A spectral stability theorem for large forbidden graphs, submitted for publication. Preprin

合集下载

Stability Functions

Stability Functions
Daniel Burns is supported in part by NSF grant DMS-0514070. Victor Guillemin is supported in part by NSF grant DMS-0408993. Zuoqin Wang is supported in part by NSF grant DMS-0408993.
STABILITY FUNCTIONS
3
The asymptotic formula (1.6) has many applications. First by integrating (1.6) over the G-orbit through p, we get (1.7)
GC ·p −m/2
red
Γhol (Lk )G → Γhol (Lk red )
for all sections s ∈ Γ(Lred ). We will show that this function is proper, non-positive, and takes its maximum value 0 precisely on Φ−1 (0). Moreover, for any point p ∈ √ Φ−1 (0), p is the only critical point of the restriction of ψ to the “orbit” exp ( −1g)·p √ (Here exp ( −1g) is the “imaginary” part of GC ). Let dx be the volume form on this orbit. By applying the method of steepest descent, one gets an asymptotic expansion (1.6)

中英对照 频谱效率

中英对照 频谱效率

频谱效率频谱效率(Spectral efficiency、Spectrum efficiency)是指在数位通信系统中的带宽限制下,可以传送的资料总量。

在有限的波频谱下,物理层通信协议可以达到的使用效率有一定的限度。

➢链路频谱效率数字通信系统的链路频谱效率(Link spectral efficiency)的单位是 bit/s/Hz,或(bit/s)/Hz(较少用,但更准确)。

其定义为净比特率(有用信息速率,不包括纠错码)或最大吞吐量除以通信信道或数据链路的带宽(单位:赫兹)。

调制效率定义为净比特率(包括纠错码)除以带宽。

频谱效率通常被用于分析数字调制方式的效率,有时也考虑前向纠错码(forward error correction, FEC)和其他物理层开销。

在后一种情况下,1个“比特”特指一个用户比特,FEC的开销总是不包括在内的。

例1:1kHz带宽中可以传送毎秒1000bit的技术,其频谱效率或调制效率均为1 bit/s/Hz。

例2:电话网的V.92调制解调器在模拟电话网上以56,000 bit/s的下行速率和48,000 bit/s的上行速率传输。

经由电话交换机的滤波,频率限制在300Hz到3,400Hz之间,带宽相应为 3400 ? 300 = 3100 Hz 。

频谱效率或调制效率为 56,000/3,100 = 18.1 bit/s/Hz (下行)、48,000/3,100 = 15.5 bit/s/Hz(上行)。

使用FEC 的架空调变方式可达到最大的频谱效率可以利用标本化定理来求得,信号的字母表(计算机科学)利用符号数量M来组合、各符号使用 N = log2 M bit来表示。

此情况下频谱效率若不使用编码间干涉的话,无法超过2N bit/s/Hz的效率。

举例来说,符号种类有8种、每个各有3bit 的话,频谱效率最高不超过6 bit/s/Hz。

在使用前向错误更正编码的情形时频谱效率会降低。

深入理解高斯白噪声(AWGN)信道

深入理解高斯白噪声(AWGN)信道

高斯信道百科名片高斯信道(Gaussian channel,通信专业术语)是一个射频通信信道,其包含了各种频率的特定噪声频谱密度的的特征,从而导致了信道中错误的任意分布。

目录信道与高斯信道1.信道(information channels,通信专业术语)是信号的传输媒质,可分为有线信道和无线信道两类。

有线信道包括明线、对称电缆、同轴电缆及光缆等。

无线信道有地波传播、短波电离层反射、超短波或微波视距中继、人造卫星中继以及各种散射信道等。

如果我们把信道的范围扩大,它还可以包括有关的变换装置,比如:发送设备、接收设备、馈线与天线、调制器、解调器等,我们称这种扩大的信道为广义信道,而称前者为狭义信道。

2.信道:信息传输的媒质或渠道。

在电信或光通信(光也是一种电磁波)场合,信道可以分为两大类:一类是电磁波的空间传播渠道,如短波信道、超短波信道、微波信道、光波信道等;另一类是电磁波的导引传播渠道。

如明线信道、电缆信道、波导信道、光纤信道等。

前一类信道是具有各种传播特性的自由空间,所以习惯上称为无线信道;后一类信道是具有各种传输能力的导引体,习惯上就称为有线信道。

信道的作用是把携有信息的信号(电的或光的)从它的输入端传递到输出端,因此,它的最重要特征参数是信息传递能力(也叫信息通过能力)。

在典型的情况(即所谓高斯信道)下,信道的信息通过能力与信道的通过频带宽度、信道的工作时间、信道的噪声功率密度(或信道中的信号功率与噪声功率之比)有关:频带越宽,工作时间越长,信号与噪声功率比越大,则信道的通过能力越强移动通信高斯信道理论模型高期信道,最简单的信道,常指加权高斯白噪声(AWGN)信道。

这种噪声假设为在整个信道带宽下功率谱密度(PDF)为常数,并且振幅符合高斯概率分布。

高期信道对于评价系统性能的上界具有重要意义,对于实验中定量或定性地评价某种调制方案、误码率(BER)性能等有重要作用。

加性高斯白噪声(Additive White Gaussian Noise,AWGN)在通信领域中指的是一种幅度服从高斯分布,各频谱分量在频谱域上服从均匀分布(即白噪声)的噪声信号。

