-多元线性回归模型

合集下载

第三章 多元线性回归模型

第三章 多元线性回归模型


Y Xb U
X 称为数据矩阵或设计矩阵。
6
二、古典假定
假定1:零均值假定 E(ui ) 0 (i 1,2,...,n)
1 E ( 1 ) E ( ) 2 2 E (μ) E 0 n E ( n )
写成矩阵形式:
Y1 1 X 21 Y 1 X 22 2 Yn 1 X 2 n X 31 X k 1 b 1 u1 X 32 X k 2 b 2 u 2 X 3 n X kn b k un

ei 1 X 21 X e 1 X 22 2i i X ki ei 1 X 2 n X 31 X k 1 e1 X 32 X k 2 e2 X e 0 X 3 n X kn en
9
当总体观测值难于得到时,回归系数向 量 b 是未知的,这时可以由样本观测值进行 估计,可表示为
ˆ ˆ Xb Y
但实际观测值与计算值有偏差,记为:
ˆ e Y Y
于是
ˆ e Y Xb
称为多元样本回归函数。
10
ˆ b 1 ˆ b2 ˆ b ˆ b k
同理
ˆ x x b ˆ x 2 x3 i yi b 2 2i 3i 3 3i
x2 i yi x x3 i yi x2 i x3 i ˆ b2 2 2 2 x2 x ( x x ) i 3i 2i 3i
2 3i
x3 i yi x x2 i yi x2 i x3 i ˆ b3 2 2 2 x2 x ( x x ) i 3i 2i 3i

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型
多元线性回归模型的表达式
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释多元线性回归是一种广泛应用于统计学和机器学习领域的预测模型。

与简单线性回归模型相比,多元线性回归模型允许我们将多个自变量引入到模型中,以更准确地解释因变量的变化。

一、多元线性回归模型的基本原理多元线性回归模型的基本原理是建立一个包含多个自变量的线性方程,通过对样本数据进行参数估计,求解出各个自变量的系数,从而得到一个可以预测因变量的模型。

其数学表达形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的系数,ε为误差项。

二、多元线性回归模型的估计方法1. 最小二乘法估计最小二乘法是最常用的多元线性回归模型估计方法。

它通过使残差平方和最小化来确定模型的系数。

残差即观测值与预测值之间的差异,最小二乘法通过找到使残差平方和最小的系数组合来拟合数据。

2. 矩阵求解方法多元线性回归模型也可以通过矩阵求解方法进行参数估计。

将自变量和因变量分别构成矩阵,利用矩阵运算,可以直接求解出模型的系数。

三、多元线性回归模型的解释多元线性回归模型可以通过系数估计来解释自变量与因变量之间的关系。

系数的符号表示了自变量对因变量的影响方向,而系数的大小则表示了自变量对因变量的影响程度。

此外,多元线性回归模型还可以通过假设检验来验证模型的显著性。

假设检验包括对模型整体的显著性检验和对各个自变量的显著性检验。

对于整体的显著性检验,一般采用F检验或R方检验。

F检验通过比较回归平方和和残差平方和的比值来判断模型是否显著。

对于各个自变量的显著性检验,一般采用t检验,通过检验系数的置信区间与预先设定的显著性水平进行比较,来判断自变量的系数是否显著不为零。

通过解释模型的系数和做假设检验,我们可以对多元线性回归模型进行全面的解释和评估。

四、多元线性回归模型的应用多元线性回归模型在实际应用中具有广泛的应用价值。

多元线性回归——模型、估计、检验与预测

多元线性回归——模型、估计、检验与预测

多元线性回归——模型、估计、检验与预测⼀、模型假设传统多元线性回归模型最重要的假设的原理为:1. ⾃变量和因变量之间存在多元线性关系,因变量y能够被x1,x2….x{k}完全地线性解释;2.不能被解释的部分则为纯粹的⽆法观测到的误差其它假设主要为:1.模型线性,设定正确;2.⽆多重共线性;3.⽆内⽣性;4.随机误差项具有条件零均值、同⽅差、以及⽆⾃相关;5.随机误差项正态分布具体见另⼀篇⽂章:回归模型的基本假设⼆、估计⽅法⽬标:估计出多元回归模型的参数注:下⽂皆为矩阵表述,X为⾃变量矩阵(n*k维),y为因变量向量(n*1维)OLS(普通最⼩⼆乘估计)思想:多元回归模型的参数应当能够使得,因变量y的样本向量在由⾃变量X的样本所构成的线性空间G(x)的投影(即y’= xb)为向量y 在线性空间G(x)上的正交投影。

