新人教版初中九年级数学下《二次函数单元测评》优质课教学设计

合集下载

九年级数学《二次函数》单元备课

九年级数学《二次函数》单元备课

第二十六章 二次函数
一、 教材地位及前后联系:
二次函数一章义务教育人教版九年级下册第一章,属于数与代数部分知识。

这部分知识是在学生建立里函数的概念,学习了一次函数和反比例函数图像及性质,学习了一元二次方程的基础上学习的,二次函数的学习为以后学习高等数学的函数以及解析几何知识奠定知识及思想的基础。

这一部分知识是初中阶段数学与代数部分最重要的内容也是中考必考内容。

二、 课程学习目标
1、 通过对实际问题的情景分析确定二次函数的表达式,并体会二次函数的意义。

2、 会用描点法画出二次函数的图像,能从图像上认识二次函数的性质。

3、 会根据公式确定图像的顶点和对称轴,并解决简单的实际问题。

4、 会利用二次函数的图像求一元二次方程的近似解,体会二次函数和一元二次方程之间的关系。

三、本章知识结构图
四、课时安排
本章教学时间大约需要13课时
26.1二次函数 6课时 26.2用函数观点看一元二次方程 1课时 26.3实际问题与二次函数 3课时 数学活动 1课时 小结集检测 2课时。

九年级数学下册《二次函数》教案、教学设计

九年级数学下册《二次函数》教案、教学设计
(二)教学设想
1.针对重点内容的设想
(1)采用直观演示法,通过绘制二次函数图像,引导学生观察、分析图像性质,使他们在直观感知的基础上,形成对二次函数性质的深入理解。
(2)设计具有层次性的练习题,由浅入深地让学生掌握二次函数的定义、图像和性质,使他们在解决问题的过程中,逐步提高自己的数学能力。
2.针对难点内容的设想
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,讨论以下问题:
a.二次函数的定义是什么?各参数有什么含义?
b.二次函数的图像有哪些性质?如何判断开口方向、对称轴和顶点?
c.如何将二次函数的解析式转化为顶点式?顶点式与解析式的互化方法是什么?
2.小组代表发言:每个小组选派一名代表,汇报本组的讨论成果,分享对二次函数性质的理解和应用。
九年级数学下册《二次函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解二次函数的定义,掌握二次函数的一般形式,并能根据实际情境抽象出二次函数模型;
2.掌握二次函数图像的性质,如开口方向、对称轴、顶点等,并能够通过描点法或解析法绘制二次函数图像;
3.掌握二次函数的顶点式和解析式的互化方法,了解其几何意义,并能够应用于实际问题中;
(1)运用实际问题引入顶点式与解析式的互化,让学生在实际情境中感受互化的意义,降低学习难度。
(2)通过小组合作、讨论交流,引导学生共同探究二次函数图像的开口方向、对称轴和顶点等性质的几何意义,培养学生合作解决问题的能力。
(3)设计专题讲座,针对二次函数在实际问题中的应用,如最值问题、优化问题等,进行详细讲解,帮助学生克服难点。
(五)总结归纳
1.让学生回顾本节课所学内容,总结二次函数的定义、图像性质、顶点式与解析式的互化等方面。

新人教版九下二次函数全章优质教案[下学期]

新人教版九下二次函数全章优质教案[下学期]

26.1 二次函数(6)教学目标:1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。

重点难点:重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。

难点:理解二次函数y =ax 2+bx +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a,4ac -b24a)是教学的难点。

教学过程:一、提出问题1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗? (函数y =-4(x -2)2+1图象的开口向下,对称轴为直线x =2,顶点坐标是(2,1)。

2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系?(函数y =-4(x -2)2+1的图象可以看成是将函数y =-4x 2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y =-4(x -2)2+1具有哪些性质?(当x <2时,函数值y 随x 的增大而增大,当x >2时,函数值y 随x 的增大而减小;当x =2时,函数取得最大值,最大值y =1)4.不画出图象,你能直接说出函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标吗?[因为y =-12x 2+x -52=-12(x -1)2-2,所以这个函数的图象开口向下,对称轴为直线x =1,顶点坐标为(1,-2)]5.你能画出函数y =-12x 2+x -52的图象,并说明这个函数具有哪些性质吗?二、解决问题由以上第4个问题的解决,我们已经知道函数y =-12x 2+x -52的图象的开口方向、对称轴和顶点坐标。

新课标人教版初中数学九年级下册第26章《二次函数》单元集体备课

新课标人教版初中数学九年级下册第26章《二次函数》单元集体备课

新课标人教版初中数学九年级下册第26章《二次函数》单元集体备课一、单元教学目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

4.会利用二次函数的图象求一元二次方程的近似解。

二、单元重点1.知识方面,要让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。

2.能力方面,要学生在学习和探究中学会分析简单的二次函数的有关问题。

3.情感目标,要让学生认识到轴对称图形的美感,并解二次函数的应用之广泛。

三、单元难点二次函数与一元二次方程的关系。

二次函数的应用题。

四、单元知识结构分析“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数、反比例函数的基础上,进一步学习二次函数的初步知识。

本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。

尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。

对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。

对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。

在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。

最后,对二次函数的应用部分,教材中大胆采用了前几年的部分中考题,让人感到紧跟中考方向。

另外,从题目的难度看,虽然比旧教材的题目减少了,但是题目的难度却有增无减,这给教师的教和同学们的学都是一个大的考验。

五、单元教学方法设计本章主要采用讨论探索和类比学习的方法,对教材内容让学生先学后教,让学生首先有一个基本的认识,然后指导学生先对基本的题目进行自学、讨论,然后总结规律,最后教师进行点评。

六、课时安排1. 对函数的再认识2课时2. 二次函数1课时3. 二次函数y=x2的图象和性质2课时4.二次函数的图象和性质3课时5. 用三种方式表示二次函数1课时6. 确定二次函数的表达式1课时7. 二次函数与一元二次方程2课时8.二次函数的应用 3课时七、检测安排全校统一出题检测。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