专业英语词汇大全

专业英语词汇大全

英文专业词汇大全英文翻译常用词汇短语具有:have (has), possess, take on表示为:present (提供、给出), denote, is, express by, figure, show,提出、提议:propose、put forward, bring forward明显地、显然地:evidently, obviously, appearently, distinctly, drastically提高、增加:increase, improve, enhance, heighten, elevate (elevation)减少:decrease, reduce, lessen,减小:minish输入、代入:import(进口), input, introduce, substitute((数)代入,vt代替、取代), substituteA by(with) B(依B代A), substitute for出现、发生:happen(vi), appear(vi), occur(vi), generate, take place, arise, come forth因为、由于:as, because, for, since, because of , by reason of , on account of, due to根据、依照:in terms of, according to,计算、求解:compute, calculate, solve推导:derive, derivation, deduce, deducibility,由:by, from因此:so, thus, hence, therefore, thereby并且:also, and , besides而且:and that, furthermore, moreover,随着:along with, with, accompany一致,与……一致:coincident with, consistent with, in accord with推导:derive, deduce列举:enumerate, list专攻,致力于:specialize, apply oneself to完成,达到:achieve, accomplish, realize描述,描绘:represent,describe加强:intensify, enhance, reinforce, strengthen预见,预估:anticipate, estimate受到,承受:experience, endure, superimpose研究,探索:explore, exploration, investigate, investigation,相当的,比的上的:comparable, equivalent,做...实验, 对...做实验:make (carry out, do, perform, try) an experiment on (upon, in, with)固定,安装:mount, fixed, install, set影响:have(has) an impact on (upon)取决于:depend on, depend upon, have a dependence upon称为,把…称作,叫做:be termed以…为标题,称为:intitule vt求积分:Taking integration与…相反:contrary on , 与…对比:contrast with/to分别的respective,分别地apart respectivelyCompare vt. 比较,对照(with)把...比作;比喻(to)接着next, follow, in succession随后later subsequently whereafter总之anyhow anyway in a word in conclusion on all accounts to sum up 金属切削加工圆周铣削:peripheral milling,端铣削:end milling,(端)面铣(削):face milling,顺铣:Down milling, climb milling逆铣:conventional milling, up milling,平面铣削:slab milling切屑横截面积:chip cross sectional area, area of chip section,单位切削力,比切削力:specific cutting pressure切向力:tangential cutting force径向力:radial cutting force声发射:acoustic emission signal与….联合、与…协作:in conjunction with振动方面的专业英语及词汇参见《工程振动名词术语》1 振动信号的时域、频域描述振动过程(Vibration Process)简谐振动(Harmonic Vibration)周期振动(Periodic Vibration)准周期振动(Ouasi-periodic Vibration)瞬态过程(Transient Process)随机振动过程(Random Vibration Process)各态历经过程(Ergodic Process)确定性过程(Deterministic Process)振幅(Amplitude)相位(Phase)初相位(Initial Phase)频率(Frequency)角频率(Angular Frequency)周期(Period)复数振动(Complex Vibration)复数振幅(Complex Amplitude)峰值(Peak-value)平均绝对值(Average Absolute Value)有效值(Effective Value,RMS Value)均值(Mean Value,Average Value)傅里叶级数(FS,Fourier Series)傅里叶变换(FT,Fourier Transform)傅里叶逆变换(IFT,Inverse Fourier Transform) 离散谱(Discrete Spectrum)连续谱(Continuous Spectrum)傅里叶谱(Fourier Spectrum)线性谱(Linear Spectrum)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)均方值(Mean Square Value)方差(Variance)协方差(Covariance)自协方差函数(Auto-covariance Function)互协方差函数(Cross-covariance Function)自相关函数(Auto-correlation Function)互相关函数(Cross-correlation Function)标准偏差(Standard Deviation)相对标准偏差(Relative Standard Deviation)概率(Probability)概率分布(Probability Distribution)高斯概率分布(Gaussian Probability Distribution) 概率密度(Probability Density)集合平均(Ensemble Average)时间平均(Time Average)功率谱密度(PSD,Power Spectrum Density)自功率谱密度(Auto-spectral Density)互功率谱密度(Cross-spectral Density)均方根谱密度(RMS Spectral Density)能量谱密度(ESD,Energy Spectrum Density)相干函数(Coherence Function)帕斯瓦尔定理(Parseval''''s Theorem)维纳,辛钦公式(Wiener-Khinchin Formula)多阶谐振频率multi-mode resonance frequency多阶频率multiple natural frequnency等效一阶频率equvilent fundamental frequency主振频率main vibration frequency一阶弯曲振动频率First-order Bending Vibration Freguency 低阶固有频率LOW-V ALUE NATURAL FREQUENCY振型分解法Mode Analysis Method振型叠加法Method of Superposition of Vibration Mode2 振动系统的固有特性、激励与响应振动系统(Vibration System)激励(Excitation)响应(Response)单自由度系统(Single Degree-Of-Freedom System)多自由度系统(Multi-Degree-Of- Freedom System)离散化系统(Discrete System)连续体系统(Continuous System)刚度系数(Stiffness Coefficient)自由振动(Free Vibration)自由响应(Free Response)强迫振动(Forced Vibration)强迫响应(Forced Response)初始条件(Initial Condition)固有频率(Natural Frequency)阻尼比(Damping Ratio)衰减指数(Damping Exponent)阻尼固有频率(Damped Natural Frequency)对数减幅系数(Logarithmic Decrement)主频率(Principal Frequency)无阻尼模态频率(Undamped Modal Frequency)模态(Mode)主振动(Principal Vibration)振型(Mode Shape)振型矢量(Vector Of Mode Shape)模态矢量(Modal Vector)正交性(Orthogonality)展开定理(Expansion Theorem)主质量(Principal Mass)模态质量(Modal Mass)主刚度(Principal Stiffness)模态刚度(Modal Stiffness)正则化(Normalization)振型矩阵(Matrix Of Modal Shape)模态矩阵(Modal Matrix)主坐标(Principal Coordinates)模态坐标(Modal Coordinates)模态分析(Modal Analysis)模态阻尼比(Modal Damping Ratio)频响函数(Frequency Response Function)幅频特性(Amplitude-frequency Characteristics)相频特性(Phase frequency Characteristics)共振(Resonance)半功率点(Half power Points)波德图(Bodé Plot)动力放大系数(Dynamical Magnification Factor)单位脉冲(Unit Impulse)冲激响应函数(Impulse Response Function)杜哈美积分(Duhamel‟s Integral)卷积积分(Convolution Integral)卷积定理(Convolution Theorem)特征矩阵(Characteristic Matrix)阻抗矩阵(Impedance Matrix)频响函数矩阵(Matrix Of Frequency Response Function) 导纳矩阵(Mobility Matrix)冲击响应谱(Shock Response Spectrum)冲击激励(Shock Excitation)冲击响应(Shock Response)冲击初始响应谱(Initial Shock Response Spectrum)冲击剩余响应谱(Residual Shock Response Spectrum) 冲击最大响应谱(Maximum Shock Response Spectrum) 冲击响应谱分析(Shock Response Spectrum Analysis)3 模态试验分析模态试验(Modal Testing)机械阻抗(Mechanical Impedance)位移阻抗(Displacement Impedance)速度阻抗(Velocity Impedance)加速度阻抗(Acceleration Impedance)机械导纳(Mechanical Mobility)位移导纳(Displacement Mobility)速度导纳(Velocity Mobility)加速度导纳(Acceleration Mobility)驱动点导纳(Driving Point Mobility)跨点导纳(Cross Mobility)传递函数(Transfer Function)拉普拉斯变换(Laplace Transform)传递函数矩阵(Matrix Of Transfer Function)频响函数(FRF,Frequency Response Function)频响函数矩阵(Matrix Of FRF)实模态(Normal Mode)复模态(Complex Mode)模态参数(Modal Parameter)模态频率(Modal Frequency)模态阻尼比(Modal Damping Ratio)模态振型(Modal Shape)模态质量(Modal Mass)模态刚度(Modal Stiffness)模态阻力系数(Modal Damping Coefficient)模态阻抗(Modal Impedance)模态导纳(Modal Mobility)模态损耗因子(Modal Loss Factor)比例粘性阻尼(Proportional Viscous Damping)非比例粘性阻尼(Non-proportional Viscous Damping) 结构阻尼(Structural Damping,Hysteretic Damping) 复频率(Complex Frequency)复振型(Complex Modal Shape)留数(Residue)极点(Pole)零点(Zero)复留数(Complex Residue)随机激励(Random Excitation)伪随机激励(Pseudo Random Excitation)猝发随机激励(Burst Random Excitation)稳态正弦激励(Steady State Sine Excitation)正弦扫描激励(Sweeping Sine Excitation)锤击激励(Impact Excitation)频响函数的H1 估计(FRF Estimate by H1)频响函数的H2 估计(FRF Estimate by H2)频响函数的H3 估计(FRF Estimate by H3)单模态曲线拟合法(Single-mode Curve Fitting Method) 多模态曲线拟合法(Multi-mode Curve Fitting Method) 模态圆(Mode Circle)剩余模态(Residual Mode)幅频峰值法(Peak Value Method)实频-虚频峰值法(Peak Real/Imaginary Method)圆拟合法(Circle Fitting Method)加权最小二乘拟合法(Weighting Least Squares Fitting method) 复指数拟合法(Complex Exponential Fitting method)1.2 振动测试的名词术语1 传感器测量系统传感器测量系统(Transducer Measuring System)传感器(Transducer)振动传感器(Vibration Transducer)机械接收(Mechanical Reception)机电变换(Electro-mechanical Conversion)测量电路(Measuring Circuit)惯性式传感器(Inertial Transducer,Seismic Transducer)相对式传感器(Relative Transducer)电感式传感器(Inductive Transducer)应变式传感器(Strain Gauge Transducer)电动力传感器(Electro-dynamic Transducer)压电式传感器(Piezoelectric Transducer)压阻式传感器(Piezoresistive Transducer)电涡流式传感器(Eddy Current Transducer)伺服式传感器(Servo Transducer)灵敏度(Sensitivity)复数灵敏度(Complex Sensitivity)分辨率(Resolution)频率范围(Frequency Range)线性范围(Linear Range)频率上限(Upper Limit Frequency)频率下限(Lower Limit Frequency)静态响应(Static Response)零频率响应(Zero Frequency Response)动态范围(Dynamic Range)幅值上限Upper Limit Amplitude)幅值下限(Lower Limit Amplitude)最大可测振级(Max.Detectable Vibration Level)最小可测振级(Min.Detectable Vibration Level)信噪比(S/N Ratio)振动诺模图(Vibration Nomogram)相移(Phase Shift)波形畸变(Wave-shape Distortion)比例相移(Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer) 惯性传感器的稳击响应(Shock Response Of Inertial Transducer)位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer) 幅频特性曲线(Amplitude-frequency Curve)相频特性曲线(Phase-frequency Curve)固定安装共振频率(Mounted Resonance Frequency)安装刚度(Mounted Stiffness)有限高频效应(Effect Of Limited High Frequency)有限低频效应(Effect Of Limited Low Frequency)电动式变换(Electro-dynamic Conversion)磁感应强度(Magnetic Induction,Magnetic Flux Density)磁通(Magnetic Flux)磁隙(Magnetic Gap)电磁力(Electro-magnetic Force)相对式速度传(Relative Velocity Transducer)惯性式速度传感器(Inertial Velocity Transducer)速度灵敏度(Velocity Sensitivity)电涡流阻尼(Eddy-current Damping)无源微(积)分电路(Passive Differential (Integrate) Circuit)有源微(积)分电路(Active Differential (Integrate) Circuit)运算放大器(Operational Amplifier)时间常数(Time Constant)比例运算(Scaling)积分运算(Integration)微分运算(Differentiation)高通滤波电路(High-pass Filter Circuit)低通滤波电路(Low-pass Filter Circuit)截止频率(Cut-off Frequency)压电效应(Piezoelectric Effect)压电陶瓷(Piezoelectric Ceramic)压电常数(Piezoelectric Constant)极化(Polarization)压电式加速度传感器(Piezoelectric Acceleration Transducer)中心压缩式(Center Compression Accelerometer)三角剪切式(Delta Shear Accelerometer)压电方程(Piezoelectric Equation)压电石英(Piezoelectric Quartz)电荷等效电路(Charge Equivalent Circuit)电压等效电路(Voltage Equivalent Circuit)电荷灵敏度(Charge Sensitivity)电压灵敏度(Voltage Sensitivity)电荷放大器(Charge Amplifier)适调放大环节(Conditional Amplifier Section)归一化(Uniformization)电荷放大器增益(Gain Of Charge Amplifier)测量系统灵敏度(Sensitivity Of Measuring System)底部应变灵敏度(Base Strain Sensitivity)横向灵敏度(Transverse Sensitivity)地回路(Ground Loop)力传感器(Force Transducer)力传感器灵敏度(Sensitivity Of Force Transducer)电涡流(Eddy Current)前置器(Proximitor)间隙-电压曲线(Voltage vs Gap Curve)间隙-电压灵敏度(Voltage vs Gap Sensitivity)压阻效应(Piezoresistive Effect)轴向压阻系数(Axial Piezoresistive Coefficient)横向压阻系数(Transverse Piezoresistive Coefficient)压阻常数(Piezoresistive Constant)单晶硅(Monocrystalline Silicon)应变灵敏度(Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer) 体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer) 力平衡式传感器(Force Balance Transducer)电动力常数(Electro-dynamic Constant)机电耦合系统(Electro-mechanical Coupling System)2 检测仪表、激励设备及校准装置时间基准信号(Time Base Signal)李萨茹图(Lissojous Curve)数字频率计(Digital Frequency Meter)便携式测振表(Portable Vibrometer)有效值电压表(RMS Value Voltmeter)峰值电压表(Peak-value Voltmeter)平均绝对值检波电路(Average Absolute Value Detector)峰值检波电路(Peak-value Detector)准有效值检波电路(Quasi RMS Value Detector)真有效值检波电路(True RMS Value Detector)直流数字电压表(DVM,DC Digital Voltmeter)数字式测振表(Digital Vibrometer)A/D 转换器(A/D Converter)D/A 转换器(D/A Converter)相位计(Phase Meter)电子记录仪(Lever Recorder)光线示波器(Oscillograph)振子(Galvonometer)磁带记录仪(Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度(Distortion)机械式激振器(Mechanical Exciter)机械式振动台(Mechanical Shaker)离心式激振器(Centrifugal Exciter)电动力式振动台(Electro-dynamic Shaker)电动力式激振器(Electro-dynamic Exciter)液压式振动台(Hydraulic Shaker)液压式激振器(Hydraulic Exciter)电液放大器(Electro-hydraulic Amplifier)磁吸式激振器(Magnetic Pulling Exciter)涡流式激振器(Eddy Current Exciter)压电激振片(Piezoelectric Exciting Elements)冲击力锤(Impact Hammer)冲击试验台(Shock Testing Machine)激振控制技术(Excitation Control Technique)波形再现(Wave Reproduction)压缩技术(Compression Technique)均衡技术(Equalization Technique)交越频率(Crossover Frequency)综合技术(Synthesis Technique)校准(Calibration)分部校准(Calibration for Components in system)系统校准(Calibration for Over-all System)模拟传感器(Simulated Transducer)静态校准(Static Calibration)简谐激励校准(Harmonic Excitation Calibration)绝对校准(Absolute Calibration)相对校准(Relative Calibration)比较校准(Comparison Calibration)标准振动台(Standard Vibration Exciter)读数显微镜法(Microscope-streak Method)光栅板法(Ronchi Ruling Method)光学干涉条纹计数法(Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method) 背靠背安装(Back-to-back Mounting)互易校准法(Reciprocity Calibration)共振梁(Resonant Bar)冲击校准(Impact Exciting Calibration)摆锤冲击校准(Ballistic Pendulum Calibration)落锤冲击校准(Drop Test Calibration)振动和冲击标准(Vibration and Shock Standard)迈克尔逊干涉仪(Michelson Interferometer)摩尔干涉图象(Moire Fringe)参考传感器(Reference Transducer)3 频率分析及数字信号处理带通滤波器(Band-pass Filter)半功率带宽(Half-power Bandwidth)3 dB 带宽(3 dB Bandwidth)等效噪声带宽(Effective Noise Bandwidth)恒带宽(Constant Bandwidth)恒百分比带宽(Constant Percentage Bandwidth)1/N 倍频程滤波器(1/N Octave Filter)形状因子(Shape Factor)截止频率(Cut-off Frequency)中心频率(Centre Frequency)模拟滤波器(Analog Filter)数字滤波器(Digital Filter)跟踪滤波器(Tracking Filter)外差式频率分析仪(Heterodyne Frequency Analyzer) 逐级式频率分析仪(Stepped Frequency Analyzer)扫描式频率分析仪(Sweeping Filter Analyzer)混频器(Mixer)RC 平均(RC Averaging)平均时间(Averaging Time)扫描速度(Sweeping Speed)滤波器响应时间(Filter Response Time)离散傅里叶变换(DFT,Discrete Fourier Transform) 快速傅里叶变换(FFT,Fast Fourier Transform)抽样频率(Sampling Frequency)抽样间隔(Sampling Interval)抽样定理(Sampling Theorem)抗混滤波(Anti-aliasing Filter)泄漏(Leakage)加窗(Windowing)窗函数(Window Function)截断(Truncation)频率混淆(Frequency Aliasing)乃奎斯特频率(Nyquist Frequency)矩形窗(Rectangular Window)汉宁窗(Hanning Window)凯塞-贝塞尔窗(Kaiser-Bessel Window)平顶窗(Flat-top Window)平均(Averaging)线性平均(Linear Averaging)指数平均(Exponential Averaging)峰值保持平均(Peak-hold Averaging)时域平均(Time-domain Averaging)谱平均(Spectrum Averaging)重叠平均(Overlap Averaging)栅栏效应(Picket Fence Effect)吉卜斯效应(Gibbs Effect)基带频谱分析(Base-band Spectral Analysis)选带频谱分析(Band Selectable Sp4ctralAnalysis)细化(Zoom)数字移频(Digital Frequency Shift)抽样率缩减(Sampling Rate Reduction)功率谱估计(Power Spectrum Estimate)相关函数估计(Correlation Estimate)频响函数估计(Frequency Response Function Estimate) 相干函数估计(Coherence Function Estimate)冲激响应函数估计(Impulse Response Function Estimate) 倒频谱(Cepstrum)功率倒频谱(Power Cepstrum)幅值倒频谱(Amplitude Cepstrum)倒频率(Quefrency)4 旋转机械的振动测试及状态监测状态监测(Condition Monitoring)故障诊断(Fault Diagnosis)转子(Rotor)转手支承系统(Rotor-Support System)振动故障(Vibration Fault)轴振动(Shaft Vibration)径向振动(Radial Vibration)基频振动(Fundamental Frequency Vibration)基频检测(Fundamental Frequency Component Detecting) 键相信号(Key-phase Signal)正峰相位(+Peak