求对数函数的单调区间
【高中数学】第六节 对数与对数函数
第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
对数函数单调区间和值域
y t 4t 3 2 (t 2) 1,t [0,2], y [1,3],
2
函数的值域为[1,3]。
小结:
题型一、形如y log a f ( x)的单调性。 (1)求定义域。 (2)同增异减的原理。
题型二、形如y loga f ( x)的值域。 换元法:令t f ( x) (注意元的范围)。
解: y=log 2t在(0, )上单调递增,
a 0
变式训练
1、求函数y log0.5 ( x 4 x 3)的单调
2
区间。
2、函数y log 2 ( x ax 2)在(,1)上
2
单调递减,求a的取值范围。
1、求函数y log 0.5 ( x 4 x 3)的
增函数
减函数
练一练
1、比较大小(用“>”“<”或“=”)号填空。
(1) log0.7 1.6 (2)
>
log0.7 1.8
同底直接利用单 调性进行比较
log4 1
=
log0.4 1
log0.9 0.8
不同底,找中间 桥梁
(3) log3 0.9
<
2、函数 y
1 A、 ) [0, 3
log 1 (1 3 x) 的定义域是( A )
3
1 1 D、 , ) ( ( B、 , ) C、 , 0] ( 3 3
新授课1、求对数型函数的单调区间题型
例 、函数y log2 ( x 4x 3)的单调区间。 1
2
解:令y log2 u, u 0, u x 4x 3,
2
u x2 4x 3 y
x x 2、求y log 2 log 2 , x [1, 4]的值域。 2 8
对数函数图象及性质——定义域、值域
1 f ( x ) log 2 x
x [1,2]
2 f ( x ) log a x
2 3
x [1,2]
(3) y log 1 ( x 4 x 5)
• 【例】 已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2 +f(x2)的最大值,及y取最大值时x的值. • 思路分析:要求函数y=[f(x)]2 +f(x2)的最大值,要 做两件事,一是要求其表达式;二是要求出它的定 义域.
• 由于对数函数y=logax的图象和性质与底数a 的取值范围密切相关.当a>1时,函数y= logax在定义域内为单调增函数,当0<a<1时, 函数y=logax在定义域内为单调减函数,因此 当题目条件中所给的对数函数的底数含有参 数时,常依底数的取值范围为分类标准进行 分类讨论求解.
思考题:1、若函数y=lg(ax2+ax+1)的定义域是实数集R, 求实数a的取值范围。 2、若函数y=lg(ax2+ax+1)的值域为R, 则实数 a的取值范围。 解:1 ∵ y=lg(ax2+ax+1)的定义域是R ∴ 在R上ax2+ax+1>0恒成立, ∴ a=0 a>0 ⊿=a2-4a<0
答案:D
• 练习2.函数f(x)=logax(a>0,且a≠1)在[2,3] 上的最大值为1,则a=________. • 解析:当a>1时,f(x)的最大值是f(3)=1, • 则loga3=1,∴a=3>1. • ∴a=3符合题意; • 当0<a<1时,f(x)的最大值是f(2)=1,则loga2 =1,∴a=2>1.∴a=2不合题意. • 答案:3
高中数学必修一课件:第四章对数函数的图象和性质(第3课时)
2
2.设f(x)是奇函数,当x>0时,f(x)=log2x,则当x<0时,f(x)=( D )
A.-log2x
B.log2(-x)
C.logx2
D.-log2(-x)
解析 当x<0时,-x>0,f(-x)=log2(-x),又因为f(x)为奇函数,所以f(-x) =-f(x),所以f(x)=-log2(-x).
∴g(x)min=g(3)=-98,
则m的取值范围是m|
m<-98.
探究3 对数型函数的奇偶性问题的求解方法:
对数函数本身不具有奇偶性,但有些函数与对数函数复合后,就具有奇偶
性了,如y=log2|x|就是偶函数.一般利用函数奇偶性的定义,并结合对数的运 算性质来判断这类函数的奇偶性.
为了便于判断函数的奇偶性,有时需要将函数进行化简,或利用定义的等
3.函数f(x)=log211+-xx( B )
A.是偶函数
B.是奇函数
C.既是奇函数又是偶函数
D.既不是奇函数又不是偶函数
解析
要使函数f(x)=log2
1+x 1-x
有意义,需满足பைடு நூலகம்
1+x 1-x
>0⇒-1<x<1,所以函数
的定义域为(-1,1),关于原点对称.f(-x)=log2
1-x 1+x
,则f(x)+f(-x)=
(2)若函数y=loga(2-ax)在[0,1]上是减函数,则a的取值范围为__(1_,__2)___. 【解析】 首先a作为底数满足a>0且a≠1, 令t=2-ax,则t=2-ax为减函数, ∵y=loga(2-ax)在[0,1]上是减函数, ∴y=logat为增函数,∴a>1,又t=2-ax在x∈[0,1]时需大于0, ∴2-a·1>0,∴a<2. 综上,1<a<2.
对数函数-高考数学复习
解析
当
当
当
1
1
logm7=log ,logn7=log ,
7
7
1
1
1<m<n 时,0<log7m<log7n,所以
>
,即 logm7>logn7;
log7
log7
1
1
0<m<n<1 时,log7m<log7n<0,所以log > log ,即 logm7>logn7;
函数y=loga|x|与y=|logax|(a>0,a≠1)的性质
y=loga|x|
函数
a>1
0<a<1
定义域 (-∞,0)∪(0,+∞)
R
值域
奇偶性 偶函数
在(0,+∞)内单调递增; 在(-∞,0)内单调递增;
单调性
在(-∞,0)内单调递减 在(0,+∞)内单调递减
图象
y=|logax|
a>1
0<a<1
1.函数f(x)=log3(x-1)是对数函数.( × )
2.若logax>1,则x>a.( × )
3.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上是单调递增函数.(
4.函数 y=|lo1 x| 的单调递减区间是(1,+∞).( × )
2
)
题组二 回源教材
5.(人教A版必修第一册习题4.4第1题改编)函数 y= 0.5 (4-3) 的定义域
对数函数及其性质
.2对数函数及其性质1.对数函数的概念1定义:一般地,我们把函数y=log a xa>0,且a≠1叫做对数函数,其中x是自变量,函数的定义域是0,+∞.2对数函数的特征:特征错误!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y=log7x是对数函数,而函数y=-3log4x和y=log x2均不是对数函数,其原因是不符合对数函数解析式的特点.例1-1函数fx=a2-a+1log a+1x是对数函数,则实数a=__________.解析:由a2-a+1=1,解得a=0,1.又a+1>0,且a+1≠1,∴a=1.答案:1例1-2下列函数中是对数函数的为__________.1y=log a>0,且a≠1;2y=log2x+2;3y=8log2x+1;4y=log x6x>0,且x≠1;5y=log6x.解析:答案:52.对数函数y=log a xa>0,且a≠1的图象与性质1图象与性质谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.2指数函数与对数函数的性质比较3底数a对对数函数的图象的影响①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,1,0点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.例2如图所示的曲线是对数函数y =log a x 的图象.已知a 43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为A 43,35,110B 43,110,35C .4335,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧 根据图象判断对数函数的底数大小的方法 1方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;2方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数1对数函数的反函数指数函数y=a x a>0,且a≠1与对数函数y=log a xa>0,且a≠1互为反函数.2互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y=x对称.3求已知函数的反函数,一般步骤如下:①由y=fx解出x,即用y表示出x;②把x替换为y,y替换为x;③根据y=fx的值域,写出其反函数的定义域.例3-1若函数y=fx是函数y=a x a>0,且a≠1的反函数,且f2=1,则fx=A.log2x B.12xC.12log x D.2x-2解析:因为函数y=a x a>0,且a≠1的反函数是fx=log a x,又f2=1,即log a2=1,所以a=2.故fx=log2x.答案:A例3-2函数fx=3x0<x≤2的反函数的定义域为A.0,+∞ B.1,9C.0,1 D.9,+∞解析:∵ 0<x≤2,∴1<3x≤9,即函数fx的值域为1,9.故函数fx的反函数的定义域为1,9.答案:B例3-3若函数y=fx的反函数图象过点1,5,则函数y=fx的图象必过点A.5,1 B.1,5 C.1,1 D.5,5解析:由于原函数与反函数的图象关于直线y=x对称,而点1,5关于直线y=x的对称点为5,1,所以函数y=fx的图象必经过点5,1.答案:A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y=log a xa>0,且a≠1中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知fm=n或图象过点m,n等等.通常利用待定系数法求解,设出对数函数的解析式fx=log a xa>0,且a≠1,利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m=n,这时先把对数式log a m=n化为指数式的形式a n=m,把m化为以n为指数的指数幂形式m=k n k>0,且k≠1,则解得a=k>0.还可以直接写出1na m=,再利用指数幂的运算性质化简1nm.例如:解方程log a4=-2,则a-2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a=±.又a>0,所以12a=.当然,也可以直接写出124a-=,再利用指数幂的运算性质,得11212214(2)22a---====.例4-1已知f e x=x,则f5=A.e5B.5e C.ln 5 D.log5e解析:方法一令t=e x,则x=ln t,所以ft=ln t,即fx=ln x.所以f5=ln 5.方法二令e x=5,则x=ln 5,所以f5=ln 5.答案:C例4-2已知对数函数fx的图象经过点1,29⎛⎫⎪⎝⎭,试求f3的值.分析:设出函数fx的解析式,利用待定系数法即可求出.解:设fx=log a xa>0,且a≠1,∵对数函数fx的图象经过点1,29⎛⎫⎪⎝⎭,∴11log299af⎛⎫==⎪⎝⎭.∴a2=19.∴a=11222111933⎡⎤⎛⎫⎛⎫==⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴fx=13log x.∴f3=111331log 3log3-⎛⎫= ⎪⎝⎭=-1.例4-3已知对数函数fx的反函数的图象过点2,9,且fb=12,试求b的值.解:设fx=log a xa>0,且a≠1,则它的反函数为y=a x a>0,且a≠1,由条件知a2=9=32,从而a=3.于是fx=log3x,则fb=log3b=12,解得b=123=5.对数型函数的定义域的求解1对数函数的定义域为0,+∞.2在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y=log a fx的定义域时,应首先保证fx>0.3求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.例5求下列函数的定义域.1y =log 51-x ;2y =log 2x -15x -4;3y =.分析:利用对数函数y =log a xa >0,且a ≠1的定义求解.解:1要使函数有意义,则1-x >0,解得x <1,所以函数y =log 51-x 的定义域是{x |x <1}.2要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log 2x -15x -4的定义域是4,15⎛⎫⎪⎝⎭1,+∞.3要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解1充分利用函数的单调性和图象是求函数值域的常用方法.2对于形如y =log a fxa >0,且a ≠1的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =fx 这两个函数;②求fx 的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.3对于函数y =f log a xa >0,且a ≠1,可利用换元法,设log a x =t ,则函数ftt R 的值域就是函数f log a xa >0,且a ≠1的值域.注意:1若对数函数的底数是含字母的代数式或单独一个字母,要考查其单调性,就必须对底数进行分类讨论.2求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.例6-1求下列函数的值域:1y =log 2x 2+4;2y =212log (32)x x +-.解:1∵x 2+4≥4,∴log 2x 2+4≥log 24=2.∴函数y =log 2x 2+4的值域为2,+∞.2设u =3+2x -x 2,则u =-x -12+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在0,+∞上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为-2,+∞.例6-2已知fx =2+log 3x ,x ∈1,3,求y =fx 2+fx 2的最大值及相应的x 的值.分析:先确定y =fx 2+fx 2的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵fx =2+log 3x ,x ∈1,3,∴y =fx 2+fx 2=log 3x 2+6log 3x +6且定义域为1,3.令t =log 3xx ∈1,3.∵t =log 3x 在区间1,3上是增函数,∴0≤t ≤1.从而要求y =fx 2+fx 2在区间1,3上的最大值,只需求y =t 2+6t +6在区间0,1上的最大值即可.∵y =t 2+6t +6在-3,+∞上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =fx 2+fx 2的最大值为13.7.