初中数学初三数学下册《二次函数》教案、教学设计

初中数学初三数学下册《二次函数》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次函数的定义、图像及其性质;二次函数的顶点公式和最值问题;二次方程的求解和应用。
2.难点:二次函数图像的绘制和性质的理解;二次函数在实际问题中的应用;二次方程求解过程中的符号判断和计算。
(二)教学设想
1.对于重点内容的处理:
-利用多媒体演示二次函数图像的生成过程,帮助学生形象地理解二次函数的性质。
二、学情分析
本章节的学习对象为初三学生,他们在之前的学习中已经掌握了线性函数的基本概念、性质及其图像特点,初步具备了研究函数的思想和方法。在此基础上,学生对二次函数的学习具备了一定的认知基础,但鉴于二次函数的抽象性和复杂性,学生在理解上可能会存在一定难度。因此,在教学过程中,应注重以下方面:
1.关注学生个体差异,针对不同学生的学习能力和认知水平,采取差异化教学策略,使全体学生都能在原有基础上得到提高。
3.对练习题进行讲解,强调解题思路和关键步骤,帮助学生巩固所学知识。
(五)总结归纳
1.教师引导学生从以下几个方面进行总结:
-二次函数的定义和一般形式;
-二次函数的图像性质,如开口方向、顶点、对称轴等;
-二次方程的求解方法;
-二次函数在实际问题中的应用。
2.学生分享学习心得,总结自己在学习过程中遇到的困难和解决方法。
-创设问题情境,引导学生从不同角度审视问题,培养他们解决问题的灵活性。
3.教学策略:
-采用启发式教学,激发学生的求知欲和好奇心,引导学生主动探究二次函数的奥秘。
-结合学生的生活实际,设计富有情境性的教学活动,让学生在情境中体验数学、感知数学。
-注重知识的整合,将二次函数与已学的线性函数、不等式等内容相互联系,形成完整的知识体系。