Phase)高点(High Spot)光电传感器(Optical Transducer)同相分量(In-phase Component)正交分量(Quadrature Component)跟踪滤波(Tracking Filter)波德图(Bode Plot)极坐标图(Polar Plot)临界转速(Critical Speed)不平衡响应(Unbalance Response)残余振幅(Residual Amplitude)方位角(Attitude Angle)轴心轨迹(Shaft Centerline Orbit)正进动(Forward Precession)同步正进动(Synchronous Forward Precession)反进动(Backward Precession)正向涡动(Forward Whirl)反向涡动(Backward Whirl)油膜涡动(Oil Whirl)油膜振荡(Oil Whip)轴心平均位置(Average Shaft Centerline Position) 复合探头(Dual Probe)振摆信号(Runout Signal)电学振摆(Electrical Runout)机械振摆(Mechanical Runout)慢滚动向量(Slow Roll Vector)振摆补偿(Runout Compensation)故障频率特征(Frequency Characteristics Of Fault) 重力临界(Gravity Critical)对中(Alignment)双刚度转子(Dual Stiffness Rotor)啮合频率(Gear-mesh Frequency)间入简谐分量(Interharmonic Component)边带振动(Side-band Vibration)三维频谱图(Three Dimensional Spectral Plot)瀑布图(Waterfall Plot)级联图(Cascade Plot)阶次跟踪(Order Tracking)阶次跟踪倍乘器(Order Tracking Multiplier)监测系统(Monitoring System)适调放大器(Conditional Amplifier)趋势分析(Trend Analysis)倒频谱分析(Cepstrum Analysis)直方图(Histogram)确认矩阵(Confirmation Matrix)通频幅值(Over-all Amplitude)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)报警限(Alarm Level)机械相关专业词汇集锦阿基米德蜗杆 Archimedes worm 安全系数 safety factor; factor of safety安全载荷 safe load 凹面、凹度 concavity扳手 wrench 板簧 flat leaf spring半圆键 woodruff key 变形 deformation摆杆 oscillating bar 摆动从动件 oscillating follower摆动从动件凸轮机构 cam with oscillating follower 摆动导杆机构 oscillating guide-bar mechanism摆线齿轮 cycloidal gear 摆线齿形 cycloidal tooth profile摆线运动规律 cycloidal motion 摆线针轮 cycloidal-pin wheel包角 angle of contact 保持架 cage背对背安装 back-to-back arrangement 背锥 back cone ;normal cone背锥角 back angle 背锥距 back cone distance比例尺 scale 比热容 specific heat capacity闭式链 closed kinematic chain 闭链机构 closed chain mechanism臂部 arm 变频器 frequency converters变频调速 frequency control of motor speed 变速 speed change变速齿轮 change gear ; change wheel 变位齿轮 modified gear变位系数 modification coefficient 标准齿轮 standard gear标准直齿轮 standard spur gear 表面质量系数 superficial mass factor表面传热系数 surface coefficient of heat transfer 表面粗糙度 surface roughness并联式组合 combination in parallel 并联机构 parallel mechanism并联组合机构 parallel combined mechanism 并行工程 concurrent engineering并行设计 concurred design, CD 不平衡相位 phase angle of unbalance不平衡 imbalance (or unbalance) 不平衡量 amount of unbalance不完全齿轮机构 intermittent gearing 波发生器 wave generator波数 number of waves 补偿 compensation参数化设计 parameterization design, PD 残余应力 residual stress操纵及控制装置 operation control device 槽轮 Geneva wheel槽轮机构 Geneva mechanism ;Maltese cross 槽数 Geneva numerate槽凸轮 groove cam 侧隙 backlash差动轮系 differential gear train 差动螺旋机构 differential screw mechanism差速器 differential 常用机构 conventional mechanism; mechanism in common use车床 lathe 承载量系数 bearing capacity factor承载能力 bearing capacity 成对安装 paired mounting尺寸系列 dimension series 齿槽 tooth space齿槽宽 spacewidth 齿侧间隙 backlash齿顶高 addendum 齿顶圆 addendum circle齿根高 dedendum 齿根圆 dedendum circle齿厚 tooth thickness 齿距 circular pitch齿宽 face width 齿廓 tooth profile齿廓曲线 tooth curve 齿轮 gear齿轮变速箱 speed-changing gear boxes 齿轮齿条机构 pinion and rack齿轮插刀 pinion cutter; pinion-shaped shaper cutter 齿轮滚刀 hob ,hobbing cutter齿轮机构 gear 齿轮轮坯 blank齿轮传动系 pinion unit 齿轮联轴器 gear coupling齿条传动 rack gear 齿数 tooth number齿数比 gear ratio 齿条 rack齿条插刀 rack cutter; rack-shaped shaper cutter 齿形链、无声链 silent chain齿形系数 form factor 齿式棘轮机构 tooth ratchet mechanism插齿机 gear shaper 重合点 coincident points重合度 contact ratio 冲床 punch传动比 transmission ratio, speed ratio 传动装置 gearing; transmission gear 传动系统 driven system 传动角 transmission angle传动轴 transmission shaft 串联式组合 combination in series串联式组合机构 series combined mechanism 串级调速 cascade speed control创新 innovation ; creation 创新设计 creation design垂直载荷、法向载荷 normal load 唇形橡胶密封 lip rubber seal磁流体轴承 magnetic fluid bearing 从动带轮 driven pulley从动件 driven link, follower 从动件平底宽度 width of flat-face从动件停歇 follower dwell 从动件运动规律 follower motion从动轮 driven gear 粗线 bold line粗牙螺纹 coarse thread 大齿轮 gear wheel打包机 packer 打滑 slipping带传动 belt driving 带轮 belt pulley带式制动器 band brake 单列轴承 single row bearing单向推力轴承 single-direction thrust bearing 单万向联轴节 single universal joint 单位矢量 unit vector 当量齿轮 equivalent spur gear; virtual gear当量齿数 equivalent teeth number; virtual number of teeth当量摩擦系数 equivalent coefficient of friction当量载荷 equivalent load 刀具 cutter导数 derivative 倒角 chamfer导热性 conduction of heat 导程 lead导程角 lead angle 等加等减速运动规律 parabolic motion; constant acceleration and deceleration motion等速运动规律 uniform motion; constant velocity motion 等径凸轮 conjugate yoke radial cam等宽凸轮 constant-breadth cam 等效构件 equivalent link等效力 equivalent force 等效力矩 equivalent moment of force 等效量 equivalent 等效质量 equivalent mass等效转动惯量 equivalent moment of inertia 等效动力学模型 dynamically equivalent model底座 chassis 低副 lower pair点划线 chain dotted line (疲劳)点蚀 pitting垫圈 gasket 垫片密封 gasket seal碟形弹簧 belleville spring 动力学 dynamics顶隙 bottom clearance 定轴轮系 ordinary gear train; gear train with fixed axes动密封 kinematical seal 动能 dynamic energy动力粘度 dynamic viscosity 动力润滑 dynamic lubrication动平衡 dynamic balance 动平衡机 dynamic balancing machine 动态特性 dynamic characteristics 动态分析设计 dynamic analysis design 动压力 dynamic reaction 动载荷 dynamic load端面 transverse plane 端面参数 transverse parameters端面齿距 transverse circular pitch 端面齿廓 transverse tooth profile端面重合度 transverse contact ratio 端面模数 transverse module端面压力角 transverse pressure angle 锻造 forge对称循环应力 symmetry circulating stress 对心滚子从动件 radial (or in-line ) roller follower对心直动从动件 radial (or in-line ) translating follower对心移动从动件 radial reciprocating follower对心曲柄滑块机构 in-line slider-crank (or crank-slider) mechanism多列轴承 multi-row bearing 多楔带 poly V-belt 多项式运动规律 polynomial motion多质量转子 rotor with several masses 惰轮 idle gear额定寿命 rating life 额定载荷 load ratingII 级杆组 dyad 发生线 generating line发生面 generating plane 法面 normal plane法面参数 normal parameters 法面齿距 normal circular pitch法面模数 normal module 法面压力角 normal pressure angle法向齿距 normal pitch 法向齿廓 normal tooth profile法向直廓蜗杆 straight sided normal worm 法向力 normal force反馈式组合 feedback combining 反向运动学 inverse ( or backward) kinematics反转法 kinematic inversion 反正切 Arctan范成法 generating cutting 仿形法 form cutting方案设计、概念设计 concept design, CD 防振装置 shockproof device飞轮 flywheel 飞轮矩 moment of flywheel非标准齿轮 nonstandard gear 非接触式密封 non-contact seal非周期性速度波动 aperiodic speed fluctuation 非圆齿轮 non-circular gear粉末合金 powder metallurgy 分度线 reference line; standard pitch line分度圆 reference circle; standard (cutting) pitch circle分度圆柱导程角 lead angle at reference cylinder分度圆柱螺旋角 helix angle at reference cylinder 分母 denominator分子 numerator 分度圆锥 reference cone; standard pitch cone分析法 analytical method 封闭差动轮系 planetary differential复合铰链 compound hinge 复合式组合 compound combining复合轮系 compound (or combined) gear train 复合平带 compound flat belt复合应力 combined stress 复式螺旋机构 Compound screw mechanism 复杂机构 complex mechanism 杆组 Assur group干涉 interference 刚度系数 stiffness coefficient刚轮 rigid circular spline 钢丝软轴 wire soft shaft刚体导引机构 body guidance mechanism 刚性冲击 rigid impulse (shock)刚性转子 rigid rotor 刚性轴承 rigid bearing刚性联轴器 rigid coupling 高度系列 height series高速带 high speed belt 高副 higher pair格拉晓夫定理 Grashoff`s law 根切 undercutting公称直径 nominal diameter 高度系列 height series功 work 工况系数 application factor工艺设计 technological design 工作循环图 working cycle diagram工作机构 operation mechanism 工作载荷 external loads工作空间 working space 工作应力 working stress工作阻力 effective resistance 工作阻力矩 effective resistance moment公法线 common normal line 公共约束 general constraint公制齿轮 metric gears 功率 power功能分析设计 function analyses design 共轭齿廓 conjugate profiles共轭凸轮 conjugate cam 构件 link鼓风机 blower 固定构件 fixed link; frame固体润滑剂 solid lubricant 关节型操作器 jointed manipulator惯性力 inertia force 惯性力矩 moment of inertia ,shaking moment惯性力平衡 balance of shaking force 惯性力完全平衡 full balance of shaking force惯性力部分平衡 partial balance of shaking force 惯性主矩 resultant moment of inertia 惯性主失 resultant vector of inertia 冠轮 crown gear广义机构 generation mechanism 广义坐标 generalized coordinate轨迹生成 path generation 轨迹发生器 path generator滚刀 hob 滚道 raceway滚动体 rolling element 滚动轴承 rolling bearing滚动轴承代号 rolling bearing identification code 滚针 needle roller滚针轴承 needle roller bearing 滚子 roller滚子轴承 roller bearing 滚子半径 radius of roller滚子从动件 roller follower 滚子链 roller chain滚子链联轴器 double roller chain coupling 滚珠丝杆 ball screw滚柱式单向超越离合器 roller clutch 过度切割 undercutting函数发生器 function generator 函数生成 function generation含油轴承 oil bearing 耗油量 oil consumption耗油量系数 oil consumption factor 赫兹公式 H. Hertz equation合成弯矩 resultant bending moment 合力 resultant force合力矩 resultant moment of force 黑箱 black box横坐标 abscissa 互换性齿轮 interchangeable gears花键 spline 滑键、导键 feather key滑动轴承 sliding bearing 滑动率 sliding ratio滑块 slider 环面蜗杆 toroid helicoids worm环形弹簧 annular spring 缓冲装置 shocks; shock-absorber灰铸铁 grey cast iron 回程 return回转体平衡 balance of rotors 混合轮系 compound gear train积分 integrate 机电一体化系统设计 mechanical-electrical integration system design机构 mechanism 机构分析 analysis of mechanism机构平衡 balance of mechanism 机构学 mechanism机构运动设计 kinematic design of mechanism 机构运动简图 kinematic sketch of mechanism机构综合 synthesis of mechanism 机构组成 constitution of mechanism机架 frame, fixed link 机架变换 kinematic inversion机器 machine 机器人 robot机器人操作器 manipulator 机器人学 robotics技术过程 technique process 技术经济评价 technical and economic evaluation技术系统 technique system 机械 machinery机械创新设计 mechanical creation design, MCD 机械系统设计 mechanical system design, MSD机械动力分析 dynamic analysis of machinery 机械动力设计 dynamic design of machinery机械动力学 dynamics of machinery 机械的现代设计 modern machine design 机械系统 mechanical system 机械利益 mechanical advantage机械平衡 balance of machinery 机械手 manipulator机械设计 machine design; mechanical design 机械特性 mechanical behavior机械调速 mechanical speed governors 机械效率 mechanical efficiency机械原理 theory of machines and mechanisms 机械运转不均匀系数 coefficient of speed fluctuation机械无级变速 mechanical stepless speed changes 基础机构 fundamental mechanism基本额定寿命 basic rating life 基于实例设计 case-based design,CBD基圆 base circle 基圆半径 radius of base circle基圆齿距 base pitch 基圆压力角 pressure angle of base circle基圆柱 base cylinder 基圆锥 base cone急回机构 quick-return mechanism 急回特性 quick-return characteristics急回系数 advance-to return-time ratio 急回运动 quick-return motion棘轮 ratchet 棘轮机构 ratchet mechanism棘爪 pawl 极限位置 extreme (or limiting) position极位夹角 crank angle between extreme (or limiting) positions计算机辅助设计 computer aided design, CAD计算机辅助制造 computer aided manufacturing, CAM计算机集成制造系统 computer integrated manufacturing system, CIMS计算力矩 factored moment; calculation moment 计算弯矩 calculated bending moment加权系数 weighting efficient 加速度 acceleration加速度分析 acceleration analysis 加速度曲线 acceleration diagram尖点 pointing; cusp 尖底从动件 knife-edge follower间隙 backlash 间歇运动机构 intermittent motion mechanism减速比 reduction ratio 减速齿轮、减速装置 reduction gear减速器 speed reducer 减摩性 anti-friction quality渐开螺旋面 involute helicoids 渐开线 involute渐开线齿廓 involute profile 渐开线齿轮 involute gear渐开线发生线 generating line of involute 渐开线方程 involute equation渐开线函数 involute function 渐开线蜗杆 involute worm渐开线压力角 pressure angle of involute 渐开线花键 involute spline简谐运动 simple harmonic motion 键 key键槽 keyway 交变应力 repeated stress交变载荷 repeated fluctuating load 交叉带传动 cross-belt drive交错轴斜齿轮 crossed helical gears 胶合 scoring角加速度 angular acceleration 角速度 angular velocity角速比 angular velocity ratio 角接触球轴承 angular contact ball bearing 角接触推力轴承 angular contact thrust bearing 角接触向心轴承 angular contact radial bearing角接触轴承 angular contact bearing 铰链、枢纽 hinge校正平面 correcting plane 接触应力 contact stress接触式密封 contact seal 阶梯轴 multi-diameter shaft结构 structure 结构设计 structural design截面 section 节点 pitch point节距 circular pitch; pitch of teeth 节线 pitch line节圆 pitch circle 节圆齿厚 thickness on pitch circle节圆直径 pitch diameter 节圆锥 pitch cone节圆锥角 pitch cone angle 解析设计 analytical design紧边 tight-side 紧固件 fastener径节 diametral pitch 径向 radial direction径向当量动载荷 dynamic equivalent radial load 径向当量静载荷 static equivalent radial load 径向基本额定动载荷 basic dynamic radial load rating径向基本额定静载荷 basic static radial load tating径向接触轴承 radial contact bearing 径向平面 radial plane径向游隙 radial internal clearance 径向载荷 radial load径向载荷系数 radial load factor 径向间隙 clearance静力 static force 静平衡 static balance静载荷 static load 静密封 static seal局部自由度 passive degree of freedom 矩形螺纹 square threaded form锯齿形螺纹 buttress thread form 矩形牙嵌式离合器 square-jaw positive-contact clutch绝对尺寸系数 absolute dimensional factor 绝对运动 absolute motion绝对速度 absolute velocity 均衡装置 load balancing mechanism抗压强度 compression strength 开口传动 open-belt drive开式链 open kinematic chain 开链机构 open chain mechanism可靠度 degree of reliability 可靠性 reliability可靠性设计 reliability design, RD 空气弹簧 air spring空间机构 spatial mechanism 空间连杆机构 spatial linkage空间凸轮机构 spatial cam 空间运动副 spatial kinematic pair空间运动链 spatial kinematic chain 框图 block diagram空转 idle 宽度系列 width series雷诺方程Reynolds…s equation 离心力 centrifugal force离心应力 centrifugal stress 理论廓线 pitch curve离合器 clutch 离心密封 centrifugal seal理论啮合线 theoretical line of action 隶属度 membership 力 force力多边形 force polygon 力封闭型凸轮机构 force-drive (or force-closed) cam mechanism力矩 moment 力平衡 equilibrium力偶 couple 力偶矩 moment of couple连杆 connecting rod, coupler 连杆机构 linkage连杆曲线 coupler-curve 连心线 line of centers链 chain 链传动装置 chain gearing链轮 sprocket ; sprocket-wheel ; sprocket gear ; chain wheel 联组V 带 tight-up V belt联轴器 coupling ; shaft coupling 两维凸轮 two-dimensional cam临界转速 critical speed 六杆机构 six-bar linkage龙门刨床 double Haas planer 轮坯 blank轮系 gear train 螺杆 screw螺距 thread pitch 螺母 screw nut螺旋锥齿轮 helical bevel gear 螺钉 screws螺栓 bolts 螺纹导程 lead螺纹效率 screw efficiency 螺旋传动 power screw螺旋密封 spiral seal 螺纹 thread (of a screw)。

