八年级数学半期试题
四川省成都高新区2017-2018学年度八年级上期半期诊断性评价八年级数学试题(无答案)

2017-2018学年度高新区(上期)半期诊断性评价八年级数学A 卷(共100分)第Ⅰ卷(选择题,共3分)一.选择题(本大题共有10个小题,每小题3分,共30分)1. 下列各数①-3.14 ②π ③3 (4)722 (5)38,无理数的个数是( ) A. 2 B. 3 C. 4 D. 52. 在平面直角坐标系中,点)1,1(-p 位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列语句中正确的是( )A. 9的算术平方根是3±B.9的平方根是3C. -9的平方根是-3D. 9的算式平方根是34. 满足下列条件的ABC ∆,不是直角三角形的是( )A. 222c a b -=B. B A C ∠-∠=∠C. 5:4:3::=∠∠∠C B AD. 5:13:12::=c b a5. 有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱。
请你算一算,能放入的细木条的最大长度是( )A.cm 41B. cm 34C.cm 25D. 356.若点),(b a p 在第三象限,则),(a ab M --应在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.要使二次根式x -2有意义,字母x 必须满足的条件是( )A. 2≤xB. 2<xC. 2-≤xD. 2-<x8. 若函数5)1(--=m x m y 是一次函数,则m 的值是( )A. 1±B. 1- C .1 D.29. 某一次函数的图象经过点(1, 2),且y 随x 的增大而减小。
则这个函数的表达式可能是( )A. 42+=x yB. 13-=x yC. 13+-=x yD. 42+-=x y10.一块直角三角形的纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 5cmB. 4cmC. 3cmD. 2cm二、填空题(本大题共四个小题,每小题4分,共16分)11.若三角形的边长分别为6、8、10,则它的最长边上的高为 ________.12.一个正数的平方根是x 2和6-x ,则这个正数是________.13.若点)4,3(+-a a M 在x 轴上,则点M 的坐标是14.已知函数)0(≠+=k b kx y 的图象与y 轴交点的纵坐标为2-,且当2=x 时,1=y 。
天津市武清区2018-2019学年度第一学期半期质量调查人教版八年级数学试题 含解析

2018-2019学年度第一学期半期质量调查八年级数学试题一、选择题(共12小题,每小题3分,满分36分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE3.下列四个图形中,可以看作是轴对称图形的是()A.B.C.D.4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.115.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C6.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等.A.0个B.1个C.2个D.3个7.若一个多边形内角和等于1260°,则该多边形边数是()A.8 B.9 C.10 D.118.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB9.如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是()A.∠D=∠B B.AD=CB C.BE=DF D.∠AFD=∠CEB 10.若点A(x,3)和点B(2,y)关于原点对称,则()A.x=﹣2,y=3 B.x=﹣2,y=﹣3 C.x=2,y=3 D.x=2,y=﹣3 11.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形12.小明把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.120°B.150°C.180°D.210°二、填空题(共6小题,每小题3分,满分18分)13.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有性.14.若等腰三角形有两条边的长为7cm,15cm,则第三边的长为cm.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为.16.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.17.如图,直线m是正五边形ABCDE的对称轴,且直线m过点A,则∠1的度数为.18.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).△ABC与△ABD全等,则点D坐标为.三、解答题(共7小题,满分66分)19.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.20.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.21.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.22.如图,已知△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.(1)找出图中所有的全等的三角形.(2)选一组全等三角形进行证明.23.如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的大小;(2)若CD=3,求DF的长.24.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案与试题解析一.选择题(共12小题)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【分析】从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.3.下列四个图形中,可以看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意;故选:D.4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.5.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.6.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等.A.0个B.1个C.2个D.3个【分析】根据全等三角形的定义和判定定理与性质进行解答.【解答】解:(1)由全等三角形的定义得到:能够完全重合的两个图形全等,故说法正确;(2)两边和一角对应相等且该角是两边的夹角的两个三角形全等,故说法错误;(3)利用ASA或AAS都能判定两个三角形全等,故说法正确;综上所述,正确的说法有2个.故选:C.7.若一个多边形内角和等于1260°,则该多边形边数是()A.8 B.9 C.10 D.11【分析】设多边形的边数为n,根据多边形内角和定理得出(n﹣2)•180°=1260°,求出即可.【解答】解:设多边形的边数为n,则(n﹣2)•180°=1260°,解得:n=9,故选:B.8.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【分析】根据线段垂直平分线的判定定理得到AB是线段CD的垂直平分线,得到答案.【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.9.如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是()A.∠D=∠B B.AD=CB C.BE=DF D.∠AFD=∠CEB 【分析】利用等式的性质可得AF=CE,再根据全等三角形的判定方法进行分析即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、添加∠D=∠B可利用AAS判定△ADF≌△CBE,故此选项不合题意;B、添加AD=BC可利用SAS判定△ADF≌△CBE,故此选项不合题意;C、添加BE=DF不能判定△ADF≌△CBE,故此选项符合题意;D、添加∠AFD=∠CEB,可利用ASA判定△ADF≌△CBE,故此选项不合题意;故选:C.10.若点A(x,3)和点B(2,y)关于原点对称,则()A.x=﹣2,y=3 B.x=﹣2,y=﹣3 C.x=2,y=3 D.x=2,y=﹣3 【分析】直接利用关于原点对称点的性质得出答案.【解答】解:∵点A(x,3)和点B(2,y)关于原点对称,∴x=﹣2,y=﹣3.故选:B.11.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.斜三角形【分析】本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.【解答】解:∵DE⊥AB,DF⊥AC,∴∠BED=∠DFC=90°,∵在△BDE和△CDF,BD=CD,DE=DF,∴△DBE≌△DFC(HL),∴∠B=∠C,∴AB=AC,∴这个三角形一定是等腰三角形.故选:B.12.小明把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.120°B.150°C.180°D.210°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:D.二.填空题(共6小题)13.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:是因为三角形具有稳定性.14.若等腰三角形有两条边的长为7cm,15cm,则第三边的长为37 cm.【分析】由于等腰三角形的两边长分别是7cm,15cm,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.【解答】解:①当腰为15cm时,三角形的周长为:15+15+7=37cm;②当腰为7cm时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37cm.故答案为:37.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 3 .【分析】如图,作辅助线;首先运用角平分线的性质证明CD=DE;其次求出DE的长度,即可解决问题.【解答】解:如图,过点D作DE⊥AB于点E;∵∠C=90°,AD平分∠BAC,∴CD=DE;∵,且AB=10,∴DE=3,CD=DE=3.故答案为3.16.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.17.如图,直线m是正五边形ABCDE的对称轴,且直线m过点A,则∠1的度数为72°.【分析】先根据∠BCD=108°,CB=CD,得出∠BDC=36°,再根据直线m是正五边形ABCDE的对称轴,可得∠FCD=36°,进而得到∠1的度数.【解答】解:∵正五边形ABCDE的每个内角为108°,∴∠BCD=108°,∵CB=CD,∴∠BDC=36°,∵直线m是正五边形ABCDE的对称轴,∴∠FCD=36°,∴∠1=36°+36°=72°,故答案为:72°.18.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).△ABC与△ABD全等,则点D坐标为(1,﹣1),(5,3)或(5,﹣1).【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【解答】解:如图所示,共有3个符合条件的点,∵△ABD与△ABC全等,∴AB=AB,BC=AD或AC=AD,∵A(2,1)、B(4,1)、C(1,3).∴D1的坐标是(1,﹣1),D2的坐标是(5,3),D3的坐标是(5,﹣1),故答案为:(1,﹣1),(5,3)或(5,﹣1).三.解答题(共7小题)19.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.【分析】在Rt△ABC中求得∠ABC=50°,在由CD⊥AB,即∠BDC=90°知∠BCD=40°,根据BE平分∠ABC知∠CBE=∠ABC=25°,由∠CEB=90°﹣∠CBE可得答案.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=50°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=40°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠CEB=90°﹣∠CBE=65°.20.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.【分析】(1)根据邻补角互补和已知求出外角即可;(2)先求出多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:(1)∵一个多边形的每一个外角都是它相邻的内角的,∴这个多边形的每个外角的度数是=60°;(2)∵多边形的每一个外角的度数是60°,多边形的外角和为360°,∴多边形的边数是=6,∴这个多边形的内角和是(6﹣2)×180°=720°.21.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.22.如图,已知△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.(1)找出图中所有的全等的三角形.(2)选一组全等三角形进行证明.【分析】(1)根据题意可找出△ADC≌△AEB,△BCD≌△CBE,△BDO≌△CEO;(2)根据等腰三角形的性质推出∠ABC=∠ACB,证△BCD≌△CBE.【解答】解:(1)△ADC≌△AEB,△BCD≌△CBE,△BDO≌△CEO;(2)∵AB=AC,∴∠ABC=∠ACB(等边对等角),在△BCD和△CBE中,,∴△BCD≌△CBE,∴BD=CE,∠CDB=∠CEB,AD=AE,∵AD=AE,∠A=∠A,AC=AB,∴△ADC≌△AEB,∵∠DOB=∠EOC,∠ODB=∠OEC,BD=EC,∴△BDO≌△CEO.23.如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的大小;(2)若CD=3,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.24.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.【分析】(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.(2)根据AE=6,AB=AC,得出CD+AD=12,由△CBD的周长为20,代入即可求出答案.【解答】解:(1)解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=70°∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°(2)解:∵AE=6,∴AC=AB=2AE=12∵△CBD的周长为20,∴BC=20﹣(CD+BD)=20﹣(CD+AD)=20﹣12=8,∴BC=8.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。
四川省成都市金牛实验中学2024-2025学年上学期八年级半期考试数学试题