对数函数的图象变换及定点问题1与对数函数有关的函数图象过定点问题对数函数y =log a xa >0,且a ≠1过定点1,0,即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y=b+k log a fxk,b均为常数,且k≠0,令fx=1,解方程得x=m,则该函数恒过定点m,b.方程fx=0的解的个数等于该函数图象恒过定点的个数.2对数函数的图象变换的问题①函数y=log a xa>0,且a≠1错误!函数y=log a x+ba>0,且a≠1②函数y=log a xa>0,且a≠1错误!函数y=log a x+ba>0,且a≠1③函数y=log a xa>0,且a≠1错误!函数y=log a|x|a>0,且a≠1④函数y=log a xa>0,且a≠1错误!函数y=|log a x|a>0,且a≠1例7-1若函数y=log a x+b+ca>0,且a≠1的图象恒过定点3,2,则实数b,c的值分别为__________.解析:∵函数的图象恒过定点3,2,∴将3,2代入y=log a x+b+ca>0,且a≠1,得2=log a3+b+c.又∵当a>0,且a≠1时,log a1=0恒成立,∴c=2.∴log a3+b=0.∴b=-2.答案:-2,2例7-2作出函数y=|log2x+1|+2的图象.解:第一步作函数y=log2x的图象,如图①;第二步将函数y=log2x的图象沿x轴向左平移1个单位长度,得函数y=log2x+1的图象,如图②;第三步将函数y=log2x+1在x轴下方的图象作关于x轴的对称变换,得函数y=|log2x +1|的图象,如图③;第四步将函数y=|log2x+1|的图象,沿y轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:1底数相同,真数不同.比较同底数是具体的数值的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.2底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.3底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.4对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.例8-1比较下列各组中两个值的大小.1,log32;2log23,;3log aπ,.分析:1构造函数y=log3x,利用其单调性比较;2分别比较与0的大小;3分类讨论底数的取值范围.解:1因为函数y=log3x在0,+∞上是增函数,所以f<f2.所以<log32.2因为log23>log21=0,<=0,所以log23>.3当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<.综上所得,当a>1时,log aπ>;当0<a<1时,log aπ<.例8-2若a2>b>a>1,试比较loga ab,logbba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴loga ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba<b,∴0<logbba<1.由log b a-logbba=2logbab,∵a2>b>1,∴2ab>1.∴2logbab>0,即log b a>logbba.∴log a b>log b a>logb ba>logaab.9.利用对数函数的单调性解对数不等式1根据对数函数的单调性,当a>0,且a≠1时,有①log a fx=log a gx fx=gxfx>0,gx>0;②当a >1时,log a fx >log a gx ⇔fx >gxfx >0,gx >0;③当0<a <1时,log a fx >log a gx ⇔fx <gxfx >0,gx >0.2常见的对数不等式有三种类型:①形如log a fx >log a gx 的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a fx >b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a fx >log b gx 的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f log a x >0的不等式,可用换元法令t =log a x ,先解ft >0,得到t 的取值范围.然后再解x 的范围.例9-1解下列不等式:11177log log (4)x x >-;2log x 2x +1>log x 3-x .解:1由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.2当x>1时,有21>3,21>0,3>0,x xxx+-⎧⎪+⎨⎪-⎩解得1<x<3;当0<x<1时,有21<3,21>0,3>0,x xxx+-⎧⎪+⎨⎪-⎩解得0<x<23.所以原不等式的解集是20<<1<<33x x x⎧⎫⎨⎬⎩⎭或.例9-2若22log3a⎛⎫⎪⎝⎭<1,求a的取值范围.解:∵22log3a⎛⎫⎪⎝⎭<1,∴-1<2log3a<1,即12log log log3a a aaa<<.1∵当a>1时,y=log a x为增函数,∴123aa<<.∴a>32,结合a>1,可知a>32.2∵当0<a<1时,y=log a x为减函数,∴12>>3aa.∴a<23,结合0<a<1,知0<a<23.∴a的取值范围是230<<>32a a a⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论1解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.2关于形如y=log a fx一类函数的单调性,有以下结论:函数y=log a fx的单调性与函数u=fxfx>0的单调性,当a>1时相同,当0<a<1时相反.例如:求函数y=log23-2x的单调区间.分析:首先确定函数的定义域,函数y=log23-2x是由对数函数y=log2u和一次函数u=3-2x复合而成,求其单调区间或值域时,应从函数u=3-2x的单调性、值域入手,并结合函数y=log2u的单调性考虑.解:由3-2x>0,解得函数y=log23-2x的定义域是错误!.设u=3-2x,x 错误!,∵u=3-2x在错误!上是减函数,且y=log2u在0,+∞上单调递增,∴函数y=log23-2x在错误!上是减函数.∴函数y=log23-2x的单调减区间是错误!.例10-1求函数y=log a a-a x的单调区间.解:1若a>1,则函数y=log a t递增,且函数t=a-a x递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a a -a x 在-∞,1上递减.2若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a a -a x 在1,+∞上递减.综上所述,函数y =log a a -a x 在其定义域上递减.析规律 判断函数y =log a fx 的单调性的方法 函数y =log a fx 可看成是y =log a u 与u =fx 两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.例10-2已知fx =12log x 2-ax -a 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞- ⎪⎝⎭是函数fx 的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令ux =x 2-ax -a ,∵fx =12log ()u x 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,∴ux 在1,2⎛⎫-∞- ⎪⎝⎭上是减函数,且ux >0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩ ∴-1≤a ≤12. ∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭. 11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:1求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f -x 与fx 或-fx 是否相等;2当f -x =fx 时,此函数是偶函数;当f -x =-fx 时,此函数是奇函数;3当f -x =fx 且f -x =-fx 时,此函数既是奇函数又是偶函数;4当f -x ≠fx 且f -x ≠-fx 时,此函数既不是奇函数也不是偶函数.例如,判断函数fx=log )a x x ∈R ,a >0,且a ≠1的奇偶性.解:∵f -x +fx ==log )a x+log )a x=log a x 2+1-x 2=log a 1=0,∴f-x=-fx.∴fx为奇函数.例11已知函数fx=1log1axx+-a>0,且a≠1.1求函数fx的定义域;2判断函数fx的奇偶性;3求使fx>0的x的取值范围.分析:对于第2问,依据函数奇偶性的定义证明即可.对于第3问,利用函数的单调性去掉对数符号,解出不等式.解:1由11xx+->0,得-1<x<1,故函数fx的定义域为-1,1.2∵f-x=1log1axx-+=1log1axx+--=-fx,又由1知函数fx的定义域关于原点对称,∴函数fx是奇函数.3当a>1时,由1log1axx+->0=log a1,得11xx+->1,解得0<x<1;当0<a<1时,由1log1axx+->0=log a1,得0<11xx+-<1,解得-1<x<0.故当a>1时,x的取值范围是{x|0<x<1};当0<a<1时,x的取值范围是{x|-1<x<0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:1审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;2建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;3求模:求解函数模型,得到数学结论;4还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.例12我国用长征二号F型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱.在不考虑空气阻力的条件下,假设火箭的最大速度y单位:km/s关于燃料重量x单位:吨的函数关系式为y=k ln m+x-k+4ln 2k≠0,其中m是箭体、搭载的飞行器、航天员的重量和.-1m吨时,火箭的最大速度是4 km/s.1求y=fx;2已知长征二号F型运载火箭的起飞重量是吨箭体、搭载的飞行器、航天员、燃料,火箭的最大速度为8 km/s,求装载的燃料重量e=,精确到.解:1由题意得当x-1m时,y=4,则4=k ln m-1m-k+4ln 2,解得k=8.所以y=8ln m+x-+4ln 2,即y=8ln m xm+.2由于m+x=,则m=-x,令479.888ln479.8x=-,解得x≈.故火箭装载的燃料重量约为吨.。
对数单调性、奇偶性
a>1 0<a<1
图
像
定义域 值域 定点 单调性 奇偶性
(0,+ ∞ ) R (1,0)
单调递增 非奇非偶
单调递减 非奇非偶
四、对数类型函数单调性的判断
2、求( f x)=log0.2 (2x-)的单区间。 1
说明:利用对数函数性质判断函数单调性时 ,首先要考察函数的定义域,再利用复合函 数单调性的判断方法来求单调区间。
1 x 1 x f ( x) f ( x) log 1 log 1 1 x 1 x 4 4 1 x 1 x log 1 0 log 1 1 4 4 1 x 1 x 所以,函数 y = f(x)是定义在 (1, 1) 上的奇函数.
2
2
五、奇偶性
1、判断下列函数的奇偶性: 2 (1) f ( x) log 1 1 4 1 x 解: 回忆:用定义判断函数奇偶性的步骤:
① 先求 f(x)定义域,看是否关于原点对称; • 判断 f(-x)= - f(x) 或 f(-x)= f(x)是否恒成立,得出结论.
1 x 先变形为 f ( x) log 1 定义域为 (1, 1) 4 1 x 1 x 奇函数 f ( x) logx 解: 变形为 f ( x) log 1 定义域为 (1, 1) 4 1 x 如果a>0,a≠1,M>0,N>0,那么
lg x 1 x x 1 x
lg 1 0
所以,函数 y = g(x)是奇函数.
f ( x) 的单调性?
解: 定义域为 {x | x 3或 x 1} 令 u x2 4 x 3 ( x 2)2 1 在 (3, ) 上递增 在 (, 1)上递减 由于 y log 1 u 为减函数,有
人教版高中数学必修一学案:《对数函数》(含答案)