直⽩⼀点说,就是要使得(y-y’)’(y-y’)最⼩化,从⽽能够使y的预测值与y的真实值之间的差距最⼩。

使⽤凸优化⽅法,可以求得参数的估计值为:b = (x’x)^(-1)x’y最⼤似然估计既然已经在假设中假设了随机误差项的分布为正态分布,那么⾃变量y的分布也可以由线性模型推算出来(其分布的具体函数包括参数b在内)。

进⼀步的既然已经抽取到了y的样本,那么使得y的样本出现概率(联合概率密度)最⼤的参数即为所求最终结果与OLS估计的结果是⼀致的矩估计思想:通过寻找总体矩条件(模型设定时已经有的假设,即⽆内⽣性),在总体矩条件中有参数的存在,然后⽤样本矩形条件来进⾏推导未知参数的解。

在多元回归中有外⽣性假设:对应的样本矩为:最终估计结果与OLS⽅法也是⼀样的。

三、模型检验1.拟合优度检验(1)因变量y是随机变量,⽽估计出来的y’却不是随机变量;(2)拟合优度表⽰的是模型的估计值y’能够在多⼤程度上解释因变量样本y的变动。

(3)y’的变动解释y的变动能⼒越强,则说明模型拟合的越好y-y’就越接近与假设的随机误差(4)⽽因变量的变动是由其⽅差来描述的。

多元线性回归模型

多元线性回归模型

第三章 多元线性回归模型基本概念(1)多元线性回归模型; (2)偏回归系数;(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?2.在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中二者是否有等价的作用?3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?4.在一项调查大学生一学期平均成绩(Y )与每周在学习(1X )、睡觉(2X )、 娱乐(3X )与其他各种活动(4X )所用时间的关系的研究中,建立如下回归模型: 011223344Y X X X X u βββββ=+++++如果这些活动所用时间的总和为一周的总小时数168。

问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?5.表3-1给出三变量模型的回归结果。

表 3-1(1)求样本容量n ,残差平方和RSS ,回归平方和ESS 及残差平方和RSS 的自由度。

(2)求拟合优度2R 及调整的拟合优度2R -。

(3)检验假设:2X 和3X 对Y 无影响。

应采用什么假设检验?为什么? (4)根据以上信息,你能否确定3X 和3X 各自对Y 的影响?6.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 12310.360.0940.1310.210Y X X X =-++20.214R =其中,Y 为劳动力受教育年数,1X 为该劳动力家庭中兄弟姐妹的人数,2X 与3X 分别为母亲与父亲受教育的年数。

问:(1) 1X 是否具有预期的影响?为什么?若2X 与3X 保持不变,为了使预测的受教育水平减少一年,需要1X 增加多少?(2)请对2X 的系数给予适当的解释。

多元线性回归模型构建

多元线性回归模型构建

多元线性回归模型构建多元线性回归模型是统计分析中一种常用的数据拟合方法,可用来对定量变量之间的关系进行建模,预测定量变量的变化,以及预测结果的置信水平等。

本文将针对多元线性回归模型的概念及其理论模型,结构介绍,应用说明以及优缺点等方面进行详细介绍。

二、概念多元线性回归模型(Multiple Linear Regression Model, MLRM)是统计分析中最常用的数据拟合方法,也是机器学习和数据挖掘的一种经典算法。

它可以用来在多个定量变量之间建立一个线性回归关系,从而预测定量变量的变化,以及预测结果的置信水平等。

多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型。

三、结构多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型,其结构如下:多元线性回归模型:Y=b0+b1*X1+b2*X2…+b n*XnY 为因变量,指被预测的定量变量;X1、X2…Xn是自变量,指可用来预测因变量变化的定量变量; b0、b1、b2…b n分别为关系中各个自变量的系数。