四川省成都市金牛实验中学2024-2025学年上学期八年级半期考试数学试题一、单选题1.式子:①35<;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有().A .2个B .3个C .4个D .5个2.金沙遗址陈列馆有5个展厅,分别是第一展厅:远古家园;第二展厅:王都剪影;第三展厅:天地不绝;第四展厅:千载遗珍;第五展厅:解读金沙.某班同学分小组到以上五个展厅进行研学活动,人数分别为:9,11,8,11,10(单位:人),这组数据的众数和中位数分别是()A .11人,10人B .11人,8人C .11人,9人D .9人,8人3.若x >y ,则下列各式正确的是()A .x +2<y +2B .x ﹣2<y ﹣2C .﹣2x <﹣2yD .1122x y <4.在平面直角坐标系中,已知点(,)M a b ,(4,7)N ,//MN x 轴,则一定有()A .4a =B .4a =-C .7b =-D .7b =5.不等式3(x +1)>2x +1的解集在数轴上表示为()A .B .C .D .6.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm )的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数x 376350376350方差2s 12.513.52.45.4A .甲B .乙C .丙D .丁7.下列图象中,可以表示一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)的图象的是()A .B .C .D .8.乐乐和姐姐一起出去运动,两人同时从家出发.沿相同路线前行,途中姐姐有事返回,乐乐继续前行,5分钟后也原路返回,两人恰好同时到家,乐乐和姐姐在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示.下列结论中错误的是()A .两人前行过程中的速度为180米/分B .m 的值是15,n 的值是2700C .姐姐返回时的速度为90米/分D .运动18分钟时,两人相距800米二、填空题9.若()120mx x ++>是关于x 的一元一次不等式,则m =.10.某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是分11.直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3,4,则点P 的坐标为.12.如图,在平面直角坐标系中,直线21y x =+与直线3y x m =-+相交于点P ,若点P 的横坐标为1,则关于,x y 的二元一次方程组213y x y x m =+⎧⎨=-+⎩的解是.13.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)与正比例函数y ax =(a 为常数,且0a ≠)相交于点P ,则不等式kx b ax +≤的解集是.三、解答题14.计算(1)112202432-⎛⎫+-- ⎪⎝⎭;(3)11324(25)11x y x y +⎧-=⎪⎨⎪--=⎩①②;(4)解不等式组()214131132x xx x ⎧+≥⎪⎨-++>⎪⎩,并将解集在数轴上表示出来.15.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m 的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.16.如图,在平面直角坐标系中,(2,4)(3,1)(2,1)A B C --,,.(1)在图中作出ABC V 关于x 轴的对称图形111A B C △,并直接写出点1C 的坐标;(2)求ABC V 的面积;(3)点(,2)P a a -与点Q 关于x 轴对称,若8PQ =,直接写出点P 的坐标.17.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.(1)分别写出当015x ≤≤和15x >时,y 与x 的函数关系式;(2)若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨18.直线3AB y x =+:分别与x ,y 轴交于A ,B 两点、过点B 的直线交x 轴正半轴于点C ,且:3:1OB OC =.(1)直接写出点A 、B 、C 的坐标;(2)在线段OB 上存在点P ,使点P 到B ,C 的距离相等,求出点P 的坐标:(3)在第一象限内是否存在一点E ,使得BCE 为等腰直角三角形,若存在,直接写出E 点坐标;若不存在,说明理由.四、填空题19.若点(),m n 在函数34y x =-的图象上,则62m n -的值是.20.若关于x 的不等式23335x x x a -⎧⎨-≥⎩>只有两个整数解,则a 的取值范围是.21.对于实数a b ,,定义运算“※”:())ab a b a a b <⎧=≥※,例如23-※,因为23-<,所以23236-=-⨯=-※.若,x y 满足方程组48229x y x y -=-⎧⎨+=⎩,则x y =※.22.如图,在平面直角坐标系中,点C 的坐标是(0,4),作点C 关于直线AB :y =+1的对称点D ,则点D 的坐标是.23.如图六边形ABCDEF 是正六边形,曲线123456FA A A A A A …叫做正六边形的渐开线,满足1AA AF =,21BA BA =,32CA CA =,43DA DA =…;点B 、点A 与点1A 共线,点C 、点B 与点2A 共线,点D 、点C 与点3A 共线…,当点A 坐标为()1,0,点B 坐标为()0,0时,点2021A 的坐标是.五、解答题24.定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的【相伴方程】.(1)在下列方程中:①10x -=;;②2103x +=;③()315x x -+=-,与不等式组25312x x x x -+>-⎧⎨->-+⎩是【相伴方程】的是;(填序号)(2)若不等式组312332x x x ⎧-<⎪⎨⎪-+>-+⎩的一个【相伴方程】的解是整数,则这个【相伴方程】可以是;(写出一个即可)(3)若方程32x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组2312x x m x m ≤-⎧⎨-≤⎩的【相伴方程】,求m 的取值范围.25.某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为多少元/件?乙种服装进价为多少元/件?(2)若购进这100件服装的费用不得超过7500元:①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价a (020)a <<元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?26.如图1,已知直线l1:y=kx+b与直线l2:y=43x交于点M,直线l1与坐标轴分别交于A,C两点,且点A坐标为(0,7),点C坐标为(7,0).(1)求直线l1的函数表达式;(2)在直线l2上是否存在点D,使△ADM的面积等于△AOM面积的2倍,若存在,请求出点D的坐标,若不存在,请说明理由;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB∥x轴交CM于点B,设点P的纵坐标为m,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF 与△MOC重叠部分的面积为S,求S与m之间的函数关系式,并写出相应m的取值范围.。
贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

2022—2023学年度第二学期半期联合统一检测八年级数学同学你好!答题前请认真阅读以下内容:1.全卷共4页,三个大题,共21小题,满分100分.考试时间为90分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是( )A .9cm B .12cmC .12cm 或15cmD .15cm2.如图,OC 为的平分线,,,则点C 到射线OA 的距离为()A .3B .6C .9D .123.已知,则下列结论正确的是()A .B .C .D .4.下列四个图案中,不能由1号图形平移得到2号图形的是()A B CD5.不等式的解集在数轴上表示正确的是()A B CD6.下列式子从左到右变形,是因式分解的是( )A .B .C .D .7.如图,已知,点P 在边OA 上,,点M ,N 在边OB 上,AOB ∠CM OB ⊥6CM =a b >22a b->-a c b c+>+33a b<ac bc>10x ->22(2)44x x x +=++23221025x y x y y=⋅241(4)1x x x x -+=-+3(1)(1)y y y y y -=+-60AOB ∠=︒12OP =.若,则ON 的值为( )A .3B .4C .5D .68.如图,一次函数与一次函数的图象交于点,则关于x 的不等式的解集是()A .B .C .D .9.如图,在△ABC 中,,,.分别以点A ,B 为圆心,大于的长为半径作弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,则CD 的长为()A .1B .C .D .310.如果不等式的正整数解为1,2,3,则m 的取值范围是( )A .B .C .D .二、填空题:每小题4分,共16分.11.不等式组的解焦是________.12.分解因式:________.13.如图,△DEF 是由△ABC 通过平移得到的,且点B ,E ,C ,F 在同一条直线上.若,,则平移的距离是________.PM PN =2MN =1y x b =+24y kx =+()1,3P 4x b kx +>+2x >-0x >1x >1x <60C ∠=︒4AC =3BC =12AB 753230x m -≤912m ≤<912m <<12m <9m ≥54,x x -<>⎧⎨⎩242x xy -=14BF =6EC =14.如图,等腰Rt △ABC 和等腰Rt △ADE 的腰长分别为4和2,其中,M 为边DE 的中点.若等腰Rt △ADE 绕点A 旋转,则点B 到点M的距离的最大值为________.三、解答题:解答应写出必要的文字说明、演算步骤或证明过程,本大题共7小题,共54分.15.(本题满分8分)解下列一元一次不等式,并把解集在数轴上表示出来.(1);(2).16.(本题满分8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且,过点E 作,交BC 的延长线于点F .(1)求的度数;(2)若,求DF 的长.17.(本题满分8分)如图,在平面直角坐标系中,△ABC 的顶点都在网格点上,其中点C 的坐标为(1,2).(1)填空:点A 的坐标是________,点B 的坐标是________;(2)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到,请画出平移后的;(3)求△ABC 的面积.18.(本题满分6分)给出三个多项式:,,,请选择其中两个多项式进行加法运算,并把结果分解因式(写出一种情况即可).19.(本题满分8分)如图,,,,将△ABC 绕点B 逆时90BAC DAE ∠=∠=︒312)4(x x +≤+334642x x---<//DE AB EF DE ⊥F ∠2CD =A B C '''△A B C '''△21212x x +-21412x x ++2122x x -90DBC ∠=︒45C ∠=︒2AC =针旋转60°得到△DBE ,连接AE .(1)求证:;(2)连接AD ,求AD 的长.20.(本题满分8分)超市购进一批A ,B 两种品牌的饮料共320箱,其中A 品牌饮料比B 品牌饮料多80箱.两种饮料每箱的进价和售价如下表所示:品牌A B 进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B 品牌的饮料获得的利润是多少元?(注:利润售价进价)(2)问该超市购进A ,B 两种品牌的饮料各多少箱?(3)受市场经济影响,该超市调整销售策略,将A 品牌的饮料每箱打折销售,B 品牌的饮料每箱售价改为38元.为使购进的A ,B 两种品牌的饮料全部售出且利润不低于700元,问A 品牌的饮料每箱最低打几折出售?21.(本题满分8分)如图,在△ABC 中,的平分线AE 与BC 的垂直平分线DE 交于点E ,过点E 作边AC 的垂线,垂足为N ,过点E 作边AB 延长线的垂线,垂足为M .(1)求证:;(2)若,,求BM 的长.2022—2023学年度第二学期半期联合统一检测八年级数学参考答案及评分标准一、选择题:每小题3分,共30分.题号12345678910答案DBBDADCCBA9.【解析】如图,连接BD ,过点B 作于点H ,由,可知,,∴,ABC ABE △≌△=-BAC ∠BM CN =2AB =8AC =BH AC ⊥60C ∠=︒3BC =30CBH ∠=︒1322CH BC ==∴,∴.设,则,根据作图可知,则,∴根据勾股定理可得,解得,∴.二、填空题:每小题4分,共16分.11.12.13.414.14.【解析】如图,连接AM .∵M 为边DE 的中点,且△ADE 为等腰直角三角形,∴,.在Rt △ADM 中,,由勾股定理可知,即.当A ,B ,M 三点不共线时,由三角形的三边关系可知,此时一定有;当A ,B ,M 三点共线且点M 不位于点A ,B 之间时,此时有,∴,即点B 到点M 的距离的最大值为三、解答题:本大题共7小题,共54分.15.解:(1)去括号,得,移项,得,合并同类项,得.解集在数轴上表示如图所示.4分BH ==35422AH AC CH =-=-=HD x =52AD x =+AD BD =52BD x =+22252x x ⎛⎫+=+ ⎪⎝⎭110x =3172105CD CH HD =-=-=54x -<<2()2x x y -4+AM DE ⊥12AM DE DM ==2AD =222AD AM DM =+AM DM ==BM AB AM <+BM AB AM =+4BM AB AM ≤+=+4+312)4(x x +≤+3128x x +≤+3281x x -≤-7x ≤(2)去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得.解集在数轴上表示如图所示.8分16.解:(1)∵△ABC 是等边三角形,∴.∵,∴.∵,∴,∴.4分(2)∵,,∴△EDC 是等边三角形,∴.∵,,∴.8分17.解:(1)(2,)(4,3)2分(2)如图,即为所.5分(3)△ABC 的面积.8分18.解:说明:(三个答案中任做一种正确即可给分)答案一:.答案二:.答案三:.6分334642x x---<324234()x x -<--32468x x -<-+82463x x -<-+721x -<3x >-60B ACB ∠=∠=︒//DE AB 60EDC B ∠=∠=︒EF DE ⊥90DEF ∠=︒9030F EDC ∠=︒-∠=︒60ACB ∠=︒60EDC ∠=︒2DE CD ==90DEF ∠=︒30F ∠=︒24DF DE ==1-A B C '''△111342431315222=⨯-⨯⨯-⨯⨯-⨯⨯=2221121416(6)22x x x x x x x x +-+++=+=+222112121(1)(1)22x x x x x x x +-+-=-=+-22221141221(1)22x x x x x x x +++-=++=+19.(1)证明:∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,,.∵,∴,∴.在△ABC 和△ABE 中,∴.4分(2)解:如图,连接AD .∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,.∵,∴,.∵,∴,∴,,∴8分20.解:(1)(元).答:销售一箱B 品牌的饮料获得的利润是5元.2分(2)设该超市购进A 品牌的饮料x 箱,B 品牌的饮料y 箱.依题意,得解得答:该超市购进A 品牌的饮料200箱,B 品牌的饮料120箱.5分(3)设A 品牌的饮料每箱打m 折出售.依题意,得,解得.答:A 品牌的饮料每箱最低打9折出售.8分21.(1)证明:如图,连接BE ,CE ,则DE 是边BC 的垂直平分线,∴.∵AE 是的平分线,,,∴.ABC DBE ∠=∠60EBC ∠=︒BC BE =90DBC ∠=︒–30ABC DBE DBC EBC ∠=∠=∠∠=︒30ABE ∠=︒,,,BC BE ABC ABE BA BA =⎧∠=∠=⎪⎨⎪⎩(SAS)ABC ABE △≌△2DE AC ==BED C ∠=∠ABC ABE △≌△C BEA ∠=∠2AE AC ==45C ∠=︒45BED BEA C ∠=∠=∠=︒90AED ∠=︒DE AE =AD ===40355-=320,80,x y x y +=-=⎧⎨⎩200,120.x y =⎧⎨=⎩6355200(3835)12070010m ⎛⎫⨯-⨯+-⨯≥ ⎪⎝⎭9m ≥BE CE =BAC ∠EM AB ⊥EN AC ⊥EM EN =在Rt △BME 和Rt △CNE 中,∴,∴.4分(2)解:由(1)得,.在Rt △AME 和Rt △ANE 中,∴,∴.又∵,,∴,∴.又∵,∴.8分,,BE CE EM EN ==⎧⎨⎩Rt Rt (HL)BME CNE △≌△BM CN =EM EN =BM CN =,,AE AE EM EN ==⎧⎨⎩Rt Rt (HL)AME ANE △≌△AM AN =AM AB BM =+AN AC CN =-AB BM AC CN +=-28BM CN +=-BM CN =3BM =。