2.2 对数函数解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .例1 计算:log 22+log 51+log 3127+9log 32. 分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数.二、对数的运算法则常用的对数运算法则有:对于M >0,N >0.(1)log a (MN )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解.解 由已知,得原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m =m nlog a b . 例3 计算:(log 25+log 4125)×log 32log 35. 分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底. 解 原式=(log 25+32log 25)×log 322log 35=52log 25×12log 52=54. 点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c N log c a,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得log c a p =log c N ,即p log c a =log c N .所以p =log c N log c a ,即log a N =log c N log c a. 推论1:log a b ·log b a =1.推论2:log an b m =m nlog a b (a >0且a ≠1,b >0). 例4 (1)已知log 189=a,18b =5,求log 3645的值;(2)求log 23·log 34·log 45·…·log 6364的值.解 (1)因为log 189=a,18b =5,所以lg 9lg 18=a . 所以lg 9=a lg 18,lg 5=b lg 18.所以log 3645=lg (5×9)lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a. (2)log 23·log 34·log 45·…·log 6364=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63=lg 64lg 2=6lg 2lg 2=6. 点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎨⎧16log 2a +12log 2b =52,13log 2b +log 2a =7, 即⎩⎪⎨⎪⎧ log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3. 所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单.此外还有下面的关系式:log N M =log a M log a N =log b M log b N; log a M ·log b N =log a N ·log b M ;log a M log b M =log a N log b N=log a b ;N log a M =M log a N .数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间.解 当x ≠0时,函数y =log 2x 2满足f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称.当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13 B. 2 C.22 D .2 解析 当a >1时,f (x )=log a (x +1)的图象如图所示.f (x )在[0,1]上是单调增函数,且值域为[0,1],所以f (1)=1,即log a (1+1)=1,所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D.答案 D点评 (1)当对数的底数不确定时要注意讨论;(2)注意应用函数的单调性确定函数的最值(值域).三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1, 在同一直角坐标系中作出函数与y =a 的图象,如图可知:(1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0;(2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个;(3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同. 三类对数大小的比较 一、底相同,真数不同 例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小.解 由(2)6=8<(33)6=9,得2<33.当a >1时,函数y =log a x 在(0,+∞)上是增函数,故log a 2<log a 33;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图.在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方,故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数,所以log 30.1<log 30.5<0.所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同例12 比较log 323与log 565的大小. 分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数,故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565. 点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域.错解 对于任意的实数x ,都有(1+x )2≥0,所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1}二、忽视1的对数为0例14 求函数y =1log 2(2x +3)的定义域. 错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}. 剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点.正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( )A .-4B .-2或3C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0,解得x =-2或x =3.故选B.剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg(x -2y ),求log 2x y的值. 错解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或x y =4, 所以log 2x y =0,或log 2x y=4. 剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即x y=4, 所以log 2x y=4. 五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值.错解 由题意得log a 4-log a 2=log a 2=1,所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数,由题意得log a 4-log a 2=log a 2=1,所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数,由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x+x=3的解所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)答案 C解在同一平面直角坐标系中,画出函数y=lg x与y=-x+3的图象(如图所示).它们的交点横坐标x0显然在区间(1,3)内,由此可排除选项A、D.实际上这是要比较x0与2的大小.当x0=2时,lg x0=lg 2,3-x0=1.由于lg 2<1,因此x0>2,从而判定x0∈(2,3).点评本题是通过构造函数用数形结合法求方程lg x+x=3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2 已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案 4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3 使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.数函数常见题型归纳一、考查对数函数的定义例4 已知函数f (x )为对数函数,且满足f (3+1)+f (3-1)=1,求f (5+1)+f (5-1)的值.解 设对数函数f (x )=log a x (a >0,a ≠1),由已知得log a (3+1)+log a (3-1)=1,即log a [(3+1)×(3-1)]=1⇒a =2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2.二、考查对数的运算性质例5 log 89log 23的值是( ) A.23 B .1 C.32D .2 解析 原式=log 29log 28·1log 23=23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值.解 由已知,得a 2=x ,b 3=x ,c 6=x ,所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 12(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0. 例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2) =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6;当log 3x =1,即x =3时,g (x )有最大值g (3)=13.答案 13 6五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 为( )A.24B.22C.14D.12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a,2a ]上递减,在区间[a,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24. 答案 A 六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________. 解析 由已知,不等式可化为x 2<log a x .所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时, 函数y =x 2的图象在函数y =log a x 图象的下方,如图所示.答案 [116,1) 点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B .例11 比较大小:log 932,log 8 3. 解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3. 点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略.理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且A B>1,则A >B . 例12 比较大小:(1)log 47,log 1221;(2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1)=log 474-log 1274=1log 744-1log 7412, 由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221. (2)由于log 1.10.9,log 0.91.1都小于零,所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|,所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B .例13 比较大小:log n +2(n +1),log n +1n (n >1).解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1n n +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B .例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8,则2-x -3-y =34-89<0,故2-x <3-y . 两边同时取对数,化简得x lg 2>y lg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138. 点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A.32B.34C.110D .10 分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c ,所以x 1x 2=102c =100c .因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2.从选项看可知成为均值的常数可为32.故选A.答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3 B.34 C .2 D.23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示.由log 2a =-2得a =14.由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知,当b =1,a =14时,b -a 的最小值为1-14=34.故选B.答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log mα-3α+3=log m (β-4),log mβ-3β+3=log m(α-4)⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6(x 1-x 2)(x 1+3)(x 2+3)<0,那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则 ⎩⎪⎨⎪⎧log mβ-3β+3=log m(β-4),log mα-3α+3=log m(α-4)⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0. 显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝⎛⎭⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝⎛⎭⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝⎛⎭⎫-12,+∞. 答案 ⎝⎛⎭⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c=log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析由2a>0,∴log 12a >0,∴0<a <1.同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x ,y =⎝⎛⎭⎫12x ,y =log 12x 的图象如图所示, 观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D. 同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1.6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0,故log 40.3<0.43<30.4.故选C. 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D.答案 D。
对数函数图象及性质——单调性
练习.判断函数 f(x)=ln(x+ x2+1)的奇偶性.