【人教版】九年级下册数学《二次函数》全章教案

【人教版】九年级下册数学《二次函数》全章教案

二次函 数(1)一.导入:用长为20cm 的铁丝围成一个矩形,设矩形的一边长为x cm ,面积为y 2cm . 求:y 与x 的函数关系式.二.二次函数:形如c bx ax y ++=2(其中b 、c 为常数,且0≠a )的函数叫做x 的二次函数. 注:0≠a ,若0=b 可化为c ax y +=2;0≠a ,若0=c 可化为bx ax y +=2三.例题与练习:1.下列各式中:①2x y =,②012=-+y x ,③122=-y x ,④1212-+-=x x y ,⑤1+=x y ,⑥012=--x y ,其中y 是x 的二次函数的是 .练习:下列各式中,y 是x 的二次函数的是( )A .12=+x xy B.0222=-+y x C.22-=-ax y D.012=++y x2.若函数()22++-=x x m y m 是二次函数,则m 的值为 .练习:若函数()13112+-+=+x x m y m 是二次函数,则m 的值为 .3.若二次函数12++=mx x y 的图象经过点(2,1),则m 的值为 .练习:若二次函数()32122--+++=m m x x m y 图象经过原点,则m 的值为 .4.若二次函数c bx ax y ++=2满足1=++c b a ,则此二次函数的图象必经过点 ;若满足0=+-c b a ,则此二次函数的图象必经过点 .练习:若二次函数c bx ax y ++=2满足024=+-c b a ,则此二次函数的图象必经过点 .5.将函数3822--=x x y 化成 练习:将函数1632+--=x x y 化成 ()k h x a y +-=2的形式 ()k h x a y +-=2的形式7.将进货单价为30元的故事书按40元售出时,就能卖出500本书,已知这种书每本每涨价1元,其销售量就会减少10本.设销售单价为x 元,销售总利润为y 元.⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,销售总利润最大?最大利润为多少?练习:某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60kg ,单价每降低1元,日均多售出2kg ,在销售过程中,每天还要支出其他费用500元(天数不足一天,俺整天计算).设销售单价为x 元,日均获利为y 元.⑴求y 与x 的函数关系式,并注明x 的取值范围; ⑵求单价定为多少时,日均获利最多?最多为多少?课 后 作 业(1)1.下列各式中,y 是x 的二次函数的是( )A .0212=-+x yB.022=+y x C.22-=-x x D.0422=+-y x 2.若函数()4331-++=-x x m y m 是二次函数,则m 的值为( )A .3或3- B.3 C.3- D.2或2-3.对于二次函数2432+-=x x y ,当1-=x 时,y 的值为( )A .9 B.1 C.3 D.3-4.二次函数c bx ax y ++=2,若2-=x 时,0=y ,则下列式子成立的是( )A .024=++c b a B.024=+-c b a C.024=++-c b a D.024=+--c b a5.二次函数42-=x y 与x 轴交点的坐标为( )A .(0,4-) B.(2,0) C.(2,0)和(2-,0) D.(2-,0)6.二次函数4322-+=x x a y 经过点(2,6),则a 的值为( )A .1 B.1- C.1或1- D.2或2-7.将下列二次函数化成一般形式.⑴()()232+--=x x y ⑵()2423--=x x y8.将下列二次函数化成()k h x a y +-=2的形式⑴51222+-=x x y ⑵342---=x x y9.求下列二次函数与x 轴、y 轴的交点坐标.⑴x x y 642-= ⑵542--=x x y10.某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多的利润,商店决定提高销售价格,经过试验发现,当销售单价为20元时最多能销售360件,在这基础上每提高1元每月就少销售30件.设销售单价为x (元/件),每月的销售利润为y (元).⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,每月销售利润最大?最大利润为多少?二 次 函 数(2)二次函数的图象与性质:一.例题与练习:1.二次函数2x y =⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:练习1:二次函数2x y -=⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:2. 相关知识:⑴二次函数的图象为 ;⑵二次函数的图象为 图形;⑶开口方向 ;⑷顶点坐标 ;⑸对称轴为 . ⑹增减性: . 练习2:在同一直角坐标系中画出二次函数22x y =与22x y -=的图象22x y =⑴列表:⑵描点,画出图象22x y -=⑴列表:⑵描点,画出图课 后 作 业(2)1.将二次函数()()x x y 323--=化为一般形式为 .2.对于二次函数6432---=x x y 来说,a = ,b = ,c = .3.若二次函数()21x m y -=的图象的开口方向向上,则m 的取值范围为 .4.二次函数241x y -=的顶点坐标为 ,对称轴为 . 5.若点A (2,8)与点B (2-,m )都在二次函数2ax y =的图象上,则m 的值为 .6.已知点(m ,4-)在二次函数221x y -=的图象上,则m 的值为 . 7.请你写出一个顶点为原点,且开口方向向下的二次函数表达式为: .8.若二次函数()23x m y -=在对称轴右边的图象上,y 随x 的增大而减小,则m 的取值范围为 . 9.二次函数2ax y =的图象必经过的一点的坐标为 .10.若点A (4-,n )与点B (m ,8-)都在二次函数2ax y =的图象上,且关于对称轴对称,则n m +的值为 .11. 将函数下列各函数化成()k h x a y +-=2的形式⑴42212--=x x y ⑵2134322+--=x y12.在同一直角坐标系中画出下列函数的图象:⑴23x y = ⑵231x y -=13.请你利用上题中的直角坐标系和函数23x y =⑴画出23x y =向右平移3个单位的图象;⑵观察新得到的抛物线图象回答:顶点坐标为 ,对称轴为 ,与y 轴交点为 .※⑶请你试求出变换后的二次函数的解析式.二 次 函 数(3)二次函数的图象与性质:一.例题与练习:1.二次函数12+=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?2.二次函数12--=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的?练习:1.二次函数52-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .2.练习:二次函数422--=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿y 轴向下平移7个单位长度得到的函数解析式为 .课 后 作 业(3)1.下列二次函数的开口方向向上的是( )A .132+-=x yB .32-=ax yC .2312-=x y D .()512--=x a y 2.若二次函数()1632--=x m y 的开口方向向下,则m 的取值范围为( )A .2>mB .2<mC .2≠mD .2->m3.若二次函数1211-=x a y 与二次函数3222+=x a y 图象的形状完全相同,则1a 与2a 的关系为( )A .1a =2aB .1a =2a -C .1a =2a ±D .无法判断4.将二次函数22x y -=的图象向下平移5个单位,得到的抛物线的解析式为( )A .522+=x yB .522--=x yC .522+-=x yD .522-=x y5.若二次函数()2622--=x m y 由二次函数25x y -=平移得到的,则m 的值为( )A .1B .1-C .1 或1-D .0或1-6.二次函数3312--=x y 图象的顶点坐标为( ) A .(0,3) B .(0,3-) C .(31-,3) D .(31-,3-) 7.将二次函数122--=x y 图象向下平移5个单位得到的抛物线的顶点坐标为( )A .(0,6-)B .(0,4)C .(5,1-)D .(2-,6-)8.将二次函数12+-=x y 图象向左平移3个单位得到的抛物线的对称轴为( )A .直线0=xB .直线4=xC .直线3-=xD .直线3=x9.二次函数22x y =⑴将其向下平移2个单位得到的抛物线解析式为 .⑵通过列表,描点,画出⑴中抛物线的图象;⑶求⑵中抛物线与x 轴的交点坐标,并求出顶点与x 轴的交点所组成三角形的面积;⑷若点A (1x ,m )、B (2x ,n )在⑵中抛物线的图象上,且021<<x x ,则m 与n 的大小关系为 .※⑸若将二次函数22x y =图象沿x 轴翻折,再向上平移5个单位得到的抛物线的解析式为 .※⑹求直线1-=x y 与⑵中抛物线的交点坐标.二 次 函 数(4)二次函数的图象与性质:一.例题与练习:1.二次函数()21+=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?⑹猜想:二次函数()25-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?1.二次函数()21--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c ⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的?练习:1.二次函数()26-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .2.练习:二次函数()232+-=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿x 轴向左平移7个单位长度得到的函数解析式为 .课 后 作 业(4)1.对于二次函数4232-+-=x x y 来说,_______=a ,_______=b ,_______=c .2.抛物线322+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线231x y =沿y 轴向下平移2个单位得到的抛物线的解析式为 ,再沿y 轴向上平移3个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移7个单位得到的抛物线的解析式为432-=x y ,则=a , =c .5.