四川省成都市成都市七中育才学校2023-2024学年八年级下学期期中数学试题(原卷版)

成都七中育才学校2023—2024学年度(下)半期学业质量监测八年级数学A 卷(共100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 下列图形中,不是中心对称图形的是( )A. B. C. D.2. 下列从左边到右边的变形,是因式分解的是( )A. B. C. D. 3. 实数a 、b 在数轴上对应的点如图所示,则下列结论正确的是( )A. B. C. D. 4. 如图,在中,,,且,.则长为( )A. 1B. 2C. 3D. 45. 如图,已知∠1+2+∠3+∠4=280°,那么∠5度数为( )A. 70°B. 80°C. 90°D. 100°6. 先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法.已知五个正数的和等于1,用反证法证明:这五个正数的()23434m m m m --=--()()2111m m m +-=-()()22422m n m n m n +=--()224529m m m --=--0a b +<0a b +>0ab >0b a ->ABC AB AC =AD BC ⊥6BC =5AC =AD中至少有一个大于或等于,先要假设这五个正数( )A. 都大于 B. 都小于C. 没有一个小于 D. 没有一个大于7. 如图所示,在边长为1的小正方形组成的的网格中有A ,B 两个格点,在网格的格点上任取一点C (点A ,B 除外),恰能使为等腰三角形的概率是( )A. B. C. D. 8. 在直角坐标平面内,一次函数的图象如图所示,那么下列说法错误的是( )A. 当时,B. 方程的解是C. 当时,D. 不等式的解集是二、填空题(本大题共5个小题,每小题4分,共20分)9. 分解因式的结果为_________.10. 若分式的值为0,则x 的值为__________.11. 一次函数的图象经过第一、二、三象限,则m 的取值范围是___________.151515151522⨯ABC 5747372725y x =-0x >5y >-250x -=52x =0y <5x <-250x ->52x >24x y y -293x x -+()233y m x =-+12. 如图,在中,,分别以点A 、点B为圆心,大于的长为半径画弧交于两点,过这两点的直线交于点D ,连接,,,则的周长为_______cm .13. 如图,在正方形网格中,格点绕某点逆时针旋转得到格点,点A 与点,点B 与点,点C 与点是对应点,请写出旋转中心的坐标__________.三、解答题(本大题共5个小题,共48分)14. (1)解方程:;(2)解不等式组:15. 如图,在平面直角坐标系中,的三个顶点的坐标分别为,,(每个小方格都是边长为1个单位长度的正方形),请完成以下画图并填空.ABC 90C ∠=︒12AB BC AD 10cm AB =6cm AC =ACD ABC ()0180αα︒<<111A B C △1A 1B 1C 31122x x x=+--4211123x x x x +>-+⎧⎪-⎨-≤⎪⎩ABC ()2,4A -()4,2B -()1,1C -(1)将先向左平移1个单位长度,再向下平移5个单位长度,画出平移后的;(2)画出关于原点O 成中心对称的;(3)将绕点O 顺时针旋转,画出旋转后得到的,则的坐标为________.16. 如图,已知中,D 、E 、F 分别为、、边上的中点.(1)求证:四边形是平行四边形;(2)若的周长为12,求的周长.17. 小王和小明约定远足一次,他们从相距的A 、B 两地同时出发相向而行,小王从A 地出发匀速步行到B 地,小明从B 地出发匀速y 千米步行到A 地,设他们的步行时间为x 小时,小王、小明距离A 地的距离分别为千米,与x 的函数关系图象如图所示,根据图象解答下列问题:(1)求出与x 的函数关系式;(2)x 为何值时,两人相距4千米?18. 如图1,在中,,,.ABC 111A B C △ABC 222A B C △ABC 90︒333A B C △3B ABC AB AC BC AEFD ABC DEF 10km 12y y 、12y y 、12y y 、ABCD Y 60A ∠=︒4=AD 8AB =(1)请计算的面积;(2)如图2,将沿着翻折,D 点的对应点为,线段交于点M ,请计算的长度;(3)如图3,在(2)的条件下,点P 为线段上一动点,过点P 作于点N ,交的延长线于点G .在点P的长度是否为定值?如果是,请计算出这个定值;如果不是,请说明理由.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如果的值为___________.20. 若关于x 的分式方程有增根,则m 的值为__________.21. 若一个正整数k 可以写成两个正整数a 、b 的平方差的形式,即:(其中a ,b 都是正整数,且),那么我们称为正整数k 的“欢喜数对”.如:,那么正整数9的“欢喜数对”为.今年是2024年,那么正整数2024的“欢喜数对”为__________(请写出所有满足条件的“欢喜数对”).22. 如图,在锐角中,点O 为和的角平分线交点,过点O 作一条直线l ,交线段,分别于点N ,点M .点B 关于直线l 的对称点为,连接,,分别交线段于点E ,点F .连接,.若,那么的度数为____________(用含有m 的代数式表示).ABCD Y ADC △AC D ¢CD 'AB AM CM PN AC ⊥PG AD '⊥AD 'PG +a b -=222a b a b a a b ⎛⎫+-⋅ ⎪-⎝⎭21533x m x x+=---22k a b =-1a b >>(),a b 22954=-()5,4ABC CAB ∠ABC ∠AB BC B 'B M 'B N 'AC EO FO ABC m ∠=︒EOF ∠23. 如图,在平面直角坐标系中,四边形为正方形,.直线分别交线段于点E ,G .直线分别交线段OA ,BC 于点D ,F .连接DE ,FG .四边形DEFG 的面积为__________;的最小值为___________.二、解答题(本大题共3个小题,共30分)24. 随着“低碳生活、绿色出行”理念的普及,新能源汽车逐渐成为人们喜爱的交通工具.某汽车销售中心决定采购A 型和B 型两款新能源汽车,已知每辆A 型汽车进价是每辆B 型汽车进价的1.5倍,若用300万元购进A 型汽车的数量比用240万元购进B 型汽车的数量少2辆.(1)每辆A 型和B 型汽车的进价分别为多少万元?(2)该汽车销售中心购进A 型和B 型汽车共20辆,且A 型汽车数量不超过B 型汽车的数量的2倍.已知A 型汽车的售价为35万元,B 型汽车的售价为23万元.如何制定进货方案,可以使得销售中心利润最大,请求出最大利润和此时的购进方案.25 如图1,直线与x ,y 轴分别交于B ,A 两点.直线与直线交于点C.的.OABC 8OA =1:2l y x m =+AB OC ,21:3l y x n =+EF DG +1:4l y x =+2:l y =1l(1)求点A 、B 的坐标;(2)如图2,若D 为直线上一点,连接,.的面积为,求D 点坐标;(3)如图3,绕O 旋转至.在旋转一周的过程中,直线上是否存在点G ,使得点B 、E 、F 、G 四点为顶点的四边形是平行四边形?若存在,请直接写出G 点坐标;若不存在,请说明理由.26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究,在中,,,,D 为线段上一点.【初步感知】(1)如图1,连接,将绕点C 逆时针旋转至.连接,求度数;【深入探究】(2)如图2,将沿折叠至.射线与射线交于点F .若,求的面积;【拓展应用】(3)如图3,,连接.G 为线段AC 上一点,作点G 关于直线对称点H ,点G 绕B 顺时针旋转至点K ,连接.当时,求的长度.的的2l AD BD ABD△16AOB FOE V 2l Rt ABC △90ACB ∠=︒=45ABC ∠︒AB =AB CD CD 90︒CE ,AE DE BAE ∠ACD CD ECD CD BE 3FE EB =CEF △BD BC =CD CD 45︒HK HB ,HK HB =CG。
攀枝花八年级上期数学半期考题及答案

攀枝花八年级上期数学半期考题及答案题市二中2021级2021――2021学年上期半期考试考试题7、如果x2?kx?ab=(x-a)(x+b),则k应为()a、a+bb、a-bc、b-ad、-a-by2x?yx8、若3?5,3?4,则3等于()数学(命题人:陈平,李康)本卷分为第ⅰ卷(选择题)和第ⅱ卷(非选择题)两部分。
共120分,考试时间120分钟。
张振强号考不内名姓线级班订校装学第ⅰ卷(选择题,共30分后)温馨提示:1、答第ⅰ卷前,考生务必把自己的姓名、考号、考试科目用2b铅笔涂写在机读卡上。
2、考试结束后,将本试题卷带走妥善保管,机读卡和答题卷交回。
一、选择题:(每小题3分后,共30分后;将答案圣皮耶尔埃在机读卡上。
)1、-27的立方根是()a、9b、-9c、3d、-32、以下观点恰当的就是()a、38就是无理数;b、3.14就是无理数;22c、7是无理数;d、15是无理数。
3、以下各组数中,能够形成直角三角形的就是()a:4,5,6b:1,1,2c:6,8,11d:5,12,234、在数轴上n点表示的数可能是() a.10b.5nc.3d.2-1012345、下列各式中正确的是()a、(a+4)(a-4)=a2?4b、(5x-1)(1-5x)=25x2?1c、(?3x?2)2=4?12x?9x2d、(x-3)(x-9)=x2?276、计算3a2b3?4的结果是()a、81a8b12b、12a6b7c、?12a6b7d、?81a8b12a.;254b.6c.21d.209、下列各式分解因式正确的个数有()①a2?16?(a?4)2②3m2?8m?m3?m(3m?8?m2)③a3?2a2?a?a(a2?2a?1)④a2?8a?16?(a?4)(a?4)a:1个b:2个c:3个d:4个10、已知,如图长方形abcd中,ab=3cm,aedad=9cm,将此长方形折叠,使点b与点d重合,折痕为ef,则△abe的面积为()ba、3cm2b、4cm2fcc、6cm2d、12cm2二、填空题:(每小题4分后,共24分后;将答案写下在ⅱ卷答题卡上。
八年级数学(上)半期测试题(北师大版)含答案

八年级数学(上)半期测试试题(北师大版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中不能用来证明勾股定理的是( )2.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件中不能判断△ABC 是直角三角形的是( )A .∠A =∠C -∠B B .a ∶b ∶c =2∶3∶4C .a 2=b 2-c 2D .a =3,b =5,c =43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m ,公园到医院的距离为400m.若公园到超市的距离为500m ,则公园在医院的( )A .北偏东75°的方向上B .北偏东65°的方向上C .北偏东55°的方向上D .无法确定4.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地B ,在AB 间建一条笔直的水管,则水管的长为( )A .45mB .40mC .50mD .56m5.若面积为15的正方形的边长为x ,则x 的范围是( )A .3<x <4B .4<x <5C .5<x <6D .6<x <7 6.下列有关说法正确的是( )A .0.16的算术平方根是±0.4B .(-6)2的算术平方根是-6C .81的算术平方根是±9D . 4916的算术平方根是747.下列选项中,平面直角坐标系的画法正确的是( )8.若点P (m +1,m +3)在直角坐标系的x 轴上,则点P 的坐标为( )A .(0,2)B .(-2,0)C .(4,0)D .(0,-2)9.将△ABC 各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是( )10.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)11.如图,每个小正方形的边长均为1.(1)直接计算结果:AB 2=________, BC 2=________, AC 2=________;(2)请说明△ABC 的形状.12.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 13. 如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.14.已知点A 的坐标为(-2,-3),则点A 到x 轴的距离为________,到原点的距离为________.15.已知点M (a ,-1)和点N (2,b )不重合.当M 、N 关于________对称时,a =-2,b =-1.16.若一次函数y =ax +b 的图象经过点(2,3),则关于x 的方程ax +b =3的解为________.17.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B(4,2),则对角线AC 所在直线的函数表达式为____________.18.一个正方形的边长为3cm ,它的各边边长减少x cm 后,得到学校_____________ 姓名________________ 班级________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)的新正方形的周长为y cm ,则y 与x 之间的函数关系式是__________.三、计算题(共4题,每题5分,共20分).19. 38+327-(-2)2; 20. |1-2|-(3)2+(6-π)0.21. (548+12-627)÷3; 22. (23-1)2+(3+2)(3-2);四、解答题(本大题共 小题,共46分.解答应写出必要的文字说明或步骤)23.(10分)如图,在海上观察所A 处,我边防海警发现正北方向6km 的B 处有一可疑船只正在向其正东方向8km 的C 处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?24.(6分)在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.25. (10分)已知A (0,1),B (2,0),C (4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC ; (2)求△ABC 的面积.26.(10分)一名老师带领x 名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y 元.(1)写出y 与x 之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?27.(10分)已知一次函数y =(m +2)x +(3-n ).(1)当m 满足什么条件时,y 随x 的增大而增大? (2)当m ,n 满足什么条件时,函数图象经过原点?参考答案一、选择题:1. D2.B3.B4.B5.A6.D7.B8.B9.A 10.B二、填空题:11.解: (1)10 10 20(2)∵AB 2+BC 2=10+10=20=AC 2,∴△ABC 是直角三角形.12. 10 13. P14. 3 13 15. y 轴 16. x =2 17. y =-12x +218. y =12-4x三、计算题解:19. 原式=2+3-2=3.20. 原式=2-1-3+1=2-3.21. 原式=(203+23-183)÷3=4. 22. 原式=12-43+1+3-4=12-4 3.四、解答题23. 解:在Rt △ABC 中,∵AB =6km ,BC =8km ,∴AC 2=AB 2+BC 2=36+64=100, ∴AC =10km.∵可疑船只的行驶速度为40km/h ,∴可疑船只的行驶时间为8÷40=0.2(h),∴我边防海警船的速度为10÷0.2=50(km/h).答:我边防海警船的速度为50km/h 时,才能恰好在C 处将可疑船只截住.24.解:如图,A :-145,B :3,C :2,D :π,E :0.-145<0<3<2<π. 25. 解:(1)如图,△ABC 即为所求.数学试卷 第7页(共8页)数学试卷 第8页(共8页)(2) 如图,过点C 向x 轴、y 轴作垂线,垂足分别为D 、E .则S 四边形DOEC =3×4=12,S △BCD =12×2×3=3,S △ACE =12×2×4=4,S △AOB =12×2×1=1,∴S △ABC =S 四边形DOEC -S △ACE -S △BCD -S △AOB =12-4-3-1=4.26.解:(1) y 与x 之间的函数关系式为y =30+10x .(2) 当x =20时,y =30+10×20=230,即门票的总费用为230元.27. 解: (1)∵y 随x 的增大而增大,∴m +2>0,∴m >-2.(2)由图象经过原点可知此函数是正比例函数,因此m +2≠0且3-n =0,解得m ≠-2,n =3.即当m ≠-2,n =3时,函数图象经过原点.。