解:f(x)是奇函数.
∵ x2+1>|x|≥-x,∴x∈R.
∵f(-x)=ln(-x+ -x2+1)
=ln(
x2+1-x)=ln
1 x2+1+x
=-ln( x2+1+x)=-f(x),
∴函数 f(x)=ln(x+ x2+1)为奇函数.
1-x>x+2,
解得-2<x<-12. 答案:{x|-2<x<-12}
• 练习2: 已知loga(2a+1)<loga3a,求a的取 值范围.
• 解:(1)当a>1时,原不等式等价于
a2a+1<3a,解得a 2a+1>0
(2)当 0<a<1 时,
原不等式等价于20a<+a 1>3a, 3a>0
解得 0<a<1. 综上所述,a 的范围是 0<a<1 或 a>1.
• 1.对数函数的单调性要结合其图象理解和记忆.
• 2.对数值大小的比较是对数函数的单调性、特殊点 的具体应用.
• 3.和对数函数有关的值域问题,也是利用了对数函 数的单调性.
• 4.复合函数y=f[φ(x)]的单调性研究,遵循一般步 骤和结论,即:分别求出y=f(u)与u=φ(x)两个函数 的单调性,再按口诀“同增异减”得出复合后的单 调性,即两个函数同为增函数或者同为减函数,则 复合后结果为增函数;若两个函数一增一减,则复 合后结果为减函数.为何有“同增异减”?我们可 以抓住“x的变化→u=φ(x)的变化→y=f(u)的变化” 这样一条思路进行分析.
当 0<a<1 时,若 x>1,则 f(x)=loga(3x2-2x-1)为 减函数;若 x<-13,则 f(x)=loga(3x2-2x-1)为增函数.
对数函数考点分析及经典例题讲解
对数函数考点分析及经典例题讲解1. 对数函数的定义:函数 x y log =)10(≠>a a 且叫做对数函数,定义域是 (0,)+∞a 的取值 0<a <1a >1定义域(0,)+∞图 象图像特征在y 轴的右侧,过定点(1,0)即x =1时,y =0当x>0且x →0时,图象趋近于 y 轴正半轴. 当x>0且x →0时,图象趋近于 y 轴负半轴.值域 R性 质 过定点(1,0),在(0,+∞)上是减函数在(0,+∞)上是增函数 函数值的变化规律当0<x<1时,y ∈(0,+∞)当x=1 时,y=0; 当x>1 时, y<0.当0<x<1时,y<0; 当x=1时, y=0 ; 当x>1时, y>0 .3.对数函数y=log a x(a>0,且a ≠1)与指数函数y=a x(a>0,且a ≠1)互为反函数 .它们的图象关于x y =对称.案例分析: 考点一、比较大小例1、比较下列各组数中两个值的大小:(1)log 23.4,log 23.8; (2)log 0.51.8,log 0.52.1;(3)log a 5.1,log a 5.9; (4)log 75,log 67.(5); (6)6log ,7log 768.0log ,log 23π变式训练:1、已知函数x y 2log =,则当1>x 时,∈y ;当10<<x 时,∈y .考点二、求定义域例2、求下列函数的定义域(1)0.2log (4);y x =-; (2)log ay =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y =例3、选择题:若03log 3log <<n m 则m 、n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<m<n<1D 、0<n<m<1例4 、函数)352(log 221++-=x x y 在什么区间上是增函数?在什么区间上是减函数?1、函数f (x )=log a [(a -1)x +1]在定义域上( )A .是增函数B .是减函数C .先增后减D .先减后增 2、方程)13lg()3lg(222+-=x x 的解集是 .3、已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________.4、若0<)12(log )1(log 22-<+a a ,则实数a 的取值范围是 .5、方程()lg 3x +-()lg 3x -=()lg 1x -的解是 .考点三、求值域例1、(1)、12);4x -(-x log y 221+=(2)、3);-2x -(x log y 221=(3)y=log a (a-a x)(a>1).1、求下列函数的定义域、值域:⑴ ⑵⑶⑷41212-=--x y )52(log 22++=x x y )54(log 231++-=x x y )(log 2x x y a --=)10(<<a2、求函数y =log 2(x 2-6x +5)的定义域和值域.3、已知x 满足条件09log 9)(log 221221≤++x x ,求函数)4(log )3(log )(22xx x f ⋅=的最大值.4、已知)23lg(lg )23lg(2++=-x x x ,求222log x 的值。
对数函数常见题型(解析版)
4.4 对数函数1.对数函数的定义一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(1)由于指数函数y=a x中的底数a满足a>0,且a≠1,则对数函数y=log a x中的底数a也必须满足a>0,且a≠1.(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x.2.对数函数的图象和性质一般地,对数函数y=log a x(a>0,且a≠1)的图象和性质如下表所示:a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数非奇非偶函数3.反函数对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x 对称.4.对数型复合函数的单调性复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为减函数.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调区间时,首先要考虑函数的定义域.5.对数型复合函数的值域对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:(1)分解成y=log a u,u=f(x)两个函数;(2)解f(x)>0,求出函数的定义域;(3)求u的取值范围;(4)利用y=log a u的单调性求解.题型一 对数函数的判断例1、(1)给出下列函数:①223log y x =;①3log (1)y x =-;①(1)log x y x +=;①log e y x =.其中是对数函数的有( ) A .1个B .2个C .3个D .4个(2)若函数2log 32a y x a a =+-+为对数函数,则a =( )A .1B .2C .3D .4解:(1)①①不是对数函数,因为对数的真数不是仅有自变量x ; ①不是对数函数,因为对数的底数不是常数;①是对数函数.(2)由题可知:函数2log 32a y x a a =+-+为对数函数所以23201a a a -+=⇒=或2a =,又0a >且1a ≠所以2a = 跟踪练习1.下列函数表达式中,是对数函数的有( )①y =log x 2;①y =log a x (a ①R );①y =log 8x ;①y =ln x ;①y =log x (x +2);①y =log 2(x +1). A .1个B .2个C .3个D .4个【解析】形如log a y x =(0a >且1a ≠)的函数为对数函数,故①①为对数函数,所以共有2个. 2.下列函数表达式中,是对数函数的有( )①log 2x y =;①()log a y x a =∈R ;①8log y x =;①ln y x =;①()log 2x y x =+;①42log y x =;①()2log 1y x =+. A .1个 B .2个 C .3个D .4个【解析】由于①中自变量出现在底数上,∴①不是对数函数; 由于①中底数a ∈R 不能保证0a >,且1a ≠,∴①不是对数函数; 由于①①的真数分别为()2x +,()1x +,∴①①也不是对数函数; 由于①中4log x 的系数为2,∴①也不是对数函数; 只有①①符合对数函数的定义.3.(全国高一课时练习)若函数()2()log 45a f x x a a =+--是对数函数,a =_________.【解析】由对数函数的定义可知,245001a a a a ⎧--=⎪>⎨⎪≠⎩,解得5a =.题型二 对数函数的解析式或函数值例2(1)(上海高一专题练习)对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x(2)(全国高一课前预习)设()log a f x x =(0a >且1a ≠),若1(2)2f =,则12f ⎛⎫= ⎪⎝⎭( ). A .2B .2-C .12-D .12【解析】(1)设函数解析式为y =log a x (a >0,且a ≠1).由于对数函数的图像过点M (125,3), 所以3=log a 125,得a =5.所以对数函数的解析式为y =log 5x . (2)因为()log a f x x =(0a >且1a ≠),1(2)2f =,所以1(2)log 22a f ==,即122a =,解得4a =, 所以4()log f x x =,所以4111log 222f ⎛⎫==- ⎪⎝⎭.跟踪练习1.若某对数函数的图象过点()4,2,则该对数函数的解析式为( ) A .2log y x =B .42log y x =C .2log y x =或42log y x =D .不确定【解析】设函数为()log 0,1a y x a a =>≠,依题可知,2log 4a =,解得2a =,所以该对数函数的解析式为2log y x =.2.