(cm3).故答案为73.5cm3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.20.4【分析】连接AE根据线段垂直平分线上的点到线段两端点的距离相等可以得到AE=BE再根据勾股定理列式求解即可【详解】解:连接AE∵DE垂直平分AB∴AE=BE∵BE=5CE=3∴AC==4故答案为:解析:4【分析】连接AE,根据线段垂直平分线上的点到线段两端点的距离相等可以得到AE=BE,再根据勾股定理列式求解即可.【详解】解:连接AE,∵DE垂直平分AB,∴AE=BE,∵BE=5,CE=3,∴2222-=-=4,53AE CE故答案为:4.【点睛】本题考查了线段垂直平分线的性质和勾股定理的运用,作辅助线构造直角三角形是解题的关键.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF,GF的同侧,并且在第三条直线BC的同旁,∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF,DE两条直线之间,并且在第三条直线AC的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF,CB两条直线之间,并且在第三条直线FG的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF∥DE,∵∠3=∠ACB,∴FG∥AC,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF∥DE;(3)由(2)知:FG∥AC,∴∠BFG=∠A=58°,∵CF⊥AB,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF是∠ACB的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.(1)甲、乙两工程队每天分别修路200米和100米;(2)8人【分析】(1)设甲工程队每天修路x米,乙工程队每天修路y米.,根据题意列出方程组求解即可;(2)设甲工程队最多可以调走m人,根据路段长6140米,在25天内合作完成和甲、乙工程每天修路的米数,列出方程,求出m的值即可;【详解】解:(1)设甲工程队每天修路x 米,乙工程队每天修路y 米.依题意,得:2400,23700.x y x y +=⎧⎨+=⎩解之得:200,100.x y =⎧⎨=⎩答:甲、乙两工程队每天分别修路200米和100米.(2)设甲工程队最多可以调走m 人.依题意,得:8×(200+100)+(25-8)×100+(25-8)×(200÷20)×(20-m) =6140.解之得:m=8.答:甲工程队最多可以调走8人.【点睛】本题考查了二元一次方程组的应用,读懂题目信息,理清题中的数量关系,找准等量关系列出方程组是解题的关键;23.(1)点()2,4在该一次函数的图象上,理由见解析;(2)当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)68ABC S △<<【分析】(1)根据一次函数的性质,将点()2,4代入到函数解析式,判断等式两边是否相等即可; (2)根据(1)中结果,即可求得两个函数的交点,根据函数的增减性即可判断函数值1y 与2y 的大小;(3)根据函数的增减性以及若点A 到坐标原点的距离小于6,确定m 的取值范围,再用m 表示出ABC 的面积,即可求得ABC 面积的取值范围.【详解】(1)将点()2,4代入到函数解析式,得,4224m m =-+,即44=,∴点()2,4在该一次函数的图象上;(2)两函数联立得,1224264y mx m x y x y =-+=⎧⎧⇒⎨⎨=-+=⎩⎩, ∵一次函数 26y x =-+,10k =-<,∴该函数单调递减,∵一次函数124y mx m =-+,0k >,∴该函数单调递增,∴当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)设A(0,y ),∵ABC 由A(0,y ),B ()0,2-,C ()2,1三点构成,又∵函数1y 随x 的增大而减小,∴0m <,当0x =时,246y m =-+<,解得,1m >-,∴10m -<<,∴A(0,24m -+),∵B ()0,2-,C ()2,1, ∴24226AB m m =-++=-+, ∴12262ABC S AB m =⨯=-+△, ∵10m -<<, ∴6268m -+<<,∴68ABC S △<<.【点睛】本题考查了一次函数的性质、三角形的面积、绝对值的性质、平面直角坐标系中的点等知识,解题的关键是熟练运用以上知识点找到等量关系进行求解.24.(1)30;(2)画图见解析;(3)越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【分析】(1)由方位角的知识即可求解;(2)根据题意画出方位角,交点即为C 点位置;(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米,根据“越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地”找到等量关系列出方程即可求解.【详解】(1)由题意可知:906030BAC ∠=︒-︒=︒,故答案为:30;(2)如图所示,点C 即为所求.(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米, 由题意,得181.760x ⨯=(2x+4)18360-⨯, 解得x=100,2x+4=204,1860x =30, 答:越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【点睛】此题考查了方位角和一元一次方程的实际应用.设出合适的未知数,找到等量关系列出方程是解答此题的关键.25.1【分析】根据绝对值的性质,零次幂、算术平方根、负整数指数幂的运算法则进行计算,即可得出结果.【详解】 解:0112(2020)9()3π----++- 2133=-+-1=.【点睛】此题考查了实数的混合运算,掌握实数运算中相关的运算法则并能准确应用法则进行计算是解题的关键.26.(1)31°;(2)3.【分析】(1)在Rt △ABC 中,利用互余得到∠BAC =62°,再根据折叠的性质得∠CAE =12∠CAB =31°,然后根据互余可计算出∠AEC =59°;(2)Rt △ABC 中,利用勾股定理即可得到BC 的长;设DE =x ,则EB =BC ﹣CE =8﹣x ,依据勾股定理可得,Rt △BDE 中DE 2+BD 2=BE 2,再解方程即可得到DE 的长.【详解】解:(1)在Rt △ABC 中,∠ABC =90°,∠B =28°,∴∠BAC =90°﹣28°=62°,∵△ACE 沿着AE 折叠以后C 点正好落在点D 处,∴∠CAE=12∠CAB=12×62°=31°;(2)在Rt△ABC中,AC=6,AB=10,∴BC8,∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点睛】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。