XANES测定吸附态P在水铁矿和水铝石混合物之间的分布

XANES测定吸附态P在水铁矿和水铝石混合物之间的分布

XANES Determination of Adsorbed Phosphate Distribution between Ferrihydriteand Boehmite in MixturesNidhi Khare,Dean Hesterberg,*Suzanne Beauchemin,and Shan-Li WangABSTRACT centration in runoff water was positively correlated withsoil P concentration,and this relationship was soil spe-Iron-and Al-(hydr)oxide minerals are important sorbents for re-cific(Sharpley,1995;Pote et al.,1996).Being able to taining PO4in soils.Our objective was to determine the distributionof adsorbed PO4between ferrihydrite and boehmite in aqueous mix-predict PO4dissolution and mobility in different soils tures of these minerals.Phosphate was adsorbed in aqueous suspensions or under varying soil conditions would help in devel-up to maximum concentrations of1860,850,and1420mmol kgϪ1for oping soil management practices that decrease detri-ferrihydrite,boehmite,and1:1(by mass)mixtures of these minerals mental environmental impacts of P.Phosphate specia-at pH6.The solids were analyzed as moist pastes using P K-XANES tion,that is,the chemical forms of PO4in a soil,dictates(X-ray absorption near edge structure)spectroscopy.The adsorption the effects of soil PO4concentration,mineralogy,pH,isotherm for the mixed-mineral suspensions could essentially be de-and redox potential on PO4binding and dissolution. scribed as a linear combination of Freundlich isotherm models forPhosphate adsorption in soils has been correlated each single-mineral system,indicating negligible mineral interactivewith a number of indices derived from chemical extrac-effects on PO4adsorption in the mixtures.X-ray absorption near edgestructure spectra for PO4adsorbed on ferrihydrite or in ferrihydrite/tions(Beauchemin and Simard,1999).For example,the boehmite mixtures showed a pre-edge feature at approximately2146PO4sorption capacity of soils has been related to various eV that was absent in boehmite systems.Linear combination fitting indices based on acid-oxalate extractable Fe and Al, of the pre-edge region of XANES spectra for mixtures with average suggesting that poorly crystalline Fe-and Al-oxides arespectra for PO4adsorbed on boehmite or ferrihydrite alone,indicated largely responsible for PO4retention in acidic soilsthat59to97%of the PO4was adsorbed on ferrihydrite in the mixtures.(Beauchemin and Simard,1999).Similarly,chemical ex-With increasing concentration of adsorbed PO4in the mineral mix-traction analyses of Sallade and Sims(1997)suggested tures,the concentration adsorbed on the ferrihydrite component in-that PO4in sediments collected from drainage ditches creased linearly.Phosphate distribution trends in the mixtures sug-adjacent to agricultural fields was associated with Fe-gested an affinity preference for ferrihydrite at the lowest adsorbedPO4concentration(100mmol kgϪ1minerals),no affinity preference and Al-oxide minerals.Ferrihydrite,a poorly crystalline for either mineral at intermediate concentrations(200to600mmol Fe-oxide mineral is often found in sediments or hydro-PO4kgϪ1),and the possibility of a surface precipitate involving Al at morphic soils as a precursor of other Fe-oxide minerals the highest concentration(1300mmol PO4kgϪ1).(Schwertmann and Cornell,1991).Furthermore,trans-mission electron microscopy with energy dispersiveX-ray analysis(TEM/EDX)showed association of PO4 P hosphorus has been intensively studied due to its with Al and Fe in isolated particles from different soils importance as a plant macronutrient,and more re-(Pierzynski et al.,1990a,1990b)cently because of its negative role in the eutrophication Phosphate dissolution in soils may depend on theof surface waters.In deep sandy soils,soils rich in or-relative distribution of PO4between Fe-and Al-oxideganic matter,or soils with elevated P concentrations from minerals.For example,dissolution of PO4during soillong-term fertilization,P can also be leached through the reduction has been explained by release of PO4associ-soil profile and eventually be discharged with subsurface ated with Fe(III)-phosphate and Fe(III)-oxide minerals flow to surface waters(Sims et al.,1998).Soil P has(Patrick et al.,1973;Hongve,1997;Reddy et al.,1998). recently gained much attention due to the USDA-However,Al-oxide minerals are considered redox inac-USEPA policy to limit P input with animal waste and tive,so any associated PO4should be less susceptiblefertilizers(Sharpley et al.,2000).to release during soil reduction.Soil P concentration,soil matrix composition(e.g.,One barrier to evaluating such hypotheses is the lack mineralogy,and organic matter content),pH,and redoxof a direct method for quantifying PO4distribution be-potential are considered to be the main soil propertiestween Fe-and Al-oxide minerals when these minerals affecting PO4dissolution and mobility.Phosphate typi-occur as a mixture(as in soils).Past research characteriz-cally binds strongly with soils.However,dissolved P con-ing PO4adsorption in mineral mixtures specifically ka-olinite and goethite used equilibrium adsorption iso-N.Khare,D.Hesterberg,and S.L.Wang,Dep.of Soil Science,Box therms and kinetic measurements(Ioannou et al.,1998; 7619,North Carolina State University,Raleigh,NC27695-7619;S.Papadopoulos et al.,1998).However,definitive infor-Beauchemin,Natural Resources Canada,CANMET,555Booth St.,mation about the distribution of PO4between these two Office332A,Ottawa,ON,KIA0G1.S.L.Wang currently at Dep.ofSoil and Environ.Sci.,National Chung Hsing University,Taichung,minerals could not be obtained from empirical modeling 402,Taiwan.N.Khare currently at Dep.of Geology and Geophysics,(Langmuir and Freundlich fits)of the macroscopic ad-University of Wyoming,Laramie,WY82071.Received13Jan.2003.sorption data.In this research,we characterized the *Corresponding author(dean_hesterberg@).Published in Soil Sci.Soc.Am.J.68:460–469(2004).Soil Science Society of America Abbreviations:LCF,linear combination fitting;XANES,X-ray ab-sorption near-edge structure.677S.Segoe Rd.,Madison,WI53711USA460XANES测定吸附态P在水铁矿和水铝石混合物之间的分布KHARE ET AL.:ADSORBED PHOSPHATE DISTRIBUTION DETERMINED BY XANES4612.2,and10nm along the crystal a,b,and c axes respectively, distribution of PO4between ferrihydrite and boehmiteand the Brunauer–Emmett–Teller(BET)H2O surface area using P K-XANES analysis.reported for this mineral was514m2gϪ1(Wang et al.2003). Hesterberg et al.(1999)identified unique features inWater adsorption was previously used to avoid sample drying P K-XANES spectra of strengite(FePO4·2H2O)andand because this small polar molecule can access the internal variscite(AlPO4·2H2O)that indicated the possibility ofsurfaces present in a poorly crystalline material such as boehm-distinguishing adsorbed PO4in mixed Fe-and Al-oxideite(Wang et al.2003).Because a temperature-induced struc-systems.For example,due to electron orbital configura-tural change in poorly crystalline materials(such as boehmite tions and electronic transitions at the X-ray absorption and ferrihydrite)has been observed at100to110ЊC(Wangedge,PO4associated with Fe(III)and some other transi-et al.,2003),the N2BET surface areas of these minerals weretion metals in PO4minerals produces a distinct pre-edge not measured.feature on the low energy side of an intense white-line peak near2150eV in the P K-XANES spectrumAdsorption Isotherms(Behrens,1992;Hesterberg et al.,1999;Franke andHormes,1995;Okude et al.,1999).This feature is absent Adsorption isotherm experiments for ferrihydrite,boehm-in spectra of Al phosphates.Because of the ability of ite,and mixed ferrihydrite-boehmite(1:1mass ratio)suspen-sions were conducted at pH6.0in250-mL polycarbonate cen-XANES to distinguish PO4bound to Fe(III)versustrifuge bottles following the basic procedure described by Oh Al(III),this technique was considered suitable for char-et al.(1999).acterizing PO4on Fe-and Al-oxide minerals.All samples had a suspended solids concentration of1.50g The objective of this research was to utilize XANESkgϪ1,constant ionic strength of0.01mol LϪ1KCl,and total spectroscopy to quantify the distribution of PO4be-sample mass of133.34Ϯ0.01g.Aqueous solutions for adsorp-tween ferrihydrite and boehmite in mixtures of thesetion experiments(KCl,HCl,KOH,and KH2PO4,all at0.01 minerals,and thereby determine the relative affinity ofmol LϪ1concentrations)were prepared using analytical grade PO4for each mineral in the mixture.Two-line ferrihy-reagents and degassed(heated and N2purged)deionized wa-drite(Fe5HO8·4H20)and poorly crystalline boehmite ter.Stock mineral suspensions were shaken on a reciprocating(␥-AlOOH)were chosen because we expected that their shaker at a rate of1sϪ1for at least1h before use.Two to eight high(and comparable)PO4sorption capacities(relative grams of ferrihydrite,boehmite,or a1:1(by mass)mixture of to,e.g.,goethite and gibbsite)would allow better detec-ferrihydrite and boehmite prepared gravimetrically from stock tion of subtle changes in XANES spectra of the mix-suspensions were weighed while vigorously stirring a stock tures.Ferrihydrite is representative of poorly crystalline suspension on a magnetic stirrer,and brought to about70% Fe-(hydr)oxides in soils,and boehmite is a finely di-of the final sample mass with0.01mol LϪ1KCl.An appropriatealiquot of0.01mol LϪ1KH2PO4was slowly added to each vided,crystalline analog of noncrystalline Al hydroxidesvigorously stirred sample in random chronological order using in soils.a micropipetter.The pH was adjusted to pH6.0using0.01mol LϪ1HCl or0.01mol LϪ1KOH,and the sample headspaceMATERIALS AND METHODS was flushed with N2gas.Samples were shaken for42h on areciprocating water bath shaker at a rate of0.5sϪ1and22ЊC.Mineral Synthesis and CharacterizationKinetics of PO4sorption is complex,and this operationally Two-line ferrihydrite was synthesized by hydrolyzing Fe(III)chosen time of42h should be sufficiently long to complete with KOH according to the method of Schwertmann and Cor-fast sorption reactions(Li and Stanforth,2000).nell(1991)and aging for6mo before use.Poorly crystalline After about16h of shaking,the pH varied by an average boehmite was purchased from Reheis Co.(Berkeley Heights,of0.2units and was again adjusted to pH6.0and each sample NJ)in gel form under the trade name Rehydragel HPA.Both was brought to its final mass.The pH was again checked after ferrihydrite and boehmite were analyzed before experiments40h of equilibration and minor adjustments(usuallyϽ0.1 using X-ray powder diffraction to determine mineralogical units)were made if needed.After equilibration,samples were purity.The X-ray diffraction pattern for ferrihydrite showed centrifuged at approximately6000ϫg for15min,and the only two broad peaks at0.15and0.24nm,which is characteris-supernatant solutions were decanted.The pH was measured tic of two-line ferrihydrite.More crystalline Fe oxides,if pres-in a portion of the supernatant solution before filtering and ent,were not detected.The X-ray diffraction pattern for the was found to be6.0Ϯ0.1for all samples.The remaining boehmite sample showed all peaks reported for boehmite,solutions were filtered under vacuum using0.2-␮m Millipore and no peaks for gibbsite or any other crystalline Al-oxide Isopore polycarbonate filter membranes(Millipore Corp.,Bed-minerals.The maximum adsorption capacities of boehmiteford,MA).Dissolved PO4was measured in the supernatant and ferrihydrite remained constant within3%between Junesolutions using the molybdate colorimetric(Murphy-Riley)pro-2002and June2003,indicating that aging did not affect PO4cedure(Olsen and Sommers,1982).The concentration of PO4 adsorption on these minerals.adsorbed on samples was determined as the difference be-Ferrihydrite was washed thrice with1mol LϪ1KCl solutiontween total added PO4and PO4measured in supernatant solu-and further washed with0.01mol LϪ1KCl to obtain a0.01-tions.Samples were analyzed on a Shimadzu Model UV2101-mol LϪ1KCl background electrolyte.Boehmite gel in deion-PC spectrophotometer using a1-cm(for higher-P samples)or ized water was brought into a0.01-mol LϪ1KCl background5-cm path length cell.Additional isotherm data for the single by adding a1-mol LϪ1KCl solution.Both minerals were storedand mixed ferrihydrite/boehmite(mixed-mineral)systems were as stock aqueous suspensions of known(measured)solidsobtained on scaled down samples of30g total mass in50mL concentration in0.01mol LϪ1KCl(see Alcacio et al.,2001)polycarbonate centrifuge tubes prepared under identical con-containing40.2g ferrihydrite kgϪ1and14.1g boehmite kgϪ1.straints and following an analogous procedure as outlined The mean crystalline dimensions of poorly crystalline boehm-ite used in this study were previously determined to be4.5,above.Isotherm results from both procedures were integrated.462SOIL SCI.SOC.AM.J.,VOL.68,MARCH–APRIL2004et al.,1992).Hesterberg et al.(1999)calculated that self-XANES Data Collection and Analysisabsorption at the P K-edge wasϽ10%for PO4mineral samples Sample Preparation diluted to800mmol kgϪ1in boron nitride.If self-absorptionsignificantly affected our XANES spectra,we would expect to For XANES analysis,each sedimented mineral sample fromsee a decrease in the white-line peak intensity with increasing the250-mL centrifuge bottles used for concurrent isothermadsorbed P.However,the white-line peak intensities for PO4 experiments was rinsed into50-mL polycarbonate centrifugeadsorbed on ferrihydrite remained essentially constant be-tubes using a portion of its supernatant solution,and centri-tween100and1680mmol P kgϪ1(Fig.1,discussed below), fuged at approximately20000ϫg for15min.Because theindicating that self-absorption did not measurably impact supernatant solution in equilibrium with the solids from theour results.prior centrifugation was used,no adsorption or desorptionwas expected.Supernatant solutions were decanted and eachsedimented mineral sample was homogenized by mixing thor-Data Normalizationoughly with a clean teflon spatula in the50-mL tube.TheThe photon energy scale was normalized to a relative energy moist paste was dewatered to a clay/water ratio of about1:2scale by subtracting the calibration energy of2149eV from by placing it on a0.2-␮m Millipore filter,under vacuum,forall spectra(Hesterberg et al.,1999).The data were baseline Ͻ60s.Samples were loaded into labeled,acrylate samplecorrected using a linear regression betweenϪ40andϪ10eV holders and covered with5-␮m polypropylene X-ray filmrelative energy(Sayers and Bunker,1988).To quantitatively (Spex Industries,Metuchen,NJ)and secured with chemicallyanalyze the pre-edge region of the spectra,baselines were pure Kaptan tape(Budnick Converting,Inc.,Columbia,IL).further refined by adjusting all spectra in a set to a common Individually mounted samples were covered with a secondfluorescence yield value atϪ8eV.To remove P concentration piece of acrylate to protect the sample during transport,andeffects on the edge step,single-point background normaliza-sealed into a labeled low-density polyethylene plastic bag.Alltion(Sayers and Bunker,1988)was done in three ways,using samples were sealed into a second plastic bag with a moistthe fluorescence yield at each of three energies:(i)at the paper towel to prevent desiccation.Experiments were timedmaximum peak between10and18eV in the first derivative so that sample preparation was completed a maximum of3dXANES spectrum(edge normalized),(ii)at the maximum of in advance of XANES data collection.All XANES data fora post white-line resonance feature between14and18eV, single,and mixed-mineral systems were collected in June2002and(iii)at30eV relative energy in a flat portion of the (Jun02)during a single synchrotron beam time(a data collec-spectrum.In each case,the fluorescence yields over the entire tion period)except for five additional samples of mixed-min-spectrum were divided by the fluorescence yield at the given eral systems(100,570,760,920,and1190mmol PO4kgϪ1)normalization energy.collected in October2002(Oct02)to determine reproducibil-ity of results.Linear Combination FittingData Collection The proportions of total PO4adsorbed on each mineral inthe mixed-mineral suspensions were determined using least Phosphorus K-XANES data acquisition was done at Beam-squares linear combination fitting(Vairavamurthy et al.,1997; line X-19A at the National Synchrotron Light Source,Brook-Hutchison et al.,2001),with spectra for adsorbed PO4in the haven National Laboratory in Upton,NY.The electron beamsingle-mineral systems serving as standards.Fitting results energy was2.5GeV and the maximum beam current was300were judged according to their chi-square(goodness-of-fit) mA.The synchrotron radiation was monochromatized by avalues.Ge[Ge(111)]monochromator.The monochromator was cali-X-ray absorption near-edge structure spectra for PO4ad-brated to2149eV at the edge(maximum peak in the first-sorbed in single-and mixed-mineral systems at lower concen-derivative spectrum)of variscite.A variscite reference fortrations were noisier than spectra at higher adsorbed PO4 monochromator calibration could not be placed behind sam-concentrations.Therefore,standards for single-mineral sam-ples because of the low energy(low penetrating power)ofples of lower concentration(Յ100mmol PO4kgϪ1ferrihydrite the X-rays at the P K-edge.For example,we calculate basedorՅ200mmol kgϪ1boehmite)were used for mixed-mineral on absorption coefficients(McMaster et al.,1969)thatϾ99%samples of lower concentration(100mmol PO4kgϪ1).Simi-of the X-ray intensity at2150eV would be attenuated by alarly,standards for single-mineral samples of higher adsorbed 10-␮m thickness of Fe–oxide.Samples of thicknessϽϽ10␮mconcentration(Ͼ100mmol PO4kgϪ1ferrihydrite orϾ200 would be required for collecting data in transmission mode,mmol kgϪ1boehmite)were used for mixed-mineral samples which was not practical.Moreover thin samples can desiccateof higher concentration(Ͼ100mmol PO4kgϪ1).Further details quickly,thus defeating the purpose of using XANES analysisabout the rationale for choosing single-mineral standards for for moist samples to determine PO4distribution in situ.There-fitting analysis are included in the Results and Discussion fore,a0.1-mm thick moist paste was used for data collectionsection below.to maintain sample moisture.X-ray absorption near-edgestructure spectra were collected at photon energies between2079and2248eV,with a minimum step size of0.2eV between RESULTS AND DISCUSSION2099to2174eV.Two to four scans with consistent baselinesAdsorption Isothermswere ensemble averaged.Spectra were collected in fluorescence mode using a PIPS Adsorption isothermsfor PO4onferrihydrite,boehmite,(Passivated Implanted Planar Silicon)detector mounted into a and mixtures of ferrihydrite and boehmite(Fig.2)were He-filled sample chamber.X-ray absorption near-edge structureL-curves that could be fit with Freundlich models(Spos-data were also collected for variscite and strengite standardsito,1984).The adsorption isotherm for the mixed-min-diluted to400mmol P kgϪ1in boron nitride.Self-absorptioneral system was intermediate between those of the sin-effects can distort XANES spectra collected in fluorescencegle-mineral systems.The maximum levels of adsorption mode,particularly at low X-ray energies as used here,and athigh concentrations of the analyte(P in this case)(Troger observed were about1860,1420,and850mmol kgϪ1KHARE ET AL.:ADSORBED PHOSPHATE DISTRIBUTION DETERMINED BY XANES463Fig.1.Edge-normalized,stacked P K-XANES spectra for PO4adsorbed on boehmite,ferrihydrite(ferri.)or mixed-mineral systems(June2002 at pH6.0Ϯ0.1)at selected concentrations.Numbers in the legend denote adsorbed PO4in mmol kgϪ1.for ferrihydrite,mixed-mineral,and boehmite systems.a direct fit of the Freundlich model to the mixed mineralisotherm(solid lines in Fig.2).The isotherm fitting results Because of the shapes of the isotherms,these levelswere considered as maximum adsorption capacities for indicated that adsorption in the mixed-mineral system the purposes of this study.essentially behaved(within about10%variation)as a Freundlich isotherm models were used to determine linear combination of adsorption in the single-mineral whether PO4adsorption in the mixed-mineral systemsystems.That is,there was no interaction between the could be fit as a linear combination of adsorption in the minerals that notably affected PO4adsorption.In general,one cannot determine from the isotherm single-mineral systems.The predicted adsorption for the1:1mixture based on a linear combination of Freundlich data how PO4is distributed between ferrihydrite and models for the single-mineral systems(q mixed,predicted)wasboehmite at any given adsorbed PO4concentration in taken as the mixed-mineral systems.Therefore,XANES spec-troscopy was used to determine PO4distribution in the q mixed,predictedϭ0.5q fϩ0.5q bϭmixed-mineral systems.0.5[A f c f␤(f)ϩA b c b␤(b)],[1]where q f and q b denote the model-predicted adsorption Phosphorus K-XANESin single-mineral systems for a given aqueous concentra-Adsorbed Phosphate in Single-andtion(c f and c b)weighted by a factor of0.5for the1:1Mixed-Mineral Systems(mass basis)mixture,and A f,␤(f);A b,␤(b)are Freun-dlich model parameters for ferrihydrite and boehmite,Figure1shows examples of edge-normalized XANES respectively.For dissolved PO4concentrations betweenspectra for PO4adsorbed at different concentrations 100and1400␮mol LϪ1in the mixed system,q mixed,predicted on ferrihydrite,boehmite,or mixed-mineral systems. (dashed line,Fig.2)deviated byՅ10%on the lowAll spectra were characterized by an intense resonance side of q m,the predicted concentration determined by(white-line)near2150eV(1eV relative energy),and464SOIL SCI.SOC.AM.J.,VOL.68,MARCH–APRIL 2004Fig.2.Adsorption isotherms for PO 4on boehmite,ferrihydrite,and mixed boehmite/ferrihydrite (1:1mass basis)at pH 6.0Ϯ0.1,along with Freundlich isotherm models as solid lines for the June 2002data.Data for the mixed mineral isotherm for June 2002are fit using a mass weighted (1:1)linear combination of Freundlich models from the single-mineral systems (dashed line,see text).Some additional data collected in October 2002for PO 4adsorbed on ferrihydrite and mixed-mineral systems are shown.q f ,q m ,q b ,denote the Freundlich model predicted PO 4adsorption for ferrihydrite (f),mineral mixtures (m),and boehmite (b)as a function of dissolved PO 4concentration (c ).weaker oscillations between 5and 15eV (relative en-and is estimated in practice by the most intense peak ergy).The white-line peak intensity of XANES spectra in the first derivative XANES spectra (Stohr,1996;Say-for PO 4on boehmite or ferrihydrite did not change ers and Bunker,1988).However,in the P XANES,an systematically with adsorbed PO 4concentration (Fig.1).intense resonance (white-line)resulting from electronic However,a statistically significant difference (p Ͻ0.05)transitions of the core electron into unoccupied p like between the mean white-line peak intensity for PO 4on valence electronic states occurs at an energy less than boehmite (4.0Ϯ0.1)versus ferrihydrite (4.36Ϯ0.02)the absorption edge (Franke and Hormes,1995).There-was observed.The spectra for PO 4in mixed-mineral fore,we defined the edge as shown in Fig.1,at the systems showed some differences in the white-line peak energy yielding a relative maximum in the first deriva-intensity,but no trend with concentration (Fig.1).The tive XANES spectrum on the high-energy side of the spectra for PO 4on ferrihydrite showed a pre-edge fea-white-line peak.X-ray absorption near-edge structure ture near Ϫ4eV,which was not present in the spectra spectra for PO 4adsorbed on ferrihydrite and boehmite for PO 4on boehmite as discussed in more detail below.had edges at 12and 14eV,respectively (Fig.1).X-ray absorption near-edge structure spectra for PO 4Normalized XANES spectra for PO 4adsorbed on adsorbed in mixed-mineral systems (June 2002)also boehmite at concentrations Յ200mmol kg Ϫ1(data not showed a pre-edge feature (Fig.1),which tended to shown)and PO 4adsorbed on ferrihydrite at concentra-diminish in intensity with increasing adsorbed phos-tions Յ100mmol kg Ϫ1(data not shown)were noisier phate concentration (discussed below).than XANES spectra for these minerals at higher ad-X-ray absorption near-edge structure spectral fea-sorbed PO 4concentrations because of their lower con-tures arise from electronic transitions during X-ray ab-centration-dependent edge step.Data normalized to the sorption,as influenced by the atomic coordination envi-maximum fluorescence yield at the post edge feature ronment around the absorbing atom (P in this case).and at 30eV followed similar trends as edge normalized Features are due to electronic transitions into bound spectra,and are not shown.Hereafter,data for edge-states (pre-edge features)or to photoelectron backscat-normalized spectra will be shown and discussed,unless tering from surrounding atoms (post-edge features)otherwise noted.(Franke and Hormes,1995;Stohr,1996).For K-shell spectra,the observed resonances typically correspond Comparison with Iron(III)and to dipole-allowed transitions of a 1s electron to ␲and Aluminum(III)-Phosphates␴antibonding orbitals (Stohr,1996).The absorption For our research on adsorbed PO 4species,strengite edge is usually defined as the energy at which the 1s electron from the K shell escapes into the continuum,and variscite served as standards of known molecularKHARE ET AL.:ADSORBED PHOSPHATE DISTRIBUTION DETERMINED BY XANES465Fig.3.Edge-normalized P K-XANES spectra for strengite versus variscite and ensemble-averaged spectra for PO 4adsorbed on ferrihydrite (ferri.)versus boehmite at pH 6.0Ϯ0.1,showing a pre-edge feature for PO 4associated with Fe(III).structure of Fe(III)vs.Al(III)-bound PO 4.The XANES Phosphate Adsorbed in Mixed-Mineral spectrum for strengite showed a pronounced pre-edge Systems (Pre-edge)feature at 2146eV,whereas the variscite spectrum Because the pre-edge feature has been used to differ-showed no such pre-edge feature (Fig.3).The pre-edge entiate P associated with ferrihydrite versus boehmite,resonance observed for Fe(III)-coordinated PO 4as in we focused on the pre-edge region as a means for charac-strengite has been previously ascribed to hybridization terizing adsorbed PO 4in the mixed-mineral systems.of Fe-3d,O-2p,and P-3p valence orbitals giving some With increasing concentration of total adsorbed PO 4in p character to the d like unoccupied states from Fe(III)the mixed-system,the pre-edge feature intensity showed (Franke and Hormes,1995;Behrens,1992;Okude et a trend from being similar to PO 4on ferrihydrite,toward al.,1999).The lack of a pre-edge resonance in variscite having intensity intermediate between that of PO 4on is presumably due to the absence of d orbitals in Al.ferrihydrite and PO 4on boehmite (Fig.4).X-ray absorp-Thus,differences in electron orbital configuration re-sulted in differences in the pre-edge region of XANES tion near-edge structure spectra for mixed-mineral sys-spectra for strengite and variscite.Similarly,XANES tems from October 2002(data not shown)generally spectra for PO 4adsorbed on ferrihydrite (Fe-oxide)at followed the same trend.This trend indicated that with different adsorbed PO 4concentrations showed a pre-increasing adsorbed PO 4concentration in mixed-min-edge feature while XANES spectra for PO 4adsorbed eral systems,an increasingly greater proportion of PO 4on boehmite (Al-oxide)did not show such a pre-edge was adsorbed on boehmite.feature (average spectra from Fig.1shown in Fig.3).Because XANES analysis probes the weighted aver-Thus,the pre-edge feature could be used for distinguish-age of all P bonding environments in a sample (Beauche-ing PO 4associated with ferrihydrite versus boehmite.min et al.,2002),the XANES spectra for PO 4adsorbed Because the pre-edge feature for P K-XANES spectra in mixed-mineral systems were considered to be a linear of strengite has been attributed to P-O-Fe(III)coordina-combination of the spectra for PO 4adsorbed on boehm-tion (Franke and Hormes,1995;Behrens,1992;Okude ite and PO 4adsorbed on ferrihydrite.Furthermore,be-et al.,1999),a similar pre-edge feature observed in cause fitting of adsorption isotherms for the mixed-min-XANES spectra for PO 4adsorbed on ferrihydrite pro-eral system could be done within 10%as a combination vided direct evidence for inner sphere complexation of of isotherms for single-mineral systems,we assumed PO 4on the surface of ferrihydrite.Also,note that the that no species of PO 4unique to the mixed-mineral pre-edge feature for strengite was stronger (and the system were present in detectable quantities.Hence,white-line peak weaker)than that for PO 4on ferrihy-linear combination fitting (LCF)analysis was used to drite (Fig.3),likely because of more P-O-Fe bonds quantitatively assess the relative distribution of ad-in the bulk mineral.The weaker pre-edge for PO 4on sorbed PO 4between the two minerals in the mixed-ferrihydrite indicated that phosphate was dominantly adsorbed (not precipitated).mineral systems.。