四、应用多元线性回归模型广泛应用于社会科学,包括经济学、管理学、法学等多个领域。

例如,探讨一个企业经济活动的盈利情况,就可采用多元线性回归模型计算出不同的投资因素对企业收益的影响程度。

因此,多元线性回归模型可以应用在预测和决策分析中,从而更好地支持决策。

五、优点(1)多元线性回归模型可涉及多个自变量,可模拟出复杂的系统关系,解决多头预测和决策分析问题,对决策提供可靠的数据和参考;(2)多元线性回归模型具有较高的精度和稳定性,可以准确地捕捉现实问题,更好地反映实际情况;(3)多元线性回归模型的数据处理上也相对较为简单,不需要花费大量的人力和时间资源,容易操作,易于理解;六、缺点(1)多元线性回归模型要求数据具有较高的完整性和多样性,并要求自变量的变量类型较少,局限性较大;(2)多元线性回归模型可能因数据中的噪音而影响模型的准确性,模型预测存在较大误差;(3)多元线性回归模型可能存在欠拟合或过拟合的情况,无法有效反映出实际系统中的复杂情况。

第三章多元线性回归模型

第三章多元线性回归模型

第三章 多元线性回归模型一、名词解释1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数2R :又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了2R 随解释变量的增加而增大的缺陷,与2R 的关系为2211(1)1n R R n k -=----。

3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。

4、正规方程组:采用OLS 方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为ˆX X X Y β''=。

5、方程显著性检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出判断。

二、单项选择题1、C :F 统计量的意义2、A :F 统计量的定义3、B :随机误差项方差的估计值1ˆ22--=∑k n e iσ4、A :书上P92和P93公式5、C :A 参看导论部分内容;B 在判断多重共线等问题的时候,很有必要;D 在相同解释变量情况下可以衡量6、C :书上P99,比较F 统计量和可决系数的公式即可7、A :书P818、D :A 截距项可以不管它;B 不考虑beta0;C 相关关系与因果关系的辨析 9、B :注意!只是在服从基本假设的前提下,统计量才服从相应的分布10、D :AB 不能简单通过可决系数判断模型好坏,还要考虑样本量、异方差等问题;三、多项选择题1、ACDE :概念性2、BD :概念性3、BCD :总体显著,则至少一个参数不为04、BC :参考可决系数和F 统计量的公式5、AD :考虑极端情况,ESS=0,可发现CE 错四、判断题、 1、√2、√3、×4、×:调整的可决系数5、√五、简答题 1、 答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。

多元线性回归模型

多元线性回归模型

多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。

它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。

在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。

【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。

它假设自变量之间相互独立,并且与因变量之间存在线性关系。

多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。

【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。

以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。

2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。

3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。

4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。

【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。

2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。

3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。

4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。

5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。

多元线性回归模型计量经济学

多元线性回归模型计量经济学

多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型

e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X

1i 2 1i

X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章

多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定

多元线性回归模型

多元线性回归模型

多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。

它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。

本文旨在介绍多元线性回归模型的原理、假设条件和应用。

一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。

多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。

二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。

最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。

具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。

三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。

主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。

在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。

四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。

在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。

多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。

五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。

然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。

第四章--多元线性回归模型

第四章--多元线性回归模型

第四章 多元线性回归模型在一元线性回归模型中,解释变量只有一个。

但在实际问题中,影响因变量的变量可能不止一个,比如根据经济学理论,人们对某种商品的需求不仅受该商品市场价格的影响,而且受其它商品价格以及人们可支配收入水平的制约;影响劳动力劳动供给意愿(用劳动参与率度量)的因素不仅包括经济形势(用失业率度量),而且包括劳动实际工资;根据凯恩斯的流动性偏好理论,影响人们货币需求的因素不仅包括人们的收入水平,而且包括利率水平等。

当解释变量的个数由一个扩展到两个或两个以上时,一元线性回归模型就扩展为多元线性回归模型。

本章在理论分析中以二元线性回归模型为例进行。

一、预备知识(一)相关概念对于一个三变量总体,若由基础理论,变量21,x x 和变量y 之间存在因果关系,或21,x x 的变异可用来解释y 的变异。

为检验变量21,x x 和变量y 之间因果关系是否存在、度量变量21,x x 对变量y 影响的强弱与显著性、以及利用解释变量21,x x 去预测因变量y ,引入多元回归分析这一工具。