【浙教版】八年级数学上期末试卷带答案(1)

【浙教版】八年级数学上期末试卷带答案(1)

一、选择题1.下列各分式中,最简分式是()A .6()8()x yx y-+B.22y xx y--C.2222x yx y xy++D.222()x yx y-+2.若数a关于x的不等式组()()11223321xxx a x⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y的分式方程13y2a2y11y--=---的解为正数,则所有满足条件的整数a的值之和是()A.2 B.3 C.4 D.53.2aa bb a++-的结果是( ).A.2a-B.4aC.2ba b--D.ba-4.若220.3,3a b--=-=-,213c-⎛⎫=-⎪⎝⎭,13d⎛⎫=-⎪⎝⎭,则()A.a b c d<<<B.b a c d<<<C.b a d c<<<D.a b d c<<< 5.下列运算正确是()A.b5÷b3=b2B.(b5)3=b8C.b3b4=b12D.a(a﹣2b)=a2+2ab6.下列各式计算正确的是()A.224a a a+=B.236a a a⋅=C.()22439a a-=D.22(1)1a a+=+ 7.长和宽分别为a,b的长方形的周长为16,面积为12,则22a b ab+的值为()A.24 B.48 C.96 D.1928.若|a |=13,b|=7,且a+b>0,则a-b的值是( ).A.6或20 B.20 或-20 C.6或-6 D.-6或209.如图,在ABC与A B C''△中,,90AB AC A B A C B B==''='∠+∠'=︒,ABC,A B C'''的面积分别为1S、2S,则()A.12S S>B.12S S C.12S S<D.无法比较1S、2S 的大小关系10.如图,△ABC 中,AB =AC ,∠BAC =100°,AD 是BC 边上的中线,CE 平分BCA ∠交AB 于点E ,AD 、CE 相交于点F ,则∠CFA 的度数是( )A .100°B .105°C .110°D .120°11.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒12.如图,线段BE 是ABC 的高的是( )A .B .C .D .二、填空题13.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 14.计算:()0322--⋅=________.15.已知2320x y -+=,则()2235x y -+的值为______.16.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.17.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.18.如图所示的网格是正方形网格,点A ,B ,C ,D ,O 是网格线交点,那么AOB ∠___________COD ∠(填“>”,“<”或“=”).19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.三、解答题21.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.22.计算:021|22|( 3.14)()2π----+-23.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米. ①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:C D 投入(元/平方米) 12 16 收益(元/平方米)2226-投入)24.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.25.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.26.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数: (2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答. 【详解】 A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式;B 、22y x x y--=-x-y ,故该项不是最简分式;C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x yx y-+,故该项不是最简分式;故选:C . 【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.2.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②, 解不等式①得:x≤2,解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<,解分式方程132211y ay y--=---, 得:21y a =-, 由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.3.C解析:C 【分析】根据分式的加减运算的法则计算即可. 【详解】222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.4.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.A解析:A 【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可. 【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误; 故选:A . 【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.6.C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算. 【详解】解:A. 2222a a a +=,故选项A 计算错误; B. 235a a a ⋅=,故选项B 计算错误; C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误; 故选:C 【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.7.C解析:C 【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可. 【详解】∵长方形的周长为16, ∴8a b +=, ∵面积为12, ∴12ab =,∴()2212896a b ab ab a b +=+=⨯=,故选:C . 【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.8.A解析:A 【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可. 