若函数()()lo 1g a f x x =+(0,1)a a >≠的图像过点(7,3),则a 的值为( ) A 2B .2C .22D .12【解析】由题, ()373log 182a a a +⇒=⇒==.题型三 对数函数的定义域例3(1)函数()ln 14x f x x-=-的定义域为( )A .(]1,2B .[]1,4C .()1,4D .[]2,4(2)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是( ) A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .[3,9](3)若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1 B .-1 C .2D .无法确定【解析】(1)对于函数()ln 14x f x x -=-1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 14x f x x-=-的定义域为()1,4.(2)由[]1,1x ∈-,得1,222x⎡⎤∈⎢⎥⎣⎦,所以31log ,22x ⎡⎤∈⎢⎥⎣⎦,所以3,9x ⎤∈⎦. (3)函数()lg 1y ax =+的定义域为(),1-∞,则10ax +>的解集为(),1-∞, 即0a <,且10ax +=的根11a-=,故1a =-. 跟踪练习1.函数()00.5log 21y x =-⎡⎤⎣⎦的定义域为( )A .1,12⎛⎫⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .()1,11,2⎛⎫+∞ ⎪⎝⎭【解析】要使函数有意义,只需()0.5log 210x -≠,即210211x x ->⎧⎨-≠⎩,解得112x <<或1x >. 2.函数3()log (21)1xf x x x =--的定义域是( ) A .1,12⎛⎤ ⎥⎝⎦B .1,12⎡⎤⎢⎥⎣⎦C .(1,)+∞D .1(,1)2【解析】由已知得1021>0x x ->⎧⎨-⎩,解得112x <<,所以函数()f x 的定义域为112⎛⎫⎪⎝⎭, 3.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],【解析】因为函数(1)f x +的定义域为[0 1],,所以112x ≤+≤,所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],. 4.求下列函数的定义域 (1)2112y x x=+-- (2)函数221()x f x --=(3)20()(54)lg(43)x f x x x =+-+ 【解析】(1)若要使函数有意义,则22010x x ⎧-≠⎪⎨-≥⎪⎩,解得1≥x 或1x ≤-且2x ≠±,所以该函数的定义域为][)()(,2)(2,11,22,-∞-⋃--⋃⋃+∞;(2)若要使函数有意义,则2210log (1)010x x x ⎧--≥⎪-≠⎨⎪->⎩,解得3x ≥,所以该函数的定义域为[)3,+∞;(3)若要使函数有意义,则lg(43)0430540x x x +≠⎧⎪+>⎨⎪-≠⎩,解得34x >-且12x ≠-,45x ≠,所以该函数的定义域为31144,,,42255⎛⎫⎛⎫⎛⎫--⋃-⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.题型四 对数函数的定点例4函数()log 272=+-a y x (0a >,且1a ≠)的图象一定经过的点是( ) A .7,22⎛⎫-- ⎪⎝⎭B .()3,2--C .()3,1--D .()4,2--【解析】令271x +=,3x =-,则2y =-,即函数图象过定点()3,2--. 跟踪练习1.函数()()log 310,1a y x a a =->≠的图象过定点( ) A .2,13⎛⎫ ⎪⎝⎭B .()1,0-C .2,03⎛⎫ ⎪⎝⎭D .()0,1-【解析】对于函数()()log 310,1a y x a a =->≠,令311x -=,可得23x =,则log 10a y ==, 因此,函数()()log 310,1a y x a a =->≠的图象过定点2,03⎛⎫⎪⎝⎭.2.函数()log 1a y x =-的图象必过的点是( ) A .()1,0- B .()1,0C .()0,0D .()2,0【解析】() log 1a y x =-,则当11x -=,即2x =时,0y =是与a 的值无关的定值,故函数()log 1a y x =-的图形必过的点是()20,.3.(湖北高一开学考试)已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=( ) A .2-B .2C .1D .1-【解析】函数()log 32a y a =-+中,令31x -=,解得4x =,此时log 122a y =+=;所以函数y 的图象恒过定点()4,2P ,又点P 在幂函数()my f x x ==的图象上,所以42m =,解得0.5m =;所以()0.5f x x =,所以()()()()lg 4lg 25lg 425lg101f f f f +=⋅==⎡⎤⎣⎦.题型五 对数函数的值域(最值)例5(1)已知184x ≤≤,则函数2()log f x x =的值域是 。
对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x-1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。
对数函数
∴x=10y-1.∴f-1(x)=10x-1.
∴f(1)+f-1(1)=(1+lg 1)+101-1=2.
课堂测试(对数函数)
1、函数f(x)=loga|x|+1(0<a<1)的图象大致为().
解析f(x)在(0,+∞)上为减函数,只能是A或D.f(1)=1,只能是A.
②若a和x不在同一区间,则logax的符号为负;
③若x=1,则logax=loga1=0.
口决:同正异负
例2—1函数y=ax与y=-logax(a>0且a≠1)在同一坐标系中的图象形状只能是().
解析:分a>1与0<a<1两种情况考虑,两函数单调性应该相反.答案:A
例2—2给出四个函数图象分别满足:
例4若a>0,且a≠1,则函数f(x)=loga(5x-10)+2恒过定点P的坐标是__________.
答案:
变式4已知函数 恒过定点(1,10),则 =________.
5、对数函数的定义域与值域
(1)函数y=logax(a>0且a≠1)的定义域与值域
①定义域:(0,+∞)
②值域:R
(2)复合函数法求函数的值域的步骤:
对数函数(教师版)
1、对数函数的概念
(1)对数函数的定义
一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
(2)对数函数的特征:
特征
判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.
例1-1函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=__________.
变式2—2函数y=x+a与y=logax的图象只可能是()
对数函数
对数函数一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a 为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数它实际上就是指数函数的反函数,可表示为x=a^y。
因此指数函数里对于a的规定,同样适用于对数函数。
对数的公理化定义真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立(比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)】通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。
另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把loge N 记为In N. 根据对数的定义,可以得到对数与指数间的关系:当a 〉0,a≠ 1时,a^x=N→X=lo gaN。
由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:负数和零没有对数;loga 1=0 loga a=1 (a为常数)对数的定义和运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a 为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。
对数函数及其性质的应用(高中数学)
(2)法一(单调性法):由于 log132= 1
又因对数函数 y=log2x 在(0,+∞)上是增函数,
且13>15,所以 0>log213>log215,
常见的对数不等式的三种类型 1形如 logax>logab 的不等式,借助 y=logax 的单调性求解,如果 a 的取值不确定,需分 a>1 与 0<a<1 两种情况讨论; 2形如 logax>b 的不等式,应将 b 化为以 a 为底数的对数式的形式, 再借助 y=logax 的单调性求解; 3形如 logax>logbx 的不等式,可利用图象求解.
[解] (1)∵22a+1>25a-2,∴2a+1>5a-2,即 3a<3,∴a<1,即 0 <a<1.∴实数 a 的取值范围是(0,1).