精品解析:重庆市渝北区渝北区实验中学校2023-2024学年八年级上学期期中数学试题(解析版)

渝北区实验中学校2025届2023—2024学年度第一学期半期考试数学试卷(满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作图(包括作辅助线)请一律用黑色2B 铅笔完成.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 以下列各组线段为边,能组成三角形的是( )A. 1,2,4B. 2,3,5C. 4,6,8D. 5,6,12【答案】C【解析】【分析】根据两条短边之和大于最长的边和两边之差小于第三边逐项进行判断即可.【详解】解:A 、,不能组成三角形,故本选项不符合题意;B 、,不能组成三角形,故本选项不符合题意;C 、,能组成三角形,故本选项符合题意;D 、,不能组成三角形,故本选项不符合题意.故选:C .【点睛】本题考查三角形的三边关系,熟记三角形任意两边之和大于第三边,任意两边之差小于第三边,是解题的关键.2. 下列标志中,是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不符合题意,选项错误;1234+=<235+=46108+=>561112+=<B 、不是轴对称图形,不符合题意,选项错误;C 、不是轴对称图形,不符合题意,选项错误;D 、是轴对称图形,符合题意,选项正确;故选:D .【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解题关键.3. 下列四个图形中,线段是的高的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是;故选:C .4. 如图,已知图中的两个三角形全等,则度数是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的性质,正确得出对应角是解题的关键.根据全等三角形对应角相等即可得出结论.【详解】解:∵图中的两个三角形全等,∴,BE ABC V B AC E BE ABC V BE ABC V α∠50︒58︒60︒72︒50α∠=︒5. 工人师傅常用角尺平分一个任意角,作法如下:如图所示,是一个任意角,在边,上分别取,移动角尺,使角尺两边相同刻度分别与,重合(),射线即是的角平分线;这种作法的理由是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了全等三角形的判定及性质.由三边相等得,即由判定三角全等.【详解】解:由图可知,,又,在和中,,,,即是的平分线.故答案为:.故选:A.6. 如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )A. AB =DEB. ∠A =∠DC. AC =DFD. AC ∥FD的AOB ∠OA OB OM ON =M N CM CN =OC AOB ∠SSSSAS ASA AASCOM CON V V ≌SSS CM CN =OM ON = MCO V NCO V MO NO CO CO CM CN =⎧⎪=⎨⎪=⎩(SSS)COM CON ∴V V ≌AOC BOC ∴∠=∠OC AOB ∠SSS【解析】【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:BF =EC ,A. 添加一个条件AB =DE ,又故A 不符合题意;B. 添加一个条件∠A =∠D又故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FD又故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.7. 等腰三角形的顶角是,则这个三角形的底角的大小是( )A. B. 或 C. D. 【答案】C【解析】【分析】根据等腰三角形的性质和三角形的内角和定理求解.【详解】解:等腰三角形的顶角是,则这个三角形的底角是;故选:C . BC EF∴=,BC EF B E=∠=∠ ()ABC DEF SAS ∴△≌△,BC EF B E=∠=∠ ()ABC DEF AAS ∴V V ≌ACB EFD∴∠=∠,BC EF B E=∠=∠ ()ABC DEF ASA ∴V V ≌50︒50︒65︒50︒65︒80︒50︒()118050652⨯︒-︒=︒【点睛】本题考查了等腰三角形的两个底角相等和三角形的内角和定理,熟练掌握上述基本知识是关键.8. 如果一个等腰三角形周长为17cm ,一边长为5cm ,那么腰长为( )A. 5cmB. 6cmC. 7cmD. 5cm 或6cm 【答案】D【解析】【分析】此题分为两种情况:5cm 是等腰三角形的底边长或5cm 是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】当5cm 是等腰三角形的底边时,则其腰长是(17−5)÷2=6(cm ),能够组成三角形;当5cm 是等腰三角形的腰时,则其底边是17−5×2=7(cm ),能够组成三角形.故该等腰三角形的腰长为:6cm 或5cm .故选:D .【点睛】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键.9. 如图,在等腰直角中,点是边上的中点,点为边上的动点,连接,过点作,交于点,连接,,则下列结论错误的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查全等三角形的判定与性质及等腰三角形三线合一,先证明出,再根据全等三角形的性质推出其他选项,即可得到答案.【详解】解:由题意:为等腰直角三角形,点是的中点,,平分,且,,,,,在和中,的ABC V D BC E AB ED D DF DE ⊥AC F EF AD DFA DEBV V ≌EF AD =45DEF ∠=︒12ABC AEDF S S =△四边形DFA DEB V V ≌ABC V D BC AD BD CD ∴==AD BAC ∠AD BC ⊥45DAF DAE DBE DCF ∴∠=∠=∠=∠=︒DF DE ⊥ BDE ADF ∴∠=∠ADE CDF ∠=DFA V DEB V,,A 正确,不符合题意;,,,C 正确,不符合题意;,,,,为等腰直角三角形,点是的中点,,D 正确,不符合题意;无法得出,B 错误,符合题意;故选:B .10. 对多项式任意加一个或者两个括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①不存在任何“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和互为相反数;③所有的“加算操作”共有3种不同的结果.以上说法中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】DAF DBE BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DFA DEB ∴V V ≌∴DF DE ∴=DF DE ⊥ 45DEF ∴∠=︒∴DFA DEB V V ≌∴DFA DEB S S =V V ADE ADF AEDF S S S =+四边形V V ∴ADE DEB ABD AEDF S S S S =+=四边形V V V ABC V D BC ∴12ABD ABC AEDF S S S ==四边形V V ∴EF AD =∴x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=--+【分析】本题主要考查了整式的加减运算,原多项式为,“加算操作”后为:,①,存在“加算操作”后使其结果与原多项式相等,从而进行判断;②假设存在原多项式与“加算操作”后的原多项式互为相反数,得到,由此进行判断;③列举所有“加算操作“后的结果,从而进行判断即可.【详解】解:若原多项式为,“加算操作”后为:,①,存在“加算操作”,使其结果与原多项式相等,故①中的说法不正确;②若原多项式与“加算操作”后的原多项式互为相反数,添括号后的符号始终为正,不存在任何“加算操作”,使其结果与原多项式之和互为相反数,故②的说法正确;③所有的“加算操作”共有4种不同的结果:(1);(2);(3);(4)故③的说法不正确,综上可知:以上说法中正确的个数为1,故选:B .二、填空题:(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 如图,在中,,则__________.【答案】##130度【解析】【分析】利用三角形的外角的性质,直接计算即可.x y z m ---()()x y z m ---()x y z m x y z m ---=---x y z m x y z m -+++≠--+x y z m ---()()x y z m x y z m ---=--+()x y z m x y z m ---=---∴x ∴()x y z m x y z m ---=--+()x y z m x y z m ---=-++()x y z m x y z m ---=-+-()x y z m x y z m---=---ABC V 70,60A B ∠=︒∠=︒ACD ∠=130︒【详解】解:由图可知:;故答案为:.【点睛】本题考查三角形的外角的性质.熟练掌握三角形的一个外角等于与它不相邻的两个内角的和,是解题的关键.12. 如图,是的中线,若,则________.【答案】【解析】【分析】本题考查了三角形中线的性质,根据三角形的中线的性质即可求解.【详解】解:∵是中线, ,∴,故答案为:.13. 如图所示,,,直线垂直平分线段,交于点,则的周长为________.【答案】【解析】【分析】本题考查的是线段的垂直平分线的性质,根据线段的垂直平分线的性质得到,利用三角形的周长公式计算即可.【详解】解:直线是的垂直平分线,,的周长的130ACD A B ∠=∠+∠=︒130︒AD ABC V 2ABC S =△ACD S =V 1AD ABC V 2ABC S =△ACD S =V 114cm AB AC ==3cm BC =a AB AC D BDC V cm 7DA DB = a AB DA DB ∴=BDC ∴V BD BC CD=++DA CD BC=++,故答案为:.14. 一个多边形的内角和是,这个多边形的边数是______.【答案】8【解析】【分析】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键;因此此题可根据多边形内角和公式进行求解即可.【详解】解:由题意得:,∴;故答案为8.15. 如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =3,AB =8,则△ABD 的面积等于_____.【答案】12【解析】【分析】过D 作DE ⊥AB 于E ,由角平分线的性质,即可求得DE 的长,继而求得三角形面积.【详解】解:如图,过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =DC =3,∵AB =8,∴△ABD 的面积=AB •DE =×8×3=12.故答案为:12.【点睛】本题考查了角平分线的性质,能根据角平分线性质得出DE =CD 是解题的关键,注意:角平分线上的点到这个角两边的距离相等.()7cm AC BC =+=71080︒()2180n -⨯︒()21801080n -⨯︒=︒8n =121216. 如图,在中,,和的角平分线分别交于点,,若,,.则的长为________.【答案】【解析】【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可证和是等腰三角形,从而可得,,然后利用线段的和差关系进行计算,即可解答.【详解】解:平分,平分,,,,,,,,,,,,故答案为:.17. 如图,在中,,,,点Q 是边上的一个动点,点Q 从点B 开始沿方向运动,且速度为每秒,设出发的时间为t 秒.当点Q 在边CA 上运动时,出发________秒后,是以为腰的等腰三角形.【答案】或【解析】【分析】题考查了等腰三角形的性质,分两种情况:当时;当时;然后分别进行计算ABC V ED BC ∥ABC ∠ACB ∠ED G F 4BE =6CD =3FG =ED 7EBG V DFC V 4EB EG ==6DC DF ==BG ABC ∠CF ACB ∠ABG CBG ∴∠=∠ACF BCF ∠=∠ ED BC ∥EGB CBG ∴∠=∠DFC BCF ∠=∠ABG EGB ∴∠=∠ACF DFC ∠=∠4EB EG ∴==6DC DF ==3FG = 4637DE EG DF FG ∴=+-=+-=7ABC V 90B Ð=°16cm AB =12cm BC =20cm AC =ABC V B C A →→1cm BCQ △CQ 2224CQ CB =QC QB =即可解答.【详解】解:分两种情况:当时,如图:秒;当时,如图:,,,,,,,,秒;综上所述:当点在边上运动时,出发或秒后,是以为腰的等腰三角形,故答案为:或.18. 一个四位自然数M ,若各个数位上的数字均不为0,且满足百位上的数字与十位上的数字之和是千位CQ CB =12cm CB CQ == ,∴241CB CQ t +==()QC QB =QC QB = C CBQ ∠∠∴=90ABC ∠=︒ 90C A ∠∠∴+=︒90CBQ QBA ∠∠+=︒QBA A ∠∠∴=BQ QA ∴=()110cm 2CQ QA AC ∴===∴221CB CQ t +==()Q CA 2224BCQ V CQ 2224上的数字与个位上的数字之和的3倍,则称这个四位数M 为“三生数”.例如:,,是“三生数”;,,不是“三生数”.则最小的“三生数”是________;如果一个“三生数”M 的各数位上的数字之和为16,并且规定:将这个“三生数”M 的十位与百位交换得到记,且为正整数,则符合条件的最大的M 的值是________.【答案】①. ②. 【解析】【分析】本考查了二元一次方程的解;由题意得,百位上的数字+十位上的数字=3×(千位上的数字+个位上的数字),根据最小的“三生数”的千位上的数字和个位上的数字都取1,求得最小的“三生数”;设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,根据的值最大,得出,,,,【详解】解:由题意得,百位上的数字十位上的数字千位上的数字个位上的数字,各个数位上的数字均不为,∴最小的“三生数”的千位上的数字和个位上的数字都取,则百位上的数字十位上的数字,百位上的数字取,十位上的数字取,,∴最小的“三生数”是,设千位上的数字为,百位上的数字为,十位上的数字为,个位上的数字为,由题意得,,,,,由于的值要最大,,,,,即,则,,符合题意,故最大的的值是,故答案为:,.