抛物线()232+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线25x y -=沿x 轴向左平移6个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数1422--=x x y⑴将其化成()k h x a y +-=2的形式;⑵说明⑴中抛物线是由22x y =的图象经过怎样的图形变换得到的?⑶写出⑴中抛物线的顶点坐标,对称轴.⑷求⑴中抛物线与x 轴、y 轴的交点坐标.10.二次函数()222--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c ⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象⑸将该函数图象向右平移5个单位,再向下平移3个单位得到的抛物线的解析式为 , 此时抛物线的顶点坐标为 ,对称轴为 .二 次 函 数(5)二次函数的图象与性质:一.探究:1.将二次函数22x y -=的图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移3个单位长度得到的函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.猜想二次函数()2122+-=x y 的图象顶点坐标为 ,对称轴为 ,是由22x y =的图象经过怎样的图形变换得到的?3.将二次函数()2122+-=x y 化为一般形式为 .二.例题与练习1.二次函数4422+-=x x y⑴将其化为()k h x a y +-=2的形式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑷若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.相关规律:二次函数322+-=x x y 图象的画法⑴利用配方法将一般形式化为()k h x a y +-=2的形式即顶点式 顶点坐标为(h ,k ),对称轴为h x = ⑵列表:中间列分别为顶点的横坐标与纵坐标,共选7对有序实数对,⑶描点,画出图象3. 对于二次函数1632---=x x y ⑴利用配方法将一般形式化为顶点式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 . ⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑸若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .课 后 作 业(5)1.对于二次函数4222+-=x x y 来说,_______=a ,_______=b ,_______=c . 2.抛物线2212--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线22x y -=沿y 轴向下平移5个单位得到的抛物线的解析式为 ,再沿y 轴向上平移2个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移4个单位得到的抛物线的解析式为432-=x y ,则=a , =c . 5.抛物线()2221--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线24x y =沿x 轴向左平移3个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 . 9.二次函数3422+--=x x y ⑴利用配方法将一般形式化为顶点式⑵此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑶其图象是由22x y -=的图象经过怎样的图形变换得到的?⑷画出该函数的图象⑸在所提供的图中,画出该图象关于x 轴的对称图形,并直接写出所得新的抛物线的解析式.二 次 函 数(6)一.二次函数的性质:1.表达式:①一般式:c bx ax y ++=2(0≠a ); ②顶点式:()k h x a y +-=2(0≠a )2.顶点坐标:①(ab 2-,a b ac 442-) ②(h ,k )3.意义:①当abx 2-=时,0>a ,y 有最小值为a b ac 442-;0<a ,y 有最大值为a b ac 442-②当h x =时,0>a ,y 有最小值为k ;0<a ,y 有最大值为k4.a 的意义:0>a ,图象开口向上;0<a ,图象开口向下;21a a ±=说明两函数图象大小形状相同.5.对称轴:①abx 2-=;②h x = 6.对称轴位置分析:①0=b ,对称轴为y 轴;②0<ab ,对称轴在y 轴的右侧;③0>ab ,对称轴在y 轴的左侧;(左同右异)7.增减性:①0>a ,a b x 2->时,y 随x 的增大而增大;a bx 2-<时,y 随x 的增大而减小 ②0<a ,a b x 2->时,y 随x 的增大而减小;ab x 2-<时,y 随x 的增大而增大 8.与y 轴的交点为(0,c ) 9.与x 轴的交点:02=++c bx ax①042=-=∆ac b ,有一个交点; ②042>-=∆ac b ,有两个交点; ③042<-=∆ac b ,没有交点 10.平移:化成顶点式()k h x a y +-=2,上加下减:m k ±;左加右减:m h ±二.练习:1.已知抛物线c bx ax y ++=2的图象如图,判断下列式子与0的关系.(填“<”“>”“=”)①0____a ; ②0_____b ; ③0____c ; ④0____c b a ++;⑤0____c b a +-; ⑥0_____42ac b -; ⑦0____2b a +; ⑧0____2b a -; 2.若二次函数b ax y +=2(0≠⋅b a ),当x 取1x 、2x 时,函数的值相等,则当x 取21x x +时,函数值为 .3.若(5-,0)是抛物线c ax ax y ++=22与x 轴的一个交点,则另一交点坐标为 . 4.已知抛物线322--=x x y⑴求此抛物线与x 轴的交点A 、B 两点的坐标,与y 轴的交点C 的坐标.⑵求ABC ∆的面积.⑶在直角坐标系中画出该函数的图象⑷根据图象回答问题:①当0>y 时,x 的取值范围?②当0<x 时,y 的取值范围?③当______x 时,y 随x 的增大而增大;当______x 时,y 随x 的增大而减小;课 后 作 业(6)1.已知二次函数()12322--+=x x m y 的图象的开口方向向上,则m 的取值范围为( )A .23>m B .23->m C .32->m D .23-<m 2.二次函数c bx ax y ++=2的图象如图,则下列结论错误的是( )A .0>aB .0<bC .0>abD .0=c3.将二次函数22x y -=向右平移2个单位,在向下平移3个单位得到的二次函数的解析式为( ) A .()3222+--=x y B .()2322---=x y C .()3222---=x y D .()3222-+-=x y 4.二次函数()k h x a y +-=2,当2-=x 时,y 有最大值为5,则下列结论错误的是( ) A .0<a B .顶点坐标为(2-,5) C .对称轴为直线2-=x D .2=h 5.抛物线c bx ax y ++=2的对称轴为直线0=x ,则下列结论一定正确的是( ) A .0<a B .0=b C .0=c D .0>c 6.下列点在二次函数42--=x y 的图象上的是( )A .(1,3-)B .(1-,3-)C .(1-,5-)D .(0,4)7.二次函数11211c x b x a y ++=与22222c x b x a y ++=的图象关于x 轴对称,则1a 与2a 的关系为( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数8.已知点A (2,m )与点B (3,n )在二次函数()312+--=x y 的图象上,则m 与n 的关系为( ) A .n m > B .n m = C .n m < D .无法判断9.已知二次函数c bx ax y ++=2的图象如图. ⑴请你写出一元二次方程02=++c bx ax 的根; ⑵请你写出不等式02>++c bx ax 的解集; ⑶请你再写出3条从图象中得出的结论.10.已知二次函数12212--=x x y . ⑴求该抛物线的顶点坐标和对称轴;⑵通过列表、描点画出该函数图象;⑶求该图象与坐标轴的交点坐标.11.某商店经销一种销售成本为每千克40元的农产品,所市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减小10千克,设每千克农产品的销售价格为x (元),月销售总利润为y (元).⑴求y 与x 的函数关系式;⑶当销售价定为多少元时,月获利最大,最大利润是多少?二 次 函 数(7)二次函数解析式的确定: 一般形式:c bx ax y ++=2(0≠a )一.例题与练习:例题1.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式 练习1.已知二次函数c bx x y ++=221的图象经过点(3-,6)和点(1-,0),求此函数的解析式练习2.已知二次函数c x ax y +-=52的图象如图,求此函数的解析式例题2.已知二次函数的图象与x 轴的交点为(1-,0)和(3,0),且交y 轴于(0,4),求此函数的解析式练习1.已知二次函数与x 轴的交点为(2,0)和(6-,0),且经过点(3,9),求此函数的解析式练习2.已知二次函数的图象如图,求此函数的解析式练习3.已知二次函数的图象经过点(0,4)、(1,1)和(2,4),求此函数的解析式课 后 作 业(7)1.已知二次函数12+=ax y 经过点(1,2),则a 的值为 . 2.已知二次函数c ax y +=2经过点(1-,3),则c a +的值为 . 3.已知二次函数c bx ax y ++=2的图象经过点(1,4)、(0,3)和(2-,5-). ⑴求该函数的解析式⑵利用配方法求出顶点坐标和对称轴 ⑶列表、画图⑷求出该函数与坐标轴的交点坐标,并求出以各交点为顶点的三角形的面积⑸当x 为何值时,y 随着x 的增大而增大?当x 为何值时,y 随着x 的增大而减小?⑹分别写出0>y 和0<y 时,x 的取值范围.4.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式 5.已知二次函数c bx ax y ++=2的图象经过点(3-,6)、(1-,0)和,求此函数的解析式6.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数。