【详解】|a |=13,=13a ±,|b|=7,b=7±, ∵+a b >0, ∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=, 当=13a ,7b =-时,=13+720a b -=, 则6a b -=或20. 故选择:A . 【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.9.B解析:B 【分析】分别做出两三角形的高AD ,A′E ,利用题干的条件证明△ABD ≅△A′B′E 即可得到两三角形的面积相等; 【详解】分别做出两三角形的高AD ,A′E ,如图:90B B '+=∵∠∠,90B A E B '''+=∠∠,90BAD B ∠+∠=,∴∠B=∠B′A′E ,∠B′=∠BAD , 又AB=A′B′, ∴△ABD ≅△A′B′E , 同理△ACD ≅△A′C′E ; ∴ABD A B E S S ''=,ACDA C E SS ''=,故ABDACDA B EA C ESSSS''''+=+,又ABC ,A B C '''的面积分别为1S 、2S , ∴12S S故选:B . 【点睛】此题考查了等腰三角形的性质及三角形全等的判定及性质:两三角形全等,则对应边对应角相等,面积也相等.10.C解析:C 【分析】根据等腰三角形的性质得BCA ∠的度数,再根据角平分线算出ACF ∠的度数,再由“三线合一”的性质得CAD ∠的度数,即可求出结果. 【详解】解: ∵AB AC =,∴180100402BCA ︒-︒∠==︒, ∵CE 平分BCA ∠,∴1202ACF BCA ∠=∠=︒, ∵AB AC =,AD 是BC 上的中线,∴1502CAD BAC ∠=∠=︒, ∴180110CFA CAD ACF ∠=︒-∠-∠=︒. 故选:C . 【点睛】本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质.11.D解析:D 【分析】根据三角形全等的性质与路程、速度、时间的关系式求解. 【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CPBD CQ=⎧⎨=⎩, 即3634t tvt=-⎧⎨=⎩,解之得:14t v =⎧⎨=⎩,∴点Q 的运动速度为4厘米/秒, 故选D . 【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.12.D解析:D 【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断. 【详解】A 选项中,BE ⊥BC ,BE 与AC 不垂直,此选项错误;B 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误; C 选项中,BE ⊥AB ,BE 与AC 不垂直,此选项错误;D 选项中,BE ⊥AC ,∴线段BE 是△ABC 的高,此选项正确. 故选:D . 【点睛】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.二、填空题13.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 14.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键 解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】 此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键. 15.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键 解析:1【分析】根据2320x y -+=求出232x y -=-,代入计算即可.【详解】∵2320x y -+=,∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=,故答案为:1.【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键. 16.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.17.【分析】过点M作MP⊥ACMQ⊥AB首先证明MP=MQ求出AC的长度运用S△ABC=S△ABM+S△ACM求出MP即可解决问题【详解】如图设点B的对应点为N由题意得:∠BAM=∠CAMAB=AN=2解析:4 3【分析】过点M作MP⊥AC,MQ⊥AB,首先证明MP=MQ,求出AC的长度,运用S△ABC=S△ABM+S△ACM,求出MP即可解决问题.【详解】如图,设点B的对应点为N,由题意得:∠BAM=∠CAM,AB=AN=2;过点M作MP⊥AC,MQ⊥AB,则MP=MQ,设MP=MQ=x,∵AN=NC,∴AC=2AN=4;∵S△ABC=S△ABM+S△ACM,∴12AB•AC=12AB•MQ+12AC•MP,∴2×4=2x+4x,解得:x=43,故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.18.>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.19.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS∆,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 20.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF 是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题21.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.22.5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解:0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.23.(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==, 整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.24.(1)证明见详解;(2)证明见详解.【分析】(1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.25.3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.26.(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.。