三、解答题:(本大题共8个小题,19、20题每小题8分,26题12分,其余每小题101843M =()84313+=⨯+ 1843∴6312M =()31362+≠⨯+ 6312∴M '()270M M G M '-=()G M 11513931a b c d 16a b c d +++=()3b c a d +=⨯+M 3a =9b =3c =1d =+3(=⨯+) 01+6=∴15()15311+=⨯+ 1151a b c d 16a b c d +++=()3b c a d +=⨯+4a d ∴+=12b c +=M 3a ∴=9b =3c =1d =3931M =3391M '=()393133912270270M M GG M '--===M 393111513931分,共78分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19. 如图,在△ABC 中,BD 是∠ABC 的平分线,CE 是AB 边上的高,且∠ACB=60°,∠ADB=97°,求∠A 和∠ACE 的度数.【答案】∠A =46°, ∠ACE =44°【解析】【分析】先由三角形内角与外角的关系可求∠DBC ,再根据三角形的内角和可求∠A ,最后由直角三角形AEC 可求∠ACE .【详解】∵∠ADB=∠DBC+∠ACB ,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD 是角平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE 是高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.【点睛】本题考查了三角形的内角和以及三角形内角与外角的关系,利用此可计算其它角的度数,是一道基础题.20. 如图,三个顶点的坐标分别为,,.ABC V ()1,1A ()4,2B ()3,4C(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积.【答案】(1)画出图形见解析,、、的坐标为、、;(2)的面积为【解析】【分析】(1)根据题意画出图形,写出坐标即可;(2)利用割补法求面积即可求解.【详解】解:(1)画出图形如下:,ABC V x 111A B C △1A 1B 1C ABC V 1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 72、、的坐标为、、;(2)的面积为.【点睛】本题考查平面直角坐标系中图形的对称、割补法求面积,根据轴对称的定义画出图形是解题的关键.21. 如图,在中,,,垂足为点,点在的延长线上.(1)尺规作图:作的平分线交于点(按要求完成作图,不写作法,保留作图痕迹);(2)填空:在(1)的条件下,若,试说明.证明:∵,,∴ ① , ② ,∵,∴ ③ ,又∵平分,∴2 ④ ,∴ ⑤ ,在和中,,∴,∴.【答案】(1)作图见解析1A 1B 1C ()11,1A -()14,2B -()13,4C -ABC V 1117332321132222⨯-⨯⨯-⨯⨯-⨯⨯=ABC V AB AC =AD BC ⊥D E AD ACB ∠AD F 2EBD ABC ∠=∠DE DF =AB AC =AD BC ⊥BD =ABC ∠=2EBD ABC ∠=∠2EBD ∠=CF ACB ∠ACB =∠EBD ∠=BED V CFD △EBD FCD BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BED CFD ≅V V DE DF =(2),,,,【解析】【分析】对于(1),以点C 为圆心,以小于为半径画弧,交于点M ,交于点N ,再分别以点M ,N 为圆心,以大于为半径画弧,两弧交于点P ,作射线,交于点F ;对于(2),先根据等腰三角形的性质得,,结合已知条件得,再根据角平分线定义可得,然后根据“”证明≌,最后根据全等三角形的性质得出答案.【小问1详解】如图所示.【小问2详解】∵,,∴,.∵,∴.∵平分,∴,∴.在和中,,CD ACB ∠ACB ∠BCF ∠DCF∠BC BC AC 12MN CP AD BD CD =A ABC CB =∠∠2E B D A C B ∠=∠EBD DCF ∠=∠ASA BED V CFD △AB AC =AD BC ⊥BD CD =A ABC CB =∠∠2EBD ABC ∠=∠2E B D A C B ∠=∠CF ACB ∠2B C F A C B ∠=∠EBD DCF ∠=∠BED V CFD △EBD DCFBD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴≌(),∴.故答案为:,,,,.【点睛】本题主要考查了尺规作角平分线,等腰三角形的性质,全等三角形的性质和判定,角平分线的定义等,证明线段相等的常用方法是证明两个三角形全等.22. 如图,点、、、在一条直线上,,,.求证:.【答案】见解析【解析】【分析】此题考查全等三角形的判定与性质,证明它们所在的三角形全等即可.根据平行线的性质可得;由可得.运用证明与全等.【详解】证明:,.,.在与中,,,.23. (1)如图1,在中,,边上的垂直平分线交于点,交于点,连接,将分成两个角,且,求的度数.(2)如图2,中,、的三等分线交于点、,若,,求的度数.BED V CFD △ASA DE DF =CD ACB ∠ACB ∠BCF ∠DCF ∠B E C F AC DF ∥AC DF =BE CF =AB DE =ACB F ∠=∠BE CF =BC EF =SAS ABC V DEF V AC DF ∥ACB F ∴∠=∠BE CF = BC EF ∴=ABC V DEF V AC DF ACB F BC EF =⎧⎪∠=∠⎨⎪=⎩()SAS ABC DEF ∴V V ≌AB DE ∴=Rt ABC △90C ∠=︒AB DE BC D AB E AD AD CAB ∠1:21:2∠∠=ADC ∠ABC V ABC ∠ACB ∠E D 120BFC ∠=︒108BGC ∠=︒A ∠【答案】(1);(2)【解析】【分析】本题考查的是线段垂直平分线的性质、等边对等角,三角形的内角和定理;(1)根据线段垂直平分线的性质得到,根据等腰三角形的性质得到,根据直角三角形的两锐角互余列方程,解方程得到答案.(2)设,,在和中,根据三角形内角和定理列方程,相加可得:的值,即可求得的度数.【详解】解:(1)设,则,是边的垂直平分线,,,,,解得:,,则;(2)设,,在中,①,在中,②,解得:①②:,.24. 如图,点在线段上,点在线段上,,,,点,72︒48︒DA DB =B BAD ∠=∠GBC x ∠=DCB y ∠=BFC V BGC V 33x y +A ∠1x ∠=22x ∠=DE AB DA DB ∴=22B x ∴∠=∠=90C ∠=︒2290x x x ∴++=︒18x =︒118∴∠=︒90172ADC ∠=︒-∠=︒GBC x ∠=DCB y ∠=BFC V 218012060x y +=︒-︒=︒BGC V 218010872x y +=︒-︒=︒+33132x y +=︒()1803318013248A x y ∴∠=︒-+=︒-︒=︒B AC E BD ABD DBC ∠=∠EB BC =AE DC =M分别在线段,边上,且满足,猜测与的数量关系并说明理由.【答案】,理由见解析【解析】【分析】本题考查了全等三角形的性质与判定,先证明,进而证明,证明即可得证.【详解】解:,证明:∵点在线段上,,∴,在中,∴∴,又∵∴又,即在中,∴,∴.25. 在中,平分,交于点.N AE CD 90MBN ∠=︒BM BN BM BN =()Rt Rt HL ABE DBC V V ≌MAB NDB ∠=∠()ASA AMB DNB V V ≌BM BN =B AC ABD DBC ∠=∠90ABE DBC ∠=∠=︒Rt ,Rt ABE DBC V V AE DCEB BC=⎧⎨=⎩()Rt Rt HL ABE DBC V V ≌AB DB =EAB CDB∠=∠90MBN ∠=︒90ABM MBE DBN∠=︒-∠=∠EAB CDB ∠=∠MAB NDB∠=∠,AMB DNB V V ABM DBNAB DBMAB NDB∠=⎧⎪=⎨⎪∠=∠⎩()ASA AMB DNB V V ≌BM BN =ABC V AD BAC ∠BC D(1)如图1,点为线段上一点,点,分别为,边上点,连接,,且满足,若,求的长度;(2)如图2,延长至点,且满足,若,,求证:.【答案】(1)(2)见解析【解析】【分析】此题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质与判定;(1)过点作于点,于点,根据角平分线的性质得到,利用证明,根据全等三角形的性质即可得解;(2)在上截取,连接,利用三角形内角和定理求出,,利用证明,根据全等三角形的性质得出,,利用证明,根据全等三角形的性质得到,,根据线段的和差及等腰三角形的性质求解即可.【小问1详解】解:如图1,过点作于点,于点,平分,,,,,,,,在和中,的E AD M N AB AC EM EN 180AME ENA ∠+∠=︒6EM =EN AD H DH DB =40BAC ∠︒=100B ∠=︒AB CH AH +=6E EH AB ⊥H EG AC ⊥G EH EG =AAS MEH NEG V V ≌AC AM AB =DM 40BCA ∠=︒60BDA ∠=︒SAS ABD AMD V V ≌BD MD =60BDA MDA ∠=∠=︒SAS CDM CDH V V ≌CH CM =40MCD HCD ∠=∠=︒E EH AB ⊥H EG AC ⊥G AD BAC ∠EH AB ⊥EG AC ⊥EH EG ∴=90EHM EGN ∠=∠=︒180AME ENA ∠+∠=︒ 180AME EMH ∠+∠=︒EMH ENA ∴∠=∠MEH V NEG V,;【小问2详解】证明:如图2,在上截取,连接,,,,平分,,,,,在和中,,,,,,,,,,在和中,EM EN =⎩()AAS MEH NEG ∴V V ≌6EM EN ∴==AC AM AB =DM 40BAC ∠=︒ 100B ∠=︒40BCA ∴∠=︒AD BAC ∠40BAC ∠=︒20BAD MAD ∴∠=∠=︒18060BDA B BAD ∴∠=︒-∠-∠=︒180120ADC BDA ∴∠=︒-∠=︒ABD V AMD V AB AM BAD MAD AD AD =⎧⎪∠=∠⎨⎪=⎩()SAS ABD AMD ∴V V ≌BD MD ∴=60BDA MDA ∠=∠=︒60CDM ADC MDA BDA ∴∠=∠-∠=︒=∠CDH BDA ∠=∠ CDM CDH ∴∠=∠DH DB = MD DH ∴=CDM V CDH V,,,,,,,,,.26. 在中,,.点为内部一点,连接,,.(1)如图1,若,,求点到直线的距离;(2)如图2,以为直角边作等腰直角,,线段,交于点,若,求证:;(3)如图3,点在边上,且,点为直线上的一个动点,连接,过点作,且满足,连接,当最短时,请直接写出的度数.【答案】(1)(2)见解析(3)【解析】【分析】(1)过点作于,过点作于,可证得,得出,再由等腰三角形性质可得;(2)延长交于点,过点作于点,可证得,进而可证CD CD =⎩()SAS CDM CDH ∴V V ≌CH CM ∴=40MCD HCD ∠=∠=︒AC AM CM =+ AC AB CH ∴=+80ACH ∴∠=︒180208080H ∴∠=︒-︒-︒=︒AH AC ∴=AC AM CM =+ AB CH AH ∴+=Rt ABC △90ACB ∠=︒AC BC =D ABC V CD AD BD AD AC =8CD =B CD CD CDE V DE DC =EC AD F DCB ABD ∠=∠AF DF =Q AB AQ AC =M AC MQ Q NQ MQ ⊥NQ MQ =BN BN CMQ ∠467.5︒A AH CD ⊥H B BG CD ⊥G ()AAS ACH CBG V V ≌BG CH =142CH CD ==BD CE L A AS CE ⊥S ()AAS ACS CBL V V ≌,即可证得结论;(3)作点关于对称点,连接、,交于点,过点作交的延长线于点,连接,可证得,得出,即点在直线上运动,当且仅当时,最短,即点与点重合,作点关于的对称点,连接,则,即,再利用等腰三角形性质即可求得答案.【小问1详解】解:过点作于,过点作于,如图,则,,,,在和中,,,,,,,,即点到直线的距离为;【小问2详解】证明:延长交于点,过点作于点,则,的()AAS AFS DFL V V ≌C AB P AP CP CP AB O Q QW AB ⊥AC W AN ()SAS QWM QAN V V ≌45QAN W ∠∠==︒N AP BN AP ⊥BN N P C AB P CQ QP QC =QN QC =A AH CD ⊥H B BG CD ⊥G 190AHC CGB ∠∠==︒90ACH CAH ∠∠∴+=︒90ACH BCG ACB ∠∠∠+==︒ CAH BCG ∠∠∴=ACH V CBG V AHC CGB CAH BCG AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACH CBG ∴V V ≌BG CH ∴=AD AC = AH CD ⊥142CH DH CD ∴===4BG ∴=B CD 4BD CE L A AS CE ⊥S 90ASC ∠=︒是等腰直角三角形,,,,,,,,,,,,在和中,,,,,,,,,在和中,,,;CDE V DE DC =45DCE DEC ∠∠∴==︒45ABD CBD ABC ∠∠∠+==︒ DCB ABD ∠∠=45DCB CBD ∠∠∴+=︒90DCB CBD DCE ∠∠∠∴++=︒1809090BLC ∠∴=︒-︒=︒ASC BLC ∠∠∴=90ACS CAS ∠∠∴+=︒90ACS BCL ACB ∠∠∠+==︒ CAS BCL ∠∠∴=ACS V CBL V ASC BLC CAS BCL AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACS CBL ∴V V ≌AS CL ∴=45DCE ∠=︒ 90CLD ∠=︒904545CDL DCE ∠∠∴=︒-︒=︒=CL DL ∴=AS DL ∴=AFS V DFL V 90ASF DLF AFS DFLAS DL ∠=∠=︒⎧⎪∠=⎨⎪=⎩()AAS AFS DFL ∴V V ≌AF DF ∴=【小问3详解】解:如图,作点关于的对称点,连接、,交于点,过点作交的延长线于点,连接,则,,,,,,,,且满足,,,在和中,,,,即点在直线上运动,当且仅当时,最短,即点与点重合,3C AB P AP CP CP AB O Q QW AB ⊥AC W AN 90AQW ∠=︒BAP BAC ∠∠=90ACB ∠=︒ AC BC =45BAC ∠∴=︒904545W BAC ∠∠∴=︒-︒=︒=QA QW ∴=NQ MQ ⊥ NQ MQ =90AQM MQW AQM NQA ∠∠∠∠∴+=+=︒MQW NQA ∠∠∴=QWM V QAN V QW QA MQW NQA QM QN =⎧⎪∠=∠⎨⎪=⎩()SAS QWM QAN ∴V V ≌45QAN W ∠∠∴==︒N AP BN AP ⊥BN N P如图,连接,则,即,,,,,,.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,点到直线的距离垂线段最短,等腰三角形的性质,三角形内角和定理等知识,解题的关键是正确添加辅助线构造全等三角形.4CQ QP QC =QN QC =QM QN = QC QM ∴=AQ AC = ()11804567.52ACQ AQC ∠∠∴==︒-︒=︒QM QC = 67.5CMQ ACQ ∠∠∴==︒。
八年级上册数学半期模拟测试题2