九年级数学下册 26.1《二次函数》(第1、2课时)教案 新人教版

九年级数学下册 26.1《二次函数》(第1、2课时)教案 新人教版
《26.1二次函数》
学科:数学
课时:1
总课时数




知识与
技能
会画二次函数 的图象,能将一般式化 为顶点式,掌握顶点坐标公式,对称轴的求法
过程与
方法
经历二次函数 的图象的作法,体会二次函数解析式间的转化,体会求二次函数对称轴和顶点坐标公式的必要性
情感态度与价值观
培养学生积极参与的态度,体会利用二次函数解决实际问题的意义
(2)抛物线的顶眯坐标也可根据公式直接求解
8′
巩固顶点坐标公式
3′
通过总结,归纳提高学生学习能力
板书设计
26.1.4二次函数 的图象(1)
1. 公式推导2.例1
教学后记:
课题:26.1.4二次函数 的图象
讲课教师:
学科:数学
课时:2
总课时数




知识与
技能
会求二次函数的最大值,并能利用它解决简单的实际问题
思考:
(1)列表取值应注意什么?
(2)画函数
的图象为何先要将其化为顶点导、点评
8′
通过画二次函数的图象,培养学生动手操作的能力
3′
8′
由特殊推出一般二次函数的对称轴及顶点坐标
教师活动
学生活动
备注(教学目的、时间分配等)
例1.用配方法,把下列函数写成
的形式,并写出它们的开口方向,对称轴和顶点坐标
=-( -15)2+225
画出函数的图象
∴ =15时,场地的面积S最大(S的最大值为225).
学生板演、示范
讲解题方法、点评、补充
解: 设直角三角形一直角边长为 则另一直角边长为8- ,设其面积为S

新课标人教版初中数学九年级下册第26章《二次函数》教案

新课标人教版初中数学九年级下册第26章《二次函数》教案

新课标人教版初中数学九年级下册第26章《二次函数》精品教案第1课时 26.1 二次函数一、阅读教科书第4—6页上方 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13 时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围.六、目标检测1.若函数y=(a-1)x2+2x+a2-1是二次函数,则()A.a=1 B.a=±1 C.a≠1 D.a≠-1 2.下列函数中,是二次函数的是()A.y=x2-1 B.y=x-1 C.y=8x D.y=8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y=-x2+bx+3.当x=2时,y=3,求这个二次函数解析式.第2课时二次函数y=ax2的图象与性质一、阅读课本:P6—8二、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.三、探索新知:画二次函数y=x2的图象.【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】x …-3 -2 -1 0 1 2 3 …y=x2……描点,并连线由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.解:列表并填:x …-4 -3 -2 -1 0 1 2 3 4 …y=12x2……y=x2的图象刚画过,再把它画出来.x …-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y=2x2……归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y=-x2,y=-12x2,y=-2x2的图象.列表:x …-3 -2 -1 0 1 2 3 …y=x2……x …-4 -3 -2 -1 0 1 2 3 4 …y=-12x2……x …-4 -3 -2 -1 0 1 2 3 4 …y=-2x2……归纳:抛物线y=-x2,y=-12x2,y=-2x2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”).五、理一理12图象(草图)开口方向顶点对称轴有最高或最低点最值a>0 当x=____时,y有最_______值,是______.a<0 当x=____时,y有最_______值,是______.2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______对称,开口大小_______________.3.当a>0时,a越大,抛物线的开口越___________;当a<0时,|a|越大,抛物线的开口越_________;因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越________.六、课堂训练1开口方向顶点对称轴有最高或最低点最值y=23x2当x=____时,y有最_______值,是______.y=-8x22.若二次函数y=ax2的图象过点(1,-2),则a的值是___________.3.二次函数y=(m-1)x2的图象开口向下,则m____________.4.如图,①y=ax2②y=bx2③y=cx2④y=dx2比较a、b、c、d的大小,用“>”连接.___________________________________七、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本:P9—10 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表x … -3 -2 -1 0 1 2 3 … y =x 2+1 … … y =x 2-1 ……观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________; 抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.第4课时二次函数y=a(x-h)2的图象与性质一、阅读课本:P10—11二、学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.x …-4 -3 -2 -1 0 1 2 3 4 …y=-12(x+1)2……y=-12(x-1)2……描点并画图.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.第5课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第12页~第13页上方.二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.三、探索新知:画出函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x …-4 -3 -2 -1 0 1 2 …y=-12(x+1)2-1 ……由图象归纳:2.把抛物线y =-12 x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12 (x +1)2-1.2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第14页~第15页上方.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.x … 3 4 5 6 7 8 9 …y=12x2-6x+21 ……3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.四、理一理知识点:五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点:第6课中“理一理知识点”的内容. 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为_______________,与x 轴的交点坐标____________.2.二次函数y =x 2+3x -4的顶点坐标为______________,对称轴为______________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________. 5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得: a_______0 b_______0 c_______0 △______0例4 已知二次函数y =x 2+kx +9.①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点.五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3). 求抛物线的解析式. 四、归纳用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c .2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k .3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标), 设两根式:y =a(x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.第10课时 用函数观点看一元二次方程Q PC B A一、阅读课本:第20~22页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx +c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x +1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第12课时实际问题与二次函数一、阅读课本:第27页探究3二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y=-14x2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是()A.3m B.2 6 m C.4 3 m D.9m 3.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.图①(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A (-134 ,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.(1)求点P 从点A 运动到点D 所需的时间.(2)设点P 运动时间为t (秒)①当t =5时,求出点P 的坐标.②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).五、目标检测如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于点C .(1)求b 、c 的值;(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.。