The principles of fluorescence spectroscopy

The principles of fluorescence spectroscopy

The principles of fluorescencespectroscopyFluorescence spectroscopy is a rapidly progressing branch of science that has contributed significantly to material science, environmental science, life science, and many other fields. This technique involves the measurement of light emitted by a luminescent sample when it is excited with light of a particular wavelength. Fluorescence spectroscopy plays a vital role in the study of structural and dynamic properties of materials at the molecular level. In this article, we will discuss the principles of fluorescence spectroscopy and its applications.Principle of fluorescence spectroscopyFluorescence spectroscopy is based on the principle of absorption and emission of light. When a molecule is excited by absorbing light of a particular wavelength, it absorbs the energy of the photon and moves to a higher energy state. This excited state is unstable and is rapidly deactivated by releasing the excess energy in the form of heat or by emitting a photon of light at longer wavelength than the absorbed photon. This process is called fluorescence.The emitted light intensity and wavelength depend on the nature of the molecule, its environment, and the properties of the excitation source. The fluorescence spectra contain valuable information about the structure, concentration, conformation, and dynamics of the molecule. By analyzing the spectra, one can gain insight into the molecular interactions, binding, and transport of the biomolecules, as well as the photophysical properties of the chromophores.Types of fluorescence spectroscopyFluorescence spectroscopy can be classified into various types based on the excitation and detection modes, as well as the sample types. Here are some common types of fluorescence spectroscopy:1. Steady-state fluorescence spectroscopy: This technique measures the steady-state fluorescence intensity of the sample under constant excitation. It provides information about the quantum yield, lifetime, and spectral characteristics of the fluorescence.2. Time-resolved fluorescence spectroscopy (TRFS): This technique measures the time-resolved fluorescence intensity of the sample by using a pulsed excitation source and a detector with a fast response time. It provides information about the fluorescence lifetime, rotational correlation time, and energy transfer rates of the molecules.3. Fluorescence resonance energy transfer (FRET): This technique measures the energy transfer from a donor fluorophore to an acceptor fluorophore that is in close proximity to the donor. It provides information about the distance, orientation, and conformational changes of the biomolecules.4. Fluorescence anisotropy: This technique measures the polarization of the emitted light relative to the polarization of the excitation light. It provides information about the dynamics and mobility of the fluorophores in the solution.Applications of fluorescence spectroscopyFluorescence spectroscopy has a wide range of applications in diverse fields such as biochemistry, biophysics, pharmaceuticals, materials science, environmental science, and many others. Here are some of the common applications of fluorescence spectroscopy:1. Protein structure and function: Fluorescence spectroscopy is widely used to study the structure and function of proteins, including folding, conformational changes, ligand binding, and enzymatic reactions. It provides valuable information about the kinetics, thermodynamics, and mechanism of protein interactions.2. DNA and RNA: Fluorescence spectroscopy is used to study the conformation, dynamics, and interactions of DNA and RNA molecules, including hybridization, denaturation, and DNA-protein interactions. It has applications in gene expression, DNA sequencing, and DNA damage detection.3. Drug discovery and development: Fluorescence spectroscopy is used in drug discovery and development to screen drugs, assess their efficacy, and monitor their interactions with biological targets. It helps to optimize drug formulations, optimize dosages, and assess pharmacokinetics.4. Environmental monitoring: Fluorescence spectroscopy is used to monitor water quality, air pollution, and soil contaminants. It helps to identify and quantify pollutants, assess health risks, and monitor environmental changes.ConclusionFluorescence spectroscopy is a powerful tool for studying the properties of molecules at the molecular level. It provides valuable information about the structure, dynamics, and interactions of molecules, as well as their applications in diverse fields. By using a combination of different fluorescence spectroscopy techniques, one can explore the photophysical properties of the biomolecules and materials. As fluorescence spectroscopy continues to advance, it promises to open up many new avenues for insights into the basics of matter and biological systems that will be relevant to solving major problems facing society.。

特征值wely定理

特征值wely定理

特征值wely定理The eigenvalue theorem, also known as the Perron-Frobenius theorem, is a fundamental result in linearalgebra that has various applications in different fieldsof science and engineering. This theorem provides insights into the behavior of matrices and their associated eigenvalues. In this response, I will discuss theeigenvalue theorem from multiple perspectives, highlighting its significance, applications, and implications indifferent domains.From a mathematical perspective, the eigenvalue theorem states that for any square matrix, there exists at leastone eigenvalue that is real and non-negative. Furthermore, this eigenvalue is associated with a corresponding eigenvector that has only non-negative entries. This result is particularly important in the study of positive matrices, which are matrices with all non-negative elements. The eigenvalue theorem guarantees the existence of a dominant eigenvalue for positive matrices, which characterizes theirbehavior and provides insights into their long-term dynamics.In the field of dynamical systems, the eigenvalue theorem plays a crucial role in understanding the stability and convergence properties of linear systems. The dominant eigenvalue of a matrix determines the long-term behavior of the associated dynamical system. If the dominant eigenvalue is less than one, the system converges to a stable equilibrium point. On the other hand, if the dominant eigenvalue is greater than one, the system exhibits exponential growth or divergence. This knowledge is vital in various applications, such as control systems, population dynamics, and stability analysis of physical systems.In the context of graph theory, the eigenvalue theorem has significant implications for studying the connectivity and structure of networks. The adjacency matrix of a graph represents its connectivity pattern, and the eigenvalues of this matrix provide valuable information about the graph's properties. The largest eigenvalue of the adjacency matrix,known as the spectral radius, determines the expansion properties of the graph. A larger spectral radius implies a more connected and well-structured network. This concept finds applications in social networks, transportation networks, and communication networks, where understanding the connectivity and robustness of the system is crucial.Another application of the eigenvalue theorem can be found in the field of quantum mechanics. In quantum systems, matrices called Hamiltonians represent the total energy ofa physical system. The eigenvalues of the Hamiltonianmatrix correspond to the possible energy states of the system, while the eigenvectors represent the associated wavefunctions. The eigenvalue theorem ensures that the energy states are real and non-negative, which aligns with the physical interpretation of energy in quantum mechanics. This theorem provides a foundation for understanding the energy spectrum and behavior of quantum systems, enabling predictions and analysis of various physical phenomena.Beyond its mathematical and scientific applications,the eigenvalue theorem has implications in practicaldomains such as data analysis and machine learning. In data analysis, the eigenvalues and eigenvectors of a covariance matrix are used in principal component analysis (PCA). PCA is a dimensionality reduction technique that identifies the most informative features in a dataset. The eigenvalue theorem guarantees that the principal components, which are linear combinations of the original features, capture the maximum variance in the data. This allows for efficient data representation and visualization, facilitating tasks such as clustering, classification, and anomaly detection.In conclusion, the eigenvalue theorem is a powerful result in linear algebra with wide-ranging applications in various fields. From its mathematical significance in positive matrices to its implications in dynamical systems, graph theory, quantum mechanics, and data analysis, the eigenvalue theorem provides valuable insights into the behavior and properties of matrices and their associated eigenvalues. Its applications span from stability analysis and network connectivity to quantum systems and machine learning, making it an essential tool for understanding and solving problems in diverse disciplines.。

A Spectral Theory for Tensors

A Spectral Theory for Tensors
A Spectral Theory for Tensors
Edinah K. Gnang∗ , Ahmed Elgammal† , Vladimir Retakh‡ November 4, 2011
arXiv:1008.2923v4 [math.SP] 3 Nov 2011
Abstract In this paper we propose a general spectral theory for tensors. Our proposed factorization decomposes a tensor into a product of orthogonal and scaling tensors. At the same time, our factorization yields an expansion of a tensor as a summation of outer products of lower order tensors. Our proposed factorization shows the relationship between the eigen-objects and the generalised characteristic polynomials. Our framework is based on a consistent multilinear algebra which explains how to generalise the notion of matrix hermicity, matrix transpose, and most importantly the notion of orthogonality. Our proposed factorization for a tensor in terms of lower order tensors can be recursively applied so as to naturally induces a spectral hierarchy for tensors.

谱映射定理

谱映射定理

谱映射定理
谱映射定理(Spectral Mapping Theorem)是一个在函数分析和线性代数中常用的定理。

它探讨了线性算子的谱和函数之间的关系。

对于一个线性算子或者一个矩阵,它的谱是指该算子或者矩阵的特征值的集合。

谱映射定理则说明了,如果我们将一个函数应用到一个算子的谱上,那么这个函数将作用于该算子的每个特征值,并得到一个新的特征值的集合。

具体来说,假设有一个线性算子或矩阵A,并且f是一个函数,定义在A的谱上。

那么根据谱映射定理,我们有以下关系:
f(σ(A)) = σ(f(A))
其中,σ(A)表示A的谱,f(σ(A))表示将函数f应用到A的谱上所得到的结果,σ(f(A))表示将函数f应用到A的每个特征值上所得到的新特征值的集合。