【浙教版】初二数学上期末试题(带答案)(1)

【浙教版】初二数学上期末试题(带答案)(1)

一、选择题1.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠0 2.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- 3.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 4.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b =+++,则M ,N 的关系为( )A .M N >B .M N <C .M N =D .M ,N 的大小不能确定 5.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9 D .76.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 7.若y 2+4y 1x y +-0,则xy 的值为( ) A .﹣6 B .﹣2C .2D .6 8.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( )A .34B .54-C .12-D .549.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .11 10.已知等腰三角形有一边长为5,一边长为2,则其周长为( ) A .12 B .9 C .10 D .12或9 11.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50° 12.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm 二、填空题13.若32a b =,则22a b a+=____. 14.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.15.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____.16.若210x x --=,则3225x x -+的值为________.17.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .18.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,那么AP 的长是________.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 20.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.三、解答题21.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度;(2)请你判断小强上学是否迟到,并说明理由.22.解分式方程:63122x x x -=--. 23.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为 元;若每份套餐售价定为12元,则该店每天的利润为 元;(2)设每份套餐售价定为x 元,试求出该店每天的利润(用含x 的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.24.如图,在ABC 中,45B ︒∠=,60C ︒∠=,点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF 折叠得到PEF .(1)如图1,当点P 落在BC 上时,求AEP ∠的度数.(2)如图2,当PF AC ⊥时,求BEP ∠的度数.25.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.26.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC=24°,∠ADC=42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.C解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确;B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.4.C解析:C【分析】先通分,再利用作差法可比较出M 、N 的大小即可.【详解】解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab b N a b a b +++++==++++, ∴()()()()221111b a a ab b M N a b a b ++++-=-++++()()2211a b a ab ba b ++---=++()()2211aba b -=++,∵1ab =,∴220ab -=,∴0M N -=,即M N .故选:C.【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等. 5.D解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.6.C解析:C【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键. 7.A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 8.B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 9.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.10.A解析:A由等腰三角形有一边长为5,一边长为2,可分两种情况:①5为腰长,2为底边长;②2为腰长,5为底边长,依次分析即可求得答案.【详解】解:①若5为腰长,2为底边长,∵5,5,2能组成三角形,此时周长为:5+5+2=12;②若2为腰长,5为底边长,∵2+2=4<5,不能组成三角形,故舍去;∴三角形周长为12.故选:A .【点睛】此题考查等腰三角形的性质与三角形的三边关系,解题的关键是注意分类讨论. 11.D解析:D【分析】依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.12.B解析:B【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【详解】解:根据三角形的三边关系,知:A 中,1+2=3,排除;B 中,3+4>5,可以;C 中,6+6=12,排除;D 中,5+6<12,排除.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题13.2【分析】将代入式子化简即可得到答案【详解】∴原式故答案为:2【点睛】此题考查分式的化简求值解题的关键是正确代入及掌握分式化简方法 解析:2【分析】将32a b =代入式子化简即可得到答案.【详解】23b a =,∴原式34222a a a a a+===. 故答案为:2.【点睛】 此题考查分式的化简求值,解题的关键是正确代入及掌握分式化简方法.14.【分析】根据题意列得这个病毒直径为计算并用科学记数法表示即可【详解】故答案为:【点睛】此题考查实数的乘法计算科学记数法正确理解题意列式并会用科学记数法表示结果是解题的关键解析:8310-⨯【分析】根据题意列得这个病毒直径为93010-⨯,计算并用科学记数法表示即可.