人教版-数学-九年级下册- 《二次函数》教案 新人教版

人教版-数学-九年级下册- 《二次函数》教案 新人教版

《二次函数》讲课教师:学科:数学课时:总课时数:教学目标知识与技能1.结合具体情境体会二次函数的意义,理解二次函数的有关概念2.能够表示简单变量之间的二次函数关系过程与方法1.经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型2.通过二次函数的学习使学生进一步体会建立函数模型的思想情感态度与价值观1.体会数学与人们生活的联系2.在探索二次函数的学习活动中,体会通过探索得到发现的乐趣教材分析教学重点二次函数的意义教学难点寻找,发现实际生活中二次函数问题教学过程教师活动学生活动备注(教学目的、时间分配等)一,设疑启发回忆一次函数和反比例函数的定义,图像特征,它们为解决实际问题起了很大作用,从而导入新课二,探疑互动1.正方体的棱长为x,表面积为y,则y=6x2 (用含x的代数式表示)2.圆的面积为S,半径为R,则S=πR2 (用含R的代数式表示)3.多边形的对角线数d与边数n有什么关系?4.从多边形的一个顶点出发,可以作多少条对角线?从n个顶点出发,又可以作多少条对角线?5.某工厂一种产品现在的年产学生回答学生回答已学知识和新知识有机结合,达到举一反三巩固已学知识量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么,两年后这种产品的产量y将随计划所定的x的值而确定。

y与x之间的关系应怎样表示?二,解疑归类2.二次函数的定义【做一做】观察比较以下关系式(1)y=6 x2;(2)d=1/2n·(n-3),即d=1/2n2-3/2n;(3)y=20(1+x)2,即学生讨论,得出结论y=20x2+40x+20函数(1)(2)(3)有什么共同点与不同点?共同点:A.等式的左边为函数,等式的右边为自变量的二次式。

B。

等式的右边可统一为“ax2+bx+c”的形式二次函数:一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫二次函数。

九年级数学下册《二次函数》优秀教学案例

九年级数学下册《二次函数》优秀教学案例
3. 二次方程与二次函数的关系
在此部分,我会介绍二次方程与二次函数图像之间的关系,并通过实例讲解求根公式及应用。
4. 二次函数的顶点式与交点式
最后,我会讲解二次函数的顶点式和交点式,以及它们在实际问题中的应用。
(三)学生小组讨论
在学生掌握二次函数的基本知识后,我会组织他们进行小组讨论。给出以下问题:
5. 能够运用二次函数知识解决实际生活中的问题,如最优化问题、几何图形问题等。
(二)过程与方法
在教学过程中,注重以下方法与技能的培养:
1. 通过小组合作、讨论交流,培养学生协作解决问题的能力;
2. 引导学生运用数形结合的方法,将二次函数的图像与性质相结合,提高其直观想象和逻辑思维能力;
3. 利用信息技术手段,如数学软件、多媒体课件等,辅助教学,增强学生对二次函数图像和性质的理解;
(二)问题导向
教学中,我将采用问题导向的教学方法,引导学生发现问题、提出问题、解决问题。针对二次函数的性质和图像,我会设计一系列由浅入深的问题,如“二次函数的图像为什么是抛物线?”“如何根据二次函数的一般式判断开口方向和顶点位置?”等。通过这些问题,让学生在探究中逐步掌握二次函数的知识。
(三)小组合作
小组合作是提高学生团队合作能力和自主学习能力的重要途径。在教学中,我会将学生分成若干小组,让他们针对某一问题进行合作探究。例如,在学习二次函数图像的平移和伸缩变换时,我会让各小组共同探讨并总结规律。在这个过程中,学生不仅能够学会倾听他人意见,还能提高自己的表达能力和沟通能力。
(四)反思与评价
在教学过程中,我将注重学生的反思与评价,帮助他们建立正确的自我认知。在每个知识点学习结束后,我会组织学生进行自我评价和互相评价,总结自己在学习过程中的优点和不足。同时,我会ቤተ መጻሕፍቲ ባይዱ时给予学生反馈,肯定他们的进步,指出需要改进的地方,并鼓励他们在今后的学习中继续努力。

九年级数学下册第26章《二次函数》教案新人教版

九年级数学下册第26章《二次函数》教案新人教版

九年级数学下册第26章《二次函数》教案新人教版二次函数一、教学目标:1.使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2.能用表格、关系式、图象表示变量之间的二次函数关系,发展有条理地进行思考和语言表达的能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;4.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。

5. 能根据二次函数的性质解决实际问题。

二、教材分析:本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。

二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。

二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

函数不仅仅可以看成变量之间的依赖关系,同时函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

这几节的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此这一章节的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

新人教版九年级数学下册《二次函数》整章教学案-13

新人教版九年级数学下册《二次函数》整章教学案-13

夏邑县济阳初中九年级数学教学案课题:二次函数小结与复习(3)班级:学生姓名:自学——质疑——解疑教学目标: 1.使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。

2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。

1.某市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x万元,所获利润为P=-150(x-30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=-4950(50-x)2+1945(50-x)+308万元。

(1)若不进行开发,求10年所获利润最大值是多少?(2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。

自测——互查——互教1.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看做—次函数y=kx+b的关系,如图所示。