这个定理的应用非常广泛,可以用于研究线性算子的谱性质、解线性方程组、研究微分方程的解等等。

通过将一个函数应用到线性算子的谱上,我们可以得到关于原始算子性质的新信息。

需要注意的是,谱映射定理的适用条件与具体的情况相关,可能会有一些限制。

在具体应用中,需要仔细考虑线性算子或矩阵的性质以及函数的定义域,以确保定理的适用性。

机械工程学专业词汇英语翻译(S)2

机械工程学专业词汇英语翻译(S)2

specimen 试样 speckle 散斑 speckle holography 散斑全息照相术 speckle interferometry 散斑⼲涉法 spectral condition 谱条件 spectral curve 谱曲线 spectral density 谱密度 spectral displacement 谱位移 spectral distribution 谱分布 spectral frequency 谱频率 spectral function 谱函数 spectral line 谱线 spectral method 谱⽅法 spectral position 谱位置 spectral shift 谱位移 spectral theory 谱理论 spectrum 谱 spectrum matrix 谱矩阵 spectrum tensor 谱张量 speed 速率 speed change 变速 speed control 速率第 speed error 速率误差 speed governor 蒂机 speed indicator 速度计 speed limiting device 限速器 speed of autorotation ⾃转速度 speed of heat propagation 热传播速率 speed of light 光速 speed of perception 感觉速率 speed of response 响应速度 speed of sound 声速 speed per hour 时速 speed range 变速范围 speed reduction 减速 speed regulation 速度第 speed regulator 蒂机 speedometer 转速表 sphere 球 sphere of reflection 反射球 sphere shaped 球形的 spherical angle 球⾯⾓ spherical bearing 球⾯⽀承 spherical coordinates 球⾯坐标 spherical function 球⾯函数 spherical joint 球形接头 spherical motion 球⾯运动 spherical pendulum 球摆 spherical shell 球壳 spherical shock wave 球⾯激波 spherical space 对映空间 spherical strain tensor 球⾯应变张量 spherical stress tensor 球⾯应⼒张量 spherical surface 球⾯ spherical tensor 球⾯张量 spherical top 球形陀螺 spherical wave 球⾯波 spheroidal wave function 球波函数 spillway 溢淋 spillway dam 溢劣 spin angle ⾃旋⾓ spin angular momentum ⾃旋⾓动量 spin axis ⾃旋轴 spin coordinate ⾃旋坐标 spin eigenfunction ⾃旋本寨数 spin eigenstate ⾃旋本宅 spin interaction ⾃旋相互酌 spin orbit potential ⾃旋轨道势 spin relaxation ⾃旋弛豫 spin resonance ⾃旋共振 spin resonance frequency ⾃旋共振频率 spin slip spectrum ⾃旋反转谱 spin tensor ⾃旋张量 spin tensor operator ⾃旋张量算符 spin wave ⾃旋波 spin wave theory ⾃旋波理论 spindle 轴 spinning 尾旋 spinning detonation 旋焰爆炸 spinning obstacle 旋转障碍 spinning top 旋转陀螺 spinning wind tunnel 螺旋风洞 spinor field 旋量场 spinor gravitation 旋量引⼒ spinor wave 旋量波 spinor wave equation 旋量波⽅程 spinor wave function 旋量波函数 spiral 螺线 spiral dislocation 螺旋形位错 spiral fiber structure 螺旋形纤维结构 spiral flow 螺旋流 spiral of archimedes 阿基⽶德螺线 spiral orbit 螺线轨道 spiral propeller 螺旋推进器 spiral spring 螺旋形弹簧 spiral trajectory 螺线轨道 spiral vortex 螺旋形涡流 spiral vortex model 螺旋涡模型 spire 尖塔 spirit level ⽔准器 split hopkinson bar 分离式霍普⾦森杆 split pattern 分离模式 splitting 分裂 spoiler 绕菱 sponge 海绵 spongy 海绵状的 spontaneous combustion ⾃燃 spontaneous crack propagation ⾃发裂缝传播 spontaneous emission ⾃发发射 spout 瘤⼝ spouted bed 喷出床 spouting spring 喷泉 spray 喷雾 spray pump 喷淋泵 spray resistance 喷雾阻⼒ spraying effect 雾化效应 spraying nozzle 喷雾嘴 spring 弹簧 spring back 弹性回复 spring balance 弹簧秤 spring buffer 弹簧绶冲器 spring constant 弹簧常数 spring dynamometer 弹簧秤 spring force 弹簧弹⼒ spring hammer 弹簧锤 spring manometer 弹簧式压⼒计 spring model 弹簧模型 spring oscillator 弹簧振⼦ spring pressure 弹簧压⼒ spring pressure gage 弹簧式压⼒计 spring ring 弹簧圈 spring scales 弹簧秤 spring tension 弹簧张⼒ spurious frequency 寄⽣频率 spurious oscillation 寄⽣振荡 spurious scattering 虚散射 squagging ⾃锁 square measure ⾯积单位 square wave ⽅形波 square wave oscillation 矩形波振荡 square wave pulse 矩形脉冲 squashing 压碎 squeezing 压榨 stability 稳定性 stability condition 稳定性条件 stability constant 稳定性常数 stability curve 稳定性曲线 stability layer 稳定层 stability limit 稳定性极限 stability line 稳定性曲线 stability of equilibrium 平衡稳定性 stability of motions 运动稳定性 stability of parallel flow 平⾏寥定性 stability of stratified flow 分层寥定性 stability of structures 结构稳定性 stability of vibration 振动稳定性 stability tensor 稳定性张量 stability theorem 稳定性定理 stabilization 稳定化 stabilized equilibrium 稳定平衡 stabilizer 稳定器 stabilizing force 稳定⼒ stabilizing gyroscope 稳定陀螺 stable axis 稳定轴 stable equilibrium 稳定平衡 stable equilibrium position 稳定平衡位置 stable motion 稳定运动 stable orbit 稳定轨道 stable state 稳定状态 stable system 稳定系 stable wave 稳定波 stage 阶段 stage discharge curve ⽔位量曲线 stage efficiency 分级效率 staged rocket 多级⽕箭 staggered arrangement 交错配置 staggered riveting 交错铆接 staggering 摇摆 stagnant water 静⽔ stagnation 停滞 stagnation curve 静⽔曲线 stagnation density 滞⽌密度 stagnation point 驻点 stagnation point flow 驻点流 stagnation pressure 驻点压⼒ stagnation temperature 滞⽌温度 stake 杆 stalled airfoil 失速机翼 stalled condition 失速条件 stalled flow 失速流 stalled wing 失速机翼 stalling 失速 stalling angle 失速迎⾓ stalling characteristics 失速特性 stalling flight 失速飞⾏ stalling point 失速点 stalling speed 失速速率 stand by power 备⽤功率 standard atmosphere 标准⼤⽓ standard condition 标准条件 standard density 标准密度 standard deviation 标准偏差 standard equation 正规⽅程 standard frequency 标准频率 standard frequency spectrum 标准频谱 standard isobaric surfaces 标准等压⾯ standard linear solid 标准线形固体 standard load 正常负载 standard measure 标准衡器 standard orifice plate 标准孔板 standard pressure 标准压⼒ standard resistance 标准阻⼒ standard solid 标准固体 standard state 标准状态 standard test specimen 标准试样 standard water column 标准⽔柱 standard wave 标准波 standard wind 标准风 standing wave 驻波 star connection y 形接法 starboard 右舷 starling hypothesis 斯塔林假说 start up time 起动时间 starting air 起动空⽓ starting lever 起动杆 starting of oscillations 振荡起动 starting oscillation 起动振动 starting period 起动时间 starting power 起动功率 starting pulse 起动脉冲 starting resistance 起动阻⼒ starting torque 起动转矩 state continuity 状态连续性 state curve 状态曲线 state equation 物态⽅程 state feedback control 状态反馈控制 state function 态函数 state of aggregation 聚集状态 state of energy 能量状态 state of plane stress 平⾯应⼒状态 state of rest 静态 state of strain 应变状态 state of stress 应⼒状态 state of suspension 悬浮状态 state parameter 状态参数 state space 状态空间 state vector 态⽮量 static 静的 static accuracy 静态准确度 static balance 静态平衡 static balancing 静⼒平衡 static balancing machine 静平衡试验机 static constraint reaction 静反⼒ static deflection 静载挠度 static elasticity 静弹性 static equilibrium 静态平衡 static fatigue 静疲劳 static field 静场 static force 静⼒ static fracture 静态破裂 static friction 静摩擦 static head 静压头 static hysteresis curve 静态滞后曲线 static imbalance 静⼒不平衡 static indeterminateness 超静定性 static instability 静⼒不稳定性 static lift 静升⼒ static load 静负载 static magnetic field 静磁场 static modulus of elasticity 静弹性模量 static moment 静⼒矩 static moment of the surface 静⼒表⾯矩 static pressure 静压 static pressure tube 静压管 static reaction 静反酌 static rolling friction 静滚动摩擦 static slip 静滑移 static stability 静⼒稳定性 static strength 静⼒强度 static stress 静应⼒ static surface tension 静表⾯张⼒ static temperature 静温 static test 静⼒试验 static unbalance 静⼒不平衡 statical condition 静⼒条件 statically defined 静定的 statically determinate 静定的 statically determinate beam 静定梁 statically determinate reaction 静定反⼒ statically determinate structure 静定结构 statically determinate system 静定系 statically indeterminate beam 静不定梁 statically indeterminate structure 静不定结构 statically indeterminate system 静不定系 statics 静⼒学 stationary axle 固定轴 stationary blade 固定叶⽚ stationary creep 定常蠕变 stationary distribution 定常分布 stationary equilibrium 定常平衡 stationary field 恒定场 stationary flow 定常流 stationary motion 定常运动 stationary orbit 静⽌轨道 stationary point 平稳点 stationary potential 稳定势 stationary random process 平稳随机过程 stationary satellite 静⽌卫星 stationary state 平稳态 stationary vibration 平稳振动 stationary vortex 定常涡旋 stationary wave 驻波 statistic test 统计检验 statistical accuracy 统计精度 statistical analysis 统计分析 statistical fluctuation 统计涨落 statistical mechanics 统计⼒学 statistical noise 统计噪声 statistical theory of turbulence 湍脸计理论 statistical thermodynamics 统计热⼒学 statistical weight 统计重量 statistics 统计学 staude cone 斯陶德锥⾯ steady detonation 定常爆轰 steady flow 定常流 steady free surface flow 定常⽆压流 steady gas flow 定常⽓流 steady load 不变负荷 steady motion 定常运动 steady potential 稳定势 steady precession 稳定旋进 steady rest 稳定架 steady state 平稳态 steady state creep 定常蠕变 steady state magnetic field 稳定磁场 steady state oscillation 稳态振荡 steady vorticity 定常涡流 steam 蒸汽 steam bleeding 抽汽 steam drive 蒸汽传动 steam ejector 蒸汽喷射器 steam extraction 抽汽 steam hammer 蒸汽锤 steam injector 蒸汽喷射器 steam jet 蒸汽喷流 steam meter 蒸汽量计 steam nozzle 蒸汽喷嘴 steam power 汽⼒ steam pressure 蒸汽压 steep throw 陡抛 steepness of wave edge 波前陡度 steering angle 转向⾓ steering column 转向柱 steiner theorem 平⾏轴定理 stellar dynamics 恒星动⼒学 stellar energy 恒星能量 stellar guidance 天⽂导航 stellar structure 恒星结构 step disturbance 阶跃扰动 step rocket 多级⽕箭 step velocity 阶跃速度 stepped shaft 梯级式轴 stepwise loading 逐步加载 stereographic net 伍尔夫经纬圈 stereographic projection 球⾯投影 stereophotogrammetry ⽴体照相测量术 steric acceleration 空间加速度 stiff chain 刚链 stiff joint 刚节点 stiffener 加劲材 stiffening 加劲 stiffening plate 加强板 stiffening rib 加强肋 stiffening ring 加强环 stiffness 刚度 stiffness coefficient 刚度系数 stiffness matrix 刚度矩阵 stiffness method 刚度法 stiffness modulus 劲度模量 stiffness reactance 劲度⼒抗 stiffness rotor 刚性转⼦ stiffness term 刚度项 stochastic acceleration 随机加速度 stochastic force 随机⼒ stochastic hydraulics 随机⽔⼒学 stochastic process 随机过程 stochastic similarity 随机相似 stochastic simulation 随机模拟 stockmayer potential 史托克梅耶势 stokes approximation 斯托克斯近似 stokes flow 斯托克斯怜 stokes fluid 斯托克斯铃 stokes law 斯托克斯定律 stokes stream function 斯托克斯怜数 stokes theorem 斯托克斯定理 stokes wave 斯托克斯波 stoma ⼩孔 stone stream 岩⽯流 stop 停⽌ stopping distance 停⽌距离 storage 存储 storage modulus 存储模量 stored energy 储能 stored energy function 储能函数 storm surge 风暴潮 storm wave 风暴波 straight angle 平⾓ straight line motion 直线运动 straight line plot of the bending stress 弯曲应⼒直线图 straight line wedge 直线楔 straightening 矫正 straightness 平直度 strain 应变 strain ageing 应变时效 strain amplitude 应变幅度 strain anisotropy 应变蛤异性 strain anneal method 应变退⽕法 strain component 应变分量 strain crack 应变裂缝 strain deviator 形变偏量 strain ellipsoid 应变椭球 strain energy 应变能 strain energy density 应变能密度 strain energy function 应变能函数 strain energy method 应变能法 strain energy theory 应变能理论 strain fatigue 应变疲劳 strain field 应变场 strain free lattice ⽆应变点阵 strain gage 应变计 strain gradient 应变梯度 strain hardening 应变硬化 strain hardening capacity 应变硬化能⼒ strain hardening coefficient 应变硬化系数 strain hardening curve 应变硬化曲线 strain hardening index 应变硬化指数 strain history 应变历程 strain intensity 应变强度 strain invariant 应变不变量 strain matrix 应变矩阵 strain measure 应变量度 strain measurement 应变测定 strain potential 应变势 strain rate 应变率 strain rate effect 应变率效应 strain rate history 应变率历程 strain relaxation 应变弛豫 strain space 应变空间 strain tensor 应变张量 strain theory 应变理论 strain work 形变功 strainer 式过滤器 stranded wire 绞线 strap 带 stratification 分层 stratification coefficient 分层系数 stratification of atmosphere ⼤⽓分层 stratification of water mass ⽔团分层 stratification of wind 风分层 stratiform structure 层状结构 stratosphere 平零 stream 怜 stream bed 河床 stream cross section center 怜截⾯中⼼ stream flow 河流 stream function 怜数 stream sheet 怜层 stream surface 伶 stream tube 淋 streamer 闪流等离⼦柳 streaming 怜 streaming around 绕流 streaming potential 怜位势 streamline 吝 streamline analogy 吝相似 streamline field 吝场 streamline flow ⽚流层流 streamli n e f o r m T b_ / p >。

秩1修正矩阵特征值问题的推广及其应用(英文)

秩1修正矩阵特征值问题的推广及其应用(英文)

秩1修正矩阵特征值问题的推广及其应用(英文)吕海玲;明清河【摘要】本文给出了秩1修正矩阵特征值问题推广的新证明,证明过程主要应用了一个行列恒等式.在此基础上,把秩1修正矩阵的特征值问题推广到块特征值问题.最后给出一个应用说明结论的重要性.%We prove a spectral perturbation theorem for an extension eigenvalues of rank-one update matrix of special structure.The main idea behind our proof is from the simple relation between the determinants for a matrix and this result.Furthermore,we extent this theorem to the block eigenvalues problem.At last one application of the result is given to illustrate the usefulness of the theorem.【期刊名称】《枣庄学院学报》【年(卷),期】2011(000)005【总页数】4页(P29-32)【关键词】秩1更新;行列式;谱【作者】吕海玲;明清河【作者单位】枣庄学院信息科学与工程学院,山东枣庄277160;枣庄学院数学与统计学院,山东枣庄277160【正文语种】中文【中图分类】O151.211 IntroductionIn this paper we prove a spectral perturbation theorem for an extension eigenvalues of rank- one update matrix of special structure,which shows how to modify r eigenvalues of a matrix of order n,(r≤n),ia a rank-k updated matrix,without changing any of the n-rremaining eigenvalues.This theorem plays a relevan t role in the study of the nonnegative inverse eigenvalue problem(NIEP).The main idea behind our proof is from the simple relation between the determinants of a matrix and this result,using a well known determinant identity.Furthermore,we extent this theorem to the block eigenvalues problem.By using this extension,we give a Application on eigenvalues problem of matrix perturbation of special structure.Because we apply a classic determinant equality to our spectral analysis,we are able to find explicit expression of the characteristic polynomial of the rank-r update matrix.All eigenvalues of the matrix are immediately available.Lemma1 If A is an invertible n×n matrix,and u and v are two n-dimensional column vectors,thenProof.We may assume A=I,the n × n identity matrix,sincethen(1)follows fromin the general case.In this special case,the result comes from theequalityso(2)becomesRemark1 If A is an invertible n×n matrix,B is a n×r matrix,C is a r×n matrix,thenIn the next section we present the main result.2 Main resultLet A be an n×n matrix.The eigenvalues of A are all the complex zeros of the characteristic polynomial pA(λ)=det(λI- A)of A.Letσ(A)= {λ1,λ2,…,λn }be the set of the eigenvalues of A,counting algebraic multiplicity,that is spectrum of A.Theorem 1[1] Let u and v are two n - dimensional column vectors such that u is an eigenvector of A associated with eigenvalue λ1. Then,the eigenvalues of A + uvT are {λ1+vT u,λ2,…,λn},counting algebraic multiplicity.The following result is an extension of the theorem 1.This extension shows how to change r eigenvalues λ1,λ2,…,λr,r≤ n,of a matrix A of order n,via a rank - k updated matrix,without changing any of the n -rremaining eigenvaluesλr+1,λr+2,…,λn.Theorem 2 Let A be an n × n matrix with eigenvalues λ1,λ2,…,λn.LetX =[x1 x2 …xr ]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr],r≤n.Let C be a r × n matrix.Then the matrix A+XC has eigenvalues γ1,γ2,…,γr,λr+1,λr+2,…,λn.where γ1,γ2,…,γr are eigenvalues of the matrix K+CX with K=diag [λ1,λ2,…,λr].Proof Letλ ∉ σ(A)be any comple x number.Then,by applying remark 1 to the equalityW e haveThe condition AX=Xdiag [λ1,λ2,…,λr]implies thatso(7)becomesSince the above equality is true for allλ ∉ σ(A),the theorem is p roved.Rem ark2.1 By Theorem 2.1,the characteristic polynomial of A+XC isRemark2.2 Since A and AT have the same eigenvalues counting algebraic multiplicity,the conclusion of Theorem 2.1 also holds for A+XC,whereX= [x1 x2 … xr ]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr].Furthermore,we extent this theorem to the block eigenvalues problem Definition 1[4].A matrix X of order n is a block eigenvalue of a matrix A of order mn,if there exists a block vector V of full rank,such that AV=VX,X is a block eigenvector of A.The matrix A is partitioned into m ×m blocks of or der n,and the block vector V.Definition 2[4].A set of block eigenvalues of a block matrix is acomplete set if the set of all the eigenvalues of these block eigenvalues is the set of the matrix.Let us suppose now that we have computed mn scalar eigenvalues of a partitioned matrix A.We can construct a complete set of block eigenvalues by taking m matrix of order n in Jordan form where the diagonal elements are those scalar eigenvalues.Furthermore,if the scalar eigenvalues of A are distinct,these m matrix are diagonal matrix as is shown in the following construction:where theλi,i=1,…,mn,are the eigenvaluesof A.The proof that the matrix Xj,j=1,…,m,are a complete set of block eigenvalues of A is in [1,p.74].Theorem 2.If the scalar eigenvalues of A are distinct,let V and C be the block vectors such that V is a block eigenvector of A associated with block eigenvalues X1,Then,the eigenvalues of A + VCT are μ1,…,μn,λn+1,…,λ2n,…λ(m-1)n+1,…,λmn where μ1,…,μn are eigenvalues of the matrix K+CT V with K=diag[λ1,…,λn].Proof.The same to theorem 1.3 Application of the theoremA direct consequence of Theorem 2.1 is the following.One Application of the result is given to illustrate the eigenvalues problem with the perturbation matrix.Proposition 3.1Let A,B,C,D ∈ Cn×n,D=A+B,where B is the perturbation of A.If B=XC,where X= [x1,x2,…,xn],xi is aneigenvector of A dissociate with eigenvalue xi,i=1,2,…,n.So thatthen,the eigenvalues of A+B are the eigenvalues of the matrix diag [λ1,λ2,…,λn]+CX.References[1]Jiu D,Zhou A H.Eigenvalues of rank -one updated matrix with some applications[J].Applied Mathematics Letters,2007,20:1223-1226.[2]Ricrdo L S,Oscar R.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra and its Applications,2006,416:844 -856.[3]Bapat R B,Raghavan E S.Nonnegative Matrices and Applications,Cambridge University press,1997.[4]Dennis J E,Traub J F and Weber R.P.On the matrix polynomial,lambda- matrix and block eigenvalue problem,Tech.Rep.71 - 109,Computer Science Department,Cornell Univ,Ithaca,NY and Carnegie -Mellon Univ.,Pitsburgh,PA,(1971).。