八年级上册数学半期模拟测试题2一.选择题(共12小题)1.若AM、AN分别是△ABC的高线和中线,AG是△ABC的角平分线,则()A.AM<AG B.AG<AN C.AN≤AG D.AM≤AN2.如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC=2,则S△ABC=()A.10B.9C.8D.73.如图,△ABC的面积为6cm2,BP平分∠ABC,BP⊥AP,则△PBC的面积为()A.1cm2B.2cm2C.3cm2D.4cm24.如图所示,在△ABC中,AD垂直平分BC,且∠CAE=∠E,点B,D,C,E在同一直线上,则AB+BD与DE之间的数量关系是()A.AB+BD>DE B.AB+BD<DE C.AB+BD=DE D.不确定5.如图,对于△ABC,若存在点D,E,F分别在AB,BC,AC上,使得∠1=∠2,∠3=∠4,∠5=∠6,则称△DEF为△ABC的“反射三角形”.下列关于“反射三角形”的说法中,错误的是()A.若△ABC的“反射三角形”存在,则△ABC必为锐角三角形B.等边三角形的“反射三角形”必为等边三角形C.直角三角形的“反射三角形”必为直角三角形D.等腰三角形的“反射三角形”必为等腰三角形6.如图,在△ABC中,∠B=60°,∠C=35°,分别以点A和点C为圆心,大于AC长的一半为半径作圆弧,两弧相交于点M、N,作直线MN交BC于点D,连结AD,则∠BAD 的大小为()A.50°B.55°C.60°D.65°7.已知A、B两点的坐标分别是(﹣1,3)和(1,3),则下面四个结论:①A、B关于x 轴对称;②A、B关于y轴对称;③A、B之间的距离为2;④A、B之间的距离为6.其中正确的是()A.①④B.①③C.②④D.②③8.下列等式中,错误的个数是()个.①a5+a5=a10;②(﹣a)6÷(﹣a)3•a=﹣a4;③﹣a4•(﹣a)5=a20;④25+25=26.A.0B.1C.2D.39.如果x2+x﹣1=0,那么代数式x3+2x2+2020的值是()A.2020B.2021C.2022D.202310.如图,在△ABC中,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE =EB,则∠A等于()A.45°B.30°C.60°D.75°11.如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF 与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°12.如图,在△ABC中,∠A=90°,△ABC的外角平分线CD与内角平分线BE的延长线交于点D,过点D作DF⊥BC交BC延长线于点F,连接AD,点E为BD中点.有下列结论:①∠BDC=45°;②∠CED=∠EDF;③BD+CE=BC;④AB=DF;⑤S△ADE+S=S△DCE.其中正确的个数有()△CDFA.5B.4C.3D.2二.填空题(共6小题)13.将分别含有30°、45°的一副三角板如图所示放置,使点C落在线段DE上,且∠BAD =23°.则∠ACD的度数为.14.如图,把一张Rt△ABC纸片沿DE折叠,若∠1=70°,∠C=90°,则∠2的度数为.15.如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AE=10cm.AB=8cm,那么DE的长度为cm.16.如图,在△ABC中,AB=3,AC=4,BC=6,EF是BC的垂直平分线,P是直线EF上的任意一点,则P A+PB的最小值是.17.甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2+3x﹣2,乙漏抄了第二个多项式中x的系数,得到的结果是x2﹣3x+2.则本题的正确结果是.18.如图,∠AOB=18°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α=.三.解答题(共5小题)19.计算:(1)(﹣1)2022+(3.14﹣π)0;(2)(﹣y3)5÷(y2)3.20.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的平分线交于点D.(1)若∠ABC=70°,∠ACB=50°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D,∠M,∠N的关系并证明.21.小明在学习中遇到这样一个问题:如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E,猜想∠B、∠ACB、∠E的数量关系.(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试从具体的情况开始探索,若∠B=35°,∠ACB=85°.则∠E=.(2)小明继续探究,设∠B=α,∠ACB=β(B>α),当点P在线段AD上运动时,求∠E的大小.(用含α、β的代数式表示)22.如图,在△ABC中,AB=AC,BD⊥AC,AE,BE分别平分∠BAD,∠ABD.(1)求∠AEB的度数;(2)试判断△BCE的形状,并说明理由.23.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?24、如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点E、H在线段AC上,且AE=CH,AF ⊥BE交BC于点F,FH交BE的延长线于点G,(1)求证:GE=GH(2)问BG、AF、FG有何数量关系?证明你的结论。
八年级上册数学半期检测试题(带答案)

八年级上册数学半期检测试题(带答案)八年级上册数学半期检测试题(带答案)(120分钟完卷,满分100分)一、选择题:(每小题3分,共30分)1.在下列各数、、、、、、无理数的个数()A.1个B.2个C.3个D.4个2.下列各式错误的是()A.=±0.6B.=0.6C.-=-1.2D.=±1.23.的平方根是()A.6B.±6C.D.±4.下列计算正确的是()A.a2a3=a6B.a3÷a=a3C.(a2)3=a6D.(3a2)4=9a45.如果x2+6x+k2恰好是另一个整式的平方,则k的值为() A.9B.3C.-3D.±36.x4-3x2-4是下列哪一个选项的计算结果()A.(x2-4)(x2+1)B.(x2-1)(x2-4)C.(x+2)(x-2)(x+1)(x-1)D.(x+2)(x-2)7.有一个因式是,则它的另一个因式是()A.B、C、D、8.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6B.4.5C.2.4D.89.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或10、如图1,由Rt△ABC的三边向外作正方形,若最大正方形Q的边长为13,正方形N的边长为12,则正方形M的面积为()A.5B.17C.25D.18二、空题:(每小题3分,共24分)11.一个数的平方根是它本身,则这个数的立方根是12.填上适当的式子,使以下等式成立:13.化简:14.若15.因式分解:3x2-12=16.在△ABC中,∠C=90°,AB=5,则++=17.直角三角形两直角边长分别为5和12,则它斜边上的高为18.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC 的面积是三、解答下列各题:(本大题19~22题,每题4分,共24分,)19.计算①②20、因式分解①、②.x2-6xy+9y2-121、先化简,再求值。
人教版数学八年级上册半期试题及答案

人教版数学八年级上册半期试题及答案(满分120分 时间120分钟)一、选择题:(本大题共12小题;满分36分。
在每小题给出的四个选项中;只有一项是正确的;请把正确的选项选出来;每小题选对得3分;选错、不选或选出的答案超过一个均记零分.)请把正确答案的序号填写在下表中:1.下列说法正确的是( ) A .周长相等的两个三角形全等B .有两边和其中一边的对角对应相等的两个三角形全等C .面积相等的两个三角形全等D .有两角和其中一角的对边对应相等的两个三角形全等 2.下列平面图形中;不是轴对称图形的是 ( )3. 以一下判断正确的个数有( )个(1)有理数和无理数统称实数 (2)无理数是带根号的数. (3)π是无理数. (4)71是无理数. A .0 B .1 C .2 D .34. 如图;先将正方形纸片对折;折痕为MN ;再把B 点折叠在折痕MN 上;折痕为AE ;点B 在MN 上的对应点为H ;沿AH 和DH 剪下;这样剪得的三角形中 ( )A .AD DH AH ≠=B .AD DH AH ==C .DH AD AH ≠= D .AD DH AH ≠≠ 5. 以下语句及写成式子正确的是( ). A .7是49的算术平方根;即 B .7是的平方根;即C .±7是49的平方根;即D .±7是49的平方根;即±6.等腰三角形ABC 在直角坐标系中;底边的两端点坐标是(-2;0);(6;0);则其顶点的坐标;能确定的是 ( ) A .横坐标 B .纵坐标 C .横坐标及纵坐标 D .横坐标或纵坐标7. 一只小狗正在平面镜前欣赏自己的全身像(如图所示);此时;它所看到的全身像是( )(第7题图)8.如图;在△ABC 中;∠C=90°;∠B=15°;AB 的垂直平分线交BC 于D ;交AB 于E ;•DB=12cm ; 则AC=( )A .4cm B .5m C .6cm D .7cm 9.若和都有意义;则a 的值是( ).A .a ≥0B .a ≤0C .a =0D .a ≠0 10.如图所示;△ABE 和△ADC 是△ABC 分别沿着AB ;AC 边翻折180°形成的;若∠1∶∠2∶∠3=28∶5∶3;则∠α的度数为( )A .80°B .100°C .60°D .45°.11.如图;从下列四个条件:①BC =B ′C ; ②AC =A ′C ;③∠A ′CA =∠B ′CB ;④AB =A ′B ′中;任取三个为条件;余下的一个为结论;则最多可以构成正确的结论的个数是( ) A .1个 B .2个 C .3个 D .4个 12. 有下列说法:①每一个正数都有两个立方根; ②零的平方根等于零的算术平方根;③没有平方根的数也没有立方根;④有理数中绝对值最小的数是零. 其中错误的个数是( )A .1B .2C .3D .4二、填空题:(本大题共8小题;每小题填对得4分;共32分.只要求填写最后结果).13.若x 2=1;则3x =________.14.如图;数轴上表示1、 的对应点分别为A 、B ;点B 关于点A 的对称点为C ;则点C 所表示的数是__________15. 平方根和立方根都等于它本身的数是_______ 9的算术平方根是_________16.已知∠AOB=30°;P 在OA 上且OP=3cm ;点P PQ=________. 17.若[1.5]表示小于1.5的最大整数;即[1.5]=1;则[-18. 点A (3;2)与点B (x-4;6+y )关于y 轴对称;则x+y=__________19.如图;AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高;且(第8题图) (第10题图)(第11题图)(第14题图) A B C D'A ''D 'CAB A B AD A D ''''==,.若使ABC A B C '''△≌△;请你补充条件___________.(填写一个你认为适当的条件即可)20.用“<”连接下列各数10; π-; 0;5-;3是 ___________ 三、解答题:本大题共6小题;总分52分.解答要写出必要的文字说明、证明过程或演算步骤. 21.(本题满分12分) ①化简(4分):23--38+23-+2②求x 的值(4分): 8(x-2)3= - 1③(4分)如图;一个算式在镜中所成的像构成的算式是正确的;但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)22.(本题满分6分)如图;写出△ABC 的各顶点坐标;并画出△ABC 关于Y 轴的对称图形△A 1B 1C 1;写出△ABC 关于X 轴对称的△A 2B 2C 2的各点坐标.23.(本题满分8分)已知:等边三角形ABC 中;BD 平分∠ABC ;点E 在BC 的延长线上;CE=CD 求证:DB=DE24.(本题满分8分)如图;一只蚂蚁从长方体水池外一点A 爬到同一面上的点B 去寻找食物;但需要先到池边去喝水.已知点A 到池边的距离AC 等于点B 到池边的距离BD ;若蚂蚁要爬行的是最短路线;那么到CD 中点处喝水是否最近? 说明理由.25.(本题满分8分) 如图:△ABC 中AQ=PQ ;;PR=PS ;PR ⊥AB 于R ;PS ⊥AC 于S .判断PQ 与AB 位置关系并证明26.(本题满分10分)一张矩形纸片沿对角线剪开;得到两张全等的直角三角形纸片(如 图1、图2);再将这两张三角形纸片摆成如图3的形式;使点B 、F 、C 、D 在同一条直线上.(1)求证:AB ⊥ED ;(2)若PB =BC ;请找出图中与此条件有关的一对全等三角形;并给予证明.QSCPARB参考答案及评分标准一、 选择题(本大题共12小题;每小题3分;共36分)二、填空题 (本大题共8小题;每小题4分;共32分)13、1或-1 14、2-2 15、0;3 16、3cm 17、-2 18、-319、BC=B ′C ′(或CD=C ′D ′或∠C=∠C ′或∠BAC=∠B ′A ′C ′等)20、π-﹤5-﹤0﹤3﹤10三、解答题21、(共12分)① 原式=23--2-3+2+2 (3分) =0 (4分)②(x-2)3=-81(1分) x-2=-21(3分) x=211 (4分)③是正确的(2分) 151+25+12=188(4分) 22、(6分)①作图 (略) (3分) ②A 2((-3;-2)B 2(-4;3)C 2(-1;1) (6分) 23、(8分)证明 :∵△ABC 是等边三角形;BD 平分∠ABC∴∠BCA=60o ;∠DBC=30o (3分)∵CD=CE∴∠CDE=∠E (4分)∴∠BCA=∠CDE +∠ E =2∠E=60o(5分)∴∠E=30o(6分)∴∠DBC=∠E=30o(7分) ∴DB=DE (8分)24、(8分)答: 到CD 中点处喝水是最近。
天津市武清区2018-2019学年度第一学期半期质量调查人教版八年级数学试题 含解析