(1)根据图象,求一次函数y=kx+b的表达式,(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①试用销售单价x表示毛利润S;②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?自测——反馈——点拨1.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。

(1)求出S与x之间的函数关系式;(2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用;(3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元) (参与资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形,②5≈2.236)自测——反馈——点拨1.某公司生产的A种产品,它的成本是2元,售价为3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y=-110x2+35x+1,如果把利润看成是销售总额减去成本费和广告费。

新人教版九年级数学下册《二次函数》整章教学案-10

新人教版九年级数学下册《二次函数》整章教学案-10

夏邑县济阳初中九年级数学教学案课题:二次函数小结与复习(2)班级:学生姓名:自学——质疑——解疑教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

自测——互查——互教(1)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(2)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

自测——反馈——点拨1.如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。

(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。

自测——反馈——点拨1. 如果一条抛物线的形状与y=-13x2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。

2.开口向上的抛物线y=a(x+2)(x-8)与x轴交于A、B两点,与y轴交于C点,若∠ACB =90°,则a=_____。

3.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=______。

二、选择。

1.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是( )A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc>02.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为( )A.y=-x2+2x+3 B. y=x2-2x-3C.y=-x2-2x+3 D. y=-x2-2x-33.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( )A.a+c B. a-c C.-c D. c4.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是( )A.4个 B.3个 C. 2个 D.1个三、解答题。

二次函数全章教案新部编本[新人教版九年级下]

二次函数全章教案新部编本[新人教版九年级下]

精选讲课讲课方案设计 | Excellent teaching plan教师学科讲课方案[ 20–20学年度第__学期]任讲课科: _____________任教年级: _____________任教老师: _____________xx市实验学校二次函数讲课目标:1、从实质状况中让学生经历研究解析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描绘变量之间的数目关系。

2、理解二次函数的看法,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能依据实诘问题确立自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

讲课要点:二次函数的看法和解析式讲课难点:本节“合作学习”涉及的实诘问题有的较为复杂,要修业生有较强的概括能力。

讲课方案:一、创办情境,导入新课问题 1、现有一根12m 长的绳索,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学以为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题 2、好多同学都喜爱打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?如何计算篮球达到最高点时的高度?这些问题都可以经过学习俄二次函数的数学模型来解决,今日我们学习“二次函数” (板书课题)二、合作学习,研究新知请用合适的函数解析式表示以下问题中状况中的两个变量y 与 x 之间的关系:(1)面积 y (cm2)与圆的半径 x ( Cm )(2)王先生计人银行 2 万元 ,先存一个一年按期,一年后银行将本息自动转存为又一个一年定期,设一年按期的年存款利率为文x 两年后王先生共得本息y 元;(3) 拟建中的一个温室的平面图如图,假如温室外面是一个矩形,周长为12Om , 室内通道的尺寸如图 ,设一条边长为x (cm), 种植面积为y (m2)111x3(一)教师组织合作学习活动:1、先个体研究,试一试写出y 与 x 之间的函数解析式。

2、上述三个问题先易后难,在个体研究的基础上,小组进行合作交流,共同商讨。

九年级(下)数学教案:二次函数单元测试

九年级(下)数学教案:二次函数单元测试
(2)试判断点P(-1,2)是否在此函数图像上?
小结反思:
通过本节课的学习,你有何收获?
你还存在什么疑惑?
板书设计
二次函数单元测试
布置作业
补充习题
教学札记
教师主导活动
学生主体
活动
20、已知二次函数 ,若 , ,那么它的图象大致是( )
1.根据所给条件求抛物线的解析式:
(1)、抛物线过点(0,2)、(1,1)、(3,5)
(2)、抛物线关于 轴对称,且过点(1,-2)和(-2,0)
2.已知二次函数 的图像经过A(0,1),
B(2,-1)两点.
(1)求 和 的值;
主备人
用案人
授课时间
年 月 日
总第课时
课题
二次函数单元测试
课型
新授
教学目标
1.注重知识梳理,让零散的知识结构化、系统化;
2.注重问题解决,将类似的问题联系起来,形成方法的总结;
3.重点培养数形结合的思想。
重点
注重问题解决,将类似的问题联系起来,形成方法的总结
难点
注重问题解决,将类似的问题联系起来,形成方法的总结
5.抛物线 在 轴上截得的线段长度是.
6.抛物线 的图象经过原点,则 .
7.抛物线 ,若其顶点在 轴上,则 .
8.如果抛物线 的对称轴是x=-2,且开口方向与 形状与抛物线相同,又过原点,那么a=,b=,
c=.
9、二次函数 的图象如下左图所示,则对称轴是,当函数值 时,对应 的取值范围是.




教学内容
B.都是关于 轴对称,抛物线开口向下
B.都是关于原点对称,顶点都是原点
D.都是关于 轴对称,顶点都是原点

九年级数学下册 261二次函数(1)精品教案 人教新课标版 教案

九年级数学下册 261二次函数(1)精品教案 人教新课标版 教案

实质上,函数的名称都反映了函数表达式与自变量的关 教师给出规 X 概念. 考查能否判断一
系.
个函数解析式是
三、课堂训练
教师出示问题 1,学 不是二次函数,使
1.判断下列函数是不是二次函数,若是,指出各项系数. 生思考解决,并阐述 学生掌握二次函
y 2x2 ; y 2x2 3x ; y 2x2 3x 5 ; 判断依据和理由.
次函数的概念
之间的关系应怎样表示?
教师引导学生观察所
㈡观察所列函数关系式,看看有何共同特点?
列函数解析式,找它
y 6x2 、 d 1 n2 3 n 、 y 20 x2 40 x 20
们的共同特点,并叙 总体概括初中学
2
2
㈢类比一次函数和反比例函数概念揭示二次函数概念: 述.
习的三类函数的
数的解析式特点
y x3 2x2 1 ; y x2 1 ; y (x 3)2 x2 . x
归纳:①函数表达式右边的各项是加法关系,各项系数前
强调二次函数解
面的“-”是性质符号。
析式的二次项系
②二次函数的几种常见形式: y ax2 ; y ax2 bx ;
数不等于 0,自变
y ax2 c ; y ax2 bx c .
x
x
60m
80m
板书设计
一、二次函数定义: 二、二次函数的 4 种常见形式
课题 26.1 二次函数 2 题分析
教 学 反思
3/4
3 题分析
word
2
2
4/4
4、在△ABC 中,∠C=90°,BC=a,AC=b,a+b=16,则 RT△ABC
的面积 S 与边长 a 的关系式是____;当 a=8 时,S=____;