(2)由(1)得,0<a<1,∵loga(3x+1)<loga(7-5x),
3x+1>0,
∴7-5x>0, 3x+1>7-5x,
x>-31, 即x<75,
x>34,
2.如何求形如 y=logaf(x)的值域? 提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1 两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
【例 3】 (1)已知 y=loga(2-ax)是[0,1]上的减函数,则 a 的取值范 围为( )
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
(2)函数 f(x)=log21(x2+2x+3)的值域是________. [思路点拨] (1)结合对数函数及 y=2-ax 的单调性,构造关于 a 的
2020学年高中数学第三章基本初等函数(Ⅰ)3.2.2对数函数学案新人教B版必修1
3.2.2 对数函数1.了解对数函数模型所刻画的数量关系.2.理解对数函数的概念及对数函数的单调性.3.掌握对数函数的图象与性质.,)1.对数函数的概念函数y=log a x(a>0,a≠1,x>0)叫做对数函数,其中x是自变量.2.对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:(-∞,+∞)过定点(1,0),即当__x=1__时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数1.函数y=log2x的图象大致是( )答案:C2.若a>0且a≠1,则函数y=log a(x-1)-1的图象恒过点________.答案:(2,-1)3.指出下列函数哪些是对数函数.(1)y=log a(x+2)(a>0,a≠1);(2)y=4log3x;(3)y=2log a x+1(a>0,a≠1);(4)y =log 2x .解:(1)(2)(3)都不是,只有(4)是对数函数.4.底数a 的大小变化对对数函数y =log a x 的图象有何影响? 解:(1)当a >1时,底数越大,图象越靠近x 轴. (2)当0<a <1时,底数越小,图象越靠近x 轴.对数型函数的定义域求下列函数的定义域: (1)y =log 5(1-x ); (2)y =log 1-x 5;(3)y =log 0.5(8x -6).【解】 (1)要使函数式有意义,需1-x >0,解得x <1, 所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数式有意义,需⎩⎪⎨⎪⎧1-x >01-x ≠1,解得x <1,且x ≠0,所以函数y =log 1-x 5的定义域是{x |x <1,且x ≠0}.(3)要使函数式有意义,需⎩⎪⎨⎪⎧8x -6>0log 0.5(8x -6)≥0,解得34<x ≤78,所以函数y =log 0.5(8x -6)的定义域是{x |34<x ≤78}.求对数型函数定义域应遵循的原则(1)分母不能为0;(2)根指数为偶数时,被开方数非负;(3)对数的真数大于0,底数大于0且不为1.求下列函数的定义域:(1)y =1lg (x +1)-3;(2)y =log a (4x -3)(a >0,且a ≠1).解:(1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0,x +1>0得⎩⎪⎨⎪⎧x +1≠103,x >-1,所以x >-1,且x ≠999, 所以函数的定义域为{x |x >-1,且x ≠999}. (2)log a (4x -3)≥0⇒log a (4x -3)≥log a 1. 当a >1时,有4x -3≥1,x ≥1 . 当0<a <1时,有0<4x -3≤1,解得34<x ≤1.综上所述,当a >1时,函数的定义域为[1,+∞),当0<a <1时,函数的定义域为⎝ ⎛⎦⎥⎤34,1. 比较对数值的大小比较下列各组值的大小: (1)log 1245与log 1267;(2)log 123与log 153; (3)log 130.3与log 20.8. 【解】 (1)因为函数y =log 12x 在(0,+∞)上单调递减,又45<67,所以log 1245>log 1267. (2)法一:(中间量法)因为log 23>log 22=1, 0<log 53<log 55=1,所以-log 23<-1,-log 53>-1,所以-log 23<-log 53, 即log 123<log 153.法二:(数形结合法)借助y =log 12x 及y =log 15x 的图象,如图所示.在(1,+∞)上,y =log 12x 在y =log 15x 的下方,所以log 123<log 153.(3)由对数函数性质知,log 130.3>0,log 20.8<0,所以log 130.3>log 20.8.比较对数值大小的方法比较对数值的大小,当底数相同时,可构造对数函数,利用对数函数的单调性来比较,当底数不同时,可借助于中间量来比较.设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c解析:选D .由对数函数y =log 5x 的图象,可得0<log 53<log 54<1, 所以b =(log 53)2<log 54, 又c =log 45>1,所以b <a <c .对数型函数的值域求下列函数的值域: (1)y =log 2(x 2-4x +6); (2)y =log 21-x 2+2x +2;(3)y =log 2(x 2-4x -5).【解】 (1)因为x 2-4x +6=(x -2)2+2≥2, 又f (x )=log 2x 在(0,+∞)上是增函数, 所以log 2(x 2-4x +6)≥log 22=1. 所以函数的值域是[1,+∞).(2)因为-x 2+2x +2=-(x -1)2+3≤3, 所以1-x 2+2x +2<0或1-x 2+2x +2≥13.因为真数大于0,f (x )=log 2x 在(0,+∞)上是增函数, 所以log 21-x 2+2x +2≥log 213.所以函数的值域是[log 213,+∞).(3)因为x 2-4x -5=(x -2)2-9≥-9, 所以x 2-4x -5能取得所有正实数.所以函数y =log 2(x 2-4x -5)的值域是R .求函数的值域一定要注意定义域对它的影响,然后利用函数的单调性求之,当函数中含有参数时,有时需要讨论参数的取值.函数f (x )=log 2(3x+1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)解析:选A .因为3x+1>1,函数y =log 2x 在(0,+∞)上单调递增, 所以f (x )>log 21=0, 故选A .对数型函数的单调性已知函数y =log 12(x 2-3x +2),求函数的单调递增区间.【解】 x 2-3x +2>0, 令u =x 2-3x +2,作出其图象,观察可得x >2或x <1,所以y =log 12(x 2-3x +2)的定义域为{x |x >2或x <1}.令u (x )=x 2-3x +2,其对称轴为x =32,所以u (x )=x 2-3x +2在(2,+∞)上为增函数, 在(-∞,1)上为减函数.因为y =log 12u 在(0,+∞)上是减函数,所以y =f (x )的单调递增区间为(-∞,1).求形如y =log a f (x )的函数的单调区间的步骤(1)求出函数的定义域;(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性; (3)判断出函数的增减性求出单调区间. [注意] 要注意对底数进行分类讨论.已知f (x )=log 4(2x +3-x 2).(1)求定义域;(2)求f (x )的单调区间.解:(1)2x+3-x2>0,令u=2x+3-x2,作出其图象观察可得-1<x<3.所以f(x)的定义域为{x|-1<x<3}.(2)令u=2x+3-x2,则u>0,y=log4u.由于u=2x+3-x2=-(x-1)2+4,再考虑定义域,可知u=2x+3-x2的增区间是(-1,1],减区间是[1,3).又y=log4u在(0,+∞)上为增函数,故该函数的单调递增区间为(-1,1],单调递减区间为[1,3).1.对数值比较大小的常用方法(1)如果同底,可直接利用单调性求解.如果底数为字母,则要分类讨论.(2)如果不同底,一种方法是化为同底的,另一种方法是寻找中间变量.(3)如果不同底但同真,可利用图象的高低与底数的大小解决或利用换底公式化为同底的再进行比较.(4)若底数和真数都不相同,则常借助中间量1,0,-1等进行比较.2.求对数函数的单调区间解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性;三要注意其定义域.1.凡是涉及对数的底数含参数的问题,要注意对对数的底数进行分析,需要分类讨论时,一定要分类讨论.2.要遵循“定义域”优先的原则,解对数函数的有关问题时,一定要先求出函数的定义域,若不求定义域,则容易致错,如求值域、单调区间等.1.函数y=log2x的定义域是( )A.(0,1) B.(0,+∞)C.(1,+∞) D.[1,+∞)解析:选D.log2x≥0⇒log2x≥log21⇒x≥1.x(1≤x≤8)的值域是( )2.函数y=log12A.R B.[0,3]C.[-3,0] D.[0,+∞)答案:C3.比较下列各组数的大小:(1)log 22________log 23; (2)log 32________1; (3)log 134________0.