将给定i i x x 21,条件下i y 的均值i i i i i x x x x y E 2211021),|(βββ++= (4.1) 定义为总体回归函数(Population Regression Function,PRF )。

定义),|(21i i i i x x y E y -为误差项(error term ),记为i μ,即),|(21i i i i i x x y E y -=μ,这样i i i i i x x y E y μ+=),|(21,或i i i i x x y μβββ+++=22110 (4.2)(4.2)式称为总体回归模型或者随机总体回归函数。

其中,21,x x 称为解释变量(explanatory variable )或自变量(independent variable );y 称为被解释变量(explained variable )或因变量(dependent variable );误差项μ解释了因变量的变动中不能完全被自变量所解释的部分。

多元线性回归模型

多元线性回归模型

多元线性回归模型(1)模型准备多元线性回归模型是指含有多个解释变量的线性回归模型,用于解释被解释的变量与其他多个变量解释变量之间的线性关系。

其数学模型为:上式表示一种 p 元线性回归模型,可以看出里面共有 p 个解释变量。

表示被解释变量y 的变化可以由两部分组成:第一部分,是由 p 个解释变量 x 的变化引起的 y 的线性变化部分。

第二部分,是要解释由随机变量引起 y 变化的部分,可以用 \varepsilon 部分代替,可以叫随机误差,公式中的参数都是方程的未知量,可以表示为偏回归常数和回归常数,则多元线性回归模型的回归方程为:(2)模型建立首先在中国A股票市场中,根据各指标与估值标准 y 的关联度来选取变量,选取指标为:年度归母净利润 x_{1} 、年度营业收入 x_{2} 、年度单只股票交易量 x_{4} 、年度单只股票交易量金额 x_{6} 。

有如下表达式为:其中 y 是因变量, x_{1},x_{2},x_{4},x_{6} 是自变量,α为误差项,b_{1},b_{2},b_{4},b_{6} 为各项系数。

(3)中国A股票市场模型求解运用SPSS软件,运用多元线性回归方程可以得出如下:下表模型有4个自变量,模型调整后的拟合度为0.976,说明模型的拟合度非常好。

下表为方差分析表,告诉我们F 的值值为1.794,显著性概率p 为0.004小于0.005,因此自变量系数统计较为显著。

下表给出模型常数项和自变量系数,并对系数统计显著性进行检验,常数项的值为2.618,显著性为0.002,统计比较显著,其它指标的显著性都小于0.005,故该模型比较准确。

故得出中国A股市场中的估值水平与这四个指标的线性关系为:(4)美国NASDAQ市场模型求解下表模型有4个自变量,模型调整后的拟合度为0.862,说明模型的拟合度非常好。

下表为方差分析表,告诉我们 F 值为15.081,显著性概率 p 为0.005等于0.005,因此自变量系数统计较为显著。

SPSS--回归-多元线性回归模型案例解析

SPSS--回归-多元线性回归模型案例解析

SPSS--回归-多元线性回归模型案例解析多元线性回归,主要是研究⼀个因变量与多个⾃变量之间的相关关系,跟⼀元回归原理差不多,区别在于影响因素(⾃变量)更多些⽽已,例如:⼀元线性回归⽅程为:毫⽆疑问,多元线性回归⽅程应该为:上图中的 x1, x2, xp分别代表“⾃变量”Xp截⽌,代表有P个⾃变量,如果有“N组样本,那么这个多元线性回归,将会组成⼀个矩阵,如下图所⽰:那么,多元线性回归⽅程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满⾜以下四个条件,多元线性⽅程才有意义(⼀元线性⽅程也⼀样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。

2:⽆偏性假设,即指:期望值为03:同共⽅差性假设,即指,所有的随机误差变量⽅差都相等4:独⽴性假设,即指:所有的随机误差变量都相互独⽴,可以⽤协⽅差解释。

今天跟⼤家⼀起讨论⼀下,SPSS---多元线性回归的具体操作过程,下⾯以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建⽴拟合多元线性回归模型。