人教版初中九年级数学下教案优秀教案

人教版初中九年级数学下教案优秀教案

人教版初中九年级数学下教案优秀教案一、教学目标1.让学生掌握二次函数的概念、图像和性质。

2.培养学生运用二次函数解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

二、教学重点与难点重点:二次函数的概念、图像和性质。

难点:运用二次函数解决实际问题。

三、教学过程1.导入同学们,我们已经学习了二次函数的基本概念,那么大家知道二次函数的图像是什么样子吗?它有哪些性质呢?今天我们就来详细学习一下二次函数的图像和性质。

2.二次函数的概念我们来回顾一下二次函数的定义:一般地,形如y=ax²+bx+c(a ≠0)的函数叫做二次函数。

其中,a、b、c是常数,x是自变量,y 是因变量。

3.二次函数的图像我们来看一下二次函数的图像。

请大家打开教材第56页,观察图3.1。

我们可以看到,二次函数的图像是一个开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

4.二次函数的性质(1)对称性:二次函数的图像关于其对称轴对称。

对称轴的方程为x=-b/2a。

(2)顶点:二次函数的图像有一个最高点或最低点,这个点叫做顶点。

顶点的坐标为(-b/2a,c-b²/4a)。

(3)单调性:当a>0时,二次函数在x=-b/2a左侧单调递减,在x=-b/2a右侧单调递增;当a<0时,二次函数在x=-b/2a左侧单调递增,在x=-b/2a右侧单调递减。

5.运用二次函数解决实际问题学习了二次函数的图像和性质后,我们来看一下如何运用二次函数解决实际问题。

例1:某抛物线运动物体,在水平方向上的位移s(米)与时间t (秒)的关系为s=4t²-6t。

求物体在运动过程中,最大位移是多少?分析:这是一个二次函数的实际应用问题。

我们可以将s=4t²-6t 写成标准形式s=4(t-0.75)²-2.25,从而得出抛物线的顶点为(0.75,-2.25)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数单元测评
一、选择题(每题3分,共30分)
1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D.
2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3)
3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上 二、
4. 抛物线的对称轴是( ) A. x=-2 B.x=2 C. x=-4 D. x=4
5. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,准确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
6.
7. 如图所示,已知二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,图象交x 轴于点A(m ,0)和点B ,且m>4,那么AB 的长是( ) A. 4+m B. m C. 2m-8 D. 8-2m
8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )
9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( ) A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A. B.
姓名——————— 考号_———————— 班级——————
C. D.
二、填空题(每题3分,共24分)
11. 二次函数y=x2-2x+1的对称轴方程是______________.
12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.
13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.
14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.
15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.
16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力
的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.
18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.
三、解答下列各题(19、20每题8分,21、22、23每题10分,共46分)
19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此
二次函数图象上点A关于对称轴对称的点A′的坐标 (2)求此二次函数的解析式;
20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.
(1)求二次函数解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.
21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,
0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式; (2)求△MCB的面积S△MCB.
22. 某商场购进一种每件价格为100元的新商品,试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
23.已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .
(1) 如图,若点P 的横坐标为1,点B 的坐标为(3,6),
1) 试确定抛物线的解析式;
2) 试确定直线AB 的解析式
(2)在(1)的条件下,若点M 是直线AB 下方抛物线上的一点,且3ABM S ∆=, 求点M
的坐标;
1.考点:二次函数概念.选A.
2.考点:求二次函数的顶点坐标.
解析
:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k 的形式,顶点坐标即为(h ,k),y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.
3. 考点:二次函数的图象特点,顶点坐标.
解析:能够直接由顶点式形式求出顶点坐标实行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.
4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为
.解析:抛物线,直接利用公式,其对称轴所在直线为
答案选B.5.考点:二次函数的图象特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答
案选C.
6.
考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方
在第四象限,答案选D.
7.
考点:二次函数的图象特征.
解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.
8.
考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.
解析:因为一次函数y=ax+b的图象经过第二、三、四象限,
所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.
9. 考点:一次函数、二次函数概念图象及性质.
解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.
10.考点:二次函数图象的变化.抛物线的图象
向左平移2个单位得到,再向上平移3个单位得到
.答案选C.
考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程
.答案x=1.
12.考点:利用配方法变形二次函数解析式.
解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.
13. 考点:二次函数与一元二次方程关系.
解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.
14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,
解得b=-2,c=-3,答案为y=x2-2x-3.
15.考点:此题是一道开放题,求解满足条件的二次函数解析式,.
解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.
16.考点:二次函数的性质,求最大值.
解析:直接代入公式,答案:7.
考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.
解析:如:y=x2-4x+3.
18.考点:二次函数的概念性质,求值.
答案:.
19. 考点:二次函数的概念、性质、图象,求解析式.
解析:(1)A′(3,-4)
(2)由题设知:
∴y=x2-3x-4为所求
(3)
20.
考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根
又∵(x1+1)(x2+1)=-8
∴x1x2+(x1+x2)+9=0
∴-(k+4)-(k-5)+9=0
∴k=5
∴y=x2-9为所求
(2)由已知平移后的函数解析式为:
y=(x-2)2-9
且x=0时y=-5
∴C(0,-5),P(2,-9)
.
21. 解:
(1)依题意:
(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1
∴B(5,0)
由,得M(2,9) 作ME⊥y轴于点E,

可得S△MCB=15.。

相关文档
最新文档