答案:(1)< (2)< (3)<4.函数f (x )=1-log a (2-x )的图象恒过点________. 解析:令2-x =1, 得x =1,此时y =1-log a 1=1, 所以图象恒过点(1,1). 答案:(1,1)[A 基础达标]1.下列函数是对数函数的是( ) A .y =log a 2x (a >0,a ≠1) B .y =log a (x 2+1)(a >0,a ≠1) C .y =log 1ax (a >0,a ≠1)D .y =2lg x 答案:C2.函数y =x +a 与y =log a x 的图象只可能是( )解析:选C .当a >1时,y =log a x 为增函数,且y =x +a 在y 轴上的点的纵坐标a 应大于1,故排除B 、D .当0<a <1时,y =log a x 为减函数且y =x +a 在y 轴上的点的纵坐标a 应在(0,1)之间.3.函数y =log 12(x 2-5x +6)的单调增区间为( )A .(52,+∞) B .(3,+∞)C .(-∞,52)D .(-∞,2)解析:选D .x 2-5x +6>0,令u =x 2-5x +6,作出二次函数的图象,观察可得:x >3或x <2,故排除A 、C .又y =log 12u 在(0,+∞)上是减函数,且u =x 2-5x +6在(-∞,2)上是减函数,故由复合函数的单调性:同增异减知选D .4.函数y =log 15(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C .因为3x>0,所以-3x<0, 所以1-3x<1.又y =log 15t (t =1-3x)是关于t 的减函数,所以y =log 15t >log 151=0.选C .5.已知函数f (x )=log a (x -m )的图象过点(4,0)和(7,1),则f (x )在定义域上是( ) A .增函数 B .减函数 C .奇函数D .偶函数解析:选A .将点(4,0)和(7,1)代入函数解析式,有⎩⎪⎨⎪⎧0=log a (4-m ),1=log a (7-m ).解得a =4和m =3,则有f (x )=log 4(x -3).由于定义域是{x |x >3},则函数不具有奇偶性.很明显函数f (x )在定义域上是增函数.6.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.解析:log a 34<log a a ,当a >1时,a >34,所以a >1;当0<a <1时,a <34,所以0<a <34.综上所述:a 的取值范围是(0,34)∪(1,+∞).答案:(0,34)∪(1,+∞)7.函数y =log (a -1)x 在(0,+∞)上是减函数,则a 的取值范围是________. 解析:因为函数y =log (a -1)x 在(0,+∞)上为减函数,所以0<a -1<1,即1<a <2. 答案:(1,2)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4. 答案:49.已知函数f (x )=log 12(2x -1).(1)求函数f (x )的定义域、值域;(2)若x ∈⎣⎢⎡⎦⎥⎤1,92,求函数f (x )的值域. 解:(1)由2x -1>0得,x >12,函数f (x )的定义域是⎝ ⎛⎭⎪⎫12,+∞,值域是R . (2)令u =2x -1,则由x ∈⎣⎢⎡⎦⎥⎤1,92知,u ∈[1,8].因为函数y =log 12u 在[1,8]上是减函数,所以y =log 12u ∈[-3,0].所以函数f (x )在x ∈⎣⎢⎡⎦⎥⎤1,92上的值域为[-3,0]. 10.已知函数f (x )=log a x (a >0,a ≠1),且f (3)-f (2)=1. (1)若f (3m -2)<f (2m +5),求实数m 的取值范围;(2)求使f ⎝ ⎛⎭⎪⎫x -2x =f ⎝ ⎛⎭⎪⎫72成立的x 的值. 解:因为f (3)-f (2)=1,所以a =32,(1)因为a =32>1,所以⎩⎪⎨⎪⎧3m -2>0,2m +5>0,3m -2<2m +5,所以23<m <7.(2)由f ⎝ ⎛⎭⎪⎫x -2x =f ⎝ ⎛⎭⎪⎫72, 即log 32⎝ ⎛⎭⎪⎫x -2x =log 3272, 所以x -2x =72.所以x =-12或x =4.经检验,x =-12,x =4满足题意.[B 能力提升]11.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A .(0,12)B .(0,12]C .(12,+∞)D .(0,+∞)解析:选A .作出函数f (x )=log 2a (x +1)的图象,满足当x ∈(-1,0)时f (x )>0,如图所示:所以0<2a <1, 所以0<a <12,故选A .12.若函数f (x )=a x+log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.解析:当a >1时,a +log a 2+1=a ,log a 2=-1,a =12,与a >1矛盾;当0<a <1时,1+a +log a 2=a ,log a 2=-1,a =12. 综上可知,a =12. 答案:1213.已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32. 所以实数a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1,即log a (3-a )=1,所以a =32. 此时f (x )=log 32⎝ ⎛⎭⎪⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.14.(选做题)已知函数f (x )=log a 1-mx x -1(a >0,且a ≠1)的图象关于原点对称. (1)求m 的值;(2)判断函数f (x )在(1,+∞)上的单调性.解:(1)由于f (x )=log a 1-mx x -1(a >0,且a ≠1)的图象关于原点对称, 所以f (x )为奇函数,则f (-x )=-f (x ).所以log a 1+mx -x -1=-log a 1-mx x -1, 所以1+mx -x -1=x -11-mx, 所以m =1,或m =-1.当m =1时,1-mx x -1=1-x x -1=-1,不满足题意, 故m =-1.(2)f (x )=log a 1-mx x -1=log a 1+x x -1. 令u (x )=1+x x -1,则 u (x )=x -1+2x -1=1+2x -1, 在(1,+∞)是减函数,所以当a >1时,f (x )在(1,+∞)上为减函数; 当0<a <1时,f (x )在(1,+∞)上为增函数.。
对数函数及其性质
3)
log
1.7 2.1
,log 0.3 log 3
7,
5
例2.求函数 y = log 2 ( 1-x 2 ) 的值域,单调区间.
解:∵ 1-x2>0 且1-x2≤1 即 0< 1-x2≤1
∴y ≤0
故 函数的值域为 (-∞,0 ).
0<x<1时,y>0
x>1时,y<0
在(0,+上是增函数 在(0,+上是减函数
三.对数函数的性质: 现在我们同样利用描点法在同一坐标系
下作出 y = log2 x, y = log3 x 和
y = log 1 x, y = log 1 x
2 3
的图像,观察图像并
归纳总结性质.
y
4 3
y=log2x y=log3x
解:此函数的定义域为 (-1 , 1 ), 且 y = log 2 t 在(0,+ ∞)上是增函数. 又t=1-x2 在区间(-1,0]上单调递增 在区间[0,1)上单调递减. 故此函数的单调递增区间为 (-1,0 ] 单调递减区间为 [ 0 ,1 )
想一想:函数f(x)=log2 ( x2 ax 1)的定义域为R,
0<a<1
(1) log 25 和 log 27 (2) log 0.35 和 log 0.37 (3) log a5 和 log a7 (a>0且a≠1) 定义域: (0,+)
钥 匙
1.当底数相同时,利用对数函数 的单调性比较大小. 2.当底数不确定时,要对底数a 与1的大小进行分类讨论.
值域:R 过点(1,0) 在(0,+) 在(0,+) 为增函数 为减函数
高中数学-对数函数单调性
对数函数单调性
1.解决对数函数有关的复合函数的单调性问题,一要注意利用单调性的定义,二要灵活运用对数函数的性质;
2.求与对数函数有关的复合函数的单调区间,首先要弄清楚这个函数是怎样复合而成的,再按“同增异减”原则来求其单调区间,注意单调区间应是定义域的子集;
3.对数式比较大小的常用方法:
(1)底数相同真数不同时,用单调性比较;
(2)底数不同真数相同时,用图象与底数的关系比较,也可利用换底公式转化为底数相同的问题;
(3)底数和真数均不同时,可寻求中间值作媒介比较.
例1.求函数的反函数.
分析:应首先按照求反函数的步骤去操作,求值域时应注意按复合函数求值域去操作.
解:由
得,
.
,又
于是有.又
的值域为
,
所求反函数为
.
例2.比较下列各组数的大小:
(1)与
;(2)p=0.95.1,m=5.10.9,n=log0.95.1 (3)若.
分析:比较两个对数形的数若同底可利用对数函数的单调性,若不同底可以借助常数为媒介搭桥比较也可以借助对数函数图象来确定对数值的取值范围进行比较.
解:(1)由在
上单调递增,且
,故<
.
(2),而
,
,
(3)令,由
可知
,即.