法布里珀罗基模共振英文

法布里珀罗基模共振英文

法布里珀罗基模共振英文The Fabryperot ResonanceOptics, the study of light and its properties, has been a subject of fascination for scientists and researchers for centuries. One of the fundamental phenomena in optics is the Fabry-Perot resonance, named after the French physicists Charles Fabry and Alfred Perot, who first described it in the late 19th century. This resonance effect has numerous applications in various fields, ranging from telecommunications to quantum physics, and its understanding is crucial in the development of advanced optical technologies.The Fabry-Perot resonance occurs when light is reflected multiple times between two parallel, partially reflective surfaces, known as mirrors. This creates a standing wave pattern within the cavity formed by the mirrors, where the light waves interfere constructively and destructively to produce a series of sharp peaks and valleys in the transmitted and reflected light intensity. The specific wavelengths at which the constructive interference occurs are known as the resonant wavelengths of the Fabry-Perot cavity.The resonant wavelengths of a Fabry-Perot cavity are determined bythe distance between the mirrors, the refractive index of the material within the cavity, and the wavelength of the incident light. When the optical path length, which is the product of the refractive index and the physical distance between the mirrors, is an integer multiple of the wavelength of the incident light, the light waves interfere constructively, resulting in a high-intensity transmission through the cavity. Conversely, when the optical path length is not an integer multiple of the wavelength, the light waves interfere destructively, leading to a low-intensity transmission.The sharpness of the resonant peaks in a Fabry-Perot cavity is determined by the reflectivity of the mirrors. Highly reflective mirrors result in a higher finesse, which is a measure of the ratio of the spacing between the resonant peaks to their width. This high finesse allows for the creation of narrow-linewidth, high-resolution optical filters and laser cavities, which are essential components in various optical systems.One of the key applications of the Fabry-Perot resonance is in the field of optical telecommunications. Fiber-optic communication systems often utilize Fabry-Perot filters to select specific wavelength channels for data transmission, enabling the efficient use of the available bandwidth in fiber-optic networks. These filters can be tuned by adjusting the mirror separation or the refractive index of the cavity, allowing for dynamic wavelength selection andreconfiguration of the communication system.Another important application of the Fabry-Perot resonance is in the field of laser technology. Fabry-Perot cavities are commonly used as the optical resonator in various types of lasers, providing the necessary feedback to sustain the lasing process. The high finesse of the Fabry-Perot cavity allows for the generation of highly monochromatic and coherent light, which is crucial for applications such as spectroscopy, interferometry, and precision metrology.In the realm of quantum physics, the Fabry-Perot resonance plays a crucial role in the study of cavity quantum electrodynamics (cQED). In cQED, atoms or other quantum systems are placed inside a Fabry-Perot cavity, where the strong interaction between the atoms and the confined electromagnetic field can lead to the observation of fascinating quantum phenomena, such as the Purcell effect, vacuum Rabi oscillations, and the generation of nonclassical states of light.Furthermore, the Fabry-Perot resonance has found applications in the field of optical sensing, where it is used to detect small changes in physical parameters, such as displacement, pressure, or temperature. The high sensitivity and stability of Fabry-Perot interferometers make them valuable tools in various sensing and measurement applications, ranging from seismic monitoring to the detection of gravitational waves.The Fabry-Perot resonance is a fundamental concept in optics that has enabled the development of numerous advanced optical technologies. Its versatility and importance in various fields of science and engineering have made it a subject of continuous research and innovation. As the field of optics continues to advance, the Fabry-Perot resonance will undoubtedly play an increasingly crucial role in shaping the future of optical systems and applications.。

[知识]矩阵特征值与特征向量在图像处理中的应用

[知识]矩阵特征值与特征向量在图像处理中的应用

特征值与特征向量在图像处理中的应用姓名:张x 学号:20092430 班级:2009121摘要:正所谓学以致用,在长期以来的学习过程中,我们真正能够将所学到的知识运用到生活中的能有多少,我们对课本上那些枯燥的公式虽牢记于心,却不知道它的实际用途。

在学习了矩阵论以来,虽然知道很多问题的求法,就如矩阵特征值和特征向量,它们有何意义我们却一点不知。

我想纯粹的理知识已经吸引不了我们了,我们需要去知道它们的用途,下面就让我们一起来看看矩阵特征值与特征向量在图像处理中是如何发挥它们的作用的。

关键字:特征值、特征向量、图像、正文:生活中的我们,每天清晨醒来,随之映入眼帘的就是各种形形色色的图像,我们确实也很难想象,在我们的生活中,图像的处理和矩阵特征值、特征向量有什么关系?首相我们先来了解下,何为特征值、特征向量。

定义:设是阶方阵,若有数和非零向量,使得称数是的特征值,非零向量是对应于特征值的特征向量。

例如对,有及向量,使得,这说明是的特征值,是对应于的特征向量。

特征值和特征向量的求法:1.由得,并且由于是非零向量,故行列式,即(称之为的特征方程)由此可解出个根(在复数范围内),这就是的所有特征值。

2.根据某个特征值,由线性方程组解出非零解,这就是对应于特征值的特征向量。

特征值和特征向量的性质:1 .,2 .若是的特征向量,则对,也是的特征向量。

3 .若是的特征值,则是的特征值,从而是的特征值。

4 .是的个特征值,为依次对应的特征向量,若各不相同,则线性无关。

我想在了解了特征值和特征向量的基本理论之后,你们很难想象,为什么这些知识会和图像有联系吧。

说实话,我自己也不是很清楚,我也是看了别人的理论讲解,才略微理解了一二。

让我们一起去了解下。

根据特征向量数学公式定义,矩阵乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量),所以一个特定的变换特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax=cx, cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同)。

核专业英语背诵材料2.0

核专业英语背诵材料2.0

Unit 1Helium---------------------氦uranium------------铀Gaseous state-----------气态的artificially------------人工的The perfect gas law------理想气体定律Boltzmann constant--- 玻尔兹曼常数neutrons --------------中子electrostatic -------静电的,静电学的Specific heat capacity--- 比热容Plank constant---------普朗克常量Fission----------------裂变fusion-----------------聚变Maxwellian distribution--麦克斯韦分布microscopic------------微观的Macroscopic-----------宏观的quantum number-------量子数Laser-----------------激光deuterium--------------氘Tritium----------------氚deuteron---------------氘核Trition----------------氚核atomic mass unit------原子质量单位Avogadro’s number----阿伏伽德罗常数binding energy----------结合能Substance-------------物质internal-----------------内部的Spontaneously --------自发地circular-----------------循环的Electronic ------------电子的neutral-----------------中性的Qualitative -----------定性的dissociation-------------分解分离Disrupt--------------使分裂A complete understanding of the microscopic structure of matter and the exact nature of the forces acting (作用力的准确性质) is yet to be realized. However, excellent models have been developed to predict behavior to an adequate degree of accuracy for most practical purposes. These models are descriptive or mathematical often based on analogy with large-scale process, on experimental data, or on advanced theory.一个完整的理解物质的微观结构和力的确切性质(作用力的准确性质)尚未实现。