【详解】983010310--⨯=⨯,故答案为:8310-⨯ .【点睛】此题考查实数的乘法计算,科学记数法,正确理解题意列式并会用科学记数法表示结果是解题的关键.15.3x -4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a 由题意得:∴ay=3xy-4y ∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x -4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a , 由题意得:12342y a xy y ⋅⋅=-, ∴ay=3xy-4y ,∴a=3x-4,故答案为:3x-4.【点睛】 此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加. 16.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键. 17.4【分析】先根据线段的垂直平分线的性质得到DB=DA 则有∠A=∠ABD 而∠C=∠DBC=利用三角形的内角和可得∠A+∠ABD=得到∠ABD=在Rt △BED 中根据含角的直角三角形三边的关系即可得到DE解析:4【分析】先根据线段的垂直平分线的性质得到DB=DA ,则有∠A=∠ABD ,而∠C=90︒,∠DBC= 30︒,利用三角形的内角和可得∠A+∠ABD=903060︒-︒=︒,得到∠ABD= 30︒,在Rt △BED 中,根据含30︒角的直角三角形三边的关系即可得到DE 的长度.【详解】解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,∵∠C=90︒,∠DBC=30︒,DC=4cm,︒-︒=︒,∴BD=8cm,∠A+∠ABD=903060∴∠ABD=30︒,在Rt△BED中,∠EBD=30︒,BD=8cm,∴DE=14BD=cm,2即D到AB的距离为4cm,故答案为:4.【点睛】本题考察线段垂直平分线的性质、等腰三角形的性质以及含30︒角的直角三角形的性质,解题关键是掌握相关性质.18.6【分析】连接OD由题意可知OP=DP=OD即△PDO为等边三角形所以∠OPA=∠PDB=∠DPA=60°推出△OPA≌△PDB根据全等三角形的对应边相等知OA=BP=3则AP=AB−BP=6【详解解析:6【分析】连接OD.由题意可知OP=DP=OD,即△PDO为等边三角形,所以∠OPA=∠PDB=∠DPA=60°,推出△OPA≌△PDB,根据全等三角形的对应边相等知OA=BP=3,则AP=AB−BP=6.【详解】解:如图,连接OD,∵PO=PD,∴OP=DP=OD,∴△PDO为等边三角形,即∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OPA=180°−60°−∠DPA=120°−∠DPA∠PDB=180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .19.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键.三、解答题21.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-;当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)选择11元,能保证达到利润要求又让顾客省钱.【分析】(1)根据题意,列出算式,即可求解;(2)分两种情况:当10x ≤时,当10x >时,分别列出代数式,即可;(3)把x=10,11,14分别代入第(2)小题的代数式,即可得到答案.【详解】解:(1)由题意得:(9-5)×400-500=1100(元),(12-5)×[400-(12-10)×40]-500=1740(元),故答案是:1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-,当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)∵当x =10时,(105)4005001500-⨯-=(元),当x =11时,[](115)400(1110)405001660---⨯-=(元),当x =14时,[](145)400(1410)405001660---⨯-=(元),∴当x=11或14时,利润均为1660元.∵11<14,∴选择11元,能保证达到利润要求又让顾客省钱.【点睛】本题考查的是代数式的实际应用,解题的关键是根据题目中的数量关系列出代数式.24.(1)90°;(2)60°【分析】(1)证明BE=EP,可得∠EPB=∠B=45°解决问题.(2)根据折叠的性质求出∠AFE=45°,根据三角形内角和求出∠BAC,从而得到∠AEF和∠PEF,再根据平角的定义求出∠BEP.【详解】解:(1)如图1中,∵折叠,∴△AEF≌△PEF,∴AE=EP,∵点E是AB中点,即AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°-90°=90°.(2)∵PF⊥AC,∴∠PFA=90°,∵沿EF将△AEF折叠得到△PEF.∴△AEF≌△PEF,∴∠AFE=∠PFE=45°,∵∠B=45°,∠C=60°,∴∠BAC=180°-45°-60°=75°,∴∠AEF=∠PEF=180°-75°-45°=60°,∴∠BEP=180°-60°-60°=60°.【点睛】本题考查了折叠的性质,三角形内角和,全等三角形的性质,解题的关键是根据折叠的性质得到相等的线段和角.25.(1)AP是∠BAC的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF≌△AEF即可证明AP是∠BAC的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP是∠BAC的平分线,理由如下:在△ADF和△AEF中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键.26.(1)33°;(2)123°【分析】 (1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数. (2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∠BAD 和∠BCD 的角平分线,∴设∠BAM=∠MAD=a ,∠BCM=∠MCD=b ,∵∠BEM 是△ABE 和△MCE 的外角,∴∠M+∠BCM=∠B+∠BAM ,即:∠M+b=24°+a①,又∵∠MFD 是△MAF 和△CDF 的外角,可得∠M+a=42°+b②,①式+②式得2∠M=24°+42°,解得:∠M=33°,∴=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∠EAD 和∠BCD 的角平分线,∴设∠EAN=∠NAD=m ,∠BCN=∠NCD=n ,∵∠BFD 是△ABF 和△FCD 的外角,∴∠B+∠BAD=∠D+∠BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∠AGC 是△NGC 和△ABG 的外角,可得∠N+n=24°+(180°-m ),得∠N=204°-(m+n )②,①式代入②式,得∠N=204°-81°=123°,∴123ANC ∠=︒.【点睛】本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键.。