数据如下图所⽰:点击“分析”——回归——线性——进⼊如下图所⽰的界⾯:将“销售量”作为“因变量”拖⼊因变量框内,将“车长,车宽,耗油率,车净重等10个⾃变量拖⼊⾃变量框内,如上图所⽰,在“⽅法”旁边,选择“逐步”,当然,你也可以选择其它的⽅式,如果你选择“进⼊”默认的⽅式,在分析结果中,将会得到如下图所⽰的结果:(所有的⾃变量,都会强⾏进⼊)如果你选择“逐步”这个⽅法,将会得到如下图所⽰的结果:(将会根据预先设定的“F统计量的概率值进⾏筛选,最先进⼊回归⽅程的“⾃变量”应该是跟“因变量”关系最为密切,贡献最⼤的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须⼩于0.05,当概率值⼤于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输⼊数据,如果你需要对某个“⾃变量”进⾏条件筛选,可以将那个⾃变量,移⼊“选择变量框”内,有⼀个前提就是:该变量从未在另⼀个⽬标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所⽰:点击“统计量”弹出如下所⽰的框,如下所⽰:在“回归系数”下⾯勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”⼀般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。

第三章 多元回归模型

第三章 多元回归模型
其计算公式如下:
r0i,12i1i1k
r r r 0i,12i1i1k 1 0k ,12k 1 ik ,12i1i1k 1
1 r02k,12k1
1
r2
ik ,12i1i1k
1
问题:在多元回归中 r12(i1)(i1)k ,0 是越大越好,
还是越小越好?
17
模型显著性检验(F检验): F统计量
核心思想:残差平方和最小准则
min ei2 min yi yˆi 2
min yi ˆ0 ˆ1x1i ˆ2x2i ˆk xki 2
求解原理
ei2
ˆ j
0
结论
j 0,1,2,, k
ˆ X ' X 1 X 'Y
8
例子
经过研究,发现家庭书刊消费水平受家庭 收入及户主教育年数的影响。现对某地区 的家庭进行抽样调查,得到的样本数据如 表所示,其中 y 表示家庭书刊消费水平
其中,n k 1为 ei2 的自由度,n 1 为 yi y2
的自由度
引入修正的样本决定系数R 2的作用:
用自由度调整后,可以消除拟合优度评价中解释变量多 少对决定系数计算的影响
对于包含的解释变量个数不同的模型,可以用调整后的 决定系数直接比较它们的拟合优度的高低,但不能用原 来未调整的决定系数来比较
零阶偏相关系数、一阶偏相关系数、k 1 阶偏相关系数
r01 为零阶偏相关系数、 r02,1 称为一阶偏相关系数、 r01,23 称
为二阶偏相关系数、r01,234 称为三阶偏相关系数,依此类推
16
偏相关系数:一般公式
一般地,在研究多个变量的偏相关系数时,因变量 y
与解释变量 xi i 1,2,, k 的k 1 阶偏相关系数时,