2018-2019学年度第一学期半期质量调查八年级数学试题一、选择题(共12小题,每小题3分,满分36分)1.如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE3.下列四个图形中,可以看作是轴对称图形的是( )A.B.C.D.4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.115.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C6.下列判断正确的个数是( )(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等.A.0个B.1个C.2个D.3个7.若一个多边形内角和等于1260°,则该多边形边数是( )A.8B.9C.10D.118.如图,AC=AD,BC=BD,则有( )A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB9.如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( )A.∠D=∠B B.AD=CB C.BE=DF D.∠AFD=∠CEB 10.若点A(x,3)和点B(2,y)关于原点对称,则( )A.x=﹣2,y=3B.x=﹣2,y=﹣3C.x=2,y=3D.x=2,y=﹣3 11.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( )A.等边三角形B.等腰三角形C.直角三角形D.斜三角形12.小明把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于( )A.120°B.150°C.180°D.210°二、填空题(共6小题,每小题3分,满分18分)13.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有 性.14.若等腰三角形有两条边的长为7cm,15cm,则第三边的长为 cm.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 .16.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于 .17.如图,直线m是正五边形ABCDE的对称轴,且直线m过点A,则∠1的度数为 .18.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).△ABC与△ABD全等,则点D坐标为 .三、解答题(共7小题,满分66分)19.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.20.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.21.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.22.如图,已知△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.(1)找出图中所有的全等的三角形.(2)选一组全等三角形进行证明.23.如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的大小;(2)若CD=3,求DF的长.24.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案与试题解析一.选择题(共12小题)1.如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.2.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BF B.∠ACE=∠ACBC.AE=BE D.CD⊥BE【分析】从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥BE,∠ACE=∠ACB,AB=2BF,无法确定AE=BE.故选:C.3.下列四个图形中,可以看作是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意;故选:D.4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.5.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.6.下列判断正确的个数是( )(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等.A.0个B.1个C.2个D.3个【分析】根据全等三角形的定义和判定定理与性质进行解答.【解答】解:(1)由全等三角形的定义得到:能够完全重合的两个图形全等,故说法正确;(2)两边和一角对应相等且该角是两边的夹角的两个三角形全等,故说法错误;(3)利用ASA或AAS都能判定两个三角形全等,故说法正确;综上所述,正确的说法有2个.故选:C.7.若一个多边形内角和等于1260°,则该多边形边数是( )A.8B.9C.10D.11【分析】设多边形的边数为n,根据多边形内角和定理得出(n﹣2)•180°=1260°,求出即可.【解答】解:设多边形的边数为n,则(n﹣2)•180°=1260°,解得:n=9,故选:B.8.如图,AC=AD,BC=BD,则有( )A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB【分析】根据线段垂直平分线的判定定理得到AB是线段CD的垂直平分线,得到答案.【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.9.如图,已知AE=CF,∠A=∠C,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( )A.∠D=∠B B.AD=CB C.BE=DF D.∠AFD=∠CEB 【分析】利用等式的性质可得AF=CE,再根据全等三角形的判定方法进行分析即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、添加∠D=∠B可利用AAS判定△ADF≌△CBE,故此选项不合题意;B、添加AD=BC可利用SAS判定△ADF≌△CBE,故此选项不合题意;C、添加BE=DF不能判定△ADF≌△CBE,故此选项符合题意;D、添加∠AFD=∠CEB,可利用ASA判定△ADF≌△CBE,故此选项不合题意;故选:C.10.若点A(x,3)和点B(2,y)关于原点对称,则( )A.x=﹣2,y=3B.x=﹣2,y=﹣3C.x=2,y=3D.x=2,y=﹣3【分析】直接利用关于原点对称点的性质得出答案.【解答】解:∵点A(x,3)和点B(2,y)关于原点对称,∴x=﹣2,y=﹣3.故选:B.11.如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( )A.等边三角形B.等腰三角形C.直角三角形D.斜三角形【分析】本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.【解答】解:∵DE⊥AB,DF⊥AC,∴∠BED=∠DFC=90°,∵在△BDE和△CDF,BD=CD,DE=DF,∴△DBE≌△DFC(HL),∴∠B=∠C,∴AB=AC,∴这个三角形一定是等腰三角形.故选:B.12.小明把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于( )A.120°B.150°C.180°D.210°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:D.二.填空题(共6小题)13.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有 稳定 性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:是因为三角形具有稳定性.14.若等腰三角形有两条边的长为7cm,15cm,则第三边的长为 37 cm.【分析】由于等腰三角形的两边长分别是7cm,15cm,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.【解答】解:①当腰为15cm时,三角形的周长为:15+15+7=37cm;②当腰为7cm时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37cm.故答案为:37.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 3 .【分析】如图,作辅助线;首先运用角平分线的性质证明CD=DE;其次求出DE的长度,即可解决问题.【解答】解:如图,过点D作DE⊥AB于点E;∵∠C=90°,AD平分∠BAC,∴CD=DE;∵,且AB=10,∴DE=3,CD=DE=3.故答案为3.16.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于 20° .【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.17.如图,直线m是正五边形ABCDE的对称轴,且直线m过点A,则∠1的度数为 72° .【分析】先根据∠BCD=108°,CB=CD,得出∠BDC=36°,再根据直线m是正五边形ABCDE的对称轴,可得∠FCD=36°,进而得到∠1的度数.【解答】解:∵正五边形ABCDE的每个内角为108°,∴∠BCD=108°,∵CB=CD,∴∠BDC=36°,∵直线m是正五边形ABCDE的对称轴,∴∠FCD=36°,∴∠1=36°+36°=72°,故答案为:72°.18.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).△ABC与△ABD全等,则点D坐标为 (1,﹣1),(5,3)或(5,﹣1) .【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【解答】解:如图所示,共有3个符合条件的点,∵△ABD与△ABC全等,∴AB=AB,BC=AD或AC=AD,∵A(2,1)、B(4,1)、C(1,3).∴D1的坐标是(1,﹣1),D2的坐标是(5,3),D3的坐标是(5,﹣1),故答案为:(1,﹣1),(5,3)或(5,﹣1).三.解答题(共7小题)19.如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.【分析】在Rt△ABC中求得∠ABC=50°,在由CD⊥AB,即∠BDC=90°知∠BCD=40°,根据BE平分∠ABC知∠CBE=∠ABC=25°,由∠CEB=90°﹣∠CBE可得答案.【解答】解:∵在△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=50°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=40°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠CEB=90°﹣∠CBE=65°.20.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.【分析】(1)根据邻补角互补和已知求出外角即可;(2)先求出多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:(1)∵一个多边形的每一个外角都是它相邻的内角的,∴这个多边形的每个外角的度数是=60°;(2)∵多边形的每一个外角的度数是60°,多边形的外角和为360°,∴多边形的边数是=6,∴这个多边形的内角和是(6﹣2)×180°=720°.21.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.22.如图,已知△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.(1)找出图中所有的全等的三角形.(2)选一组全等三角形进行证明.【分析】(1)根据题意可找出△ADC≌△AEB,△BCD≌△CBE,△BDO≌△CEO;(2)根据等腰三角形的性质推出∠ABC=∠ACB,证△BCD≌△CBE.【解答】解:(1)△ADC≌△AEB,△BCD≌△CBE,△BDO≌△CEO;(2)∵AB=AC,∴∠ABC=∠ACB(等边对等角),在△BCD和△CBE中,,∴△BCD≌△CBE,∴BD=CE,∠CDB=∠CEB,AD=AE,∵AD=AE,∠A=∠A,AC=AB,∴△ADC≌△AEB,∵∠DOB=∠EOC,∠ODB=∠OEC,BD=EC,∴△BDO≌△CEO.23.如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的大小;(2)若CD=3,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.24.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.【分析】(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.(2)根据AE=6,AB=AC,得出CD+AD=12,由△CBD的周长为20,代入即可求出答案.【解答】解:(1)解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=70°∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠DBC=∠ABC﹣∠ABD=30°(2)解:∵AE=6,∴AC=AB=2AE=12∵△CBD的周长为20,∴BC=20﹣(CD+BD)=20﹣(CD+AD)=20﹣12=8,∴BC=8.25.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB 的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。
2022-2023学年第二学期重庆十一中教育集团八年级期中数学试卷

重庆十一中教育集团初2024级八年级(下)半期考试数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分).1.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.关于x的一元一次不等式组的解集在数轴上表示如图,则这个不等式组的解集为()A.−3≤x≤2B.−3<x≤2C.−3≤x<2D.−3<x<2 3.下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1D.x2-x=x(x-1) 4.已知点P关于x轴的对称点P1的坐标是(4,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-4) B.(-4,3) C.(-4,-3) D.(4,-3)5.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将三角形ABC绕点P旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)第5题图第7题图第9题图第10题图6.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑨个图中棋子的颗数是()A.52 B.67 C.84 D.1017.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为()A.1 B.2 C.3 D.48.已知a﹣b=b﹣c=2,a2+b2+c2=11,则ab+bc+ac=()A.﹣22 B.﹣1 C.7 D.119.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC 上的A’处,折痕交AB于点G,则∠ADG的度数为()A.30°B.15°C.22.5°D.20°10.如图,等边△ABC 内部有一点D ,DB =3,DC =4,∠BDC =150°,在AB 、AC 上分别有一动点E 、F ,且AE=AF ,则DE +DF 的最小值是( ) A .5 B .3 3 C .2 3 D .7 二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...对应的横线上. 11.分解因式:2x +4=_________. 12.某棵树在栽种时树围是5cm ,在一定生长期内每年增加约3cm ,设经过x 年后这棵树的树围超过23cm ,请列出x 满足的关系式 .第13题图 第14题图 第15题图 第16题图13.如图,在△ABC 中,已知AC =20,AB 边的垂直平分线交AB 于点D ,交AC 于点E ,若△BCE 的周长为35,则BC 的长为 .14.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b ≤ kx +6的解集是_____. 15.如图,在平面直角坐标系中,平移△ABC 至△A 1B 1C 1的位置.若顶点A (﹣3,4)的对应点是A 1(2,5),则点B (﹣4,2)的对应点B 1的坐标是________. 16.如图,将△ABC 绕点A 逆时针旋转得到△ADE (旋转不超过180°),点B 的对应点D 恰好落在BC 边上,若AC ⊥DE ,∠CAD =25°,则旋转角的度数是______.17. 若整数a 使得关于x 的方程2 x −2 +a =3的解为非负数,且使得关于y 的一元一次不等式组3y−22+2>y−22y−a10≤0至少有3个整数解.则所有符合条件的整数a 的和为______.18. 若一个四位正整数abcd 满足:a +c =b +d ,我们就称该数是“交替数”.若一个“交替数”m 满足千位数字与百位数字的平方差是15,且十位数字与个位数字的和能被5整除,则满足条件的m 的最小值为 .三、解答题:(本大题6个小题,21题8分,其余每题10分,共78分)解答时,每小题必须给出必要的过程或步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...对应的位置上. 19.(10分)(1)因式分解:24()()a a b a b ---; (2)解不等式组 4x −2≤3(x +1)1−x−12<x4. 