则,
,
在同一坐标系下画出这三个函数的图象,如图示:
可知最大,
最小,即
.。
对数函数知识点
对数函数一、课程标准1、通过具体实例,直观了解对数函数模型所刻画的数量关系,理解对数函数的概念。
2、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象。
3、探索并了解对数函数的单调性与特殊点。
4、知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1)。
二、基础知识回顾1、对数函数y=log a x(a>0,且a≠1)的图象与性质2、反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.对数函数的图象与底数大小的比较3、如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.三、自主热身、归纳总结1、函数f(x)=log 2(-x 2+22)的值域为(B ) A . ⎝⎛⎭⎫-∞,32 B . ⎝⎛⎦⎤-∞,32C . ⎝⎛⎭⎫32,+∞D . ⎣⎡⎭⎫32,+∞2、若log a 2<log b 2<0,则下列结论正确的是(B ) A . 0<a <b <1 B . 0<b <a <1 C . a >b >1 D . b >a >13、函数22()log (34)f x x x =--的单调减区间为( ) A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞4、(2019秋•菏泽期末)已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,1)a ≠,则( ) A .函数()()f x g x +的定义域为(1,1)-B .函数()()f x g x +的图象关于y 轴对称C .函数()()f x g x +在定义域上有最小值0D .函数()()f x g x -在区间(0,1)上是减函数5、(2018苏州期末)已知4a =2,log a x =2a ,则正实数x 的值为________.6、(2018盐城三模).函数()ln(1f x =的定义域为 ▲ .四、例题选讲考点一对数函数的性质及其应用 例1、(1)函数的定义域为( )A .B .C .D .(2)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)变式1、(1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为 ;(2)已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x ≤0,log 13x ,x >0,则不等式f (x )>1的解集为 ;(3)若函数f (x )=2(3)log a -(ax +4)在[-1,1]上是单调增函数,则实数a 的取值范围是 . 变式2、已知是偶函数,则( )A .B .C .D .方法总结:对数函数的性质有着十分广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)对数值大小比较的主要方法:①化为同底数后利用函数的单调性;②化为同真数后利用图像比较;③借用中间量(0或1等)进行估值比较.(2)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.考点二 对数函数的图像及其应用例2(1) [2019·潍坊一模]若函数f(x)=a x -a -x (a>0且a≠1)在R 上为减函数,则函数y =log a (|x |-1)的图像可以是(D )A B C D(2)已知f(x)=|lg x|,若1c >a>b>1,则f(a),f(b),f(c)的大小关系是 . 变式1、(1)函数y =ln(2-|x |)的大致图象为( )(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)变式2、关于函数()||2||f x ln x =-下列描述正确的有( ) A .函数()f x 在区间(1,2)上单调递增B .函数()y f x =的图象关于直线2x =对称C .若12x x ≠,但12()()f x f x =,则124x x +=D .函数()f x 有且仅有两个零点方法总结: (1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.考点三 对数函数的综合及应用 例3、已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.变式1、 在函数f(x)=12log (x 2-2ax +3)中.(1)若其在[-1,+∞)内有意义,求实数a 的取值范围; (2)若其在(-∞,1]内为增函数,求实数a 的取值范围.变式2、已知f(x)=lg 1-mxx -1是奇函数. (1)求m 的值及函数f(x)的定义域;(2)根据(1)的结果判断f(x)在(1,+∞)上的单调性,并证明.方法总结:高考对对数函数的考查多以对数与对数函数为载体,考查对数的运算和对数函数的图像和性质的应用,且常与二次函数、方程、不等式等内容交汇命题.解决此类问题的关键是根据已知条件,将问题转化为(或构造)对数函数或对数型函数,再利用图像或性质求解.五、优化提升与真题演练1、已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数B .奇函数,且在(0,10)是增函数C.偶函数,且在(0,10)是减函数D.奇函数,且在(0,10)是减函数2、已知函数(其中)的图象如图所示,则函数的图象大致是( )A.B.C.D.3、【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.4、(多选)已知函数f(x)=ln(x-2)+ln(6-x),则()A.f(x)在(2,6)上单调递增B.f(x)在(2,6)上的最大值为2ln 2C.f(x)在(2,6)上单调递减D.y=f(x)的图象关于直线x=4对称5、(多选)在同一坐标系中,f(x)=kx+b与g(x)=log b x的图象如图,则下列关系不正确的是()A .k <0,0<b <1B .k >0,b >1C .f ⎝⎛⎭⎫1x g (1)>0(x >0)D .x >1时,f (x )-g (x )>06、(2019·浙江高考)在同一直角坐标系中,函数 y =1a x ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图象可能是( )7、【2018年江苏05】函数f (x )的定义域为 .8、函数()211log 1axf x x x+=+-为奇函数,则实数a =__________. 9、已知函数f (x )=log a (3-ax )(a >0,且a ≠1).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 参考答案1、函数f(x)=log 2(-x 2+22)的值域为(B ) A . ⎝⎛⎭⎫-∞,32 B . ⎝⎛⎦⎤-∞,32C . ⎝⎛⎭⎫32,+∞D . ⎣⎡⎭⎫32,+∞【答案】B【解析】 由题意可得-x 2+22>0,即-x 2+22∈(0,22],得所求函数值域为⎝⎛⎦⎤-∞,32.故选B .2、若log a 2<log b 2<0,则下列结论正确的是(B ) A . 0<a <b <1 B . 0<b <a <1C . a >b >1D . b >a >1 【答案】B【解析】(方法1)由log a 2<log b 2<0,得 0<a 、b <1,且1log 2a <1log 2b ,即log 2b -log 2a log 2a·log 2b <0. 又log 2a <0,log 2b <0,得log 2a·log 2b >0, 从而log 2b -log 2a <0,即log 2b <log 2a. 又函数y =log 2x 是增函数,从而b <a.故选B .(方法2)在同一直角坐标系xOy 中作出满足条件的函数 y =log a x 与y =log b x 的图像,如图所示.B 正确,故选B .3、函数22()log (34)f x x x =--的单调减区间为( ) A .(,1)-∞- B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,所以 2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-,所以函数()f x 的定义域为4x >或1x <-,234y x x =--当3(,)2-∞时,函数是单调递减,而1x <-,所以函数()()22log 34f x x x =--的单调减区间为(),1-∞-,故本题选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小贴士:所求单调区间必须是定义域的子区间
解 析
令 t 4 x 则 y log 0.2 t , , 2 由 4 x 0 知函数的定义域 {x | 2 x 2} , 2 为 , 0] 2) Q t 4 x 在 (2, 上单调 在 [0, 上单调 递增, 递减, ) y log 0.2 t 在 (0, 上单调递减,
1 f ( x) log 1 (2 x ) 关于函数 的单调 3 2 性说法正确的是 B.在R上单调递增 A.在R上单调递减 1 1 ) 上单调递减 D.在区间 [ , )上单调递减 C.在区间 ( , 6 6
思路点拨:首先考虑函数的定义域,再结合单调性求解.
解 析
1 函数有意义需满足 2 x 0 3 1 ) 即函数的定义域 ( , 6 为 .
2
y log0.2 (4 x ) 求函数 的单调区间.
2
y log 0.2 (4 x ) 在 (2, 0]
2
上单调递
减, 2) 在 [0, 递增.
上单调
解 析
f ( x) log a ( x 3x 2) 讨论函数 的单调性.
2
得 x 2或x 1 令 x 3x 2 ( x 1)( x 2) 0 , , 2 (, 1) 函数 t x 3x 2 在区间 上单调递减, ) 在区间(2, 上单 调递增, f (t ) log a t 当 a 1 (0, ) 时,在 上 单调递增, (0, ) 当1 a 0 时,在 单调递减.
求对数型函数的单调区间
知识回顾 求形如 y log a f x 间的步骤: (1)求函数的定义域; 的函数的单调区
t f x 与 y log a t ; (2)分解成基本初等函数:
(3)研究 t f x 与 y loga t 在定义域内的单调性; (4)由复合函数的单调性“同增异减”来确定所求函数的单调性.
上单调 上单调递增. 上单调递增, 上单
解 析
f ( x) | lg x | 函数 间是_____.
的单调减区
(0,1) 函数的单调减区间为:
小结
本节课学习用对数函数的单调性来求解对数型函数
的单调区间,掌握求解函数的单调区间的步骤是关键.
,
1 f ( x) log 1 (2 x ) 关于函数 的单调 3 2 性说法正确的是 B.在R上单调递增 A.在R上单调递减 1 1 ) 上单调递减 D.在区间 [ , )上单调递减 C.在区间 ( , 6 6
思路点拨:首先考虑函数的定义域,再结合单调性求解.
解 析
1 1 Q t 2x 在 ( , ) 上单调递增, 3 6 1 y log 1 t 在 ( , ) 上单调递减. 6 2 1 1 f ( x) log 1 (2 x ) 在区间 ( , ) 上单调递减. 3 6 2
2
上
解 析
f ( x) log a ( x 3x 2) 讨论函数 的单调性.
2
综上知,当 a 1 ( , 1) 在区间 2 时: f ( x) log a ( x 3x 2) 递减, ) 在区间 (2,
当1 a 0 ( , 1) 在区间 2 f时: ( x) log a ( x 3x 2) ) 在区间 (2, 调递减.