组合KdV_方程孤立波解的轨道稳定性

组合KdV_方程孤立波解的轨道稳定性

第37卷第5期2023年10月南华大学学报(自然科学版)Journal of University of South China(Science and Technology)Vol.37No.5Oct.2023收稿日期:2023-04-24作者简介:王㊀琳(1978 ),女,副教授,硕士,主要从事微分方程的定性理论方面的研究㊂E-mail:1668963605@qq.com㊂∗通信作者:刘自强(1988 ),男,副教授,硕士,主要从事生物数学方面的研究㊂E-mail:362791767@DOI :10.19431/ki.1673-0062.2023.05.013组合KdV 方程孤立波解的轨道稳定性王㊀琳,刘自强∗,欧阳自根,刘耿华(湖南交通工程学院基础部,湖南衡阳421001)摘㊀要:组合KdV 方程在物理学的许多领域都有应用,例如等离子体磁流波㊁离子声波等㊂粒子在传输过程中需要刻画其稳定性㊂本文主要通过平移变换,将研究带有非零渐近值的孤立波解的轨道稳定性,转化为研究具有零渐进值孤立波解的轨道稳定性,给出了稳定性的判定定理,应用Grillakis-Shatah-Strauss 提出的轨道稳定性理论与谱分析理论得到了组合KdV 方程的几种孤立波解的轨道稳定性结论㊂关键词:组合KdV 方程;非零渐近值;轨道稳定性;孤立波中图分类号:O241.8文献标志码:A 文章编号:1673-0062(2023)05-0087-05Orbital Stability of Solitary Wave Solutions to the CompoundKdV EquationsWANG Lin ,LIU Ziqiang ∗,OUYANG Zigen ,LIU Genghua(Basic Department,Hunan Institute of Traffic Engineering,Hengyang,Hunan 421001,China)Abstract :The compound KdV equation is applied in many fields of physics,such as plas-ma magnetic current wave,ion acoustic wave and so on.It is necessary to characterize the stability of particles during their propagation.The study of the orbital stability of solitary wave solutions with non-zero asymptotic values is transformed into the study of orbital sta-bility of solitary wave solutions with zero asymptotic values through translation transforma-tion,and the determination theorem of stability is given.The orbital stability theory pro-posed by Grillakis-Shatah-Strauss and the spectral analysis theory are used to obtain the or-bital stability conclusions of the compound KdV equations for several solitary wave solu-tions.key words :compound KdV equations;non-zero asymptotic values;orbital stability;solitarywave78第37卷第5期南华大学学报(自然科学版)2023年10月0㊀引㊀言组合的KdV 方程[1-3]可以写成u t +au p u x +bu 2p u x +u xxx =0㊂(1)该方程具有孤立波解u (x ,t )=2a 1β1cosh(α(x -ct ))-b 1()1p,c >0且b >0,(2)其中,p 是偶数,α=p c ,a 1=(p +1)(2p +1)cb,b 1=-2(2p +1)a(p +2)b ,β1=b 1μ1+2a 1μ1,μ1=b 12+b 214+a 1éëêêùûúú12㊂该方程用于各向同性介质中的非线性色散波理论㊂它描述了外部电场中的表面波[4],双成分等离子体中的离子声波[5],内部海浪[6],量化薄膜中的波[7]㊂当p =1,方程(1)变成了u t +auu x +bu 2u x +u xxx =0㊂(3)㊀㊀S.Q.Dai [8]应用约化的摄动法研究两层流体界面的临界情况的动力学性质㊂通过初等积分的方法,M.Wadati [9]和X.D.Pan [10]给出了(3)的具有渐进值为零的孤立波解㊂W.G.Zhang 等[11]研究了方程(3)含有非零渐进值的孤立波的轨道稳定性㊂其孤立波的表达形式为u (x ,t )=A sech 2α2(x -ct )4+B sech 2α2(x -ct )+D ㊂(4)其中,D 是方程2bD 3+3aD 2-6cD =0的实根,且当a +2bD ʂ0时,α=c -bD 2-aD ,B =-2ʃ2a +2bD6bα2+(a +2bD )2,A =6α2(2+B )a +2bD㊂此外当a +2bD =0且b >0,2c >aD 时,参数α=c -a 2D ,A =ʃ24b (c -a2D ),B =-2㊂当p =2时,方程(1)能够写为u t +au 2u x +bu 4u x +u xxx =0㊂(5)当b ȡ0时,W.G.Zhang 等[12]应用经典的轨道稳定性的谱分析理论研究了方程(5)带有零渐进值的孤立波的轨道稳定性㊂为了简化讨论过程,利用动力系统的分支方法[13-14],本文直接给出方程(3)和方程(5)新的孤立波解㊂性质1㊀若b =-3a 216c ,则方程(3)有如下形式的孤立波解u (x ,t )=4c (3+2c (x -ct )2)a (-9+2c (x -ct )2)㊂(6)若--5a 36<b <-5a48,则方程(5)有下述形式的孤立波解u (x ,t )=652ac 3-82c 3210aA -5A 2e -2c (x -ct )-aB e 2c (x -ct )éëêêêùûúúú12,(7)和u (x ,t )=652ac 3-82c 3210aA -5A 2e 2c (x -ct )-aB e -2c (x -ct )éëêêêùûúúú12,(8)式中:A =a -122c ,B =5a +48bc ㊂上述的解均可以通过Mathematica 软件进行检验㊂众所周知,会出现嵌入KdV 结构的耦合非线性方程 自然是浅水海浪问题㊂ C.Guha-Roy 等[15-17]研究了可以精确求解的非线性偏微分方程㊂虽然具有非零渐近值的孤立波解已被广泛研究,但在轨道上已知的结果很少,尤其是具有非零渐近值的孤立波的稳定性㊂此外,孤立波的稳定性具有非零渐近值的不容易获得㊂据悉,组合KdV 和MKdV 方程的耦合版本的孤立波和周期波两个组件的轨道稳定性尚未研究,其中,主要的困难一是首先必须存在非零渐近值的孤立波解,二是对于非零渐近值的孤立波解,需要重新找到方程对应的新的守恒量,利用这个守恒量来证明这个孤立波解的稳定性㊂本文将要研究方程(1),(3),(5)的几类孤立波解(2),(6) (8)的轨道稳定性,利用M.Grillakis 等[13-14]抽象的结果和谱分析来阐述轨道的稳定性,并通过平移变换,将渐近值非零的孤立波的轨道稳定性问题转化为渐近值为零的孤立波的稳定性来研究㊂根据文献[18-23]中的一般理论和孤立波轨88第37卷第5期王㊀琳等:组合KdV 方程孤立波解的轨道稳定性2023年10月道稳定性的证明方法,给出了具有渐近值为D 的孤立波轨道稳定性的定义㊂定义:设X 为Hilbert 空间且X D =X +D =u |u -D ɪX ㊂假设u c (x )=u (x -ct )是中KdV 方程的孤立波㊂如果对于任何ε>0,存在δ>0且具有以下性质,则孤立波u c 称为轨道稳定㊂即若 u 0-u c X <δ,且u (t )是组合KdV 方程位于区间[0,T 0)且初值为u (0)=u 0ɪX D 的解,则u (t )可延伸到0<t <ɕ上的解,并满足sup 0<t <ɕInf s ɪR u (t )-T (s )φc X <ε,其中T 是X 上单位算子的单参数群,定义为T (s )u (㊃)=u (㊃-s ),∀s ɪR ,u (㊃)ɪX ㊂否则,u c 被称为轨道不稳定㊂从上述定义出发,为了证明组合KdV 方程渐近值为D 的孤立波解的轨道稳定性,只需要验证孤立波u c -D 是一个新的非线性偏微分方程的渐近值为零时的解是轨道稳定的㊂1㊀主要结果将变换φ+D 代入方程(5),可将φt +(aD 2+bD 4)φx +(2aD +4bD 3)φφx +(a +6bD 2)φ2φx +4bDφ3φx +bφ4φx +φxxx =0㊂(9)为了方便起见,将公式(9)改写成u t +(aD 2+bD 4)u x +(2aD +4bD 3)uu x +(a +6bD 2)u 2u x +4bDu 3u x +bu 4u x +u xxx =0㊂(10)进一步的,公式(10)可以写成Hamiltonian 形式d ud t=JEᶄ(u ),u ɪX ㊂(11)X ɪH 2(R )的对偶空间可以表示为X ∗ɪH -2(R ),J =∂∂x:D (J )(⊂X ∗)ңX 是反对称算子,且有E (u )=-ʏR(12(aD2+bD 4)u 2+13(aD +2bD 3)u 3+112(a +6bD 2)u 4+15bDu 5+130bu 6-12u 2x)d x ,(12)Eᶄ(u )=-(aD 2+bD 4)u -(aD +2bD 3)u 2-13(a +6bD 2)u 3-bDu 4-15bu 5-u xx ㊂(13)定义X 的内积为(f ,g )=ʏR(fg +fᶄgᶄ+fᵡgᵡ)d x ,∀f ,g ɪX ㊂(14)这样就存在自然同构I :X ңX ∗,定义为If ,g ⓪=(f ,g ),(15)其中f ,g ⓪=ʏR fg d x ㊂(16)㊀㊀从式(14)㊁式(15)和式(16)可以明显看出㊀(f ,g )=ʏR (fg +fᶄgᶄ+fᵡgᵡ)d x =ʏR(fg -fᵡg +f (4)g )d x =ʏR1-∂2∂x 2+∂4∂x 4()fg d x = If ,g ⓪(17)其中I =1-∂2∂x 2+∂4∂x 4㊂㊀㊀设T 是X 上酉算子的单参数群,有T (s )u (㊃)=u (㊃-s ),∀s ɪR ,u (㊃)ɪX ㊂(18)可得Tᶄ(s )u (㊃)=-uᶄ(㊃-s )㊂㊀㊀显然Tᶄ(0)=-∂∂x㊂由JB =Tᶄ(0),可得B =-1㊂于是,定义Q (u )=12 Bu ,u ⓪=-12ʏRu 2d x ,(19)Qᶄ(u )=Bu =-u ,Qᵡ(u )=-1㊂(20)有如下的引理:引理1㊀假设s ȡ2,对于任何固定u 0ɪH s (R ),方程(10)存在一个唯一解u ɪC ([0,ɕ);H s(R ))满足u (0)=u 0㊂很容易验证E (u ),Q (u )满足E (u (t ))=E (u (0))=E (u 0),(21)Q (u (t ))=Q (u (0))=Q (u 0)㊂(22)㊀㊀接下来考虑方程(10)渐近值为零的孤立波φc =T (ct )φ(x )的轨道稳定性㊂引理2㊀φc 是方程(10)的有界的稳定解并且满足Eᶄ(φc )-cQᶄ(φc )=0㊀㊀证明:由式(21),很容易看出φc 是有界稳态解㊂注意φc 满足等式(10),则有-cφcx +(aD 2+bD 4)φxx +(2aD +4bD 3)φc φcx +98第37卷第5期南华大学学报(自然科学版)2023年10月(a+6bD2)φ2cφcx+4bDφ3cφcx+bφ4cφcx+φcxxx=0(23)对式(23)中关于x积分得-cφc +(aD2+bD4)φc+(aD+2bD3)φ2c+13(a+6bD2)φ3c+bDφ4c+15bφ5c+φcxx=c1(24)由于当xңɕ时有φc,φcxxң0,就会有c1=0㊂此外,计算可得Eᶄ(φc)-cQᶄ(φc)=-(aD2+bD4)φc-(aD+2bD3)φ2c-13(a+6bD2)φ3c-bDφ4c-15bφ5c-φcxx=0现在定义运算符H c:XңX∗H c=Eᵡ(φc)-cQᵡ(φc),(25)其中Eᵡ(u)=-(aD2+4bD4)-(2aD+4bD3)u-(a+6bD2)u3-4bDu4-bu4-∂xx, Qᵡ(u)=-1㊂因此H c=-(2aD+4bD3)φc-(a+6bD2)φc3-4bDφc4-bφc4-∂xx-(aD2+bD4-c)㊂(26)对于任意的ϕ1,ϕ2ɪH2(R),通过计算有H cϕ1,ϕ2⓪= ϕ1,H cϕ2⓪㊂(27)这表明H c是一个自共轭算子(即H c=H∗c)㊂I-1H c是在X上的有界自共轭算子㊂H c的特征值由实数λ构成,并确保H c-λI是不可逆的㊂显然,λ=0是H c的特征值㊂其次,由等式(23),得到H c Tᶄ(0)φc(x)=-H cφc(x)=0㊂设Zᶄ={kφc(x)|kɪR},则Zᶄ包含在由Z={uɪX|H c u=0}表示的H c的核中㊂引理3㊀对于任意的cɪ(c1,c2),H c仅有一个负特征值并且它的核被Tᶄ(0)φ0(x)所张成㊂此外,它的其他特征值都是正的,并且以零为界㊂证明:通过计算,x=0是φc(x)唯一的零点㊂由施图姆 刘维尔定理得,0是H c的第二个特征值㊂因此H c仅有一个负特征值-σ2,其对应的特征函数用χ表示,即Hχ=-σ2χ,且 χ,χ⓪=1㊂㊀㊀对于H c,当xңɕ,有φc,φ2c,φ3c,φ4cң0㊂因此,根据韦尔的本质谱定理,H c的本质谱为essH c=[c-aD2-bD4,+ɕ)㊂㊀㊀根据上述分析,对H c进行谱分解㊂设Z={k1φcx|k1ɪR},N={k2χ|k2ɪR},P={pɪX|(p,χ)=(p,φcx)=0}对于任意的uɪN+,由于H c k2χ,k2χ⓪=k22 H cχ,χ⓪=-k22σ2 χ,χ⓪=-k22σ2<0,有H c u,u⓪<0㊂㊀㊀对于任意的zɪz+,由于 H c k1φcx,k1φcx⓪=0,有 H c z,z⓪=0㊂对于任意p(ʂ0)ɪP,发现对于任何的实函数pɪH2(R)有 p,χ⓪= p,φcx⓪=0,存在δ>0不依赖于p,从而使得 H c p,p⓪ȡδ p 2x㊂因此 H c p,p⓪>0㊂空间X可以分解为X=N+Z+P的直和,其中Z是H c的核空间,N是有限维子空间,P是封闭子空间㊂定义d(c):RңR为d(c)=E(φc)-cQ(φc),(28)其中dᵡ(c)是d的Hessian矩阵㊂由引理1,引理2与引理3,得到以下定理㊂定理1㊀若方程(10)的一个渐进值为零的孤立波为φc=T(ct)φ(x),当dᵡ(c)>0,孤立波φc是轨道稳定的,否则孤立波φc是轨道不稳定的㊂进一步,有dᶄ(c)= Eᶄ(φc,φᶄc)⓪-c Qᶄ(φc),φᶄc⓪-Q(φc)=12ʏ+ɕ-ɕφ2c(x)d x㊂(29)㊀㊀从孤立波解(6)可以得出φc(x)的表达式为φc(x)=4c(3+2cx2)a(-9+2cx2)-4ca㊂(30)㊀㊀因此,12ʏ+ɕ-ɕφ2c(x)d x=322(-c)32π3a2㊂(31)㊀㊀显然,当c<0且aʂ0时,孤立波解是稳定的㊂从而可以得到,在这个条件下,孤立波解(6)是轨道稳定的㊂09第37卷第5期王㊀琳等:组合KdV方程孤立波解的轨道稳定性2023年10月2㊀结㊀论本文研究组合KdV方程的具有非零渐近值孤立波的轨道稳定性的判定条件的构造㊂为了克服组合KdV方程研究非零渐近值孤立波轨道稳定性的困难,利用平移变换将这一问题转化为一个简化的非线性偏微分方程的零渐近值孤立波㊂应用Grillakis等提出的轨道稳定性理论利用Bona 等的结果和详细的谱分析,得到了一个简化的新的非线性方程的零渐近值孤立波的轨道稳定性㊂从定理的结论可以看出,渐近值为零的孤立波的轨道稳定性与波速c有关㊂定理的最终计算结果给出了稳定的影响区域,进一步也可以得到组合KdV方程孤立波的轨道不稳定性㊂参考文献:[1]NARAYANAMURTI V,VARMA C M.Nonlinear propa-gation of heat pulses in solids[J].Physic review letters, 1970,25(16):1105-1108.[2]TODA M.Waves in nonlinear lattice[J].Progress of the-oretical physics supplement,1970,45:174-200. [3]LOU S Y,CHEN L L.Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation [J].Mathematical methods in the applied sciences, 1994,17(5):339-347.[4]PERELMAN T L,FRIDMAN A,YELYASHEVICH M M.Modified Korteweq-de Vries equation in electrohydro-dynamics[J].Soviet physics-journal of experimental and theoretical physics,1974,39:643-646.[5]RUDERMAN M S,TALIPOVA T,PELINOVSKY E.Dy-namicsof modulationally unstable ion-acoustic wavepackets in plasmas with negative ions[J].Journal of plasma phys-ics,2008,74(5):639-656.[6]GRIMSHAW R,PELINOVSKY E,TALIPOVA T.The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves[J].Nonlinear process geophys, 1997,4(4):237-250.[7]PELINOVSKII E N,SOKOLOV V V.Nonlinear theory for the propagation of electromagnetic waves in size-quantized films[J].Radiophysics quantum electron,1976,19(4): 378-382.[8]DAI S Q.Solitary waves at the interface of a two-layer fluid[J].Applied mathematics and mechanics,1982,3 (6):777-788.[9]WADATI M.Wave propagation in nonlinear lattice,I [J].Journal of the physical society of Japan,1975,38(3):673-681.[10]PAN X D.Solitary wave and similarity solutions of thecombined KdV equation[J].Applied mathematics andmechanics,1988,9(3):311-316.[11]ZHANG W G,SHI G L,QIN Y H,et al.Orbital stabilityof solitary waves for the compound KdV equation[J].Nonlinear analysis:Real world applications,2011,12(3):1627-1639.[12]ZHANG W G,ZHANG L.Orbital stability of solitary wavesof generalized compound KdV equations[J].Journal ofuniversity of Shanghai for science and technology,2007,29(1):1-5.[13]GRILLAKIS M,SHATAH J,STRAUSS W.Stability theoryof solitary waves in the presence of symmetry,I[J].Journal of functional analysis,1987,74(1):160-197. [14]GRILLAKIS M,SHATAH J,STRAUSS W.Stability theoryof solitary waves in the presence of symmetry,II[J].Journal of functional analysis,1990,94(2):308-348. [15]GUHA-ROY C.Exact solutions to a coupled nonlinearequation[J].International journal of theoretical physics, 1988,27:447-450.[16]GUHA-ROY C.Solitary wave solutions of a system ofcoupled nonlinear equation[J].Journal of mathematicalphysics,1987,28:2087-2088.[17]GUHA-ROY C.On explicit solutions of a coupled KdV-mKdV equation[J].International journal of modernphysics B,1989,3(6):871-875.[18]PAN C H,ZHENG L J.Some extensions on the soliton so-lutions for the Novikov equation with cubic nonlinearity[J].Journal of nonlinear mathematical physics,2015,22(2):308-220.[19]HIROTA R,SATSUMA J.Soliton solutions of a coupledKorteweg-de Vries equation[J].Physics letters A,1981,85(8/9):407-408.[20]CHOWDHURY A R,MUKHERJEE R.On the completeintegrability of the Hirota-Satsuma system[J].Journalof physics A:Mathematical and general,1984,17(5):231-234.[21]ALEJO M A.Well-posedness and stability results for theGardner equation[J].Nonlinear differential equationsand applications,2012,19(4):503-520. [22]DE ANDRADE T P,PASTOR A.Orbital stability of one-parameter periodic traveling waves for dispersive equa-tions and applications[J].Journal of mathematical a-nalysis and applications,2019,475(2):1242-1275.[23]ALVES G,NATALI F,PASTOR A.Sufficient conditionsfor orbital stability of periodic traveling waves[J].Jour-nal of differential equations,2019,267(2):879-901.19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Keywords: stability, forbidden subgraphs, r-partite subgraphs; largest eigenvalue of a graph; spectral Tura´n theorem.
This note is part of an ongoing project aiming to build extremal graph theory on spectral grounds, see, e.g., [3] and [7, 14].
µ (B) ≥ µ (A) − µ (A − B) ,
holding for any Hermitian matrices A and B. Also, recall that µ (H) ≤ 2e (H) for any graph H. Applying these results to the graphs G and G′, we find that
- The relation between c and n in Theorem 1 needs explanation. First, for fixed c, it shows how large must be n to get a valid conclusion. But, in fact, the relation is subtler, for c itself may depend on n, e.g., letting c = 1/ ln ln n, the conclusion is meaningful for sufficiently large n.
February 2, 2008
arXiv:0711.3485v1 [math.CO] 22 Nov 2007
Abstract
Let µ (G) be the largest eigenvalue of a graph G, let Kr (s1, . . . , sr) be the complete rpartite graph with parts of size s1, . . . , sr, and let Tr (n) be the r-partite Tura´n graph of order n. Our main result is:
A spectral stability theorem for large forbidden subgraphs
Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 email: vnikifrv@
- The factor ε1/4 + c1/(8r+8) in condition (b) is far from the best one, but is simple.
To prove Theorem 1, we introduce two supporting results. Our notation follows [1]; given a graph G, we write:
(a) G contains a Kr+1 ⌊c ln n⌋ , . . . , ⌊c ln n⌋ , n1−√c ; (b) G differs from Tr (n) in fewer than ε1/4 + c1/(8r+8) n2 edges.
In particular, this result strengthens the stability theorem of Erd˝os and Simonovits.
Let r ≥ 2, 1/ ln n < c < r−3(r+14)(r+1), 0 < ε < r−24, and G be a graph of order n. If G has
⌈(1 − 1/r (a) G
− ε) n2/2⌉ contains a
edges, Kr+1
then ⌊c ln
G n⌋
Set for short θ = c1/(r+1)r2r+5 and assume first that P removes at least ⌈θn2⌉ edges before stopping. Then
kr+1 (G) ≥ θnr−1/r2r+5 = c1/(r+1)nr+1,
2
and Fact 3 implies that Kr+1 ⌊c ln n⌋ , . . . , ⌊c ln n⌋ , n1−√c ⊂ G. Thus condition (a) holds, completing the proof.
An r-joint of size t is the union of t distinct r-cliques sharing an edge. We writ of an r-joint in a graph G.
The following two facts play crucial roles in our proof.
and jsr+1 (G′) ≤ nr−1/r2r+5, Fact 2 implies that G′ contains an induced r-partite subgraph G0, satisfying |G0| ≥ (1 − 4a) n and δ (G0) > (1 − 1/r − 7a) n.
Fact 2 ([14], Theorem 4) Let r ≥ 2, 0 < b < 2−10r−6, n ≥ r20, and G be a graph of order n. If µ (G) > (1 − 1/r − b) n, then G satsisfies one of the conditions:


µ (G′) ≥ µ (G) − 2θn ≥ 1 − 1/r − ε − 2θ n.
√ 1/3 From ln n ≥ 1/c ≥ r8(r+21)(r+1) we easily get n > r20. Set for short a = ε + 2θ . Since
√ ε + 2θ ≤ 2−36r−24 + 2r−4(r+21)(r+1) < 2−10r−6,
(i) jsr+1 (G) > nr−1/r2r+5; (ii) G contains an induced r-partite subgraph G0 satisfying |G0| ≥ 1 − 4b1/3 n and δ (G0) > 1 − 1/r − 7b1/3 n.
Fact 3 ([5], Theorem 1) Let r ≥ 2, cr ln n ≥ 1, and G be a graph of order n. If kr (G) ≥ cnr, then G contains a Kr (s, . . . , s, t) with s = ⌊cr ln n⌋ and t > n1−cr−1.
Theorem 1 Let r ≥ 2, 1/ ln n < c < r−8(r+21)(r+1), 0 < ε < 2−36r−24, and G be a graph of order n.
If µ (G) > (1 − 1/r − ε) n, then G satisfies one of the√conditions: (a) G contains a Kr+1 ⌊c ln n⌋ , . . . , ⌊c ln n⌋ , n1− c ; (b) G differs from Tr (n) in fewer than ε1/4 + c1/(8r+8) n2 edges.
Let V1, . . . , Vr be the parts of G0. For every i ∈ [r] , we see that
Assume now that P removes fewer than ⌈θn2⌉ edges before stopping; write G′ for the resulting
graph.
Letting µ (X) be the largest eigenvalue of a Hermitian matrix X, recall Weyl’s inequality
1
Remarks
- Since µ (G) is at least the average degree of G, Theorem 1 implies essentially the above extension of the Erd˝os-Simonovits stability theorem.
Proof of Theorem 1 Let G be a graph of order n with µ (G) > (1 − 1/r − ε) n. Define the procedure P as follows:
While jsr+1 (G) > nr−1/r2r+5 do Select an edge contained in ⌈nr−1/r2r+5⌉ cliques of order r + 1 and remove it from G.
- Choosing randomly a graph of order n with ⌈(1 − 1/r) n2/2⌉ edges, we can find a graph containing no K2 (⌊c′ ln n⌋ , ⌊c′ ln n⌋) and differing from Tr (n) in more that c′′n2 edges for some positive c′ and c′′, independent of n. Hence, condition (a) is essentially best possible.
相关文档
最新文档