20.(10分)如图,在△ABC 中,CE 平分∠ACB ,B 、C 、G 在同一直线上,CF 平分∠ACG ,EF ∥BC 交AC 于点D ,求证:DE=DF . 21.(8分)如图,在Rt △ABC 中,∠BAC =90°,AD 平分∠BAC 交BC 于点D . (1)作AD 的垂直平分线,分别交AB ,AC ,AD 于点E ,F ,G .连接DE ,DF .(要求:尺规作图,不写作法和结论,保留作图痕迹)第20题图(2)求证:AF =DE .(完成以下证明过程) 证明:∵EF 垂直平分AD ,∴AE =① ,∠AGE =∠AGF =90°, ∵AD 平分∠BAC , ∴∠EAG =∠F AG . 在△AEG 和△AFG 中,②____________ ㅤ ③_____________ㅤ ∠AGE =∠AGF∴△AGE ≌△AGF (ASA ). ∴④ , ∴AF =DE .22.(10分)2022年以来,南岸区把垃圾分类纳入积分,建立文明账户,市民以行动换积分,以积分转习惯. 区政府为了解9月份甲、乙两个社区垃圾分类换积分的情况,从甲、乙两个社区各抽取10人,记录下他们的积分(单位:分),并进行整理和分析(积分用x 表示,共分为四组:A :x <70,B :70≤x <80,C :80≤x <90,D :90≤x ≤100),下面给出了部分信息: 甲社区10人的积分:47,56,68,71,83,83,85,90,91,94 乙社区10人的积分在C 组中的分数为:81,83,84,84 两组数据的平均数、中位数、众数如下表所示:根据以上信息,解答下列问题:(1)填空:a = ,b = ,m = ; (2)根据以上数据,你认为 社区在此次垃圾分类换积分活动中表现更好. 请说明理由(一条理由即可);(3)若9月份甲社区有620人参与活动,乙社区有480人参与活动,请估计该月甲、乙两个社区积分在C 组的一共有多少人? 23.(10分)如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点(0,1)B -,与x 轴以及1y x =+的图象分别交于点C ,D ,且点D 的坐标为(1,)n .(1)则k = ,b = ,n = ; (2)求四边形AOCD 的面积;(3)在x 轴上是否存在点P ,使得以点P ,C ,D 为顶点的三角形是直角三角形,请求出点P 的坐标.24.(10分)为打造“书香校园”,学校每个班级都建立了图书角.八年级1班,除了班上每位同学捐出一本书外,三位班委还相约图书城,用班费买些新书.下面是他们的对话内容:班委A :“我上次在这买了一套很好的书,可惜有点贵,160元,据我了解这套书进价只有100元.” 班委B :“你可以花20元办一张会员卡,买书可打八折.”班委C :“嗯,是的.不过我听说还有一种优惠方式,花100元办张贵宾卡,买书打六折.”(1)A 上次买的一套书,图书城的利润是___元,利润率是___.如果他买一张会员卡,可省下__元. (2)当购书的总价(指未打折前的原价)为多少时,办贵宾卡与办会员卡购书一样优惠?乙社区积分等级扇形统计图第21题图 第23题图(3)三个班委精心挑选了一批新书,经过计算分析后,发现三种购买方式中,办会员卡购书最省钱,请你求出这批书的总价的范围. 25.(10分)小颖根据学习函数的经验,对函数y =1﹣|x ﹣1|的图象与性质进行了探究下面是小颖的探究过程,请你补充完整 (1)列表:= ;②若A (8,﹣6),B (m ,﹣6)为该函数图象上不同的两点,则m = ; (2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最大值为 ;②写出函数图象的两条性质: ; ③若方程1﹣|x ﹣1|=n -1有两个实数解,求n 的取值范围:_________________; ④当12x ﹣1<1﹣|x ﹣1|时x 的取值范围是 ;⑤将y 1=12x ﹣1沿y 轴至少平移______个单位长度,能使y 1与y 的函数图像无交点? 26.(10分)在Rt△ABC 中,∠ABC =90°,AD 平分∠BAC ,E 为AC 上一点.(1)如图1,过D 作DF ∥AB 交AC 于点F ,若DE=DF =3,AB =4,求△ADF 的面积;(2)如图2,若CE=CD ,过A 作AF ⊥AD 交DE 的延长线于点F ,H 为DA 延长线上一点,连接HE ,过F 作FG ⊥HE 交DH 于点G ,交HE 于点M ,且AH=AG , ①猜想△ADF 的形状,并证明;②猜想线段HG 与ED 之间的数量关系,并证明.第25题图 图1 第26题图1图2 第26题图2参考答案及评分标准一、选择题:(本大题10个小题,每小题4分,共40分)1-10. DCDBC CBBBA二、填空题:(本大题8个小题,每小题4分,共32分)三、解答题:(本大题6个小题,21题8分,其余每题10分,共78分)19.解:(1)解:原式=(a-b)(2a+1) (2a-1)····················5分(2)解:由①得x≤5···················7分由②得x>2···················9分∴2<x≤5···················10分20.证明:∵CE是△ABC的角平分线,∴∠ACE=∠BCE.···················2分∵CF为外角∠ACG的平分线,∴∠ACF=∠GCF.···················4分∵EF∥BC,∴∠GCF=∠F,∠BCE=∠CEF.···················6分∴∠ACE=∠CEF,∠F=∠DCF.∴CD=ED,CD=DF(等角对等边).···················9分∴DE=DF.···················10分21. (1)···················4分(2)①DE,···················5分②∠EAG=∠FAG···················6分③AG=AG···················7分④AE=AF.···················8分22.解:(1)a=83.5,b=83,m=30,···················3分(2)乙社区表现好些,···················4分理由:在平均数相同的情况下,乙社区的中位数83.5分高于甲社区的中位数83分;···6分(3)0.3×620+0.4×480=378(人),答:该月甲、乙两个社区积分在C组的大约一共有378人.···················10分23.解:(1)3,-1,2;···················3分(2)56···················6分(3)如图2所示,设P(p,0),∴PC2=(p-13)2,PD2=22+(p-1)2,CD2=22+(1-13)2,分两种情况考虑:①当P′D⊥DC时,P′C2=P′D2+CD2,∴(p-13)2=22+(p-1)2+22+(1-13)2,∴p=7,∴P′(7,0);②当DP⊥CP时,由D横坐标为1,得到P横坐标为1,∵P在x轴上,∴P的坐标为(1,0),综上,P的坐标为(1,0)或(7,0).···················10分24.解:(1)60;60%;12;···················3分(2)当购书的总价(指未打折前的原价)为x元时,办贵宾卡后购买所需总费用为(100+0.6x)元,办会员卡后购买所需总费用为(20+0.8x)元,根据题意得:100+0.6x=20+0.8x,解得:x=400.答:当购书的总价(指未打折前的原价)为400元时,办贵宾卡与办会员卡购书一样优惠;···················6分(3)当购书的总价(指未打折前的原价)为y元时,办贵宾卡后购买所需总费用为(100+0.6y)元,办会员卡后购买所需总费用为(20+0.8y)元,根据题意得:得:100<y<400.答:当购书的总价(指未打折前的原价)大于100元且少于400元时,办会员卡购书最省钱.···················10分25.解:(1)①k=-2;②m=-6;···················2分(2)该函数的图象如图所示,···················4分(3)根据函数的图象知,①该函数的最大值为1;···················5分②性质:该函数的图象关于x=1轴对称;当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小等;···················7分③n<2···················8分④如图,当y1<y时x的取值范围为-2<x<2.···················9分⑤32···················10分26.解:(1)32···················3分(2)①等腰直角三角形,理由如下:∵AH=AG,FA⊥GH,∴FH=FG,∠FAG=90°,∴∠HFA=∠GFA,∠GFA+∠AGF=90°,∵FG⊥EH,∴∠GHM+∠AGF=90°,∴∠GHM=∠GFA,设∠BAD=∠CAD=α,则∠BAC=2α,∴∠C=90°-∠BAC=90°-2α,∵CD=CE,∴∠CED=∠CDE=180°−∠C2=180°−(90°−2α)2=45°+α,∴∠ADE=∠CED-∠DAE=(45°+α)-α=45°,∵∠DAF=90°,∴∠AFD=90°-∠ADE=45°,∴AD=AF∴三角形ADF为等腰直角三角形···················6分②如图1,GH=2DE,理由如下:连接FH,作EN⊥AD于N,设∠HFA=∠GFA=∠GHM=β,∴∠FHA=90°-∠AFH=90°-β,∠HFE=∠AFD+∠AFH=45°+β,∴∠FHE=∠FHA-∠GHM=90°-2β,∴∠HEF=180°-∠HEF-∠FHE=180°-(45°+β)-(90°-2β)=45°+β,∴∠HEF=∠HFE,∴HF=HE,∵∠HNE=∠FAH=90°,∴△FAH≌△HNE(AAS),∴AH=EN,∵AH=12GH,EN=22DE,∴GH=2DE;···················4分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学半期试题
数 学
(时间:100分钟 总分:120分)
班级: 学号: 姓名:
一、 选择题:(共12小题,每小题2分共24分)
1、如果高出海平面20米,记作+20米,那么-30米表示( )
A 、不足30米
B 、低于海平面30米
C 、高出海平面30
D 、低于海平面20米
2、下列几组数中,不相等的是( )
A 、-(+3)和+(-3)
B 、-5和-(+5)
C 、+(-7)和-(-7)
D 、-(-2)和∣-2∣
3、下列各组数中,互为相反数的是( )
A 、2与2
1 B 、(-1)2与1 C 、-1与(-1)
2 D 、2与︱-2︱
4、近似数0.5600的有效数字的个数和精确度分别是 ( )
A 、两个,精确到万分位
B 、四个,精确到十万分位
C 、四个,精确到万分位
D 、四个,精确到千分位
5、若a 为有理数,则下面的说法正确的是( )。
A 、-a 一定是负数。
B 、︱a ︱一定是正数。
C 、︱a ︱一定不是负数。
D 、a 一定是正数。
6、在0,x 1,-3,-25xy ,2y x ,m+2n,-n 中,单项式的个数是
()
A、3
B、4
C、5
D、6
7、若│x│=2,│y│=3,则│x + y│的值为( )
A、5
B、-5
C、5或1
D、以上都不对
8、a,b是有理数,它们在数轴上的对应点的位置如下图所示:
a 0 b
把a,-a,b,-b按照从小到大的顺序排列 ( )
A、-b<-a<a<b
B、-a<-b<a<b
C、-b<a<-a<b
D、-b<b<-a<a
9、一个两位数,十位数字是a,个位数字是b,则这个两位数
是
A 、10b+a
B 、ab C、10a+b D 、ab
10 11、如果∣a+2∣+(b-1)2=0,那么代数式(a + b)2006的值是()(A)-2006 (B)2006 (C)-1 (D)1
10、若a + b<0,ab<0,则 ( )
A、a>0 ,b>0
B、a<0,b<0
C、a,b两数一正一负,且正数的绝对值大于负数的绝对值
D、a,b两数一正一负,且负数的绝对值大于正数的绝对值
12、要用一根铁丝弯成右图的铁框,则这根铁丝至少长()
A、2.5cm
B、5cm
C、4cm
D、无法确定
二、填空:(每小题3分,共30分)
13、-5的相反数是,倒数是。
14、如果盈余500元记作+500元,那么-500元的意义是:_______________
15、在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。
则月球表面昼夜的温差为____________。
16、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为________亿元.
17、每台电脑进价2000元,按如下广告销售:“原价3000元,7折优惠,亏本大甩卖。
”则每台电脑的利润是_________元
18、看看前面的数,在后面横线处填上一个适当的数。
①1,-2,3,-4,5 ,
② 3,5,8,12,
19、右图是一数值转换机,若输入的x为-5,则输出的结果为__________.
20、在一次募捐活动中,平均每名同学捐款a元,结果一共捐了b
b可解释为:____________________
元,则式子
a
21、某地出租车收费标准为:起步价5元,3千米后每千米1.4元,某人乘坐出租车5千米,应付费_________元;乘坐x(x>3)
千米,应付费__________元
22、“一去二三里,烟村四五家。
门前六七树,八九十支花。
”这首诗中巧妙地嵌入了一到十这十个数字。
请你写出一句带有数字的诗句
三:解答题:(46分)
23、将下列各数填在相应的集合里(4分)
-3.8,-10,4.3,-∣-7
20∣,42,0,-(-53) 整数集合:{ },分数集合:{ },
正数集合:{ },负数集合:{ }.
24、在数轴上表示下列各数,并比较它们的大小.( 4分)
3, -1.5, 2
13-, 0, 2.5, -4.
比较大小: < < < < < 25计算:(16分)
(1)、(+4.3)-(-4)+(-2.3)-(+4) (2)、 (-12)×(-5)+2÷(-4)
(3)22)3()3(62-+-÷+- (4))60()1514121132(-⨯--
26、一场游戏规则如下:(1)每人每次取4张卡片。
如果抽到形如的卡片,那么加上卡片上的数字;如果抽到形
如的卡片,那么减去卡片上的数字。
(2)比较两人所抽4张卡片的计算结果,结果大的为胜者。
小亮抽到了上面4张卡片:
小丽抽到了下面4张卡片:
请你通过计算(要求有计算过程)回答本次游戏获胜的是谁?(5分)
27、每袋小麦的标准重量为90千克,5袋小麦的称重记录如下91.5,89,91.2,88.7,91.8 ,与标准重量比较5袋小麦总计超过多少千克或不足多少千克?5袋小麦的总重量是多少?(6分)
28、“十一”黄金周期间,某校4名教师和10名学生组成旅游团,外出旅游,甲旅行社收费标准是:一律八折优惠,乙旅行社收费标准是:若4人买全票,其余人按七折优惠,这两家旅行社的全
票价格均为每人300元;你认为应该去哪家旅行社较合算?(5分)
29、某巡警骑摩托车在一条南北大道上巡逻。
某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下:(单位:千米)。
+10,-8,+7,-15,+6,-16,+4,-2。
(1)A 处在岗亭何方?距离岗亭多远?(2)、若摩托车每行驶1千米耗油0.05升,这一天共耗油多少升?(6分)
附加题(20分)
1、已知a,b 互为相反数,b,c 互为倒数,d 与e 的和为-2, 则 2||a b bc d e bc +-+++=
2、当1-=x 时,代数式d cx bx ax +++23的值为5-则5--+-d c b a =___________
3、若abc ≠0,写出
所有结果
4、将-2,-1,0,1,2,3,4,5,6这9个数
分别填入下图方阵的9个空格中,使得横、竖、斜
对角的3个数相加的和为6.
29、探索规律:用棋子按下面的方式摆出正方形
……
①按图示规律填写下表:(3分)
n
③按照这种方式摆下去,摆第20个正方形需要多少个棋子?(3分)
(1)
(2)(3)
小调查(填不填由你,不计分数)
做到这里,请你估计一下,这份测试你可得分。
你觉得最漂亮的是第题,最困难的是第题。