《多元线性回归模型》课件

《多元线性回归模型》课件

参数估计Biblioteka 最小二乘法使用最小二乘法估计模型中的 回归系数。
最大似然估计
通过最大似然估计法求解模型 参数。
岭回归
使用岭回归克服多重共线性问 题。
模型评估
R方值
通过R方值评估模型对数据的拟合程度。
调整R方值
调整R方值可纠正样本容量对R方的偏倚。
残差分析
通过残差分析评估模型的合理性和拟合优度。
解释变量
通过系数解释每个自变量对因变量的影响,了解它们在模型中的作用和重要性。
实例分析
1
数据收集
搜集相关数据,准备进行多元线性回归分析。
2
模型构建
使用收集到的数据建立多元线性回归模型。
3
结果解读
对模型结果进行解读和分析,并给出相关结论。
变量选择
相关性分析
通过相关性分析选择与因变量相关性强的自变量。
逐步回归
逐步回归法能帮助我们选择最佳的自变量组合。
变量筛选
借助统计指标和领域知识选择适当的自变量。
模型假设
1 线性关系
假设因变量与自变量之间存在线性关系。
2 多元正态分布
3 无多重共线性
假设因变量及自变量服从多元正态分布。
假设自变量之间不存在高度相关性。
《多元线性回归模型》 PPT课件
在这个PPT课件中,我们将讲解多元线性回归模型的重要概念和应用。通过 丰富的实例和清晰的解释,帮助你深入了解这一统计分析方法。
多元线性回归模型的概述
我们将介绍多元线性回归模型的基本概念、原理和用途。了解什么是多元线 性回归,以及如何利用它来分析和预测多个自变量对因变量的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 相对误差 PE (Percentage Error)
PE = yˆt yt , t = 1, 2, …, T yt
(6-59)
PE 属于单期(单点)评价。PE 没有测量单位,测量的是预测误差的相对值。
(3) 误差均方根 rms error (Root Mean Squared Error)
其中 s( yˆT 1) = s C(X ' X )1C'
(6-48) (6-49) (6-53)
(6-57)
6.9.4 预测的评价指标
(1) 预测误差
预测误差定义为(注意:这里的 et 表示的是预测误差,不是残差)。
et = yˆ t - yt, t = 1, 2, …, T
(6-58)
et 属于单期(单点)评价。et 有测量单位,测量的是预测误差的绝对量。
MAPE = 1 T yˆt yt , t = 1, 2, …, T 值平均属于多期(多点)预测的综合评价。相对误差绝对值平均没 有测量单位,考查的是相对误差。之所以取绝对值运算是防止正、负预测相对误 差值的相互抵消。 (6) 泽尔系数(Theil Coefficent)
TSS /(T 1)
T k
TSS
T k
(6-43)
6.7 F 检验 对于多元线性回归模型,在对每个回归系数进行显著性检验之前,应该对回归 模型的整体做显著性检验。这个检验要用到 F 统计量。
当检验被解释变量 yt 与一组解释变量 x1, x2 , ... , xk -1 是否存在回归关系时, 给出的零假设与备择假设分别是
Theil =
1
T
T
( yˆ t
t 1
yt )2
,
1
T
T
( yˆ t ) 2
t 1
1 T
T
(yt )2
t 1
t = 1, 2, …, T
(6-63)
Theil 的取值范围是 [0,1]。显然在预测区间内,当 yˆ t 与 yt 完全相等时,Theil = 0; 当预测结果最差时,Theil = 1。 以上 6 个式子中, yˆ t 表示预测值,yt 表示实际值。公式中的累加范围是用 1 至 T 表示的,当然也可以指样本外的预测评价。
H0:1 = 2 = ... = k-1 = 0 , H1:i, i = 1, ..., k -1,不全为零。 注意,H1 定义的是“i 不全为零”,而不是“i 全不为零”。而且i 中不包括0。 定义 F 统计量为
F = ESS /(k 1) RSS /(T k)
(6-45)