浙教版八年级数学上册期末复习试卷 (1415).pdf

浙教版八年级数学上册期末复习试卷 (1415).pdf

C.9 个
D.10 个
评卷人 得分
二、填空题
15.(3 分)如图,AB∥CD,∠1=50°,∠2=110°,则∠3= .
16.(3 分)在△ABC 中,∠C=90°,∠A=2∠B,则 A= 度. 17.(3 分)桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所 示.这个几何体最多可以由 个这样的正方体组成.
18.(3 分)如图是一个几何体的三视图,根据图示,可计算出该几何体的侧面积为 . 19.(3 分)由 n 个相同的小立方块搭成的几何体,如图,根据三视图,则 n = .
20.(3 分)如图,AB⊥BD,CD⊥BD,AB=DC,∠A=68°,则∠C= 度.
21.(3 分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形 的边长为 8cm,则正方形 A,B,C,D 的面积和是 cm2.
l5,那么由此求的的平均数与实际平均数的差是( )
A.3.5
B.3
C.-3
D.0.5
14.(2 分)如图,点 A 是 5×5 网格图形中的一个格点(小正方形的顶点),图中每个小正
方形的边长为 1,以 A 为直角顶点,面积等于导的格点等腰直角三角形(三角形的三个顶
点都是格点)的个数是( )
A.7 个
B.8 个
3 评卷人 得分
三、解答题
24.该几何体为直三棱柱;表面积为 36cm2 25.(1)①15°;②20°;③∠BAD=2∠EDC;(2)上述结论仍成立,略 26.(1)略;(2)60° 27.略 28.答案不唯一,略
29.由
1 2
4
x −
−1≤ 0 3x 14

x

xx

八年级(上)数学期末考试卷诸暨市浣江幼教

八年级(上)数学期末考试卷诸暨市浣江幼教

八年级(上)数学期末考试卷一、选择题:(每小题3分,共30分)1. 为了了解某地区12000名初中毕业生参加中考的数学成绩,从中抽取了500•名考生的数学成绩进行统计分析,下列说法正确的是( )A .个体是指每个考生B .12000名考生是个体C .500名考生的成绩是总体的一个样本D .样本是指500名考生 2. 若a 、b 为有理数,a >0,b <0,且b a <,则a 、b 、-a 、-b 的大小关系是( ) A .b <-a <-b <a B .b <-b <-a <a C .b <-a <a <-b D .-a <-b <b <a 3. 将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中 的纸片打开铺平,所得图案应该是下面图案 中的( )4. 当代数式3(2)5x -的值为负数时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <2 D .x >2 5. 如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,则C 点的位置可表示为( ) A .(0,3) B .(2,3) C .(3,2) D .(3,0)6. 若数据1、2、2、x 的平均数与众数相同,则x 等于( )A .1B .2C .3D .47. 如图,AB ∥CD ,用含α、β、γ的式子表示θ,则θ=( )A .α+γ-βB .β+γ-αC .180°+γ-α-βD .180°+α+β-γ8. 把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情若将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个如图所示的长方体,则长方体的下底面共有( )朵花.A .15 B .16 C .21 D .179. 一元一次不等式组,1x a x >⎧⎨>-⎩的解集为x >a ,且a ≠-1,则a 取值范围是( )A .a >-1B .a <-1C .a >0D .a <010. 等边三角形绕中心按顺时针旋转最小角度是( )时,图形与原图形重合.A .30°B .90°C .120°D .60°二、填空题:(每小题3分,共30分)11. 请说出主视图和左视图均为长方形的一个几何体 .12. 有两棵树,一棵树高8米,另一棵树高2米,两村相距8米,一只小鸟在一棵树的树梢飞到另一棵树的树梢,至少飞了 米.13. 如图,△ABC 中,∠ACB=90°,以它的各边为边向外作三个正方形,面积分别为S 1、S 2、S 3,已知S 1=36、S 3=100,则S 2= 14. 已知两条线段的长为5cm 和12cm ,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.15. 如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC= .16. 小明帮助父母预算11月份电费情况,下表是11月初连续8天每天早上电表的显示读数:天)的电费是 元. 17. 已知231x y -=,若把y 看成x 的函数,则可表示为 . 18. 2个完全相同的长方体的长、宽、高分别为5cm 、4cm 、3cm ,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是________. 19. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线) 四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_________个.20. 一个正方体的6个面分别标有2、3、4、5、6、7•中的一个数字,图⑶是这个正方体的3种不同的摆法, 当正方体的上面是数字3时,下面的数字应是 .三、解答题:21. 请在下图方格中任画出两个以AB 腰的等腰三角形ABC .要求:一个为锐角三角形,一个为钝角三角形.(6分)22. 解下列不等式(组),并把解集表示在数轴上.(8分)⑴22143x x +-≥⑵2731,20.5x x x +>-⎧⎪-⎨⎪⎩≥23. 如图,已知∠A=∠F,∠C=∠D.试问BD是否与CE平行?为什么? (本题7分)24. 某校准备挑选一名跳高运动员参加全市中学生运动会,对甲、乙两个跳高运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170,165,168,169,172,173,168,167;乙:160,173,172,161,162,171,170,175.⑴甲、乙两个运动员的跳高平均成绩分别是多少?⑵哪个运动员的成绩更稳定?为什么?⑶若预测,跳过165cm就很可能获得冠军,则该校可能选哪个运动员参赛?若预测跳过170cm才能得冠军呢?(3+3+4=10分)25. 一牧童在A处牧马,牧童的家在B处,A、B两处与河岸的距离分别是AC=500m,BD=700m,且CD=500m,天黑前牧童从A处将马牵到河边去饮水,再赶回家,为了使所走的路程最短.⑴牧童应将马赶到河边的什么地点?请你在图中画出来;⑵请你求出他至少要走路程.(3+4=7分)26. 浙江省移动公司开设有两种手机业务:①“全球通”:月租费为50元,市内通话费按0.4元∕分计算;②“神州行”:不缴月租费,市内通话费按0.6元/分计算.选择全球通还是神州行合算?(10分)27. 某小区按照分期付款的形式福利购房,政府给予一定的补贴.小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元.从第二年起,以后每年付房款为5000元与上一年剩余欠款利息的和,设剩余欠款的年利率为0.4%.⑴若第x(x≥2)年小明家交付房款y元,求年付款y(元)与x(年)的函数关系式;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档