H0
成立条件下,有
F
0.8
X2
0.4
2.0
2.5
3.0
3.5
4.0
4.5
图 6-3 xt 1 与 yt 的关系
图 6-4 xt 2 与 yt 的关系
6.10 多元线性回归计算举例 考虑建立二元线性回归模型如下,
yt = 0 + 1 xt 1 + 2 xt 2 + ut 用矩阵表示为
Y=X+u 其中
Y = y1 y2 y15 = 1.62 1.20 2.12
T
T
T
= + plim ( -X 'X)-1 plim - X ' E(u) =
T
T
6.3.5 一致性 下面证明 OLS 估计量的一致性。由式(6-13)有
Var( ˆ ) = 2 (X 'X )-1 = - 2 ( - X 'X )-1
(6-18) (6-19)
取极限,则有
plim Var( ˆ ) = plim T -1 plim ( - X ' X )-1
第 6 章 多元线性回归模型
6.10 多元线性回归计算举例 例 6-1 被解释变量是年销售量 yt (万瓶),解释变量分别是地区人口数(xt1,万人) 和 人均年收入(xt2,千元)。试建立二元线性回归销售模型。
2.8 Y
2.4
2.8 Y
2.4
2.0
2.0
1.6
1.6
1.2
1.2
0.8
0.4 4
X1 8 12 16 20 24 28 32 36 40 44
ˆ 具有线性特性。 6.3.2 无偏特性 利用假定 (1),E(u) = 0,由式 ˆ = (X 'X )-1 X 'Y,
E( ˆ ) = + (X 'X)-1X ' E(u) =
(6-12)
ˆ 是的线性无偏估计量,具有无偏性。 6.3.3 最小方差性 下面求 ˆ 的方差协方差矩阵。当假定 (1)、(3)、(4) 成立时,利用上式得
若用样本计算的 t t / 2(T- k),则接受 H0, 若用样本计算的 t > t / 2(T- k),则拒绝 H0。 其中表示检验水平,t / 2(T- k)表示临界值。t 检验示意图见图 6-2。 注意:对于模型 (6-1),上述 t 检验应做 k - 1 次。t 检验是双侧(双端、双边)检验。
1 T
T t 1
yˆ t
yt
,
t = 1, 2, …, T
(6-61)
绝对误差平均属于多期(多点)预测的综合评价。绝对误差平均有测量单位,与 yt 的测量单位相同。之所以取绝对值运算是防止正、负预测误差值的相互抵消。 (5) 相对误差绝对值平均 MAPE (Mean Absolute Percentage Error)
6.9 预测 6.9.1 点预测 设 T+1 期解释变量向量用 C 表示,
C = (1 xT+1,1 xT+1,2 … xT+1,k-1 ) ˆ 已知。则 T+1 期被解释变量 yT+1 的点预测式是,
yˆT 1 = C ˆ = ˆ 0 + ˆ 1 xT+1 1 + … + ˆ k-1 xT+1 k-1 yT+1 的 95%置信度的置信区间是
Var( ˆ ) = E[( ˆ –) ( ˆ –)'] = E[(X 'X)-1X ' u u' X (X 'X)-1]
= E[(X 'X)-1X ' 2I X (X 'X)-1] = 2 (X 'X)-1
(6-13)
ˆ 具有最小方差特性。
6.3.4 渐近无偏性
plim E( ˆ ) = plim E[(X 'X)-1 X 'Y ] = plim E[(X 'X)-1X ' (X + u)]
6.10 多元线性回归计算举例 ˆ = (X 'X )-1 X 'Y
1.2464 = 2.1279103
minS = uˆ ' uˆ = (Y -Yˆ )' (Y -Yˆ ) = (Y - X ˆ )' (Y - X ˆ )
= Y 'Y - ˆ 'X 'Y - Y ' X ˆ + ˆ 'X 'X ˆ = Y 'Y - 2 ˆ 'X 'Y + ˆ 'X 'X ˆ
因为 Y 'X ˆ 是一个标量,所以有 Y 'X ˆ = ˆ 'X 'Y。求 S 对 ˆ ' 的一阶偏
6.5 Y 与最小二乘估计量 ˆ 的分布
若假定 u N(0, I ), 则每个 ut 都服从正态分布。于是有 Y N(X , I )
ˆ N(, (X 'X )-1 )
(6-34)
通常未知。可用 的无偏估计量 s 构造 Var( ˆ ) 的估计式,
Var
(
ˆ
)
=
s(2βˆ )
=
本点的拟合优度越好,即解释变量对被解释变量的解释作用越强。
6.6.3 调整的多重确定系数 R 2 对于给定的样本值 yt,TSS 是不变的。随着模型中解释变量个数的增加,RSS 趋向于变小,即确定系数 R 2 变大。为考虑模型中解释变量个数的变化对 R2
的影响,调整的多重可决系数 R 2 定义如下,
s
(X
'
X
)-1
(6-35)
Var
(
ˆ
)也用
s2ˆ
表示。因为
s是
的无偏估计量,所以
s2ˆ
=s(X
'X
)-1
也是
Var( ˆ )= (X 'X )-1 的无偏估计量。
6.6.2 多重确定系数 R2
R2 = ESS Yˆ' Yˆ Ty 2
TSS Y Y - Ty 2
(6-41)
多重可决系数 R2 的取值范围在[0, 1]之间。R2 越接近 1,估计的回归函数对样
-多元线性回归模型
6.1.2 模型的假定条件 假定 ⑴ 随机误差项向量 u 是非自相关的,同方差的。其中每一项
都满足均值为零,方差为 2,相同且为有限值,即
1 0 0
E(u) = 0 = 0
0
0
(T 1)
,Var
(u)
=
2I
=
2
0
0
0
0
1
(T
T
)
假定⑵ 解释变量与误差项相互独立,即
E(X 'u) = 0 假定⑶ 解释变量之间线性无关。
1 x11 x12 1 27.4 2.450
X=
1 ...
1
x 21 ... x15 1
x 22 ...
=
x15 2
1 .1..
18.0 ...
相关文档
最新文档